Fast 3D isotropic imaging of the aortic vessel wall by application of 2D spatially selective excitation and a new way of inversion recovery for black blood imaging

Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitatio...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 75; no. 2; pp. 547 - 555
Main Authors Mooiweer, Ronald, Sbrizzi, Alessandro, El Aidi, Hamza, Eikendal, Anouk L.M., Raaijmakers, Alexander, Visser, Fredy, van den Berg, Cornelis A.T., Leiner, Tim, Luijten, Peter R., Hoogduin, Hans
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.25599

Cover

Abstract Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc.
PurposeAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two‐dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.MethodsThe excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.ResultsExperiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time.ConclusionThis feasibility study demonstrates that time‐efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547–555, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 1.5 1.5 mm super(3) in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547-555, 2016.
Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm(3) in less than 5 min minimal scan time. This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging.
PURPOSEAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging.METHODSThe excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta.RESULTSExperiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm(3) in less than 5 min minimal scan time.CONCLUSIONThis feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging.
Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work explores the feasibility of imaging the descending aorta in acceptable scan time, using two-dimensional (2D) spatially selective excitation and a new way of inversion recovery for black blood imaging. Methods The excitation pattern and field of view in a 3D gradient echo sequence are reduced in two dimensions, following the aorta's anisotropic geometry. Black blood contrast is obtained by partially inverting the blood's magnetization in the heart at the start of the cardiac cycle. Imaging is delayed until the inverted blood has filled the desired part of the aorta. The flip angle and delay are determined such that the blood signal is nulled upon arrival in the aorta. Results Experiments on eight volunteers showed that the descending aortic vessel wall could be imaged over more than 15 cm at a maximal resolution of 1.5 × 1.5 × 1.5 mm3 in less than 5 min minimal scan time. Conclusion This feasibility study demonstrates that time-efficient isotropic imaging of the descending aorta is possible by using 2D spatially selective excitation for motion artifact reduction and a new way of inversion recovery for black blood imaging. Magn Reson Med 75:547-555, 2016. © 2015 Wiley Periodicals, Inc.
Author van den Berg, Cornelis A.T.
Leiner, Tim
Hoogduin, Hans
Mooiweer, Ronald
Visser, Fredy
Eikendal, Anouk L.M.
El Aidi, Hamza
Luijten, Peter R.
Sbrizzi, Alessandro
Raaijmakers, Alexander
Author_xml – sequence: 1
  givenname: Ronald
  surname: Mooiweer
  fullname: Mooiweer, Ronald
  email: r.mooiweer@umcutrecht.nl
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 2
  givenname: Alessandro
  surname: Sbrizzi
  fullname: Sbrizzi, Alessandro
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 3
  givenname: Hamza
  surname: El Aidi
  fullname: El Aidi, Hamza
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 4
  givenname: Anouk L.M.
  surname: Eikendal
  fullname: Eikendal, Anouk L.M.
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 5
  givenname: Alexander
  surname: Raaijmakers
  fullname: Raaijmakers, Alexander
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 6
  givenname: Fredy
  surname: Visser
  fullname: Visser, Fredy
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 7
  givenname: Cornelis A.T.
  surname: van den Berg
  fullname: van den Berg, Cornelis A.T.
  organization: Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
– sequence: 8
  givenname: Tim
  surname: Leiner
  fullname: Leiner, Tim
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 9
  givenname: Peter R.
  surname: Luijten
  fullname: Luijten, Peter R.
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
– sequence: 10
  givenname: Hans
  surname: Hoogduin
  fullname: Hoogduin, Hans
  organization: Department of Radiology, University Medical Center Utrecht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25761646$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNPAghdAltjAYlrb48t4iVqaglpAFZel5XjOFLeT8WBPks7z8KI4pOmiEhVe2Mc-339k-_wHaK8LHSD0kpJDSgg7WsTFIRNC6ydoQgVjBROa76EJUZwUJdV8Hx2kdE0I0VrxZ2ifCSWp5HKCfp_aNODyBPsUhhh677Bf2CvfXeHQ4OEnYBvikE9XkBK0eG3bFs9HbPu-9c4OPnQbkJ3g1Oddzo44c-AGvwIMt84PW8h2Nba4g3UuMW4kvltBTJtUBBdyPOImRDxvrbvJcwj17ibP0dPGtgle3K1T9O30_dfjs-L88-zD8bvzwvFK6YJDWQE0rFFqbh2n2lXMAbFEaQVMqbpy1FakUVbWmjotNRVCSEEk485yW07Rm23dPoZfS0iDWfjkoG1tB2GZDFVKSkW4qv4DlaTKXCky-voBeh2WscsPMUwQzRip6KMUVUIJLcs8pujVHbWcL6A2fcxfFEez62cG3m4BF0NKEZp7hBKz8YrJXjF_vZLZowfsrllDtL59TLH2LYz_Lm0uLi92imKr8GmA23uFjTdGqlIJ8-PTzHz_eFmqL7Mzw8s_psPepQ
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_nic_2024_02_002
crossref_primary_10_1002_mrm_25996
crossref_primary_10_1016_j_mri_2015_10_002
crossref_primary_10_1002_mrm_26346
crossref_primary_10_1007_s40134_017_0246_4
Cites_doi 10.1002/jmri.24592
10.1002/mrm.22642
10.1161/01.CIR.101.21.2503
10.1148/radiology.164.2.3602402
10.1148/radiology.166.1.3336685
10.1002/nbm.1049
10.1002/jmri.22785
10.1002/jmri.23662
10.1161/01.ATV.0000012662.29622.00
10.1016/j.atherosclerosis.2012.04.007
10.1002/mrm.24550
10.1016/0022-2364(89)90265-5
10.1002/mrm.1910370220
10.1002/mrm.21120
10.1007/s00330-005-2646-8
10.1002/mrm.23305
10.1002/mrm.21385
10.4329/wjr.v6.i5.192
10.1002/mrm.24925
10.1002/jmri.22042
10.1002/jmri.22049
10.1148/radiology.156.3.4023236
10.1002/jmri.10294
10.1002/mrm.1910390521
10.1097/RCT.0b013e3181648606
10.1002/mrm.21798
10.2214/AJR.07.2428
10.1002/mrm.20880
10.1002/mrm.22863
10.1002/jmri.22617
10.1007/s10334-003-0030-8
10.1148/radiol.12120068
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25599
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Biochemistry Abstracts 1
Engineering Research Database
MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 555
ExternalDocumentID 3923831951
25761646
10_1002_mrm_25599
MRM25599
ark_67375_WNG_VJR37PGH_4
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4879-4e38eef2f77bac419c82ce0a0797e277d8c1a80f7a6d91c9691555650624ca4a3
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Thu Jul 10 18:21:13 EDT 2025
Fri Jul 11 01:58:23 EDT 2025
Fri Jul 25 12:15:25 EDT 2025
Fri Jul 25 12:24:39 EDT 2025
Mon Jul 21 06:01:24 EDT 2025
Tue Jul 01 01:20:58 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Wed Jan 22 17:05:47 EST 2025
Wed Oct 30 10:04:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords black blood
subject specific RF pulse design
TFE sequence
aorta
vessel wall imaging
2D spatially selective excitation
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4879-4e38eef2f77bac419c82ce0a0797e277d8c1a80f7a6d91c9691555650624ca4a3
Notes istex:C93D89E6D4962EF8851E22812C1BE74E2A519BA5
ArticleID:MRM25599
ark:/67375/WNG-VJR37PGH-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25599
PMID 25761646
PQID 1757596333
PQPubID 1016391
PageCount 9
ParticipantIDs proquest_miscellaneous_1776670478
proquest_miscellaneous_1760878335
proquest_journals_2509220815
proquest_journals_1757596333
pubmed_primary_25761646
crossref_primary_10_1002_mrm_25599
crossref_citationtrail_10_1002_mrm_25599
wiley_primary_10_1002_mrm_25599_MRM25599
istex_primary_ark_67375_WNG_VJR37PGH_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02
February 2016
2016-02-00
2016-Feb
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Abd-Elmoniem K, Gharib A, Pettigrew R. Coronary vessel wall 3-T MR imaging with time-resolved acquisition of phase-sensitive dual inversion-recovery (TRAPD) technique: initial results in patients. Radiology 2012;265:715-723.
Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101:2503-2509.
Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J. Magnetic resonance imaging of atherosclerosis. Eur Radiol 2005;15:1087-1099.
Edelman RR, Atkinson DJ, Silver MS, Loaiza FL, Warren WS. FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts. Radiology 1988;166:231-236.
Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol 2007;189:966-972.
Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 2004;16:227-234.
Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 2010;121:e46-e215.
Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200.
Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2011;65:627-637.
Feinberg D, Hoenninger JC, Crooks L, Kaufman L, Watts J, Arakawa M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747.
Katscher U, Börnert P. Parallel RF transmission in MRI. NMR Biomed 2006;19:393-400.
Roes SD, Westenberg JJM, Doornbos J, van der Geest RJ, Angelié E, de Roos A, Stuber M. Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free-breathing 3D black blood magnetic resonance imaging. Magn Reson Med 2009;61:35-44.
Jaffer FA. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002;22:849-854.
Sbrizzi A, Hoogduin H, Lagendijk JJ, Luijten P, Sleijpen GLG, van den Berg CA. Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm. Magn Reson Med 2011;66:879-885.
Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C, Keegan J, Firmin DN. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003;17:572-580.
Alley MT, Pauly JM, Sommer FG, Pelc NJ. Angiographic imaging with 2D RF pulses. Magn Reson Med 1997;37:260-267.
Abd-Elmoniem KZ, Barmet C, Stuber M. Free-breathing inner-volume black-blood imaging of the human heart using two-dimensionally selective local excitation at 3 T. Magn Reson Med 2012;68:822-829.
Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007;58:973-981.
Makhijani MK, Hu HH, Pohost GM, Nayak KS. Improved blood suppression in three-dimensional (3D) fast spin-echo (FSE) vessel wall imaging using a combination of double inversion-recovery (DIR) and diffusion sensitizing gradient (DSG) preparations. J Magn Reson Imaging 2010;31:398-405.
Gallino A, Stuber M, Crea F, et al. "In vivo" imaging of atherosclerosis. Atherosclerosis 2012;224:25-36.
Mihai G, Chung Y-C, Merchant A, Simonetti OP, Rajagopalan S. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): initial experience. J Magn Reson Imaging 2010;31:502-509.
Peel SA, Hussain T, Cecelja M, Abbas A, Greil GF, Chowienczyk P, Spector T, Smith A, Waltham M, Botnar RM. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation. J Magn Reson Imaging 2011;34:1176-1183.
Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014;72:522-533.
Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, van Osch MJP. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 2013;70:1082-1086.
Srinivasan S, Hu P, Kissinger KV, Goddu B, Goepfert L, Schmidt EJ, Kozerke S, Nezafat R. Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium. J Magn Reson Imaging 2012;36:379-386.
Malayeri A, Macedo R, Li D. Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality. J Comput Assist Tomogr 2009;33:1-7.
Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. Three-dimensional coronary MR angiography using zonal echo planar imaging. Magn Reson Med 1998;39:833-842.
Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 2006;55:1083-1092.
Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging 2015;41:765-772.
Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 1987;164:559-564.
Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE. World J Radiol 2014;6:192-202.
Hussain T, Clough RE, Cecelja M, Makowski M, Peel S, Chowienczyk P, Schaeffter T, Greil G, Botnar R. Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment. J Magn Reson Imaging 2011;34:279-285.
1987; 164
2007; 189
2010; 31
2012; 265
2009; 61
2006; 55
1989; 81
2010; 121
1988; 166
2013; 70
2006; 19
2003; 17
2011; 34
2012; 224
2012; 36
2007; 57
2007; 58
2009; 33
1998; 39
2004; 16
1997; 37
2015; 41
2002; 22
1985; 156
2011; 66
2011; 65
2014
2000; 101
2005; 15
2012; 68
2014; 72
2014; 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lloyd‐Jones D (e_1_2_7_2_1) 2010; 121
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – reference: Abd-Elmoniem K, Gharib A, Pettigrew R. Coronary vessel wall 3-T MR imaging with time-resolved acquisition of phase-sensitive dual inversion-recovery (TRAPD) technique: initial results in patients. Radiology 2012;265:715-723.
– reference: Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014;72:522-533.
– reference: Roes SD, Westenberg JJM, Doornbos J, van der Geest RJ, Angelié E, de Roos A, Stuber M. Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free-breathing 3D black blood magnetic resonance imaging. Magn Reson Med 2009;61:35-44.
– reference: Alley MT, Pauly JM, Sommer FG, Pelc NJ. Angiographic imaging with 2D RF pulses. Magn Reson Med 1997;37:260-267.
– reference: Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 2010;121:e46-e215.
– reference: Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J. Magnetic resonance imaging of atherosclerosis. Eur Radiol 2005;15:1087-1099.
– reference: Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 2004;16:227-234.
– reference: Peel SA, Hussain T, Cecelja M, Abbas A, Greil GF, Chowienczyk P, Spector T, Smith A, Waltham M, Botnar RM. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation. J Magn Reson Imaging 2011;34:1176-1183.
– reference: Abd-Elmoniem KZ, Barmet C, Stuber M. Free-breathing inner-volume black-blood imaging of the human heart using two-dimensionally selective local excitation at 3 T. Magn Reson Med 2012;68:822-829.
– reference: Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE. World J Radiol 2014;6:192-202.
– reference: Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging 2015;41:765-772.
– reference: Hussain T, Clough RE, Cecelja M, Makowski M, Peel S, Chowienczyk P, Schaeffter T, Greil G, Botnar R. Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment. J Magn Reson Imaging 2011;34:279-285.
– reference: Katscher U, Börnert P. Parallel RF transmission in MRI. NMR Biomed 2006;19:393-400.
– reference: Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007;58:973-981.
– reference: Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol 2007;189:966-972.
– reference: Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101:2503-2509.
– reference: Jaffer FA. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002;22:849-854.
– reference: Mihai G, Chung Y-C, Merchant A, Simonetti OP, Rajagopalan S. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): initial experience. J Magn Reson Imaging 2010;31:502-509.
– reference: Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. Three-dimensional coronary MR angiography using zonal echo planar imaging. Magn Reson Med 1998;39:833-842.
– reference: Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 1987;164:559-564.
– reference: Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200.
– reference: Malayeri A, Macedo R, Li D. Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality. J Comput Assist Tomogr 2009;33:1-7.
– reference: Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 2006;55:1083-1092.
– reference: Feinberg D, Hoenninger JC, Crooks L, Kaufman L, Watts J, Arakawa M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747.
– reference: Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C, Keegan J, Firmin DN. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003;17:572-580.
– reference: Srinivasan S, Hu P, Kissinger KV, Goddu B, Goepfert L, Schmidt EJ, Kozerke S, Nezafat R. Free-breathing 3D whole-heart black-blood imaging with motion sensitized driven equilibrium. J Magn Reson Imaging 2012;36:379-386.
– reference: Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2011;65:627-637.
– reference: Gallino A, Stuber M, Crea F, et al. "In vivo" imaging of atherosclerosis. Atherosclerosis 2012;224:25-36.
– reference: Sbrizzi A, Hoogduin H, Lagendijk JJ, Luijten P, Sleijpen GLG, van den Berg CA. Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm. Magn Reson Med 2011;66:879-885.
– reference: Makhijani MK, Hu HH, Pohost GM, Nayak KS. Improved blood suppression in three-dimensional (3D) fast spin-echo (FSE) vessel wall imaging using a combination of double inversion-recovery (DIR) and diffusion sensitizing gradient (DSG) preparations. J Magn Reson Imaging 2010;31:398-405.
– reference: Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, van Osch MJP. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 2013;70:1082-1086.
– reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
– reference: Edelman RR, Atkinson DJ, Silver MS, Loaiza FL, Warren WS. FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts. Radiology 1988;166:231-236.
– volume: 36
  start-page: 379
  year: 2012
  end-page: 386
  article-title: Free‐breathing 3D whole‐heart black‐blood imaging with motion sensitized driven equilibrium
  publication-title: J Magn Reson Imaging
– volume: 65
  start-page: 627
  year: 2011
  end-page: 637
  article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI
  publication-title: Magn Reson Med
– volume: 34
  start-page: 279
  year: 2011
  end-page: 285
  article-title: Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 833
  year: 1998
  end-page: 842
  article-title: Three‐dimensional coronary MR angiography using zonal echo planar imaging
  publication-title: Magn Reson Med
– volume: 31
  start-page: 502
  year: 2010
  end-page: 509
  article-title: T1‐weighted‐SPACE dark blood whole body magnetic resonance angiography (DB‐WBMRA): initial experience
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 572
  year: 2003
  end-page: 580
  article-title: Volume‐selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement
  publication-title: J Magn Reson Imaging
– volume: 68
  start-page: 822
  year: 2012
  end-page: 829
  article-title: Free‐breathing inner‐volume black‐blood imaging of the human heart using two‐dimensionally selective local excitation at 3 T
  publication-title: Magn Reson Med
– volume: 81
  start-page: 43
  year: 1989
  end-page: 56
  article-title: A k‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson
– volume: 72
  start-page: 522
  year: 2014
  end-page: 533
  article-title: k‐t GRAPPA accelerated four‐dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress
  publication-title: Magn Reson Med
– volume: 41
  start-page: 765
  year: 2015
  end-page: 772
  article-title: MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta
  publication-title: J Magn Reson Imaging
– volume: 61
  start-page: 35
  year: 2009
  end-page: 44
  article-title: Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free‐breathing 3D black blood magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1176
  year: 2011
  end-page: 1183
  article-title: Accelerated aortic imaging using small field of view imaging and electrocardiogram‐triggered quadruple inversion recovery magnetization preparation
  publication-title: J Magn Reson Imaging
– volume: 16
  start-page: 227
  year: 2004
  end-page: 234
  article-title: Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images
  publication-title: MAGMA
– volume: 164
  start-page: 559
  year: 1987
  end-page: 564
  article-title: Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging
  publication-title: Radiology
– year: 2014
– volume: 15
  start-page: 1087
  year: 2005
  end-page: 1099
  article-title: Magnetic resonance imaging of atherosclerosis
  publication-title: Eur Radiol
– volume: 19
  start-page: 393
  year: 2006
  end-page: 400
  article-title: Parallel RF transmission in MRI
  publication-title: NMR Biomed
– volume: 166
  start-page: 231
  year: 1988
  end-page: 236
  article-title: FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts
  publication-title: Radiology
– volume: 22
  start-page: 849
  year: 2002
  end-page: 854
  article-title: Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 55
  start-page: 1083
  year: 2006
  end-page: 1092
  article-title: Simultaneous outer volume and blood suppression by quadruple inversion‐recovery
  publication-title: Magn Reson Med
– volume: 37
  start-page: 260
  year: 1997
  end-page: 267
  article-title: Angiographic imaging with 2D RF pulses
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1
  year: 2009
  end-page: 7
  article-title: Coronary vessel wall evaluation by magnetic resonance imaging in the multi‐ethnic study of atherosclerosis: determinants of image quality
  publication-title: J Comput Assist Tomogr
– volume: 58
  start-page: 973
  year: 2007
  end-page: 981
  article-title: Improved suppression of plaque‐mimicking artifacts in black‐blood carotid atherosclerosis imaging using a multislice motion‐sensitized driven‐equilibrium (MSDE) turbo spin‐echo (TSE) sequence
  publication-title: Magn Reson Med
– volume: 31
  start-page: 398
  year: 2010
  end-page: 405
  article-title: Improved blood suppression in three‐dimensional (3D) fast spin‐echo (FSE) vessel wall imaging using a combination of double inversion‐recovery (DIR) and diffusion sensitizing gradient (DSG) preparations
  publication-title: J Magn Reson Imaging
– volume: 101
  start-page: 2503
  year: 2000
  end-page: 2509
  article-title: In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography
  publication-title: Circulation
– volume: 6
  start-page: 192
  year: 2014
  end-page: 202
  article-title: Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE
  publication-title: World J Radiol
– volume: 189
  start-page: 966
  year: 2007
  end-page: 972
  article-title: Dark‐blood MRI of the thoracic aorta with 3D diffusion‐prepared steady‐state free precession: initial clinical evaluation
  publication-title: AJR Am J Roentgenol
– volume: 224
  start-page: 25
  year: 2012
  end-page: 36
  article-title: “In vivo” imaging of atherosclerosis
  publication-title: Atherosclerosis
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 121
  start-page: e46
  year: 2010
  end-page: e215
  article-title: Heart disease and stroke statistics–2010 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 66
  start-page: 879
  year: 2011
  end-page: 885
  article-title: Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm
  publication-title: Magn Reson Med
– volume: 265
  start-page: 715
  year: 2012
  end-page: 723
  article-title: Coronary vessel wall 3‐T MR imaging with time‐resolved acquisition of phase‐sensitive dual inversion‐recovery (TRAPD) technique: initial results in patients
  publication-title: Radiology
– volume: 156
  start-page: 743
  year: 1985
  end-page: 747
  article-title: Inner volume MR imaging: technical concepts and their application
  publication-title: Radiology
– volume: 70
  start-page: 1082
  year: 2013
  end-page: 1086
  article-title: In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T
  publication-title: Magn Reson Med
– ident: e_1_2_7_29_1
  doi: 10.1002/jmri.24592
– ident: e_1_2_7_34_1
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.22642
– ident: e_1_2_7_5_1
  doi: 10.1161/01.CIR.101.21.2503
– ident: e_1_2_7_24_1
  doi: 10.1148/radiology.164.2.3602402
– ident: e_1_2_7_25_1
  doi: 10.1148/radiology.166.1.3336685
– ident: e_1_2_7_35_1
  doi: 10.1002/nbm.1049
– ident: e_1_2_7_23_1
  doi: 10.1002/jmri.22785
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.23662
– ident: e_1_2_7_7_1
  doi: 10.1161/01.ATV.0000012662.29622.00
– ident: e_1_2_7_3_1
  doi: 10.1016/j.atherosclerosis.2012.04.007
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.24550
– volume: 121
  start-page: e46
  year: 2010
  ident: e_1_2_7_2_1
  article-title: Heart disease and stroke statistics–2010 update: a report from the American Heart Association
  publication-title: Circulation
– ident: e_1_2_7_16_1
  doi: 10.1016/0022-2364(89)90265-5
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.1910370220
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_7_4_1
  doi: 10.1007/s00330-005-2646-8
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.23305
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.21385
– ident: e_1_2_7_10_1
  doi: 10.4329/wjr.v6.i5.192
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.24925
– ident: e_1_2_7_12_1
  doi: 10.1002/jmri.22042
– ident: e_1_2_7_9_1
  doi: 10.1002/jmri.22049
– ident: e_1_2_7_15_1
  doi: 10.1148/radiology.156.3.4023236
– ident: e_1_2_7_19_1
  doi: 10.1002/jmri.10294
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.1910390521
– ident: e_1_2_7_33_1
  doi: 10.1097/RCT.0b013e3181648606
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.21798
– ident: e_1_2_7_11_1
  doi: 10.2214/AJR.07.2428
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.20880
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.22863
– ident: e_1_2_7_21_1
  doi: 10.1002/jmri.22617
– ident: e_1_2_7_31_1
  doi: 10.1007/s10334-003-0030-8
– ident: e_1_2_7_32_1
  doi: 10.1148/radiol.12120068
SSID ssj0009974
Score 2.2146652
Snippet Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This...
Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This work...
Purpose Aortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This...
PurposeAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time‐consuming for clinical use. This...
PURPOSEAortic vessel wall imaging requires large coverage and a high spatial resolution, which makes it prohibitively time-consuming for clinical use. This...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms 2D spatially selective excitation
Adult
Anisotropy
Aorta
Aorta - anatomy & histology
black blood
Blood
Blood vessels
Coronary vessels
Excitation
Feasibility Studies
Female
Field of view
Healthy Volunteers
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - methods
Magnetic Resonance Angiography - methods
Male
Recovery
Spatial discrimination
Spatial resolution
subject specific RF pulse design
TFE sequence
vessel wall imaging
Title Fast 3D isotropic imaging of the aortic vessel wall by application of 2D spatially selective excitation and a new way of inversion recovery for black blood imaging
URI https://api.istex.fr/ark:/67375/WNG-VJR37PGH-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25599
https://www.ncbi.nlm.nih.gov/pubmed/25761646
https://www.proquest.com/docview/1757596333
https://www.proquest.com/docview/2509220815
https://www.proquest.com/docview/1760878335
https://www.proquest.com/docview/1776670478
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIRAvfAwYhYEOhBAv2VLHiRPxhChdNakTqhjsASmyHUeq1iZT046Vf4d_lDvnYwwVhHiz5LNjX87nn-3zz4y9ConGDZGvl0WZ7wktYk_L3HrCIjoOeGbDzAXIHkejE3F0Gp5usbftXZiaH6LbcKOR4fw1DXClq4Mr0tD5Yr7v-LLQ__aDiHjzB5Mr6qgkqRmYpSA_k4iWVcjnB13Ja3PRDVLr5SageR23uolneJd9bZtcx5uc7a-Wet98_43N8T_7dI_daQApvKst6D7bssUOuzVujtx32E0XI2qqB-zHUFVLCAYwrcrlojyfGpjO3SNHUOaAQBJUSbXABfGRz-Cbms1Ar-GXM3IS5AOoKIwbc9dQuWd40OOCvTQNXTioIgMFiPexijUVmRYX9bYe0Pod02tArA2aNh_Bhd63LXnIToYfPr0fec0bD55BY0jQJoLY2pznUmplRD8xMTfWV75MpOVSZrHpq9jPpYqypG-SiPjsEYT6ERdGCRU8YttFWdjHDOKM43I2MTIOjciVVlloTN9KnaCV6lz02Jv2b6dtj-gdjllaUzfzFNWfOvX32MtO9Lxm_dgk9NqZTCehFmcUJifD9MvxYfr5aBLIj4ejFD-819pU2niIKkXYJkP0fkGwMRuRacI54rWwx1502Tj06TxHFbZcURWRH0u6Nfc3GRlFkiiYemy3NueuvbTWJHo5VIwzyj93NR1Pxi7x5N9Fn7LbCC6bCPc9tr1crOwzBHBL_dyN1J8HJkIh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJi4vXMatMMAghHhJlzpOnEi8IEpXxlqhaoO9IMtxHKlam0xNOlb-Dn-Uc5zLGCoI8WbJx47tHB9_Pj7-TMhLH2ncAPk6SZC4Do956MQiNQ43gI49lhg_sQGy42B4xPeP_eMN8qa5C1PxQ7QON5wZ1l7jBEeH9O4Fa-h8Me9awqwrZIsD0MCtV39yQR4VRRUHs-BoaSLe8Aq5bLctemk12sKBPV8HNS8jV7v0DG6Rr02jq4iTk-6yjLv6-298jv_bq9vkZo1J6dtKie6QDZNtk2uj-tR9m1y1YaK6uEt-DFRRUq9Pp0VeLvLTqabTuX3niOYpBSxJVY610DOkJJ_Rb2o2o_GK_nJMjoKsTwuM5IbcFS3sSzxgdKk51zVjOFVZQhUFyA9VrLDINDurPHsUt_CQXlGA2zRG_yO10fdNS-6Ro8H7w3dDp37mwdGgDxGohRcak7JUiFhp3ot0yLRxlSsiYZgQSah7KnRToYIk6ukoQEp7wKFuwLhWXHn3yWaWZ-YhoWHCYEcbaRH6mqcqVomvdc-IOAJFjVPeIa-b3y2bHuFTHDNZsTczCcMv7fB3yItW9LQi_lgn9MrqTCuhFicYKSd8-WW8Jz_vTzzxaW8o4cM7jVLJ2kgUEpCb8MEAet7abACnEWMA2fwOed5mw-zHIx2VmXyJVQRuKPDi3N9kRBAIZGHqkAeVPrftxe0mMszBwFit_HNX5WgysolH_y76jFwfHo4O5MGH8cfH5AZgzTrgfYdslouleQJ4royf2mn7EwtARkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGJiZeBoyPFQYYhBAv6VLHiRPxhChdGbSaKsb2gGQ5jiNVa5OqacfK3-GPcq_zMYYKQrxZ8o1jO8fXx_bNMSEvfZRxA-brJEHiOjzmoROL1DjcADv2WGL8xAbIDoP-CT868882yJv6X5hSH6LZcMORYf01DvBZkh5ciYZO59O21cu6QbZ4AEwCGdHoSjsqikoJZsHR0US8lhVy2UHz6LXJaAv79XId07xOXO3M07tNvtZ1LgNOztvLRdzW33-Tc_zPRt0hOxUjpW9LCN0lGybbJduD6sx9l9y0QaK6uEd-9FSxoF6Xjot8Mc9nY03HU3vLEc1TCkySqhxLoRcoSD6h39RkQuMV_eWQHA1ZlxYYxw25K1rYe3jA5VJzqSu9cKqyhCoKhB-KWOEj4-yi3NejuICH9IoC2aYx7j5SG3tf1-Q-Oem9__yu71SXPDga0BABKLzQmJSlQsRK806kQ6aNq1wRCcOESELdUaGbChUkUUdHAQraAwt1A8a14sp7QDazPDN7hIYJg_VspEXoa56qWCW-1h0j4ghgGqe8RV7XX1vWLcKLOCay1G5mErpf2u5vkReN6ayU_Vhn9MpCprFQ83OMkxO-PB0eyi9HI08cH_YlvHi_xpSsXEQhgbcJH9yf563NBmoaMQaEzW-R5002jH080FGZyZdYBOBe4G9zf7MRQSBQg6lFHpZwbuqLi03Ul4OOsaD8c1PlYDSwiUf_bvqMbB93e_LTh-HHx-QWEM0q2n2fbC7mS_MEyNwifmoH7U8F2ETv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+3D+isotropic+imaging+of+the+aortic+vessel+wall+by+application+of+2D+spatially+selective+excitation+and+a+new+way+of+inversion+recovery+for+black+blood+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Mooiweer%2C+Ronald&rft.au=Sbrizzi%2C+Alessandro&rft.au=El+Aidi%2C+Hamza&rft.au=Eikendal%2C+Anouk+L.M.&rft.date=2016-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=2&rft.spage=547&rft.epage=555&rft_id=info:doi/10.1002%2Fmrm.25599&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VJR37PGH_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon