Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy

Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rollin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 5; no. 24; pp. np - n/a
Main Authors Wang, Xiaofeng, Niu, Simiao, Yin, Yajiang, Yi, Fang, You, Zheng, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes. A freestanding‐structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double‐layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy.
AbstractList Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes. A freestanding‐structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double‐layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy.
Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 µA over a wide load range from a short-circuit condition to 10 G[Omega], with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave-driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling-structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large-scale blue energy harvesting of oceans and lakes.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.
Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 mu A over a wide load range from a short-circuit condition to 10 G Omega , with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave-driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling-structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large-scale blue energy harvesting of oceans and lakes. A freestanding-structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double-layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy.
Author Yi, Fang
Niu, Simiao
Wang, Xiaofeng
You, Zheng
Wang, Zhong Lin
Yin, Yajiang
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, 30332-0245, Atlanta, GA, USA
– sequence: 2
  givenname: Simiao
  surname: Niu
  fullname: Niu, Simiao
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332-0245, Atlanta, USA
– sequence: 3
  givenname: Yajiang
  surname: Yin
  fullname: Yin, Yajiang
  organization: Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
– sequence: 4
  givenname: Fang
  surname: Yi
  fullname: Yi, Fang
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332-0245, Atlanta, USA
– sequence: 5
  givenname: Zheng
  surname: You
  fullname: You, Zheng
  organization: Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
– sequence: 6
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, 30332-0245, Atlanta, GA, USA
BookMark eNqFkUFv2yAUgNHUSeuyXne2tMsuzsAGbI5dlbRT0nRbO_WICH3O6AhkgNv50t9eolTRVKkqB0Dwfe89eO_RgfMOEPpI8JhgXH1R4NbjChOGCeXNG3RIOKElbyk-2O_r6h06ivEW50EFwXV9iB6ugll6sKBTMLpYKOdX4CCo5EPxVUW4Kbwrpr21QzFx2vrtyU9vrXGr4nLzG7KlbHGZQq9TH6Dosnemwh3EtEXm_r6cBvjbg9NDca0ShDzfQQ4GYTV8QG87ZSMcPa0j9Gs6uTo5K-cXp99Ojuelpm3TlKAaQgRvldAEdKsrjSuOO6KWjOol4VjUjSZVfmYDNzUTuqOcEtoxUNBxxusR-ryLuwk-1xKTXJuowVrlwPdRkpylJfn32OtoJjETjWgz-ukZeuv74PJDMsVyxaLKlY3QeEfp4GMM0MlNMGsVBkmw3DZPbpsn983LAn0maJNUMt6loIx9WRM77d5YGF5JIo8ni_P_3XLnmpjg395V4Y_Mtw2T14tTKWZz_p3NfshZ_QhL7MA6
CitedBy_id crossref_primary_10_1007_s11705_022_2271_y
crossref_primary_10_1039_D3EE01035J
crossref_primary_10_1002_adma_201702648
crossref_primary_10_1021_acsmaterialslett_3c00273
crossref_primary_10_1002_adfm_202205313
crossref_primary_10_1021_acs_nanolett_2c01912
crossref_primary_10_1002_adfm_202202048
crossref_primary_10_1016_j_nwnano_2024_100062
crossref_primary_10_3389_fmars_2022_1038035
crossref_primary_10_1002_aenm_201900801
crossref_primary_10_1016_j_nanoen_2017_08_018
crossref_primary_10_1002_adfm_202306491
crossref_primary_10_1016_j_nanoen_2021_106303
crossref_primary_10_1126_sciadv_ads2291
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_1002_aenm_201701300
crossref_primary_10_1016_j_nanoen_2020_105271
crossref_primary_10_1016_j_nanoen_2018_12_078
crossref_primary_10_1016_j_apenergy_2020_116385
crossref_primary_10_1016_j_colsurfa_2021_127670
crossref_primary_10_1088_1742_6596_1407_1_012084
crossref_primary_10_1016_j_compositesb_2021_109135
crossref_primary_10_1016_j_device_2024_100575
crossref_primary_10_1002_er_3811
crossref_primary_10_1016_j_jsv_2017_11_036
crossref_primary_10_1016_j_nanoen_2018_11_006
crossref_primary_10_1002_adem_201700767
crossref_primary_10_1021_acsnano_8b08274
crossref_primary_10_1021_acsomega_2c06117
crossref_primary_10_1002_admt_202300919
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1080_02533839_2023_2204930
crossref_primary_10_1002_adfm_201908252
crossref_primary_10_1002_aenm_201600505
crossref_primary_10_1016_j_nanoen_2020_105263
crossref_primary_10_1016_j_mattod_2021_10_034
crossref_primary_10_1002_adfm_201807241
crossref_primary_10_1002_admt_202300802
crossref_primary_10_1016_j_nanoen_2018_12_062
crossref_primary_10_1039_C9EE03566D
crossref_primary_10_1016_j_nanoen_2023_109151
crossref_primary_10_1002_admt_201700240
crossref_primary_10_1007_s40820_023_01238_8
crossref_primary_10_1007_s40544_020_0390_3
crossref_primary_10_1016_j_energy_2022_123422
crossref_primary_10_3390_electronics12010225
crossref_primary_10_1021_acsaelm_1c00608
crossref_primary_10_1002_advs_201802230
crossref_primary_10_1002_adfm_202202055
crossref_primary_10_1002_aenm_201601705
crossref_primary_10_1016_j_nanoen_2018_12_052
crossref_primary_10_1016_j_ijmecsci_2019_03_034
crossref_primary_10_1016_j_nanoen_2018_12_054
crossref_primary_10_1016_j_egyr_2020_09_007
crossref_primary_10_1021_acsnano_1c02790
crossref_primary_10_1088_2631_7990_ad7b04
crossref_primary_10_1016_j_nanoen_2018_03_067
crossref_primary_10_1016_j_joule_2021_04_016
crossref_primary_10_1016_j_nanoen_2018_12_027
crossref_primary_10_1038_s41467_017_00131_4
crossref_primary_10_1088_1361_6528_ab793e
crossref_primary_10_1021_acsnano_8b01532
crossref_primary_10_1016_j_nanoen_2025_110827
crossref_primary_10_1016_j_sna_2018_07_043
crossref_primary_10_1016_j_nanoen_2024_109446
crossref_primary_10_1016_j_nanoen_2020_105244
crossref_primary_10_1039_D0TA01070G
crossref_primary_10_1021_acsami_1c06330
crossref_primary_10_1016_j_nanoen_2023_108240
crossref_primary_10_1002_smll_202307288
crossref_primary_10_1016_j_eng_2023_05_023
crossref_primary_10_1063_1_4977208
crossref_primary_10_1002_smtd_201800150
crossref_primary_10_1016_j_cej_2024_156193
crossref_primary_10_1002_aelm_201800161
crossref_primary_10_1002_smtd_202300582
crossref_primary_10_1039_C6SC02562E
crossref_primary_10_3390_polym15051135
crossref_primary_10_3390_nanoenergyadv1010003
crossref_primary_10_1016_j_electacta_2021_138994
crossref_primary_10_1016_j_nanoen_2021_106746
crossref_primary_10_1109_TCSI_2023_3261780
crossref_primary_10_1016_j_carbpol_2020_117055
crossref_primary_10_1016_j_nanoen_2021_106747
crossref_primary_10_1021_acsnano_8b03824
crossref_primary_10_34133_2021_6849171
crossref_primary_10_1016_j_nanoen_2021_106742
crossref_primary_10_1002_aenm_202300387
crossref_primary_10_1002_adma_202308505
crossref_primary_10_1021_acs_biomac_4c01709
crossref_primary_10_1063_1_4977216
crossref_primary_10_1039_D3EE02688D
crossref_primary_10_1093_nsr_nwac170
crossref_primary_10_1007_s12274_017_1805_y
crossref_primary_10_3390_nano12162792
crossref_primary_10_1631_jzus_A2200598
crossref_primary_10_1016_j_decarb_2024_100093
crossref_primary_10_1016_j_nanoen_2020_105583
crossref_primary_10_1021_acsnano_6b01569
crossref_primary_10_1016_j_nanoen_2019_04_046
crossref_primary_10_1002_adfm_202102431
crossref_primary_10_1002_aenm_201600665
crossref_primary_10_1039_D0EE01236J
crossref_primary_10_1002_apxr_202300115
crossref_primary_10_1007_s13204_022_02398_6
crossref_primary_10_3390_nanoenergyadv3020006
crossref_primary_10_1016_j_nanoen_2021_106844
crossref_primary_10_1002_er_7003
crossref_primary_10_1109_TEC_2024_3354122
crossref_primary_10_1039_C9EE03258D
crossref_primary_10_1016_j_nanoen_2017_07_045
crossref_primary_10_1002_adfm_201904867
crossref_primary_10_1007_s40820_024_01640_w
crossref_primary_10_1016_j_scib_2023_06_025
crossref_primary_10_1088_1361_665X_ab0840
crossref_primary_10_1016_j_eurpolymj_2020_110163
crossref_primary_10_1016_j_nanoen_2021_106257
crossref_primary_10_1088_1361_665X_aaab1e
crossref_primary_10_1002_smll_202411074
crossref_primary_10_1021_acsnano_1c00345
crossref_primary_10_1007_s42765_024_00406_8
crossref_primary_10_1002_admt_202001199
crossref_primary_10_1016_j_nanoen_2023_109091
crossref_primary_10_1038_s41467_018_06045_z
crossref_primary_10_1002_inf2_12621
crossref_primary_10_1002_aenm_202500130
crossref_primary_10_1016_j_cej_2024_156712
crossref_primary_10_1088_1361_6528_aa6612
crossref_primary_10_1016_j_nanoen_2019_01_088
crossref_primary_10_1007_s42417_023_01000_9
crossref_primary_10_1007_s12274_024_6679_1
crossref_primary_10_1016_j_nanoen_2022_107854
crossref_primary_10_1002_aenm_202000064
crossref_primary_10_1016_j_ceramint_2023_07_054
crossref_primary_10_1016_j_cej_2020_127974
crossref_primary_10_1016_j_nanoen_2016_10_040
crossref_primary_10_1016_j_apenergy_2022_118739
crossref_primary_10_3390_mi12091089
crossref_primary_10_1016_j_oceaneng_2023_114995
crossref_primary_10_1002_adma_202202238
crossref_primary_10_1016_j_nanoen_2017_11_001
crossref_primary_10_1016_j_rser_2024_114626
crossref_primary_10_1016_j_mtsust_2023_100467
crossref_primary_10_1021_acsnano_8b09088
crossref_primary_10_1016_j_nanoen_2016_12_004
crossref_primary_10_1002_app_45674
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1021_acsami_6b07697
crossref_primary_10_1016_j_ijbiomac_2022_12_122
crossref_primary_10_1016_j_rser_2019_109366
crossref_primary_10_1002_aesr_202000087
crossref_primary_10_1021_acsami_7b17239
crossref_primary_10_1016_j_nanoen_2019_03_054
crossref_primary_10_1063_1_4984625
crossref_primary_10_1016_j_nanoen_2019_01_066
crossref_primary_10_1063_1_5008606
crossref_primary_10_1016_j_nanoen_2024_109457
crossref_primary_10_1088_1361_665X_aaf3f1
crossref_primary_10_1016_j_nanoen_2022_107871
crossref_primary_10_1021_acsenergylett_0c02483
crossref_primary_10_1016_j_cej_2023_146832
crossref_primary_10_1016_j_seta_2022_102767
crossref_primary_10_1016_j_renene_2020_08_030
crossref_primary_10_1016_j_nanoen_2017_06_035
crossref_primary_10_1002_er_4282
crossref_primary_10_1016_j_oceaneng_2020_107248
crossref_primary_10_1002_adfm_201903587
crossref_primary_10_3390_jmse10010005
crossref_primary_10_1039_D0TA09440D
crossref_primary_10_1002_adsu_202300430
crossref_primary_10_1021_acsnano_6b04213
crossref_primary_10_1021_acsnano_9b02690
crossref_primary_10_1039_D3SE00714F
crossref_primary_10_1021_acsami_2c17722
crossref_primary_10_1016_j_nanoen_2018_08_034
crossref_primary_10_1007_s40684_022_00452_w
crossref_primary_10_1016_j_nanoen_2016_12_035
crossref_primary_10_1039_D2TA10024J
crossref_primary_10_1021_acsaelm_2c01335
crossref_primary_10_1016_j_nanoen_2017_07_022
crossref_primary_10_1039_D0NR02925D
crossref_primary_10_1021_acsnano_6b06622
crossref_primary_10_1002_adfm_202422259
crossref_primary_10_1002_ente_202000114
crossref_primary_10_1002_eom2_12059
crossref_primary_10_1016_j_nanoen_2017_06_017
crossref_primary_10_1039_C9NR01271K
crossref_primary_10_1016_j_surfcoat_2021_127532
crossref_primary_10_1016_j_nanoen_2019_01_033
crossref_primary_10_1002_aenm_202303343
crossref_primary_10_1002_ente_202301380
crossref_primary_10_1016_j_nanoen_2021_106796
crossref_primary_10_1021_acsapm_3c00553
crossref_primary_10_1140_epjp_s13360_023_04230_8
crossref_primary_10_1016_j_nanoen_2024_110488
crossref_primary_10_1002_eom2_70003
crossref_primary_10_7498_aps_65_060201
crossref_primary_10_1063_5_0036220
crossref_primary_10_1002_adts_202200373
crossref_primary_10_1016_j_mattod_2018_06_004
crossref_primary_10_1109_ACCESS_2020_3012662
crossref_primary_10_1002_aenm_202003616
crossref_primary_10_3390_nanoenergyadv4020010
crossref_primary_10_1016_j_nanoen_2020_105720
crossref_primary_10_1021_acsnano_1c07480
crossref_primary_10_1088_1742_6596_1052_1_012030
crossref_primary_10_1016_j_scib_2021_12_014
crossref_primary_10_1002_adfm_202110516
crossref_primary_10_1016_j_nanoen_2016_11_037
crossref_primary_10_1002_adfm_202406775
crossref_primary_10_1039_C7RA07274K
crossref_primary_10_1021_acsami_2c16271
crossref_primary_10_1016_j_enconman_2021_114833
crossref_primary_10_1002_adfm_201908842
crossref_primary_10_1039_C9TA01249D
crossref_primary_10_1088_1361_6528_ab841e
crossref_primary_10_1002_adfm_201603199
crossref_primary_10_1021_acs_iecr_0c01117
crossref_primary_10_1016_j_apenergy_2024_123468
crossref_primary_10_1021_acsami_8b08337
crossref_primary_10_1016_j_chaos_2024_114812
crossref_primary_10_1016_j_nanoen_2022_107694
crossref_primary_10_1021_acsnano_6b03293
crossref_primary_10_1039_D1EE00859E
crossref_primary_10_1007_s42114_023_00632_5
crossref_primary_10_1016_j_mattod_2023_02_030
crossref_primary_10_1016_j_nanoen_2020_104605
crossref_primary_10_3390_nanoenergyadv2010002
crossref_primary_10_1039_D2TC01931K
crossref_primary_10_1016_j_egyr_2022_10_073
crossref_primary_10_1002_aelm_202100277
crossref_primary_10_1021_acsami_9b02233
crossref_primary_10_3390_nano14181500
crossref_primary_10_1002_aenm_201800654
crossref_primary_10_1016_j_apenergy_2021_118174
crossref_primary_10_1021_acsanm_0c00771
crossref_primary_10_1002_adfm_201900098
crossref_primary_10_1016_j_heliyon_2024_e38107
crossref_primary_10_1016_j_xcrp_2024_101933
crossref_primary_10_1016_j_nantod_2024_102232
crossref_primary_10_1016_j_jsv_2021_116074
crossref_primary_10_1016_j_ijmecsci_2021_106904
crossref_primary_10_1088_2053_1583_ab39cb
crossref_primary_10_1016_j_nanoen_2020_104960
crossref_primary_10_3390_mi9110598
crossref_primary_10_1016_j_nanoen_2022_107118
crossref_primary_10_1016_j_nanoen_2018_08_055
crossref_primary_10_1021_acsnano_6b07633
crossref_primary_10_3390_s20020506
crossref_primary_10_1002_adem_202400987
crossref_primary_10_1002_adfm_202004446
crossref_primary_10_1016_j_nanoen_2021_106086
crossref_primary_10_1016_j_nanoen_2023_108861
crossref_primary_10_1109_JOE_2023_3323966
crossref_primary_10_1002_aenm_201800705
crossref_primary_10_1016_j_nanoen_2019_104131
crossref_primary_10_1002_aenm_202302627
crossref_primary_10_1002_advs_202401578
crossref_primary_10_1002_aenm_202000426
crossref_primary_10_1016_j_nanoen_2017_04_030
crossref_primary_10_1002_admt_201800514
crossref_primary_10_1007_s12274_023_6100_5
crossref_primary_10_1038_s41467_021_20919_9
crossref_primary_10_1002_aenm_201602397
crossref_primary_10_1002_adfm_201802634
crossref_primary_10_1002_adsu_202400152
crossref_primary_10_1002_aenm_202101116
crossref_primary_10_1021_acsami_4c05359
crossref_primary_10_1002_adsu_202300135
crossref_primary_10_1002_admt_202200403
crossref_primary_10_1002_admt_202402212
crossref_primary_10_1002_adma_201905715
crossref_primary_10_1016_j_nanoen_2020_104937
crossref_primary_10_1021_acsomega_1c02709
crossref_primary_10_1002_aenm_202102460
crossref_primary_10_1002_adfm_202001150
crossref_primary_10_1002_adfm_202415449
crossref_primary_10_1016_j_nanoen_2022_107658
crossref_primary_10_1039_C8NR09978B
crossref_primary_10_1016_j_apenergy_2023_121824
crossref_primary_10_1002_adfm_201600624
crossref_primary_10_1002_aenm_201802906
crossref_primary_10_1631_jzus_A2300231
crossref_primary_10_1088_1361_6633_ac0a50
crossref_primary_10_1016_j_compscitech_2023_110014
crossref_primary_10_1016_j_nanoen_2019_104277
crossref_primary_10_3390_mi12091043
crossref_primary_10_1002_ente_201801007
crossref_primary_10_1016_j_nanoen_2023_108818
crossref_primary_10_1016_j_nanoen_2020_104930
crossref_primary_10_1016_j_nanoen_2023_108819
crossref_primary_10_1002_ente_201800035
crossref_primary_10_4028_www_scientific_net_KEM_835_335
crossref_primary_10_1016_j_eml_2016_02_019
crossref_primary_10_3389_fenrg_2022_966567
crossref_primary_10_1016_j_nanoen_2019_104167
crossref_primary_10_1063_1_5044399
crossref_primary_10_1038_s41467_024_51245_5
crossref_primary_10_1039_D2TA02013K
crossref_primary_10_1021_acsnano_1c07236
crossref_primary_10_1038_srep33977
crossref_primary_10_1016_j_oceaneng_2023_115376
crossref_primary_10_1016_j_nanoen_2017_04_006
crossref_primary_10_3390_mi15121500
crossref_primary_10_1016_j_mtener_2024_101653
crossref_primary_10_1002_admt_202301824
crossref_primary_10_1016_j_nanoen_2022_108030
crossref_primary_10_3390_jmse12071176
crossref_primary_10_1021_acsaelm_2c00985
crossref_primary_10_1016_j_joule_2021_03_013
crossref_primary_10_1515_ntrev_2020_0055
crossref_primary_10_1007_s12274_017_1716_y
crossref_primary_10_1002_aenm_202000627
crossref_primary_10_1002_aenm_202002929
crossref_primary_10_1007_s12274_016_1275_7
crossref_primary_10_1002_aenm_201802892
crossref_primary_10_1016_j_energy_2018_08_064
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_1016_j_nanoen_2020_104473
crossref_primary_10_1016_j_nanoen_2018_10_075
crossref_primary_10_1007_s40820_018_0207_3
crossref_primary_10_1038_542159a
crossref_primary_10_1002_admt_202101485
crossref_primary_10_1016_j_oneear_2022_08_013
crossref_primary_10_1016_j_renene_2024_121980
crossref_primary_10_1016_j_nanoen_2021_106827
crossref_primary_10_1016_j_ijoes_2024_100694
crossref_primary_10_1007_s40684_021_00340_9
crossref_primary_10_1016_j_nanoen_2019_104108
crossref_primary_10_1039_C8DT03784A
crossref_primary_10_3390_s22041341
crossref_primary_10_1021_acsnano_1c05127
crossref_primary_10_1016_j_isci_2024_111480
crossref_primary_10_1016_j_jallcom_2022_167137
crossref_primary_10_1002_aenm_201901149
crossref_primary_10_1038_s41467_020_17891_1
crossref_primary_10_1016_j_nanoen_2021_105824
crossref_primary_10_1016_j_nanoen_2019_104117
crossref_primary_10_1021_acsnano_9b08998
crossref_primary_10_1007_s40544_022_0646_1
crossref_primary_10_1002_adfm_201806435
crossref_primary_10_1021_acsnano_7b08674
crossref_primary_10_1038_s41467_024_50926_5
crossref_primary_10_1016_j_apenergy_2023_120792
crossref_primary_10_1016_j_nanoen_2021_105836
crossref_primary_10_1002_adfm_201808849
crossref_primary_10_3390_jmse10040455
crossref_primary_10_3390_nano9050773
crossref_primary_10_1002_advs_202000254
crossref_primary_10_1016_j_nanoen_2023_108222
crossref_primary_10_1016_j_nanoen_2023_108346
crossref_primary_10_3390_nanoenergyadv4010004
crossref_primary_10_1002_aenm_202404891
crossref_primary_10_1016_j_cej_2024_149948
crossref_primary_10_1016_j_nanoen_2019_06_048
crossref_primary_10_1038_s41598_017_17453_4
crossref_primary_10_3390_ma16083034
crossref_primary_10_1016_j_nanoen_2018_11_064
crossref_primary_10_1016_j_nanoen_2020_104674
crossref_primary_10_1016_j_nanoen_2021_105920
crossref_primary_10_1016_j_egypro_2018_11_267
crossref_primary_10_1016_j_nanoen_2021_105925
crossref_primary_10_1039_C9SE01184F
crossref_primary_10_1016_j_isci_2022_105374
crossref_primary_10_1002_advs_202000186
crossref_primary_10_1002_aenm_202300557
crossref_primary_10_1016_j_nanoen_2019_104414
crossref_primary_10_3390_nano13061056
crossref_primary_10_1016_j_nanoen_2022_107491
crossref_primary_10_1021_acsami_6b06866
crossref_primary_10_1039_D3TA02569A
crossref_primary_10_1002_slct_202100377
crossref_primary_10_1016_j_nanoen_2018_11_078
crossref_primary_10_1039_C8NR03774D
crossref_primary_10_1002_admt_202100359
crossref_primary_10_1021_acsami_8b08098
crossref_primary_10_1002_aenm_202402216
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1557_s43577_025_00876_0
crossref_primary_10_1016_j_nanoen_2020_104541
crossref_primary_10_1016_j_device_2024_100653
crossref_primary_10_1016_j_enconman_2023_117383
crossref_primary_10_1246_cl_210019
crossref_primary_10_1016_j_nanoen_2018_10_007
crossref_primary_10_1016_j_seta_2023_103599
crossref_primary_10_1021_acsanm_3c03430
crossref_primary_10_1002_smll_202107222
crossref_primary_10_1016_j_nanoen_2020_104659
crossref_primary_10_1016_j_nanoen_2018_05_059
crossref_primary_10_1016_j_jallcom_2025_178710
crossref_primary_10_1039_D0NR04868B
crossref_primary_10_32397_tesea_vol6_n1_669
crossref_primary_10_1007_s12274_016_1294_4
crossref_primary_10_3390_mi15101199
crossref_primary_10_1088_0022_3727_49_47_47LT02
crossref_primary_10_1021_acsnano_2c08945
crossref_primary_10_1016_j_cej_2023_146485
crossref_primary_10_1016_j_nanoen_2019_104205
crossref_primary_10_1002_adfm_202002506
crossref_primary_10_1002_aenm_201801898
Cites_doi 10.1088/0960-1317/17/7/007
10.1002/adma.201302808
10.1016/S0308-597X(02)00045-3
10.1002/adfm.201302453
10.1016/j.coastaleng.2012.11.004
10.1016/j.nanoen.2013.07.012
10.1039/c3ee42571a
10.1002/aenm.201300376
10.1016/j.nanoen.2015.01.013
10.1002/adma.201400172
10.1016/j.nanoen.2014.11.034
10.1016/j.nanoen.2012.01.004
10.1016/j.rser.2009.11.003
10.1109/MPRV.2005.21
10.1038/ncomms4426
10.1016/j.nanoen.2013.12.016
10.1002/adfm.201402703
10.1002/tee.20631
10.1038/ncomms4575
10.1002/adma.201305303
10.1021/am404611h
10.1016/j.sna.2008.03.008
10.1002/adma.201402428
10.1088/0960-1317/18/10/104006
10.1002/adfm.201303799
10.1021/nn405209u
10.1088/0960-1317/19/11/115025
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
7SU
C1K
7ST
SOI
DOI 10.1002/aenm.201501467
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList
Aerospace Database
CrossRef
Aerospace Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3902751541
10_1002_aenm_201501467
AENM201501467
ark_67375_WNG_9KL6P5KQ_K
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
7SU
C1K
7ST
SOI
ID FETCH-LOGICAL-c4877-ea711968a9c1ec8c2c0260f1ab54cb160937c126147ed359cf46414f5eaef6563
ISSN 1614-6832
IngestDate Thu Jul 10 21:57:20 EDT 2025
Fri Jul 11 08:29:57 EDT 2025
Fri Jul 25 12:26:56 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 01:43:14 EDT 2025
Wed Jan 22 17:01:51 EST 2025
Wed Oct 30 09:56:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4877-ea711968a9c1ec8c2c0260f1ab54cb160937c126147ed359cf46414f5eaef6563
Notes ark:/67375/WNG-9KL6P5KQ-K
istex:21376CCB4A532466CE9516BBEA79AF216A18CDB9
ArticleID:AENM201501467
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1751199209
PQPubID 886389
PageCount 9
ParticipantIDs proquest_miscellaneous_1877811505
proquest_miscellaneous_1778059798
proquest_journals_1751199209
crossref_primary_10_1002_aenm_201501467
crossref_citationtrail_10_1002_aenm_201501467
wiley_primary_10_1002_aenm_201501467_AENM201501467
istex_primary_ark_67375_WNG_9KL6P5KQ_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.
A. Van Dongeren, R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, R. Ranasinghe, Coast. Eng. 2013, 73, 178.
Y. Yang, H. L. Zhang, R. Y. Liu, X. N. Wen, T. C. Hou, Z. L. Wang, Adv. Energy Mater. 2013, 3, 1563.
H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401.
S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, S. Roy, J. Micromech. Microeng. 2007, 17, 1257.
P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, T. Bourouina, J. Micromech. Microeng. 2009, 19, 115025.
Y. N. Xie, S. H. Wang, S. M. Niu, L. Lin, Q. S. Jing, J. Yang, Z. Y. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599.
F. Yi, L. Lin, S. M. Niu, J. Yang, W. Z. Wu, S. H. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 7488.
S. M. Niu, Y. Liu, X. Y. Chen, S. H. Wang, Y. S. Zhou, L. Lin, Y. N. Xie, Z. L. Wang, Nano Energy 2015, 12, 760.
G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426.
A. F. D. Falcao, Renew. Sustain. Energy Rev. 2010, 14, 899.
S. H. Wang, Y. N. Xie, S. M. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818.
S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Mater. 2013, 25, 6184.
A. Lal, R. Duggirala, H. Li, IEEE Pervas. Comput. 2005, 4, 53.
Y. B. Xie, D. Bos, L. J. de Vreede, H. L. de Boer, M. J. van derMeulen, M. Versluis, A. J. Sprenkels, A. van denBerg, J. C. T. Eijkel, Nat. Commun. 2014, 5, 3575.
V. Nguyen, R. S. Yang, Nano Energy 2013, 2, 604.
Y. J. Su, Y. Yang, X. D. Zhong, H. L. Zhang, Z. M. Wu, Y. D. Jiang, Z. L. Wang, ACS Appl. Mater. Inter. 2014, 6, 553.
C. R. Saha, T. O'Donnell, N. Wang, R. McCloskey, Sens. Actuators A 2008, 147, 248.
Y. Suzuki, IEEJ Trans. Electr. Electron. 2011, 6, 101.
H. W. Lo, Y. C. Tai, J. Micromech. Microeng. 2008, 18, 104006.
S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 3332.
S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918.
S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
Y. F. Hu, J. Yang, Q. S. Jing, S. M. Niu, W. Z. Wu, Z. L. Wang, ACS Nano 2013, 7, 10424.
X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4, 123.
S. M. Niu, Z. L. Wang, Nano Energy 2015, 14, 161.
R. Pelc, R. M. Fujita, Mar Policy 2002, 26, 471.
2007; 17
2015; 12
2002; 26
2015; 14
2014; 5
2013; 3
2014; 4
2013; 25
2010; 14
2012; 1
2013; 2
2008; 18
2013; 73
2005; 4
2014; 26
2014; 24
2008; 147
2013; 7
2009; 19
2011; 6
2014; 6
2013; 6
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – reference: Y. Yang, H. L. Zhang, R. Y. Liu, X. N. Wen, T. C. Hou, Z. L. Wang, Adv. Energy Mater. 2013, 3, 1563.
– reference: Y. Suzuki, IEEJ Trans. Electr. Electron. 2011, 6, 101.
– reference: S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918.
– reference: S. M. Niu, Z. L. Wang, Nano Energy 2015, 14, 161.
– reference: S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, S. Roy, J. Micromech. Microeng. 2007, 17, 1257.
– reference: Y. N. Xie, S. H. Wang, S. M. Niu, L. Lin, Q. S. Jing, J. Yang, Z. Y. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599.
– reference: A. Lal, R. Duggirala, H. Li, IEEE Pervas. Comput. 2005, 4, 53.
– reference: P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, T. Bourouina, J. Micromech. Microeng. 2009, 19, 115025.
– reference: Y. B. Xie, D. Bos, L. J. de Vreede, H. L. de Boer, M. J. van derMeulen, M. Versluis, A. J. Sprenkels, A. van denBerg, J. C. T. Eijkel, Nat. Commun. 2014, 5, 3575.
– reference: Y. F. Hu, J. Yang, Q. S. Jing, S. M. Niu, W. Z. Wu, Z. L. Wang, ACS Nano 2013, 7, 10424.
– reference: F. Yi, L. Lin, S. M. Niu, J. Yang, W. Z. Wu, S. H. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 7488.
– reference: Y. J. Su, Y. Yang, X. D. Zhong, H. L. Zhang, Z. M. Wu, Y. D. Jiang, Z. L. Wang, ACS Appl. Mater. Inter. 2014, 6, 553.
– reference: S. H. Wang, Y. N. Xie, S. M. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818.
– reference: H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401.
– reference: S. M. Niu, Y. Liu, X. Y. Chen, S. H. Wang, Y. S. Zhou, L. Lin, Y. N. Xie, Z. L. Wang, Nano Energy 2015, 12, 760.
– reference: S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 3332.
– reference: A. F. D. Falcao, Renew. Sustain. Energy Rev. 2010, 14, 899.
– reference: R. Pelc, R. M. Fujita, Mar Policy 2002, 26, 471.
– reference: V. Nguyen, R. S. Yang, Nano Energy 2013, 2, 604.
– reference: S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Mater. 2013, 25, 6184.
– reference: S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
– reference: F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.
– reference: C. R. Saha, T. O'Donnell, N. Wang, R. McCloskey, Sens. Actuators A 2008, 147, 248.
– reference: H. W. Lo, Y. C. Tai, J. Micromech. Microeng. 2008, 18, 104006.
– reference: X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4, 123.
– reference: G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426.
– reference: A. Van Dongeren, R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, R. Ranasinghe, Coast. Eng. 2013, 73, 178.
– volume: 26
  start-page: 471
  year: 2002
  publication-title: Mar Policy
– volume: 7
  start-page: 10424
  year: 2013
  publication-title: ACS Nano
– volume: 14
  start-page: 161
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 3575
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 553
  year: 2014
  publication-title: ACS Appl. Mater. Inter.
– volume: 17
  start-page: 1257
  year: 2007
  publication-title: J. Micromech. Microeng.
– volume: 6
  start-page: 101
  year: 2011
  publication-title: IEEJ Trans. Electr. Electron.
– volume: 18
  start-page: 104006
  year: 2008
  publication-title: J. Micromech. Microeng.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 19
  start-page: 115025
  year: 2009
  publication-title: J. Micromech. Microeng.
– volume: 14
  start-page: 899
  year: 2010
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 604
  year: 2013
  publication-title: Nano Energy
– volume: 4
  start-page: 53
  year: 2005
  publication-title: IEEE Pervas. Comput.
– volume: 4
  start-page: 123
  year: 2014
  publication-title: Nano Energy
– volume: 5
  start-page: 3426
  year: 2014
  publication-title: Nat. Commun.
– volume: 26
  start-page: 3918
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  start-page: 760
  year: 2015
  publication-title: Nano Energy
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1563
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 3332
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 6184
  year: 2013
  publication-title: Adv. Mater.
– volume: 147
  start-page: 248
  year: 2008
  publication-title: Sens. Actuators A
– volume: 73
  start-page: 178
  year: 2013
  publication-title: Coast. Eng.
– volume: 26
  start-page: 6599
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 7488
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 1401
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 2818
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_4_1_1
  doi: 10.1088/0960-1317/17/7/007
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201302808
– ident: e_1_2_4_16_1
  doi: 10.1016/S0308-597X(02)00045-3
– ident: e_1_2_4_19_1
  doi: 10.1002/adfm.201302453
– ident: e_1_2_4_27_1
  doi: 10.1016/j.coastaleng.2012.11.004
– ident: e_1_2_4_17_1
  doi: 10.1016/j.nanoen.2013.07.012
– ident: e_1_2_4_26_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_4_18_1
  doi: 10.1002/aenm.201300376
– ident: e_1_2_4_24_1
  doi: 10.1016/j.nanoen.2015.01.013
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201400172
– ident: e_1_2_4_23_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_4_8_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_4_15_1
  doi: 10.1016/j.rser.2009.11.003
– ident: e_1_2_4_7_1
  doi: 10.1109/MPRV.2005.21
– ident: e_1_2_4_9_1
  doi: 10.1038/ncomms4426
– ident: e_1_2_4_10_1
  doi: 10.1016/j.nanoen.2013.12.016
– ident: e_1_2_4_20_1
  doi: 10.1002/adfm.201402703
– ident: e_1_2_4_3_1
  doi: 10.1002/tee.20631
– ident: e_1_2_4_6_1
  doi: 10.1038/ncomms4575
– ident: e_1_2_4_13_1
  doi: 10.1002/adma.201305303
– ident: e_1_2_4_21_1
  doi: 10.1021/am404611h
– ident: e_1_2_4_2_1
  doi: 10.1016/j.sna.2008.03.008
– ident: e_1_2_4_12_1
  doi: 10.1002/adma.201402428
– ident: e_1_2_4_4_1
  doi: 10.1088/0960-1317/18/10/104006
– ident: e_1_2_4_22_1
  doi: 10.1002/adfm.201303799
– ident: e_1_2_4_14_1
  doi: 10.1021/nn405209u
– ident: e_1_2_4_5_1
  doi: 10.1088/0960-1317/19/11/115025
SSID ssj0000491033
Score 2.606739
Snippet Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as...
Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Charge
Electronics
Energy harvesting
Harvesting
mechanical energy harvesting
Nanostructure
rolling structure
Spherical shells
triboelectric nanogenerators
Water waves
wave energy
Wave power
Title Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy
URI https://api.istex.fr/ark:/67375/WNG-9KL6P5KQ-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501467
https://www.proquest.com/docview/1751199209
https://www.proquest.com/docview/1778059798
https://www.proquest.com/docview/1877811505
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F5AIHxK8IFLRICA6RIet_HwOkVKSJQG2VcLJ2N-sqpbWrtBGUU18AiWfkSZjZtTc2FChcrGQ9tmzP5_HM7sw3hDwRwotF4gqwfsHc8cMgcwTLfCeEl6s_F5kUHAPF8STc2vPfzoJZq_W1lrW0OhXP5ZcL60r-R6swBnrFKtl_0Kw9KQzAb9AvbEHDsL2cjpcLUZhGNguJhrLY1yzSEEf3XsLnaY5LARhknvWGuTwscMSycCOfgNbQjqaQxYUETDnEZkHIvIHFT8UnmwuxuTQ512e9KUdexSl2LRrqwsG6fzuoUgqUqSk8QmF8EOuJe2NcZgteZKr8bOp1kZWeiF0cwQ5rigzBwQd-ACDeX49qj7saKacsWFBL_zBWFnwCJ4zLiU1VHzPcTZVpDmoINKXWv1h8wyDLVY60AgxXSU17jya19k-fPJuIaEib3RSPT-3xV0jHhajDbZPO4PV4e8dO2kE4xfqeLtqobqEiAu27L5oX0XB0OvjOfm5EMfVYSDszuzfI9TIKoQMDqZukpfJb5FqNm_I2OW-AizbARTW4aJFTDS5agYuW4KIWXNSCiwK46BpcFMD1_fybhRXVsKIIK2pgdYfsbQ53X205ZbsOR0LUGzmKRwzsecwTyZSMpSuRry5jXAS-FCzsgycsGUTsfqTmXpDIzA995meB4iqDsMK7S9p5kat7hAoOMq70uPAzX0ZhAnF9Es4zHkovzGLZJU71bFNZctljS5XD9GKFdskzK39sWFx-K_lUq8qK8eVHzH2MgnQ6eZMmo-3wXTB6n466ZKPSZVqahJMUfHGG-dz9pEse291gsHEVjueqWKEMthFJoiT-gww8zxhjtaBLXI2Tv1x2OhhOxvbf_Uvf7gNydf2CbpA2YEI9BC_7VDwqsf8DP2HSrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+Nanogenerator+Based+on+Fully+Enclosed+Rolling+Spherical+Structure+for+Harvesting+Low%E2%80%90Frequency+Water+Wave+Energy&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Xiaofeng&rft.au=Niu%2C+Simiao&rft.au=Yin%2C+Yajiang&rft.au=Yi%2C+Fang&rft.date=2015-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.201501467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201501467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon