Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics
Objective Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data f...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 8; pp. 2003 - 2015 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets.
Methods
Gene expression measured in skin from mice with sclerodermatous graft‐versus‐host disease (GVHD), bleomycin‐induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy–derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin.
Results
Gene expression in skin from mice with sclerodermatous GVHD and bleomycin‐induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ‐responsive signature was observed in both Tsk2/+ mice and mice with bleomycin‐induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor–inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice.
Conclusion
This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin‐13 (IL‐13), and IL‐4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc. |
---|---|
AbstractList | Objective Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets. Methods Gene expression measured in skin from mice with sclerodermatous graft-versus-host disease (GVHD), bleomycin-induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy-derived gene expression. Transforming growth factor [beta] (TGF[beta]) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin. Results Gene expression in skin from mice with sclerodermatous GVHD and bleomycin-induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGF[beta]-responsive signature was observed in both Tsk2/+ mice and mice with bleomycin-induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor-inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice. Conclusion This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGF[beta], interleukin-13 (IL-13), and IL-4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc. Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets.OBJECTIVEUnderstanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets.Gene expression measured in skin from mice with sclerodermatous graft-versus-host disease (GVHD), bleomycin-induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy-derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin.METHODSGene expression measured in skin from mice with sclerodermatous graft-versus-host disease (GVHD), bleomycin-induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy-derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin.Gene expression in skin from mice with sclerodermatous GVHD and bleomycin-induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ-responsive signature was observed in both Tsk2/+ mice and mice with bleomycin-induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor-inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice.RESULTSGene expression in skin from mice with sclerodermatous GVHD and bleomycin-induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ-responsive signature was observed in both Tsk2/+ mice and mice with bleomycin-induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor-inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice.This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin-13 (IL-13), and IL-4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc.CONCLUSIONThis study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin-13 (IL-13), and IL-4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc. Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets. Gene expression measured in skin from mice with sclerodermatous graft-versus-host disease (GVHD), bleomycin-induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy-derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin. Gene expression in skin from mice with sclerodermatous GVHD and bleomycin-induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ-responsive signature was observed in both Tsk2/+ mice and mice with bleomycin-induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor-inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice. This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin-13 (IL-13), and IL-4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc. Objective Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct subsets of disease at the molecular level have not been delineated. We applied interspecies comparative analysis of genomic data from multiple mouse models of SSc and patients with SSc to determine which animal models best reflect the SSc intrinsic molecular subsets. Methods Gene expression measured in skin from mice with sclerodermatous graft‐versus‐host disease (GVHD), bleomycin‐induced fibrosis, Tsk1/+ or Tsk2/+ mice was mapped to human orthologs and compared to SSc skin biopsy–derived gene expression. Transforming growth factor β (TGFβ) activation was assessed using a responsive signature in mice, and tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression was measured in SSc patient and mouse skin. Results Gene expression in skin from mice with sclerodermatous GVHD and bleomycin‐induced fibrosis corresponded to that in SSc patients in the inflammatory molecular subset. In contrast, Tsk2/+ mice showed gene expression corresponding to the fibroproliferative SSc subset. Enrichment of a TGFβ‐responsive signature was observed in both Tsk2/+ mice and mice with bleomycin‐induced skin fibrosis. Expression of TNFRSF12A (the TWEAK receptor/fibroblast growth factor–inducible 14) was elevated in skin from patients with fibroproliferative SSc and the skin of Tsk2/+ mice. Conclusion This study reveals similarities in cutaneous gene expression between distinct mouse models of SSc and specific molecular subsets of the disease. Different pathways underlie the intrinsic subsets including TGFβ, interleukin‐13 (IL‐13), and IL‐4. We identify a novel target, Tnfrsf12a, with elevated expression in skin from patients with fibroproliferative SSc and Tsk2/+ mice. These findings will inform mechanistic and translational preclinical studies in SSc. |
Author | Aliprantis, Antonios O. Clark, Stephen H. Sargent, Jennifer L. Greenblatt, Matthew Lafyatis, Robert Burgwin, Chelsea Harris, Adam Blankenhorn, Elizabeth P. Wei, Jun Varga, John Artlett, Carol M. Taroni, Jaclyn Lemaire, Raphael Whitfield, Michael L. Wu, Ming‐hua Li, Zhenghui Long, Kristen B. |
Author_xml | – sequence: 1 givenname: Jennifer L. surname: Sargent fullname: Sargent, Jennifer L. organization: Geisel School of Medicine at Dartmouth – sequence: 2 givenname: Zhenghui surname: Li fullname: Li, Zhenghui organization: Geisel School of Medicine at Dartmouth – sequence: 3 givenname: Antonios O. surname: Aliprantis fullname: Aliprantis, Antonios O. organization: Brigham and Women's Hospital – sequence: 4 givenname: Matthew surname: Greenblatt fullname: Greenblatt, Matthew organization: Brigham and Women's Hospital – sequence: 5 givenname: Raphael surname: Lemaire fullname: Lemaire, Raphael organization: Boston University School of Medicine – sequence: 6 givenname: Ming‐hua surname: Wu fullname: Wu, Ming‐hua organization: Feinberg School of Medicine, Northwestern University – sequence: 7 givenname: Jun surname: Wei fullname: Wei, Jun organization: Feinberg School of Medicine, Northwestern University – sequence: 8 givenname: Jaclyn surname: Taroni fullname: Taroni, Jaclyn organization: Geisel School of Medicine at Dartmouth – sequence: 9 givenname: Adam surname: Harris fullname: Harris, Adam organization: University of Connecticut Health Center – sequence: 10 givenname: Kristen B. surname: Long fullname: Long, Kristen B. organization: Drexel University College of Medicine – sequence: 11 givenname: Chelsea surname: Burgwin fullname: Burgwin, Chelsea organization: Drexel University College of Medicine – sequence: 12 givenname: Carol M. surname: Artlett fullname: Artlett, Carol M. organization: Drexel University College of Medicine – sequence: 13 givenname: Elizabeth P. surname: Blankenhorn fullname: Blankenhorn, Elizabeth P. organization: Drexel University College of Medicine – sequence: 14 givenname: Robert surname: Lafyatis fullname: Lafyatis, Robert organization: Boston University School of Medicine – sequence: 15 givenname: John surname: Varga fullname: Varga, John organization: Feinberg School of Medicine, Northwestern University – sequence: 16 givenname: Stephen H. surname: Clark fullname: Clark, Stephen H. organization: University of Connecticut Health Center – sequence: 17 givenname: Michael L. surname: Whitfield fullname: Whitfield, Michael L. organization: Geisel School of Medicine at Dartmouth |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26945694$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLxDAUhYOM-F74B6TgRhejSZO0yXIYfAwogjOuS5rcQqRtapJR5t8bZ9SFoBi4Sbh898A9Zx-NetcDQscEXxCM80vl4wWVBRdbaC-neTHmOeajrz-RZBcdhfCM05ElLjDfQbt5IRlPtYfUzEAfbWO1itb1mWuyhyHaTrXZvVsGSLeBNnz056sQobM6m-sWvAs2ZPUqm_URfBhAWwjZ1HWD8knpFbIb6F2iwyHablQb4OjzPUBP11eL6e347uFmNp3cjTUTpRhLYKBrQmkjWGEIoXVDS6NKrpgWpqlLZqTKc6EKRbTRWnAulKG8LhgnDdX0AJ1tdAfvXpYQYtXZoKFtVQ9pk4oIQoTkkol_oLjkFEtOE3r6A312S9-nRdYUZpzjIlEnn9Sy7sBUg08O-lX15XMCzjeATsYFD803QnD1EWOVYqzWMSb28gerbVynE72y7V8Tb7aF1e_S1eRxsZl4Bzt1rZI |
CitedBy_id | crossref_primary_10_1016_j_jid_2018_05_036 crossref_primary_10_1002_jcp_30089 crossref_primary_10_1038_s41467_022_33767_y crossref_primary_10_3389_fimmu_2022_904631 crossref_primary_10_1097_BOR_0000000000000967 crossref_primary_10_1016_j_jid_2018_01_006 crossref_primary_10_1016_j_jid_2017_06_019 crossref_primary_10_3389_fimmu_2018_02434 crossref_primary_10_1002_art_42097 crossref_primary_10_1016_j_bcp_2019_02_029 crossref_primary_10_3389_fimmu_2017_00124 crossref_primary_10_1002_art_41163 crossref_primary_10_1016_j_bcp_2018_07_047 crossref_primary_10_1126_sciimmunol_abq6691 crossref_primary_10_1002_art_39797 crossref_primary_10_1016_j_jid_2022_08_052 crossref_primary_10_1111_exd_13165 crossref_primary_10_1016_S0140_6736_17_30933_9 crossref_primary_10_1172_JCI85740 crossref_primary_10_3390_ijms231710127 crossref_primary_10_1155_2018_1256379 crossref_primary_10_1016_j_isci_2020_101902 crossref_primary_10_1016_j_jid_2022_10_011 crossref_primary_10_1126_scitranslmed_aaz5506 crossref_primary_10_1111_phpp_12786 crossref_primary_10_1097_BOR_0000000000000331 crossref_primary_10_1371_journal_pone_0240986 crossref_primary_10_3390_ijms232012654 crossref_primary_10_1016_j_jid_2022_11_025 crossref_primary_10_1038_s41421_018_0014_5 crossref_primary_10_1177_2397198319865367 |
Cites_doi | 10.1093/nar/gkm961 10.1371/journal.pone.0002696 10.1097/01.bor.0000137893.68929.86 10.1038/jid.2013.130 10.1016/j.semarthrit.2005.03.005 10.1038/nrc1802 10.1007/s10067-005-0177-y 10.1186/ar2622 10.1038/jid.2014.455 10.1172/JCI112809 10.1371/journal.pone.0114017 10.1371/journal.pcbi.1004005 10.1073/pnas.95.25.14863 10.1007/s00281-015-0512-6 10.2174/1874312901206010080 10.1038/sj.jid.5701101 10.1111/j.1478-3231.2009.02028.x 10.1371/journal.pone.0006203 10.1007/s003359900181 10.2353/ajpath.2009.080574 10.1186/gb-2007-8-5-r76 10.1002/art.1780381212 10.1002/art.30568 10.1146/annurev-pathol-011110-130312 10.1002/jcp.21319 10.1038/jid.2009.318 10.1172/JCI23486 10.1038/35021093 10.1159/000168676 10.1159/000082331 10.1165/rcmb.2005-0474OC 10.1038/labinvest.3700331 10.1002/art.10977 10.1001/archderm.1972.01620040031005 10.1111/j.0022-202X.2005.23859.x 10.1073/pnas.0700021104 10.1006/cimm.1999.1537 10.1038/jid.2011.472 10.1016/S0002-9440(10)63289-0 10.1093/bioinformatics/btg385 10.1002/art.20104 10.1016/j.ajpath.2011.11.024 10.1002/art.1780230510 10.1038/ng1165 10.1378/chest.114.3.801 10.1152/ajplung.00151.2001 10.1016/j.bbadis.2013.05.032 |
ContentType | Journal Article |
Copyright | 2016, American College of Rheumatology 2016, American College of Rheumatology. |
Copyright_xml | – notice: 2016, American College of Rheumatology – notice: 2016, American College of Rheumatology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 |
DOI | 10.1002/art.39658 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-5205 |
EndPage | 2015 |
ExternalDocumentID | 4129198391 26945694 10_1002_art_39658 ART39658 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01‐AR‐061384‐01, 2R01‐AR‐051089 and P30‐AR‐061271 – fundername: US Department of Defense funderid: PR100338 – fundername: Scleroderma Research Foundation – fundername: NCI NIH HHS grantid: P30 CA023108 – fundername: NIAMS NIH HHS grantid: R01 AR051089 – fundername: NIAMS NIH HHS grantid: R01 AR061384 – fundername: NIAMS NIH HHS grantid: P30 AR061271 |
GroupedDBID | 0R~ 1OC 24P 33P 3SF 4.4 52O 52U 52V 53G 5VS AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 DCZOG DIK DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 FUBAC G-S G.N GODZA HGLYW KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM NF~ O66 O9- OK1 OVD P2W PQQKQ QB0 ROL SUPJJ SV3 TEORI V9Y WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR YCJ AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K H94 K9. 7X8 |
ID | FETCH-LOGICAL-c4878-9e4ecb133f846d113bf37da75a4c8dfb74d9a228a6a1cdcc8558ad35b6451f3c3 |
ISSN | 2326-5191 2326-5205 |
IngestDate | Thu Jul 10 17:51:38 EDT 2025 Fri Jul 11 02:20:23 EDT 2025 Fri Jul 25 12:19:19 EDT 2025 Thu Apr 03 07:02:56 EDT 2025 Tue Jul 01 00:55:51 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Jan 22 17:08:08 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016, American College of Rheumatology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4878-9e4ecb133f846d113bf37da75a4c8dfb74d9a228a6a1cdcc8558ad35b6451f3c3 |
Notes | Supported by the Scleroderma Research Foundation (grants to Drs. Aliprantis, Varga, and Whitfield), the NIH (grant R01‐AR‐061384‐01 to Drs. Artlett, Blankenhorn, and Whitfield, and grants 2R01‐AR‐051089 and P30‐AR‐061271 to Dr. Lafyatis), and the US Department of Defense (grant PR100338 to Drs. Artlett, Blankenhorn, and Whitfield). Drs. Sargent and Li contributed equally to this work. Dr. Whitfield has filed patent applications for biomarkers in systemic sclerosis and is the scientific founder of Celdara Medical LLC. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5695038 |
PMID | 26945694 |
PQID | 1807045506 |
PQPubID | 946334 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1811895948 proquest_miscellaneous_1807530953 proquest_journals_1807045506 pubmed_primary_26945694 crossref_primary_10_1002_art_39658 crossref_citationtrail_10_1002_art_39658 wiley_primary_10_1002_art_39658_ART39658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheumatol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1987; 79 2007; 104 2015; 37 2004; 165 2004; 20 1995; 38 2006; 35 2008; 36 1998; 114 2008; 3 2012; 125 2009; 11 2012; 132 2004; 135 2015; 135 2006; 25 2000; 406 2007; 8 2011; 63 2003; 48 1998; 95 1972; 105 2005; 35 1996; 7 1974; 77 2013; 1832 2012; 180 1980; 23 2005; 115 2015; 11 2015; 10 2005; 85 2008; 128 2006; 6 2009; 130 2009; 174 2011; 6 2009; 29 2003; 34 2009; 77 2004; 50 2002; 282 2007; 117 2004; 16 2005; 125 2013; 133 1999; 196 2008; 215 2009; 4 2012; 6 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Adamson IY (e_1_2_6_21_1) 1974; 77 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_40_1 Fleischmajer R (e_1_2_6_35_1) 1972; 105 Zhu LX (e_1_2_6_41_1) 2012; 125 e_1_2_6_8_1 e_1_2_6_4_1 Gasse P (e_1_2_6_44_1) 2007; 117 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_46_1 22245215 - Am J Pathol. 2012 Mar;180(3):1080-94 8678985 - Mamm Genome. 1996 Aug;7(8):610-2 15215176 - Am J Pathol. 2004 Jul;165(1):203-17 21090968 - Annu Rev Pathol. 2011;6:509-37 19490417 - Liver Int. 2009 Oct;29(9):1307-15 16645178 - Am J Respir Cell Mol Biol. 2006 Sep;35(3):337-46 17493263 - Genome Biol. 2007;8(5):R76 18974632 - Respiration. 2009;77(3):311-9 25569146 - PLoS Comput Biol. 2015 Jan 08;11(1):e1004005 9743170 - Chest. 1998 Sep;114(3):801-7 17992263 - J Clin Invest. 2007 Dec;117(12):3786-99 16127425 - Lab Invest. 2005 Oct;85(10 ):1199-209 16435160 - Clin Rheumatol. 2006 Nov;25(6):831-4 19147827 - Am J Pathol. 2009 Feb;174(2):519-33 19812599 - J Invest Dermatol. 2010 Mar;130(3):694-705 16110324 - J Clin Invest. 2005 Sep;115(9):2330-40 25330296 - J Invest Dermatol. 2015 Mar;135(3):718-27 18158299 - Nucleic Acids Res. 2008 Jan;36(Database issue):D724-8 23677167 - J Invest Dermatol. 2013 Aug;133(8):1979-89 18648520 - PLoS One. 2008 Jul 16;3(7):e2696 10486156 - Cell Immunol. 1999 Aug 25;196(1):60-8 15077315 - Arthritis Rheum. 2004 Apr;50(4):1305-18 17307869 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2827-30 16084222 - Semin Arthritis Rheum. 2005 Aug;35(1):35-42 12740579 - Nat Genet. 2003 Jun;34(2):166-76 23106895 - Chin Med J (Engl). 2012 Nov;125(21):3898-904 17960558 - J Cell Physiol. 2008 May;215(2):464-71 22318389 - J Invest Dermatol. 2012 May;132(5):1363-73 8849351 - Arthritis Rheum. 1995 Dec;38(12):1791-8 23748045 - Biochim Biophys Acta. 2013 Oct;1832(10):1744-55 16117784 - J Invest Dermatol. 2005 Sep;125(3):450-5 15564778 - Int Arch Allergy Immunol. 2004 Dec;135(4):348-56 19232127 - Arthritis Res Ther. 2009;11(1):R28 14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14 16491069 - Nat Rev Cancer. 2006 Feb;6(2):99-106 15577614 - Curr Opin Rheumatol. 2004 Nov;16(6):746-52 5009623 - Arch Dermatol. 1972 Jan;105(1):59-66 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 4141224 - Am J Pathol. 1974 Nov;77(2):185-97 21792841 - Arthritis Rheum. 2011 Nov;63(11):3563-74 25607805 - PLoS One. 2015 Jan 21;10(1):e0114017 2432091 - J Clin Invest. 1987 Jan;79(1):65-72 22802905 - Open Rheumatol J. 2012;6:80-6 12746909 - Arthritis Rheum. 2003 May;48(5):1363-73 17943183 - J Invest Dermatol. 2008 Apr;128(4):871-81 26223504 - Semin Immunopathol. 2015 Sep;37(5):501-9 10963602 - Nature. 2000 Aug 17;406(6797):747-52 11839555 - Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L585-93 19587802 - PLoS One. 2009 Jul 09;4(7):e6203 |
References_xml | – volume: 20 start-page: 105 year: 2004 end-page: 14 article-title: Adjustment of systematic microarray data biases publication-title: Bioinformatics – volume: 38 start-page: 1791 year: 1995 end-page: 8 article-title: The tight skin 2 mouse: an animal model of scleroderma displaying cutaneous fibrosis and mononuclear cell infiltration publication-title: Arthritis Rheum – volume: 135 start-page: 348 year: 2004 end-page: 56 article-title: Upregulation of interleukin‐13 and its receptor in a murine model of bleomycin‐induced scleroderma publication-title: Int Arch Allergy Immunol – volume: 133 start-page: 1979 year: 2013 end-page: 89 article-title: Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis publication-title: J Invest Dermatol – volume: 3 start-page: e2696 year: 2008 article-title: Molecular subsets in the gene expression signatures of scleroderma skin publication-title: PLoS One – volume: 406 start-page: 747 year: 2000 end-page: 52 article-title: Molecular portraits of human breast tumours publication-title: Nature – volume: 50 start-page: 1305 year: 2004 end-page: 18 article-title: Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator–activated receptor γ publication-title: Arthritis Rheum – volume: 85 start-page: 1199 year: 2005 end-page: 209 article-title: Analysis of the tight skin (Tsk1/+) mouse as a model for testing antifibrotic agents publication-title: Lab Invest – volume: 23 start-page: 581 year: 1980 end-page: 90 – volume: 135 start-page: 718 year: 2015 end-page: 27 article-title: The Tsk2/+ mouse fibrotic phenotype is due to a gain‐of‐function mutation in the PIIINP segment of the Col3a1 gene publication-title: J Invest Dermatol – volume: 215 start-page: 464 year: 2008 end-page: 71 article-title: Regulation of collagen gene expression in the Tsk2 mouse publication-title: J Cell Physiol – volume: 6 start-page: 99 year: 2006 end-page: 106 article-title: Common markers of proliferation publication-title: Nat Rev Cancer – volume: 36 start-page: D724 year: 2008 end-page: 8 article-title: The Mouse Genome Database (MGD): mouse biology and model systems publication-title: Nucleic Acids Res – volume: 125 start-page: 3898 year: 2012 end-page: 904 article-title: Role of tumor necrosis factor‐like weak inducer of apoptosis (TWEAK)/fibroblast growth factor‐inducible 14 (Fn14) axis in rheumatic diseases publication-title: Chin Med J (Engl) – volume: 16 start-page: 746 year: 2004 end-page: 52 article-title: Animal models of systemic sclerosis: insights into systemic sclerosis pathogenesis and potential therapeutic approaches publication-title: Curr Opin Rheumatol – volume: 117 start-page: 3786 year: 2007 end-page: 99 article-title: IL‐1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice publication-title: J Clin Invest – volume: 128 start-page: 871 year: 2008 end-page: 81 article-title: Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis publication-title: J Invest Dermatol – volume: 8 start-page: R76 year: 2007 article-title: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors publication-title: Genome Biol – volume: 7 start-page: 610 year: 1996 end-page: 2 article-title: A high‐resolution linkage map of the tight skin 2 (Tsk2) locus: a mouse model for scleroderma (SSc) and other cutaneous fibrotic diseases publication-title: Mamm Genome – volume: 174 start-page: 519 year: 2009 end-page: 33 article-title: Rosiglitazone abrogates bleomycin‐induced scleroderma and blocks profibrotic responses through peroxisome proliferator‐activated receptor‐γ publication-title: Am J Pathol – volume: 34 start-page: 166 year: 2003 end-page: 76 article-title: Module networks: identifying regulatory modules and their condition‐specific regulators from gene expression data publication-title: Nat Genet – volume: 10 start-page: e0114017 year: 2015 article-title: Experimentally‐derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts publication-title: PLoS One – volume: 104 start-page: 2827 year: 2007 end-page: 30 article-title: Transcription factor T‐bet regulates skin sclerosis through its function in innate immunity and via IL‐13 publication-title: Proc Natl Acad Sci U S A – volume: 114 start-page: 801 year: 1998 end-page: 7 article-title: African‐American race and antibodies to topoisomerase I are associated with increased severity of scleroderma lung disease publication-title: Chest – volume: 79 start-page: 65 year: 1987 end-page: 72 article-title: Autoantibody to RNA polymerase I in scleroderma sera publication-title: J Clin Invest – volume: 77 start-page: 185 year: 1974 end-page: 97 article-title: The pathogenesis of bleomycin‐induced pulmonary fibrosis in mice publication-title: Am J Pathol – volume: 6 start-page: 80 year: 2012 end-page: 6 article-title: The role of the NLRP3 inflammasome in fibrosis publication-title: Open Rheumatol J – volume: 6 start-page: 509 year: 2011 end-page: 37 article-title: The pathogenesis of systemic sclerosis publication-title: Annu Rev Pathol – volume: 132 start-page: 1363 year: 2012 end-page: 73 article-title: Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies publication-title: J Invest Dermatol – volume: 11 start-page: e1004133 year: 2015 article-title: Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms [published erratum appears in publication-title: PLoS Comput Biol – volume: 130 start-page: 694 year: 2009 end-page: 705 article-title: A TGFβ‐responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity publication-title: J Invest Dermatol – volume: 125 start-page: 450 year: 2005 end-page: 5 article-title: Topical application of a peptide inhibitor of transforming growth factor‐β1 ameliorates bleomycin‐induced skin fibrosis publication-title: J Invest Dermatol – volume: 63 start-page: 3563 year: 2011 end-page: 74 article-title: The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis publication-title: Arthritis Rheum – volume: 105 start-page: 59 year: 1972 end-page: 66 article-title: Alteration of subcutaneous tissue in systemic scleroderma publication-title: Arch Dermatol – volume: 115 start-page: 2330 year: 2005 end-page: 40 article-title: TWEAK induces liver progenitor cell proliferation publication-title: J Clin Invest – volume: 25 start-page: 831 year: 2006 end-page: 4 article-title: Morbidity and mortality of patients diagnosed with systemic sclerosis after the age of 75: a nested case‐control study publication-title: Clin Rheumatol – volume: 4 start-page: e6203 year: 2009 article-title: Cutaneous chronic graft‐versus‐host disease does not have the abnormal endothelial phenotype or vascular rarefaction characteristic of systemic sclerosis publication-title: PLoS One – volume: 37 start-page: 501 year: 2015 end-page: 9 article-title: Gene expression profiling offers insights into the role of innate immune signaling in SSc publication-title: Semin Immunopathol – volume: 11 start-page: R28 year: 2009 article-title: Diagnostic value of anti‐topoisomerase I antibodies in a large monocentric cohort publication-title: Arthritis Res Ther – volume: 165 start-page: 203 year: 2004 end-page: 17 article-title: Targeted disruption of TGF‐β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma publication-title: Am J Pathol – volume: 35 start-page: 35 year: 2005 end-page: 42 article-title: Autoantibodies in systemic sclerosis publication-title: Semin Arthritis Rheum – volume: 48 start-page: 1363 year: 2003 end-page: 73 article-title: Correlation of serum anti‐DNA topoisomerase I antibody levels with disease severity and activity in systemic sclerosis publication-title: Arthritis Rheum – volume: 196 start-page: 60 year: 1999 end-page: 8 article-title: A role for T helper 2 cells in mediating skin fibrosis in tight‐skin mice publication-title: Cell Immunol – volume: 282 start-page: L585 year: 2002 end-page: 93 article-title: Smad3 deficiency attenuates bleomycin‐induced pulmonary fibrosis in mice publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 180 start-page: 1080 year: 2012 end-page: 94 article-title: Interspecies comparison of human and murine scleroderma reveals IL‐13 and CCL2 as disease subset‐specific targets publication-title: Am J Pathol – volume: 77 start-page: 311 year: 2009 end-page: 9 article-title: Pioglitazone, a peroxisome proliferator‐activated receptor γ ligand, suppresses bleomycin‐induced acute lung injury and fibrosis publication-title: Respiration – volume: 29 start-page: 1307 year: 2009 end-page: 15 article-title: The role of Ifng in alterations in liver gene expression in a mouse model of fulminant autoimmune hepatitis publication-title: Liver Int – volume: 35 start-page: 337 year: 2006 end-page: 46 article-title: Persistent effects induced by IL‐13 in the lung publication-title: Am J Respir Cell Mol Biol – volume: 95 start-page: 14863 year: 1998 end-page: 8 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proc Natl Acad Sci U S A – volume: 1832 start-page: 1744 year: 2013 end-page: 55 article-title: TNF‐related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras‐dependent proliferation of cultured renal fibroblast publication-title: Biochim Biophys Acta – ident: e_1_2_6_16_1 doi: 10.1093/nar/gkm961 – volume: 77 start-page: 185 year: 1974 ident: e_1_2_6_21_1 article-title: The pathogenesis of bleomycin‐induced pulmonary fibrosis in mice publication-title: Am J Pathol – ident: e_1_2_6_3_1 doi: 10.1371/journal.pone.0002696 – ident: e_1_2_6_2_1 doi: 10.1097/01.bor.0000137893.68929.86 – ident: e_1_2_6_5_1 doi: 10.1038/jid.2013.130 – ident: e_1_2_6_32_1 doi: 10.1016/j.semarthrit.2005.03.005 – ident: e_1_2_6_28_1 doi: 10.1038/nrc1802 – ident: e_1_2_6_47_1 doi: 10.1007/s10067-005-0177-y – ident: e_1_2_6_33_1 doi: 10.1186/ar2622 – volume: 117 start-page: 3786 year: 2007 ident: e_1_2_6_44_1 article-title: IL‐1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice publication-title: J Clin Invest – ident: e_1_2_6_29_1 doi: 10.1038/jid.2014.455 – ident: e_1_2_6_34_1 doi: 10.1172/JCI112809 – ident: e_1_2_6_8_1 doi: 10.1371/journal.pone.0114017 – ident: e_1_2_6_11_1 doi: 10.1371/journal.pcbi.1004005 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.95.25.14863 – ident: e_1_2_6_10_1 doi: 10.1007/s00281-015-0512-6 – ident: e_1_2_6_46_1 doi: 10.2174/1874312901206010080 – ident: e_1_2_6_14_1 doi: 10.1038/sj.jid.5701101 – ident: e_1_2_6_38_1 doi: 10.1111/j.1478-3231.2009.02028.x – ident: e_1_2_6_50_1 doi: 10.1371/journal.pone.0006203 – ident: e_1_2_6_23_1 doi: 10.1007/s003359900181 – ident: e_1_2_6_15_1 doi: 10.2353/ajpath.2009.080574 – volume: 125 start-page: 3898 year: 2012 ident: e_1_2_6_41_1 article-title: Role of tumor necrosis factor‐like weak inducer of apoptosis (TWEAK)/fibroblast growth factor‐inducible 14 (Fn14) axis in rheumatic diseases publication-title: Chin Med J (Engl) – ident: e_1_2_6_51_1 doi: 10.1186/gb-2007-8-5-r76 – ident: e_1_2_6_24_1 doi: 10.1002/art.1780381212 – ident: e_1_2_6_45_1 doi: 10.1002/art.30568 – ident: e_1_2_6_9_1 doi: 10.1146/annurev-pathol-011110-130312 – ident: e_1_2_6_13_1 doi: 10.1002/jcp.21319 – ident: e_1_2_6_6_1 doi: 10.1038/jid.2009.318 – ident: e_1_2_6_39_1 doi: 10.1172/JCI23486 – ident: e_1_2_6_18_1 doi: 10.1038/35021093 – ident: e_1_2_6_37_1 doi: 10.1159/000168676 – ident: e_1_2_6_26_1 doi: 10.1159/000082331 – ident: e_1_2_6_25_1 doi: 10.1165/rcmb.2005-0474OC – ident: e_1_2_6_48_1 doi: 10.1038/labinvest.3700331 – ident: e_1_2_6_31_1 doi: 10.1002/art.10977 – volume: 105 start-page: 59 year: 1972 ident: e_1_2_6_35_1 article-title: Alteration of subcutaneous tissue in systemic scleroderma publication-title: Arch Dermatol doi: 10.1001/archderm.1972.01620040031005 – ident: e_1_2_6_43_1 doi: 10.1111/j.0022-202X.2005.23859.x – ident: e_1_2_6_27_1 doi: 10.1073/pnas.0700021104 – ident: e_1_2_6_49_1 doi: 10.1006/cimm.1999.1537 – ident: e_1_2_6_4_1 doi: 10.1038/jid.2011.472 – ident: e_1_2_6_42_1 doi: 10.1016/S0002-9440(10)63289-0 – ident: e_1_2_6_17_1 doi: 10.1093/bioinformatics/btg385 – ident: e_1_2_6_36_1 doi: 10.1002/art.20104 – ident: e_1_2_6_7_1 doi: 10.1016/j.ajpath.2011.11.024 – ident: e_1_2_6_12_1 doi: 10.1002/art.1780230510 – ident: e_1_2_6_20_1 doi: 10.1038/ng1165 – ident: e_1_2_6_30_1 doi: 10.1378/chest.114.3.801 – ident: e_1_2_6_22_1 doi: 10.1152/ajplung.00151.2001 – ident: e_1_2_6_40_1 doi: 10.1016/j.bbadis.2013.05.032 – reference: 23748045 - Biochim Biophys Acta. 2013 Oct;1832(10):1744-55 – reference: 22802905 - Open Rheumatol J. 2012;6:80-6 – reference: 19232127 - Arthritis Res Ther. 2009;11(1):R28 – reference: 17960558 - J Cell Physiol. 2008 May;215(2):464-71 – reference: 18648520 - PLoS One. 2008 Jul 16;3(7):e2696 – reference: 9743170 - Chest. 1998 Sep;114(3):801-7 – reference: 22318389 - J Invest Dermatol. 2012 May;132(5):1363-73 – reference: 18158299 - Nucleic Acids Res. 2008 Jan;36(Database issue):D724-8 – reference: 19812599 - J Invest Dermatol. 2010 Mar;130(3):694-705 – reference: 15577614 - Curr Opin Rheumatol. 2004 Nov;16(6):746-52 – reference: 17943183 - J Invest Dermatol. 2008 Apr;128(4):871-81 – reference: 22245215 - Am J Pathol. 2012 Mar;180(3):1080-94 – reference: 19587802 - PLoS One. 2009 Jul 09;4(7):e6203 – reference: 14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14 – reference: 21090968 - Annu Rev Pathol. 2011;6:509-37 – reference: 12740579 - Nat Genet. 2003 Jun;34(2):166-76 – reference: 17992263 - J Clin Invest. 2007 Dec;117(12):3786-99 – reference: 16491069 - Nat Rev Cancer. 2006 Feb;6(2):99-106 – reference: 10486156 - Cell Immunol. 1999 Aug 25;196(1):60-8 – reference: 11839555 - Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L585-93 – reference: 10963602 - Nature. 2000 Aug 17;406(6797):747-52 – reference: 25569146 - PLoS Comput Biol. 2015 Jan 08;11(1):e1004005 – reference: 25330296 - J Invest Dermatol. 2015 Mar;135(3):718-27 – reference: 16084222 - Semin Arthritis Rheum. 2005 Aug;35(1):35-42 – reference: 18974632 - Respiration. 2009;77(3):311-9 – reference: 25607805 - PLoS One. 2015 Jan 21;10(1):e0114017 – reference: 8678985 - Mamm Genome. 1996 Aug;7(8):610-2 – reference: 17307869 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2827-30 – reference: 15077315 - Arthritis Rheum. 2004 Apr;50(4):1305-18 – reference: 15215176 - Am J Pathol. 2004 Jul;165(1):203-17 – reference: 16117784 - J Invest Dermatol. 2005 Sep;125(3):450-5 – reference: 16110324 - J Clin Invest. 2005 Sep;115(9):2330-40 – reference: 8849351 - Arthritis Rheum. 1995 Dec;38(12):1791-8 – reference: 16645178 - Am J Respir Cell Mol Biol. 2006 Sep;35(3):337-46 – reference: 19147827 - Am J Pathol. 2009 Feb;174(2):519-33 – reference: 2432091 - J Clin Invest. 1987 Jan;79(1):65-72 – reference: 23677167 - J Invest Dermatol. 2013 Aug;133(8):1979-89 – reference: 12746909 - Arthritis Rheum. 2003 May;48(5):1363-73 – reference: 17493263 - Genome Biol. 2007;8(5):R76 – reference: 21792841 - Arthritis Rheum. 2011 Nov;63(11):3563-74 – reference: 26223504 - Semin Immunopathol. 2015 Sep;37(5):501-9 – reference: 16127425 - Lab Invest. 2005 Oct;85(10 ):1199-209 – reference: 23106895 - Chin Med J (Engl). 2012 Nov;125(21):3898-904 – reference: 15564778 - Int Arch Allergy Immunol. 2004 Dec;135(4):348-56 – reference: 4141224 - Am J Pathol. 1974 Nov;77(2):185-97 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 16435160 - Clin Rheumatol. 2006 Nov;25(6):831-4 – reference: 19490417 - Liver Int. 2009 Oct;29(9):1307-15 – reference: 5009623 - Arch Dermatol. 1972 Jan;105(1):59-66 |
SSID | ssj0000970605 |
Score | 2.3817992 |
Snippet | Objective
Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that... Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that recapitulate distinct... Objective Understanding the pathogenesis of systemic sclerosis (SSc) is confounded by considerable disease heterogeneity. Animal models of SSc that... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2003 |
SubjectTerms | Animals Disease Models, Animal Female Gene expression Genome-Wide Association Study Genomics Growth factors Humans Male Mice Rodents Scleroderma, Systemic - genetics |
Title | Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39658 https://www.ncbi.nlm.nih.gov/pubmed/26945694 https://www.proquest.com/docview/1807045506 https://www.proquest.com/docview/1807530953 https://www.proquest.com/docview/1811895948 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHfTFrQgDkiVg-192DlW0BJK2hxIpIiLtbtek4iQVHkc4F_wj5l92N2IgAqHWNZm5cfO7Lw88w1Cr4Siikqpo5wxFcFOFJFMShppxrisFAONbOqdLy55b0TPx2zcav0MspY2a9lRP3bWlfwPVWEM6GqqZP-Bss1FYQDOgb5wBArD8UY0dlW2lQ-7GbtvABLgmym3BYde20ZnDh3ZAZNPFezlmQbFOF0Zu9OGA02tJbjLTjJ4HPD32lYrr0LT9WS5nlgEJMsty4negLHrEJzASu0t5OKr9sVb550gwPDJ5Jo7dIM6lea4iTj3bTLB54mef5lspg33zaZXoEPXvlWyaXM8XayOB1vJQnImfK6Ja1kexi8S3mTPeTEHJh2PwI50QzoYS2MWymmeB_yYh0I3jkmgwOEmbKdycGCzQK0OMZA31xqw_up_OSjORv1-MTwdD2-h2yl4HqYpxrsPH5uwXdw1cEPMtiz0z13jVcXpm-ba21bOb67LtidkTZnhfXTP-yD4xDHUA9TS84fozoXPsniExDZf4UWFPV9hy1fY8ZUZr_kKN3yF5Xcc8hUO-ArXfPUYjc5Oh297kW_FESnwaEElaqqVTAipwF4tk4TIimSlyJigKi8rmdGyK9I0F1wkqlQKdn4uSsIkpyypiCJP0N58Mdf7CGelNvGYLMsqQsuYSy0zxbtcg3hQlJZt9LpeukJ5nHrTLmVWOITttIBVLuwqt9HLZuqVA2fZNemoXv_C791VkeSg6kxBP2-jF83fIFnN5zIx17CYdg4jBo_xb3PAQe8ayKM2eupo2zyJqRFn8IMXssT-8yMW4Lvak4Mb3OgQ3b3eRkdob73c6GdgGK_lc8uqvwCO77uY |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Optimal+Mouse+Models+of+Systemic+Sclerosis+by+Interspecies+Comparative+Genomics&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Sargent%2C+Jennifer+L&rft.au=Li%2C+Zhenghui&rft.au=Aliprantis%2C+Antonios+O&rft.au=Greenblatt%2C+Matthew&rft.date=2016-08-01&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=68&rft.issue=8&rft.spage=2003&rft.epage=2015&rft_id=info:doi/10.1002%2Fart.39658&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon |