Fast 3D isotropic imaging of the aortic vessel wall by application of 2D spatially selective excitation and a new way of inversion recovery for black blood imaging
Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitatio...
Saved in:
Published in | Magnetic resonance in medicine Vol. 75; no. 2; pp. 547 - 555 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 |
DOI | 10.1002/mrm.25599 |
Cover
Abstract | Purpose
Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.
Methods
The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.
Results
Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time.
Conclusion
This feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose
Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.
Methods
The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.
Results
Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time.
Conclusion
This feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc. PurposeAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.MethodsThe excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.ResultsExperiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time.ConclusionThis feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc. Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 1.5 1.5 mm super(3) in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547-555, 2016. Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm(3) in less than 5 min minimal scan time. This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. PURPOSEAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.METHODSThe excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.RESULTSExperiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm(3) in less than 5 min minimal scan time.CONCLUSIONThis feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547-555, 2016. © 2015 Wiley Periodicals, Inc. |
Author | van den Berg, Cornelis A.T. Leiner, Tim Hoogduin, Hans Mooiweer, Ronald Visser, Fredy Eikendal, Anouk L.M. El Aidi, Hamza Luijten, Peter R. Sbrizzi, Alessandro Raaijmakers, Alexander |
Author_xml | – sequence: 1 givenname: Ronald surname: Mooiweer fullname: Mooiweer, Ronald email: r.mooiweer@umcutrecht.nl organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 2 givenname: Alessandro surname: Sbrizzi fullname: Sbrizzi, Alessandro organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 3 givenname: Hamza surname: El Aidi fullname: El Aidi, Hamza organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 4 givenname: Anouk L.M. surname: Eikendal fullname: Eikendal, Anouk L.M. organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 5 givenname: Alexander surname: Raaijmakers fullname: Raaijmakers, Alexander organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 6 givenname: Fredy surname: Visser fullname: Visser, Fredy organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 7 givenname: Cornelis A.T. surname: van den Berg fullname: van den Berg, Cornelis A.T. organization: Department of Radiotherapy, University Medical Center Utrecht, The Netherlands – sequence: 8 givenname: Tim surname: Leiner fullname: Leiner, Tim organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 9 givenname: Peter R. surname: Luijten fullname: Luijten, Peter R. organization: Department of Radiology, University Medical Center Utrecht, The Netherlands – sequence: 10 givenname: Hans surname: Hoogduin fullname: Hoogduin, Hans organization: Department of Radiology, University Medical Center Utrecht, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25761646$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URNPAghdAltjAYlrb48t4iVqaglpAFZel5XjOFLeT8WBPks7z8KI4pOmiEhVe2Mc-339k-_wHaK8LHSD0kpJDSgg7WsTFIRNC6ydoQgVjBROa76EJUZwUJdV8Hx2kdE0I0VrxZ2ifCSWp5HKCfp_aNODyBPsUhhh677Bf2CvfXeHQ4OEnYBvikE9XkBK0eG3bFs9HbPu-9c4OPnQbkJ3g1Oddzo44c-AGvwIMt84PW8h2Nba4g3UuMW4kvltBTJtUBBdyPOImRDxvrbvJcwj17ibP0dPGtgle3K1T9O30_dfjs-L88-zD8bvzwvFK6YJDWQE0rFFqbh2n2lXMAbFEaQVMqbpy1FakUVbWmjotNRVCSEEk485yW07Rm23dPoZfS0iDWfjkoG1tB2GZDFVKSkW4qv4DlaTKXCky-voBeh2WscsPMUwQzRip6KMUVUIJLcs8pujVHbWcL6A2fcxfFEez62cG3m4BF0NKEZp7hBKz8YrJXjF_vZLZowfsrllDtL59TLH2LYz_Lm0uLi92imKr8GmA23uFjTdGqlIJ8-PTzHz_eFmqL7Mzw8s_psPepQ |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_nic_2024_02_002 crossref_primary_10_1002_mrm_25996 crossref_primary_10_1016_j_mri_2015_10_002 crossref_primary_10_1002_mrm_26346 crossref_primary_10_1007_s40134_017_0246_4 |
Cites_doi | 10.1002/jmri.24592 10.1002/mrm.22642 10.1161/01.CIR.101.21.2503 10.1148/radiology.164.2.3602402 10.1148/radiology.166.1.3336685 10.1002/nbm.1049 10.1002/jmri.22785 10.1002/jmri.23662 10.1161/01.ATV.0000012662.29622.00 10.1016/j.atherosclerosis.2012.04.007 10.1002/mrm.24550 10.1016/0022-2364(89)90265-5 10.1002/mrm.1910370220 10.1002/mrm.21120 10.1007/s00330-005-2646-8 10.1002/mrm.23305 10.1002/mrm.21385 10.4329/wjr.v6.i5.192 10.1002/mrm.24925 10.1002/jmri.22042 10.1002/jmri.22049 10.1148/radiology.156.3.4023236 10.1002/jmri.10294 10.1002/mrm.1910390521 10.1097/RCT.0b013e3181648606 10.1002/mrm.21798 10.2214/AJR.07.2428 10.1002/mrm.20880 10.1002/mrm.22863 10.1002/jmri.22617 10.1007/s10334-003-0030-8 10.1148/radiol.12120068 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25599 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Biochemistry Abstracts 1 Engineering Research Database MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 555 |
ExternalDocumentID | 3923831951 25761646 10_1002_mrm_25599 MRM25599 ark_67375_WNG_VJR37PGH_4 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4879-4e38eef2f77bac419c82ce0a0797e277d8c1a80f7a6d91c9691555650624ca4a3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Thu Jul 10 18:21:13 EDT 2025 Fri Jul 11 01:58:23 EDT 2025 Fri Jul 25 12:15:25 EDT 2025 Fri Jul 25 12:24:39 EDT 2025 Mon Jul 21 06:01:24 EDT 2025 Tue Jul 01 01:20:58 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Wed Jan 22 17:05:47 EST 2025 Wed Oct 30 10:04:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | black blood subject specific RF pulse design TFE sequence aorta vessel wall imaging 2D spatially selective excitation |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4879-4e38eef2f77bac419c82ce0a0797e277d8c1a80f7a6d91c9691555650624ca4a3 |
Notes | istex:C93D89E6D4962EF8851E22812C1BE74E2A519BA5 ArticleID:MRM25599 ark:/67375/WNG-VJR37PGH-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25599 |
PMID | 25761646 |
PQID | 1757596333 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1776670478 proquest_miscellaneous_1760878335 proquest_journals_2509220815 proquest_journals_1757596333 pubmed_primary_25761646 crossref_primary_10_1002_mrm_25599 crossref_citationtrail_10_1002_mrm_25599 wiley_primary_10_1002_mrm_25599_MRM25599 istex_primary_ark_67375_WNG_VJR37PGH_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02 February 2016 2016-02-00 2016-Feb 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Abd-Elmoniem K, Gharib A, Pettigrew R. Coronary vessel wall 3-T MR imaging with time-resolved acquisition of phase-sensitive dual inversion-recovery (TRAPD) technique: initial results in patients. Radiology 2012;265:715-723. Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101:2503-2509. Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J. Magnetic resonance imaging of atherosclerosis. Eur Radiol 2005;15:1087-1099. Edelman RR, Atkinson DJ, Silver MS, Loaiza FL, Warren WS. FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts. Radiology 1988;166:231-236. Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol 2007;189:966-972. Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 2004;16:227-234. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 2010;121:e46-e215. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200. Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2011;65:627-637. Feinberg D, Hoenninger JC, Crooks L, Kaufman L, Watts J, Arakawa M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747. Katscher U, Börnert P. Parallel RF transmission in MRI. NMR Biomed 2006;19:393-400. Roes SD, Westenberg JJM, Doornbos J, van der Geest RJ, Angelié E, de Roos A, Stuber M. Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free-breathing 3D black blood magnetic resonance imaging. Magn Reson Med 2009;61:35-44. Jaffer FA. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002;22:849-854. Sbrizzi A, Hoogduin H, Lagendijk JJ, Luijten P, Sleijpen GLG, van den Berg CA. Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm. Magn Reson Med 2011;66:879-885. Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C, Keegan J, Firmin DN. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003;17:572-580. Alley MT, Pauly JM, Sommer FG, Pelc NJ. Angiographic imaging with 2D RF pulses. Magn Reson Med 1997;37:260-267. Abd-Elmoniem KZ, Barmet C, Stuber M. Free-breathing inner-volume black-blood imaging of the human heart using two-dimensionally selective local excitation at 3 T. Magn Reson Med 2012;68:822-829. Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007;58:973-981. Makhijani MK, Hu HH, Pohost GM, Nayak KS. Improved blood suppression in three-dimensional (3D) fast spin-echo (FSE) vessel wall imaging using a combination of double inversion-recovery (DIR) and diffusion sensitizing gradient (DSG) preparations. J Magn Reson Imaging 2010;31:398-405. Gallino A, Stuber M, Crea F, et al. "In vivo" imaging of atherosclerosis. Atherosclerosis 2012;224:25-36. Mihai G, Chung Y-C, Merchant A, Simonetti OP, Rajagopalan S. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): initial experience. J Magn Reson Imaging 2010;31:502-509. Peel SA, Hussain T, Cecelja M, Abbas A, Greil GF, Chowienczyk P, Spector T, Smith A, Waltham M, Botnar RM. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation. J Magn Reson Imaging 2011;34:1176-1183. Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014;72:522-533. Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, van Osch MJP. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 2013;70:1082-1086. Srinivasan S, Hu P, Kissinger KV, Goddu B, Goepfert L, Schmidt EJ, Kozerke S, Nezafat R. Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium. J Magn Reson Imaging 2012;36:379-386. Malayeri A, Macedo R, Li D. Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality. J Comput Assist Tomogr 2009;33:1-7. Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. Three-dimensional coronary MR angiography using zonal echo planar imaging. Magn Reson Med 1998;39:833-842. Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 2006;55:1083-1092. Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging 2015;41:765-772. Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 1987;164:559-564. Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE. World J Radiol 2014;6:192-202. Hussain T, Clough RE, Cecelja M, Makowski M, Peel S, Chowienczyk P, Schaeffter T, Greil G, Botnar R. Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment. J Magn Reson Imaging 2011;34:279-285. 1987; 164 2007; 189 2010; 31 2012; 265 2009; 61 2006; 55 1989; 81 2010; 121 1988; 166 2013; 70 2006; 19 2003; 17 2011; 34 2012; 224 2012; 36 2007; 57 2007; 58 2009; 33 1998; 39 2004; 16 1997; 37 2015; 41 2002; 22 1985; 156 2011; 66 2011; 65 2014 2000; 101 2005; 15 2012; 68 2014; 72 2014; 6 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Lloyd‐Jones D (e_1_2_7_2_1) 2010; 121 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – reference: Abd-Elmoniem K, Gharib A, Pettigrew R. Coronary vessel wall 3-T MR imaging with time-resolved acquisition of phase-sensitive dual inversion-recovery (TRAPD) technique: initial results in patients. Radiology 2012;265:715-723. – reference: Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014;72:522-533. – reference: Roes SD, Westenberg JJM, Doornbos J, van der Geest RJ, Angelié E, de Roos A, Stuber M. Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free-breathing 3D black blood magnetic resonance imaging. Magn Reson Med 2009;61:35-44. – reference: Alley MT, Pauly JM, Sommer FG, Pelc NJ. Angiographic imaging with 2D RF pulses. Magn Reson Med 1997;37:260-267. – reference: Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 2010;121:e46-e215. – reference: Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J. Magnetic resonance imaging of atherosclerosis. Eur Radiol 2005;15:1087-1099. – reference: Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 2004;16:227-234. – reference: Peel SA, Hussain T, Cecelja M, Abbas A, Greil GF, Chowienczyk P, Spector T, Smith A, Waltham M, Botnar RM. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation. J Magn Reson Imaging 2011;34:1176-1183. – reference: Abd-Elmoniem KZ, Barmet C, Stuber M. Free-breathing inner-volume black-blood imaging of the human heart using two-dimensionally selective local excitation at 3 T. Magn Reson Med 2012;68:822-829. – reference: Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE. World J Radiol 2014;6:192-202. – reference: Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging 2015;41:765-772. – reference: Hussain T, Clough RE, Cecelja M, Makowski M, Peel S, Chowienczyk P, Schaeffter T, Greil G, Botnar R. Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment. J Magn Reson Imaging 2011;34:279-285. – reference: Katscher U, Börnert P. Parallel RF transmission in MRI. NMR Biomed 2006;19:393-400. – reference: Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007;58:973-981. – reference: Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol 2007;189:966-972. – reference: Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101:2503-2509. – reference: Jaffer FA. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002;22:849-854. – reference: Mihai G, Chung Y-C, Merchant A, Simonetti OP, Rajagopalan S. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): initial experience. J Magn Reson Imaging 2010;31:502-509. – reference: Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. Three-dimensional coronary MR angiography using zonal echo planar imaging. Magn Reson Med 1998;39:833-842. – reference: Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 1987;164:559-564. – reference: Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200. – reference: Malayeri A, Macedo R, Li D. Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality. J Comput Assist Tomogr 2009;33:1-7. – reference: Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 2006;55:1083-1092. – reference: Feinberg D, Hoenninger JC, Crooks L, Kaufman L, Watts J, Arakawa M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747. – reference: Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C, Keegan J, Firmin DN. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003;17:572-580. – reference: Srinivasan S, Hu P, Kissinger KV, Goddu B, Goepfert L, Schmidt EJ, Kozerke S, Nezafat R. Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium. J Magn Reson Imaging 2012;36:379-386. – reference: Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2011;65:627-637. – reference: Gallino A, Stuber M, Crea F, et al. "In vivo" imaging of atherosclerosis. Atherosclerosis 2012;224:25-36. – reference: Sbrizzi A, Hoogduin H, Lagendijk JJ, Luijten P, Sleijpen GLG, van den Berg CA. Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm. Magn Reson Med 2011;66:879-885. – reference: Makhijani MK, Hu HH, Pohost GM, Nayak KS. Improved blood suppression in three-dimensional (3D) fast spin-echo (FSE) vessel wall imaging using a combination of double inversion-recovery (DIR) and diffusion sensitizing gradient (DSG) preparations. J Magn Reson Imaging 2010;31:398-405. – reference: Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, van Osch MJP. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 2013;70:1082-1086. – reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. – reference: Edelman RR, Atkinson DJ, Silver MS, Loaiza FL, Warren WS. FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts. Radiology 1988;166:231-236. – volume: 36 start-page: 379 year: 2012 end-page: 386 article-title: Free‐breathing 3D whole‐heart black‐blood imaging with motion sensitized driven equilibrium publication-title: J Magn Reson Imaging – volume: 65 start-page: 627 year: 2011 end-page: 637 article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI publication-title: Magn Reson Med – volume: 34 start-page: 279 year: 2011 end-page: 285 article-title: Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment publication-title: J Magn Reson Imaging – volume: 39 start-page: 833 year: 1998 end-page: 842 article-title: Three‐dimensional coronary MR angiography using zonal echo planar imaging publication-title: Magn Reson Med – volume: 31 start-page: 502 year: 2010 end-page: 509 article-title: T1‐weighted‐SPACE dark blood whole body magnetic resonance angiography (DB‐WBMRA): initial experience publication-title: J Magn Reson Imaging – volume: 17 start-page: 572 year: 2003 end-page: 580 article-title: Volume‐selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement publication-title: J Magn Reson Imaging – volume: 68 start-page: 822 year: 2012 end-page: 829 article-title: Free‐breathing inner‐volume black‐blood imaging of the human heart using two‐dimensionally selective local excitation at 3 T publication-title: Magn Reson Med – volume: 81 start-page: 43 year: 1989 end-page: 56 article-title: A k‐space analysis of small‐tip‐angle excitation publication-title: J Magn Reson – volume: 72 start-page: 522 year: 2014 end-page: 533 article-title: k‐t GRAPPA accelerated four‐dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress publication-title: Magn Reson Med – volume: 41 start-page: 765 year: 2015 end-page: 772 article-title: MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta publication-title: J Magn Reson Imaging – volume: 61 start-page: 35 year: 2009 end-page: 44 article-title: Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free‐breathing 3D black blood magnetic resonance imaging publication-title: Magn Reson Med – volume: 34 start-page: 1176 year: 2011 end-page: 1183 article-title: Accelerated aortic imaging using small field of view imaging and electrocardiogram‐triggered quadruple inversion recovery magnetization preparation publication-title: J Magn Reson Imaging – volume: 16 start-page: 227 year: 2004 end-page: 234 article-title: Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images publication-title: MAGMA – volume: 164 start-page: 559 year: 1987 end-page: 564 article-title: Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging publication-title: Radiology – year: 2014 – volume: 15 start-page: 1087 year: 2005 end-page: 1099 article-title: Magnetic resonance imaging of atherosclerosis publication-title: Eur Radiol – volume: 19 start-page: 393 year: 2006 end-page: 400 article-title: Parallel RF transmission in MRI publication-title: NMR Biomed – volume: 166 start-page: 231 year: 1988 end-page: 236 article-title: FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts publication-title: Radiology – volume: 22 start-page: 849 year: 2002 end-page: 854 article-title: Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study publication-title: Arterioscler Thromb Vasc Biol – volume: 55 start-page: 1083 year: 2006 end-page: 1092 article-title: Simultaneous outer volume and blood suppression by quadruple inversion‐recovery publication-title: Magn Reson Med – volume: 37 start-page: 260 year: 1997 end-page: 267 article-title: Angiographic imaging with 2D RF pulses publication-title: Magn Reson Med – volume: 33 start-page: 1 year: 2009 end-page: 7 article-title: Coronary vessel wall evaluation by magnetic resonance imaging in the multi‐ethnic study of atherosclerosis: determinants of image quality publication-title: J Comput Assist Tomogr – volume: 58 start-page: 973 year: 2007 end-page: 981 article-title: Improved suppression of plaque‐mimicking artifacts in black‐blood carotid atherosclerosis imaging using a multislice motion‐sensitized driven‐equilibrium (MSDE) turbo spin‐echo (TSE) sequence publication-title: Magn Reson Med – volume: 31 start-page: 398 year: 2010 end-page: 405 article-title: Improved blood suppression in three‐dimensional (3D) fast spin‐echo (FSE) vessel wall imaging using a combination of double inversion‐recovery (DIR) and diffusion sensitizing gradient (DSG) preparations publication-title: J Magn Reson Imaging – volume: 101 start-page: 2503 year: 2000 end-page: 2509 article-title: In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography publication-title: Circulation – volume: 6 start-page: 192 year: 2014 end-page: 202 article-title: Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE publication-title: World J Radiol – volume: 189 start-page: 966 year: 2007 end-page: 972 article-title: Dark‐blood MRI of the thoracic aorta with 3D diffusion‐prepared steady‐state free precession: initial clinical evaluation publication-title: AJR Am J Roentgenol – volume: 224 start-page: 25 year: 2012 end-page: 36 article-title: “In vivo” imaging of atherosclerosis publication-title: Atherosclerosis – volume: 57 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 121 start-page: e46 year: 2010 end-page: e215 article-title: Heart disease and stroke statistics–2010 update: a report from the American Heart Association publication-title: Circulation – volume: 66 start-page: 879 year: 2011 end-page: 885 article-title: Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm publication-title: Magn Reson Med – volume: 265 start-page: 715 year: 2012 end-page: 723 article-title: Coronary vessel wall 3‐T MR imaging with time‐resolved acquisition of phase‐sensitive dual inversion‐recovery (TRAPD) technique: initial results in patients publication-title: Radiology – volume: 156 start-page: 743 year: 1985 end-page: 747 article-title: Inner volume MR imaging: technical concepts and their application publication-title: Radiology – volume: 70 start-page: 1082 year: 2013 end-page: 1086 article-title: In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T publication-title: Magn Reson Med – ident: e_1_2_7_29_1 doi: 10.1002/jmri.24592 – ident: e_1_2_7_34_1 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.22642 – ident: e_1_2_7_5_1 doi: 10.1161/01.CIR.101.21.2503 – ident: e_1_2_7_24_1 doi: 10.1148/radiology.164.2.3602402 – ident: e_1_2_7_25_1 doi: 10.1148/radiology.166.1.3336685 – ident: e_1_2_7_35_1 doi: 10.1002/nbm.1049 – ident: e_1_2_7_23_1 doi: 10.1002/jmri.22785 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.23662 – ident: e_1_2_7_7_1 doi: 10.1161/01.ATV.0000012662.29622.00 – ident: e_1_2_7_3_1 doi: 10.1016/j.atherosclerosis.2012.04.007 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.24550 – volume: 121 start-page: e46 year: 2010 ident: e_1_2_7_2_1 article-title: Heart disease and stroke statistics–2010 update: a report from the American Heart Association publication-title: Circulation – ident: e_1_2_7_16_1 doi: 10.1016/0022-2364(89)90265-5 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.1910370220 – ident: e_1_2_7_26_1 doi: 10.1002/mrm.21120 – ident: e_1_2_7_4_1 doi: 10.1007/s00330-005-2646-8 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.23305 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.21385 – ident: e_1_2_7_10_1 doi: 10.4329/wjr.v6.i5.192 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.24925 – ident: e_1_2_7_12_1 doi: 10.1002/jmri.22042 – ident: e_1_2_7_9_1 doi: 10.1002/jmri.22049 – ident: e_1_2_7_15_1 doi: 10.1148/radiology.156.3.4023236 – ident: e_1_2_7_19_1 doi: 10.1002/jmri.10294 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.1910390521 – ident: e_1_2_7_33_1 doi: 10.1097/RCT.0b013e3181648606 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.21798 – ident: e_1_2_7_11_1 doi: 10.2214/AJR.07.2428 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.20880 – ident: e_1_2_7_27_1 doi: 10.1002/mrm.22863 – ident: e_1_2_7_21_1 doi: 10.1002/jmri.22617 – ident: e_1_2_7_31_1 doi: 10.1007/s10334-003-0030-8 – ident: e_1_2_7_32_1 doi: 10.1148/radiol.12120068 |
SSID | ssj0009974 |
Score | 2.2146652 |
Snippet | Purpose
Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This... Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work... Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This... PurposeAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This... PURPOSEAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 547 |
SubjectTerms | 2D spatially selective excitation Adult Anisotropy Aorta Aorta - anatomy & histology black blood Blood Blood vessels Coronary vessels Excitation Feasibility Studies Female Field of view Healthy Volunteers Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Imaging Imaging, Three-Dimensional - methods Magnetic Resonance Angiography - methods Male Recovery Spatial discrimination Spatial resolution subject specific RF pulse design TFE sequence vessel wall imaging |
Title | Fast 3D isotropic imaging of the aortic vessel wall by application of 2D spatially selective excitation and a new way of inversion recovery for black blood imaging |
URI | https://api.istex.fr/ark:/67375/WNG-VJR37PGH-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25599 https://www.ncbi.nlm.nih.gov/pubmed/25761646 https://www.proquest.com/docview/1757596333 https://www.proquest.com/docview/2509220815 https://www.proquest.com/docview/1760878335 https://www.proquest.com/docview/1776670478 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIRAvfAwYhYEOhBAv2VLHiRPxhChdNakTqhjsASmyHUeq1iZT046Vf4d_lDvnYwwVhHiz5LNjX87nn-3zz4y9ConGDZGvl0WZ7wktYk_L3HrCIjoOeGbDzAXIHkejE3F0Gp5usbftXZiaH6LbcKOR4fw1DXClq4Mr0tD5Yr7v-LLQ__aDiHjzB5Mr6qgkqRmYpSA_k4iWVcjnB13Ja3PRDVLr5SageR23uolneJd9bZtcx5uc7a-Wet98_43N8T_7dI_daQApvKst6D7bssUOuzVujtx32E0XI2qqB-zHUFVLCAYwrcrlojyfGpjO3SNHUOaAQBJUSbXABfGRz-Cbms1Ar-GXM3IS5AOoKIwbc9dQuWd40OOCvTQNXTioIgMFiPexijUVmRYX9bYe0Pod02tArA2aNh_Bhd63LXnIToYfPr0fec0bD55BY0jQJoLY2pznUmplRD8xMTfWV75MpOVSZrHpq9jPpYqypG-SiPjsEYT6ERdGCRU8YttFWdjHDOKM43I2MTIOjciVVlloTN9KnaCV6lz02Jv2b6dtj-gdjllaUzfzFNWfOvX32MtO9Lxm_dgk9NqZTCehFmcUJifD9MvxYfr5aBLIj4ejFD-819pU2niIKkXYJkP0fkGwMRuRacI54rWwx1502Tj06TxHFbZcURWRH0u6Nfc3GRlFkiiYemy3NueuvbTWJHo5VIwzyj93NR1Pxi7x5N9Fn7LbCC6bCPc9tr1crOwzBHBL_dyN1J8HJkIh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJi4vXMatMMAghHhJlzpOnEi8IEpXxlqhaoO9IMtxHKlam0xNOlb-Dn-Uc5zLGCoI8WbJx47tHB9_Pj7-TMhLH2ncAPk6SZC4Do956MQiNQ43gI49lhg_sQGy42B4xPeP_eMN8qa5C1PxQ7QON5wZ1l7jBEeH9O4Fa-h8Me9awqwrZIsD0MCtV39yQR4VRRUHs-BoaSLe8Aq5bLctemk12sKBPV8HNS8jV7v0DG6Rr02jq4iTk-6yjLv6-298jv_bq9vkZo1J6dtKie6QDZNtk2uj-tR9m1y1YaK6uEt-DFRRUq9Pp0VeLvLTqabTuX3niOYpBSxJVY610DOkJJ_Rb2o2o_GK_nJMjoKsTwuM5IbcFS3sSzxgdKk51zVjOFVZQhUFyA9VrLDINDurPHsUt_CQXlGA2zRG_yO10fdNS-6Ro8H7w3dDp37mwdGgDxGohRcak7JUiFhp3ot0yLRxlSsiYZgQSah7KnRToYIk6ukoQEp7wKFuwLhWXHn3yWaWZ-YhoWHCYEcbaRH6mqcqVomvdc-IOAJFjVPeIa-b3y2bHuFTHDNZsTczCcMv7fB3yItW9LQi_lgn9MrqTCuhFicYKSd8-WW8Jz_vTzzxaW8o4cM7jVLJ2kgUEpCb8MEAet7abACnEWMA2fwOed5mw-zHIx2VmXyJVQRuKPDi3N9kRBAIZGHqkAeVPrftxe0mMszBwFit_HNX5WgysolH_y76jFwfHo4O5MGH8cfH5AZgzTrgfYdslouleQJ4royf2mn7EwtARkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGJiZeBoyPFQYYhBAv6VLHiRPxhChdGbSaKsb2gGQ5jiNVa5OqacfK3-GPcq_zMYYKQrxZ8o1jO8fXx_bNMSEvfZRxA-brJEHiOjzmoROL1DjcADv2WGL8xAbIDoP-CT868882yJv6X5hSH6LZcMORYf01DvBZkh5ciYZO59O21cu6QbZ4AEwCGdHoSjsqikoJZsHR0US8lhVy2UHz6LXJaAv79XId07xOXO3M07tNvtZ1LgNOztvLRdzW33-Tc_zPRt0hOxUjpW9LCN0lGybbJduD6sx9l9y0QaK6uEd-9FSxoF6Xjot8Mc9nY03HU3vLEc1TCkySqhxLoRcoSD6h39RkQuMV_eWQHA1ZlxYYxw25K1rYe3jA5VJzqSu9cKqyhCoKhB-KWOEj4-yi3NejuICH9IoC2aYx7j5SG3tf1-Q-Oem9__yu71SXPDga0BABKLzQmJSlQsRK806kQ6aNq1wRCcOESELdUaGbChUkUUdHAQraAwt1A8a14sp7QDazPDN7hIYJg_VspEXoa56qWCW-1h0j4ghgGqe8RV7XX1vWLcKLOCay1G5mErpf2u5vkReN6ayU_Vhn9MpCprFQ83OMkxO-PB0eyi9HI08cH_YlvHi_xpSsXEQhgbcJH9yf563NBmoaMQaEzW-R5002jH080FGZyZdYBOBe4G9zf7MRQSBQg6lFHpZwbuqLi03Ul4OOsaD8c1PlYDSwiUf_bvqMbB93e_LTh-HHx-QWEM0q2n2fbC7mS_MEyNwifmoH7U8F2ETv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+3D+isotropic+imaging+of+the+aortic+vessel+wall+by+application+of+2D+spatially+selective+excitation+and+a+new+way+of+inversion+recovery+for+black+blood+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Mooiweer%2C+Ronald&rft.au=Sbrizzi%2C+Alessandro&rft.au=El+Aidi%2C+Hamza&rft.au=Eikendal%2C+Anouk+L.M.&rft.date=2016-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=2&rft.spage=547&rft.epage=555&rft_id=info:doi/10.1002%2Fmrm.25599&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VJR37PGH_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |