Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rollin...
Saved in:
Published in | Advanced energy materials Vol. 5; no. 24; pp. np - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.12.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.
A freestanding‐structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double‐layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy. |
---|---|
AbstractList | Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.
A freestanding‐structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double‐layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy. Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 µA over a wide load range from a short-circuit condition to 10 G[Omega], with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave-driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling-structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large-scale blue energy harvesting of oceans and lakes. Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes. Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 mu A over a wide load range from a short-circuit condition to 10 G Omega , with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave-driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling-structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large-scale blue energy harvesting of oceans and lakes. A freestanding-structured, fully enclosed triboelectric nanogenerator is designed with unique advantages for harvesting wave energy. When resonated with water waves, such a triboelectric nanogenerator can light up 70 LEDs instantaneously. Integrated with electric double-layer supercapacitors, such a system can power a digital thermometer in a duty cycle of 26.5%, showing its potential application in harvesting blue energy. |
Author | Yi, Fang Niu, Simiao Wang, Xiaofeng You, Zheng Wang, Zhong Lin Yin, Yajiang |
Author_xml | – sequence: 1 givenname: Xiaofeng surname: Wang fullname: Wang, Xiaofeng organization: School of Materials Science and Engineering, Georgia Institute of Technology, 30332-0245, Atlanta, GA, USA – sequence: 2 givenname: Simiao surname: Niu fullname: Niu, Simiao organization: School of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332-0245, Atlanta, USA – sequence: 3 givenname: Yajiang surname: Yin fullname: Yin, Yajiang organization: Department of Precision Instrument, Tsinghua University, 100084, Beijing, China – sequence: 4 givenname: Fang surname: Yi fullname: Yi, Fang organization: School of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332-0245, Atlanta, USA – sequence: 5 givenname: Zheng surname: You fullname: You, Zheng organization: Department of Precision Instrument, Tsinghua University, 100084, Beijing, China – sequence: 6 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: School of Materials Science and Engineering, Georgia Institute of Technology, 30332-0245, Atlanta, GA, USA |
BookMark | eNqFkUFv2yAUgNHUSeuyXne2tMsuzsAGbI5dlbRT0nRbO_WICH3O6AhkgNv50t9eolTRVKkqB0Dwfe89eO_RgfMOEPpI8JhgXH1R4NbjChOGCeXNG3RIOKElbyk-2O_r6h06ivEW50EFwXV9iB6ugll6sKBTMLpYKOdX4CCo5EPxVUW4Kbwrpr21QzFx2vrtyU9vrXGr4nLzG7KlbHGZQq9TH6Dosnemwh3EtEXm_r6cBvjbg9NDca0ShDzfQQ4GYTV8QG87ZSMcPa0j9Gs6uTo5K-cXp99Ojuelpm3TlKAaQgRvldAEdKsrjSuOO6KWjOol4VjUjSZVfmYDNzUTuqOcEtoxUNBxxusR-ryLuwk-1xKTXJuowVrlwPdRkpylJfn32OtoJjETjWgz-ukZeuv74PJDMsVyxaLKlY3QeEfp4GMM0MlNMGsVBkmw3DZPbpsn983LAn0maJNUMt6loIx9WRM77d5YGF5JIo8ni_P_3XLnmpjg395V4Y_Mtw2T14tTKWZz_p3NfshZ_QhL7MA6 |
CitedBy_id | crossref_primary_10_1007_s11705_022_2271_y crossref_primary_10_1039_D3EE01035J crossref_primary_10_1002_adma_201702648 crossref_primary_10_1021_acsmaterialslett_3c00273 crossref_primary_10_1002_adfm_202205313 crossref_primary_10_1021_acs_nanolett_2c01912 crossref_primary_10_1002_adfm_202202048 crossref_primary_10_1016_j_nwnano_2024_100062 crossref_primary_10_3389_fmars_2022_1038035 crossref_primary_10_1002_aenm_201900801 crossref_primary_10_1016_j_nanoen_2017_08_018 crossref_primary_10_1002_adfm_202306491 crossref_primary_10_1016_j_nanoen_2021_106303 crossref_primary_10_1126_sciadv_ads2291 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1002_aenm_201701300 crossref_primary_10_1016_j_nanoen_2020_105271 crossref_primary_10_1016_j_nanoen_2018_12_078 crossref_primary_10_1016_j_apenergy_2020_116385 crossref_primary_10_1016_j_colsurfa_2021_127670 crossref_primary_10_1088_1742_6596_1407_1_012084 crossref_primary_10_1016_j_compositesb_2021_109135 crossref_primary_10_1016_j_device_2024_100575 crossref_primary_10_1002_er_3811 crossref_primary_10_1016_j_jsv_2017_11_036 crossref_primary_10_1016_j_nanoen_2018_11_006 crossref_primary_10_1002_adem_201700767 crossref_primary_10_1021_acsnano_8b08274 crossref_primary_10_1021_acsomega_2c06117 crossref_primary_10_1002_admt_202300919 crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1080_02533839_2023_2204930 crossref_primary_10_1002_adfm_201908252 crossref_primary_10_1002_aenm_201600505 crossref_primary_10_1016_j_nanoen_2020_105263 crossref_primary_10_1016_j_mattod_2021_10_034 crossref_primary_10_1002_adfm_201807241 crossref_primary_10_1002_admt_202300802 crossref_primary_10_1016_j_nanoen_2018_12_062 crossref_primary_10_1039_C9EE03566D crossref_primary_10_1016_j_nanoen_2023_109151 crossref_primary_10_1002_admt_201700240 crossref_primary_10_1007_s40820_023_01238_8 crossref_primary_10_1007_s40544_020_0390_3 crossref_primary_10_1016_j_energy_2022_123422 crossref_primary_10_3390_electronics12010225 crossref_primary_10_1021_acsaelm_1c00608 crossref_primary_10_1002_advs_201802230 crossref_primary_10_1002_adfm_202202055 crossref_primary_10_1002_aenm_201601705 crossref_primary_10_1016_j_nanoen_2018_12_052 crossref_primary_10_1016_j_ijmecsci_2019_03_034 crossref_primary_10_1016_j_nanoen_2018_12_054 crossref_primary_10_1016_j_egyr_2020_09_007 crossref_primary_10_1021_acsnano_1c02790 crossref_primary_10_1088_2631_7990_ad7b04 crossref_primary_10_1016_j_nanoen_2018_03_067 crossref_primary_10_1016_j_joule_2021_04_016 crossref_primary_10_1016_j_nanoen_2018_12_027 crossref_primary_10_1038_s41467_017_00131_4 crossref_primary_10_1088_1361_6528_ab793e crossref_primary_10_1021_acsnano_8b01532 crossref_primary_10_1016_j_nanoen_2025_110827 crossref_primary_10_1016_j_sna_2018_07_043 crossref_primary_10_1016_j_nanoen_2024_109446 crossref_primary_10_1016_j_nanoen_2020_105244 crossref_primary_10_1039_D0TA01070G crossref_primary_10_1021_acsami_1c06330 crossref_primary_10_1016_j_nanoen_2023_108240 crossref_primary_10_1002_smll_202307288 crossref_primary_10_1016_j_eng_2023_05_023 crossref_primary_10_1063_1_4977208 crossref_primary_10_1002_smtd_201800150 crossref_primary_10_1016_j_cej_2024_156193 crossref_primary_10_1002_aelm_201800161 crossref_primary_10_1002_smtd_202300582 crossref_primary_10_1039_C6SC02562E crossref_primary_10_3390_polym15051135 crossref_primary_10_3390_nanoenergyadv1010003 crossref_primary_10_1016_j_electacta_2021_138994 crossref_primary_10_1016_j_nanoen_2021_106746 crossref_primary_10_1109_TCSI_2023_3261780 crossref_primary_10_1016_j_carbpol_2020_117055 crossref_primary_10_1016_j_nanoen_2021_106747 crossref_primary_10_1021_acsnano_8b03824 crossref_primary_10_34133_2021_6849171 crossref_primary_10_1016_j_nanoen_2021_106742 crossref_primary_10_1002_aenm_202300387 crossref_primary_10_1002_adma_202308505 crossref_primary_10_1021_acs_biomac_4c01709 crossref_primary_10_1063_1_4977216 crossref_primary_10_1039_D3EE02688D crossref_primary_10_1093_nsr_nwac170 crossref_primary_10_1007_s12274_017_1805_y crossref_primary_10_3390_nano12162792 crossref_primary_10_1631_jzus_A2200598 crossref_primary_10_1016_j_decarb_2024_100093 crossref_primary_10_1016_j_nanoen_2020_105583 crossref_primary_10_1021_acsnano_6b01569 crossref_primary_10_1016_j_nanoen_2019_04_046 crossref_primary_10_1002_adfm_202102431 crossref_primary_10_1002_aenm_201600665 crossref_primary_10_1039_D0EE01236J crossref_primary_10_1002_apxr_202300115 crossref_primary_10_1007_s13204_022_02398_6 crossref_primary_10_3390_nanoenergyadv3020006 crossref_primary_10_1016_j_nanoen_2021_106844 crossref_primary_10_1002_er_7003 crossref_primary_10_1109_TEC_2024_3354122 crossref_primary_10_1039_C9EE03258D crossref_primary_10_1016_j_nanoen_2017_07_045 crossref_primary_10_1002_adfm_201904867 crossref_primary_10_1007_s40820_024_01640_w crossref_primary_10_1016_j_scib_2023_06_025 crossref_primary_10_1088_1361_665X_ab0840 crossref_primary_10_1016_j_eurpolymj_2020_110163 crossref_primary_10_1016_j_nanoen_2021_106257 crossref_primary_10_1088_1361_665X_aaab1e crossref_primary_10_1002_smll_202411074 crossref_primary_10_1021_acsnano_1c00345 crossref_primary_10_1007_s42765_024_00406_8 crossref_primary_10_1002_admt_202001199 crossref_primary_10_1016_j_nanoen_2023_109091 crossref_primary_10_1038_s41467_018_06045_z crossref_primary_10_1002_inf2_12621 crossref_primary_10_1002_aenm_202500130 crossref_primary_10_1016_j_cej_2024_156712 crossref_primary_10_1088_1361_6528_aa6612 crossref_primary_10_1016_j_nanoen_2019_01_088 crossref_primary_10_1007_s42417_023_01000_9 crossref_primary_10_1007_s12274_024_6679_1 crossref_primary_10_1016_j_nanoen_2022_107854 crossref_primary_10_1002_aenm_202000064 crossref_primary_10_1016_j_ceramint_2023_07_054 crossref_primary_10_1016_j_cej_2020_127974 crossref_primary_10_1016_j_nanoen_2016_10_040 crossref_primary_10_1016_j_apenergy_2022_118739 crossref_primary_10_3390_mi12091089 crossref_primary_10_1016_j_oceaneng_2023_114995 crossref_primary_10_1002_adma_202202238 crossref_primary_10_1016_j_nanoen_2017_11_001 crossref_primary_10_1016_j_rser_2024_114626 crossref_primary_10_1016_j_mtsust_2023_100467 crossref_primary_10_1021_acsnano_8b09088 crossref_primary_10_1016_j_nanoen_2016_12_004 crossref_primary_10_1002_app_45674 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1021_acsami_6b07697 crossref_primary_10_1016_j_ijbiomac_2022_12_122 crossref_primary_10_1016_j_rser_2019_109366 crossref_primary_10_1002_aesr_202000087 crossref_primary_10_1021_acsami_7b17239 crossref_primary_10_1016_j_nanoen_2019_03_054 crossref_primary_10_1063_1_4984625 crossref_primary_10_1016_j_nanoen_2019_01_066 crossref_primary_10_1063_1_5008606 crossref_primary_10_1016_j_nanoen_2024_109457 crossref_primary_10_1088_1361_665X_aaf3f1 crossref_primary_10_1016_j_nanoen_2022_107871 crossref_primary_10_1021_acsenergylett_0c02483 crossref_primary_10_1016_j_cej_2023_146832 crossref_primary_10_1016_j_seta_2022_102767 crossref_primary_10_1016_j_renene_2020_08_030 crossref_primary_10_1016_j_nanoen_2017_06_035 crossref_primary_10_1002_er_4282 crossref_primary_10_1016_j_oceaneng_2020_107248 crossref_primary_10_1002_adfm_201903587 crossref_primary_10_3390_jmse10010005 crossref_primary_10_1039_D0TA09440D crossref_primary_10_1002_adsu_202300430 crossref_primary_10_1021_acsnano_6b04213 crossref_primary_10_1021_acsnano_9b02690 crossref_primary_10_1039_D3SE00714F crossref_primary_10_1021_acsami_2c17722 crossref_primary_10_1016_j_nanoen_2018_08_034 crossref_primary_10_1007_s40684_022_00452_w crossref_primary_10_1016_j_nanoen_2016_12_035 crossref_primary_10_1039_D2TA10024J crossref_primary_10_1021_acsaelm_2c01335 crossref_primary_10_1016_j_nanoen_2017_07_022 crossref_primary_10_1039_D0NR02925D crossref_primary_10_1021_acsnano_6b06622 crossref_primary_10_1002_adfm_202422259 crossref_primary_10_1002_ente_202000114 crossref_primary_10_1002_eom2_12059 crossref_primary_10_1016_j_nanoen_2017_06_017 crossref_primary_10_1039_C9NR01271K crossref_primary_10_1016_j_surfcoat_2021_127532 crossref_primary_10_1016_j_nanoen_2019_01_033 crossref_primary_10_1002_aenm_202303343 crossref_primary_10_1002_ente_202301380 crossref_primary_10_1016_j_nanoen_2021_106796 crossref_primary_10_1021_acsapm_3c00553 crossref_primary_10_1140_epjp_s13360_023_04230_8 crossref_primary_10_1016_j_nanoen_2024_110488 crossref_primary_10_1002_eom2_70003 crossref_primary_10_7498_aps_65_060201 crossref_primary_10_1063_5_0036220 crossref_primary_10_1002_adts_202200373 crossref_primary_10_1016_j_mattod_2018_06_004 crossref_primary_10_1109_ACCESS_2020_3012662 crossref_primary_10_1002_aenm_202003616 crossref_primary_10_3390_nanoenergyadv4020010 crossref_primary_10_1016_j_nanoen_2020_105720 crossref_primary_10_1021_acsnano_1c07480 crossref_primary_10_1088_1742_6596_1052_1_012030 crossref_primary_10_1016_j_scib_2021_12_014 crossref_primary_10_1002_adfm_202110516 crossref_primary_10_1016_j_nanoen_2016_11_037 crossref_primary_10_1002_adfm_202406775 crossref_primary_10_1039_C7RA07274K crossref_primary_10_1021_acsami_2c16271 crossref_primary_10_1016_j_enconman_2021_114833 crossref_primary_10_1002_adfm_201908842 crossref_primary_10_1039_C9TA01249D crossref_primary_10_1088_1361_6528_ab841e crossref_primary_10_1002_adfm_201603199 crossref_primary_10_1021_acs_iecr_0c01117 crossref_primary_10_1016_j_apenergy_2024_123468 crossref_primary_10_1021_acsami_8b08337 crossref_primary_10_1016_j_chaos_2024_114812 crossref_primary_10_1016_j_nanoen_2022_107694 crossref_primary_10_1021_acsnano_6b03293 crossref_primary_10_1039_D1EE00859E crossref_primary_10_1007_s42114_023_00632_5 crossref_primary_10_1016_j_mattod_2023_02_030 crossref_primary_10_1016_j_nanoen_2020_104605 crossref_primary_10_3390_nanoenergyadv2010002 crossref_primary_10_1039_D2TC01931K crossref_primary_10_1016_j_egyr_2022_10_073 crossref_primary_10_1002_aelm_202100277 crossref_primary_10_1021_acsami_9b02233 crossref_primary_10_3390_nano14181500 crossref_primary_10_1002_aenm_201800654 crossref_primary_10_1016_j_apenergy_2021_118174 crossref_primary_10_1021_acsanm_0c00771 crossref_primary_10_1002_adfm_201900098 crossref_primary_10_1016_j_heliyon_2024_e38107 crossref_primary_10_1016_j_xcrp_2024_101933 crossref_primary_10_1016_j_nantod_2024_102232 crossref_primary_10_1016_j_jsv_2021_116074 crossref_primary_10_1016_j_ijmecsci_2021_106904 crossref_primary_10_1088_2053_1583_ab39cb crossref_primary_10_1016_j_nanoen_2020_104960 crossref_primary_10_3390_mi9110598 crossref_primary_10_1016_j_nanoen_2022_107118 crossref_primary_10_1016_j_nanoen_2018_08_055 crossref_primary_10_1021_acsnano_6b07633 crossref_primary_10_3390_s20020506 crossref_primary_10_1002_adem_202400987 crossref_primary_10_1002_adfm_202004446 crossref_primary_10_1016_j_nanoen_2021_106086 crossref_primary_10_1016_j_nanoen_2023_108861 crossref_primary_10_1109_JOE_2023_3323966 crossref_primary_10_1002_aenm_201800705 crossref_primary_10_1016_j_nanoen_2019_104131 crossref_primary_10_1002_aenm_202302627 crossref_primary_10_1002_advs_202401578 crossref_primary_10_1002_aenm_202000426 crossref_primary_10_1016_j_nanoen_2017_04_030 crossref_primary_10_1002_admt_201800514 crossref_primary_10_1007_s12274_023_6100_5 crossref_primary_10_1038_s41467_021_20919_9 crossref_primary_10_1002_aenm_201602397 crossref_primary_10_1002_adfm_201802634 crossref_primary_10_1002_adsu_202400152 crossref_primary_10_1002_aenm_202101116 crossref_primary_10_1021_acsami_4c05359 crossref_primary_10_1002_adsu_202300135 crossref_primary_10_1002_admt_202200403 crossref_primary_10_1002_admt_202402212 crossref_primary_10_1002_adma_201905715 crossref_primary_10_1016_j_nanoen_2020_104937 crossref_primary_10_1021_acsomega_1c02709 crossref_primary_10_1002_aenm_202102460 crossref_primary_10_1002_adfm_202001150 crossref_primary_10_1002_adfm_202415449 crossref_primary_10_1016_j_nanoen_2022_107658 crossref_primary_10_1039_C8NR09978B crossref_primary_10_1016_j_apenergy_2023_121824 crossref_primary_10_1002_adfm_201600624 crossref_primary_10_1002_aenm_201802906 crossref_primary_10_1631_jzus_A2300231 crossref_primary_10_1088_1361_6633_ac0a50 crossref_primary_10_1016_j_compscitech_2023_110014 crossref_primary_10_1016_j_nanoen_2019_104277 crossref_primary_10_3390_mi12091043 crossref_primary_10_1002_ente_201801007 crossref_primary_10_1016_j_nanoen_2023_108818 crossref_primary_10_1016_j_nanoen_2020_104930 crossref_primary_10_1016_j_nanoen_2023_108819 crossref_primary_10_1002_ente_201800035 crossref_primary_10_4028_www_scientific_net_KEM_835_335 crossref_primary_10_1016_j_eml_2016_02_019 crossref_primary_10_3389_fenrg_2022_966567 crossref_primary_10_1016_j_nanoen_2019_104167 crossref_primary_10_1063_1_5044399 crossref_primary_10_1038_s41467_024_51245_5 crossref_primary_10_1039_D2TA02013K crossref_primary_10_1021_acsnano_1c07236 crossref_primary_10_1038_srep33977 crossref_primary_10_1016_j_oceaneng_2023_115376 crossref_primary_10_1016_j_nanoen_2017_04_006 crossref_primary_10_3390_mi15121500 crossref_primary_10_1016_j_mtener_2024_101653 crossref_primary_10_1002_admt_202301824 crossref_primary_10_1016_j_nanoen_2022_108030 crossref_primary_10_3390_jmse12071176 crossref_primary_10_1021_acsaelm_2c00985 crossref_primary_10_1016_j_joule_2021_03_013 crossref_primary_10_1515_ntrev_2020_0055 crossref_primary_10_1007_s12274_017_1716_y crossref_primary_10_1002_aenm_202000627 crossref_primary_10_1002_aenm_202002929 crossref_primary_10_1007_s12274_016_1275_7 crossref_primary_10_1002_aenm_201802892 crossref_primary_10_1016_j_energy_2018_08_064 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_1016_j_nanoen_2020_104473 crossref_primary_10_1016_j_nanoen_2018_10_075 crossref_primary_10_1007_s40820_018_0207_3 crossref_primary_10_1038_542159a crossref_primary_10_1002_admt_202101485 crossref_primary_10_1016_j_oneear_2022_08_013 crossref_primary_10_1016_j_renene_2024_121980 crossref_primary_10_1016_j_nanoen_2021_106827 crossref_primary_10_1016_j_ijoes_2024_100694 crossref_primary_10_1007_s40684_021_00340_9 crossref_primary_10_1016_j_nanoen_2019_104108 crossref_primary_10_1039_C8DT03784A crossref_primary_10_3390_s22041341 crossref_primary_10_1021_acsnano_1c05127 crossref_primary_10_1016_j_isci_2024_111480 crossref_primary_10_1016_j_jallcom_2022_167137 crossref_primary_10_1002_aenm_201901149 crossref_primary_10_1038_s41467_020_17891_1 crossref_primary_10_1016_j_nanoen_2021_105824 crossref_primary_10_1016_j_nanoen_2019_104117 crossref_primary_10_1021_acsnano_9b08998 crossref_primary_10_1007_s40544_022_0646_1 crossref_primary_10_1002_adfm_201806435 crossref_primary_10_1021_acsnano_7b08674 crossref_primary_10_1038_s41467_024_50926_5 crossref_primary_10_1016_j_apenergy_2023_120792 crossref_primary_10_1016_j_nanoen_2021_105836 crossref_primary_10_1002_adfm_201808849 crossref_primary_10_3390_jmse10040455 crossref_primary_10_3390_nano9050773 crossref_primary_10_1002_advs_202000254 crossref_primary_10_1016_j_nanoen_2023_108222 crossref_primary_10_1016_j_nanoen_2023_108346 crossref_primary_10_3390_nanoenergyadv4010004 crossref_primary_10_1002_aenm_202404891 crossref_primary_10_1016_j_cej_2024_149948 crossref_primary_10_1016_j_nanoen_2019_06_048 crossref_primary_10_1038_s41598_017_17453_4 crossref_primary_10_3390_ma16083034 crossref_primary_10_1016_j_nanoen_2018_11_064 crossref_primary_10_1016_j_nanoen_2020_104674 crossref_primary_10_1016_j_nanoen_2021_105920 crossref_primary_10_1016_j_egypro_2018_11_267 crossref_primary_10_1016_j_nanoen_2021_105925 crossref_primary_10_1039_C9SE01184F crossref_primary_10_1016_j_isci_2022_105374 crossref_primary_10_1002_advs_202000186 crossref_primary_10_1002_aenm_202300557 crossref_primary_10_1016_j_nanoen_2019_104414 crossref_primary_10_3390_nano13061056 crossref_primary_10_1016_j_nanoen_2022_107491 crossref_primary_10_1021_acsami_6b06866 crossref_primary_10_1039_D3TA02569A crossref_primary_10_1002_slct_202100377 crossref_primary_10_1016_j_nanoen_2018_11_078 crossref_primary_10_1039_C8NR03774D crossref_primary_10_1002_admt_202100359 crossref_primary_10_1021_acsami_8b08098 crossref_primary_10_1002_aenm_202402216 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1557_s43577_025_00876_0 crossref_primary_10_1016_j_nanoen_2020_104541 crossref_primary_10_1016_j_device_2024_100653 crossref_primary_10_1016_j_enconman_2023_117383 crossref_primary_10_1246_cl_210019 crossref_primary_10_1016_j_nanoen_2018_10_007 crossref_primary_10_1016_j_seta_2023_103599 crossref_primary_10_1021_acsanm_3c03430 crossref_primary_10_1002_smll_202107222 crossref_primary_10_1016_j_nanoen_2020_104659 crossref_primary_10_1016_j_nanoen_2018_05_059 crossref_primary_10_1016_j_jallcom_2025_178710 crossref_primary_10_1039_D0NR04868B crossref_primary_10_32397_tesea_vol6_n1_669 crossref_primary_10_1007_s12274_016_1294_4 crossref_primary_10_3390_mi15101199 crossref_primary_10_1088_0022_3727_49_47_47LT02 crossref_primary_10_1021_acsnano_2c08945 crossref_primary_10_1016_j_cej_2023_146485 crossref_primary_10_1016_j_nanoen_2019_104205 crossref_primary_10_1002_adfm_202002506 crossref_primary_10_1002_aenm_201801898 |
Cites_doi | 10.1088/0960-1317/17/7/007 10.1002/adma.201302808 10.1016/S0308-597X(02)00045-3 10.1002/adfm.201302453 10.1016/j.coastaleng.2012.11.004 10.1016/j.nanoen.2013.07.012 10.1039/c3ee42571a 10.1002/aenm.201300376 10.1016/j.nanoen.2015.01.013 10.1002/adma.201400172 10.1016/j.nanoen.2014.11.034 10.1016/j.nanoen.2012.01.004 10.1016/j.rser.2009.11.003 10.1109/MPRV.2005.21 10.1038/ncomms4426 10.1016/j.nanoen.2013.12.016 10.1002/adfm.201402703 10.1002/tee.20631 10.1038/ncomms4575 10.1002/adma.201305303 10.1021/am404611h 10.1016/j.sna.2008.03.008 10.1002/adma.201402428 10.1088/0960-1317/18/10/104006 10.1002/adfm.201303799 10.1021/nn405209u 10.1088/0960-1317/19/11/115025 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M 7SU C1K 7ST SOI |
DOI | 10.1002/aenm.201501467 |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Engineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Aerospace Database CrossRef Aerospace Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3902751541 10_1002_aenm_201501467 AENM201501467 ark_67375_WNG_9KL6P5KQ_K |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M 7SU C1K 7ST SOI |
ID | FETCH-LOGICAL-c4877-ea711968a9c1ec8c2c0260f1ab54cb160937c126147ed359cf46414f5eaef6563 |
ISSN | 1614-6832 |
IngestDate | Thu Jul 10 21:57:20 EDT 2025 Fri Jul 11 08:29:57 EDT 2025 Fri Jul 25 12:26:56 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 01:43:14 EDT 2025 Wed Jan 22 17:01:51 EST 2025 Wed Oct 30 09:56:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4877-ea711968a9c1ec8c2c0260f1ab54cb160937c126147ed359cf46414f5eaef6563 |
Notes | ark:/67375/WNG-9KL6P5KQ-K istex:21376CCB4A532466CE9516BBEA79AF216A18CDB9 ArticleID:AENM201501467 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1751199209 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1877811505 proquest_miscellaneous_1778059798 proquest_journals_1751199209 crossref_primary_10_1002_aenm_201501467 crossref_citationtrail_10_1002_aenm_201501467 wiley_primary_10_1002_aenm_201501467_AENM201501467 istex_primary_ark_67375_WNG_9KL6P5KQ_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 20151201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328. A. Van Dongeren, R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, R. Ranasinghe, Coast. Eng. 2013, 73, 178. Y. Yang, H. L. Zhang, R. Y. Liu, X. N. Wen, T. C. Hou, Z. L. Wang, Adv. Energy Mater. 2013, 3, 1563. H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401. S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, S. Roy, J. Micromech. Microeng. 2007, 17, 1257. P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, T. Bourouina, J. Micromech. Microeng. 2009, 19, 115025. Y. N. Xie, S. H. Wang, S. M. Niu, L. Lin, Q. S. Jing, J. Yang, Z. Y. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599. F. Yi, L. Lin, S. M. Niu, J. Yang, W. Z. Wu, S. H. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 7488. S. M. Niu, Y. Liu, X. Y. Chen, S. H. Wang, Y. S. Zhou, L. Lin, Y. N. Xie, Z. L. Wang, Nano Energy 2015, 12, 760. G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426. A. F. D. Falcao, Renew. Sustain. Energy Rev. 2010, 14, 899. S. H. Wang, Y. N. Xie, S. M. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818. S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Mater. 2013, 25, 6184. A. Lal, R. Duggirala, H. Li, IEEE Pervas. Comput. 2005, 4, 53. Y. B. Xie, D. Bos, L. J. de Vreede, H. L. de Boer, M. J. van derMeulen, M. Versluis, A. J. Sprenkels, A. van denBerg, J. C. T. Eijkel, Nat. Commun. 2014, 5, 3575. V. Nguyen, R. S. Yang, Nano Energy 2013, 2, 604. Y. J. Su, Y. Yang, X. D. Zhong, H. L. Zhang, Z. M. Wu, Y. D. Jiang, Z. L. Wang, ACS Appl. Mater. Inter. 2014, 6, 553. C. R. Saha, T. O'Donnell, N. Wang, R. McCloskey, Sens. Actuators A 2008, 147, 248. Y. Suzuki, IEEJ Trans. Electr. Electron. 2011, 6, 101. H. W. Lo, Y. C. Tai, J. Micromech. Microeng. 2008, 18, 104006. S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 3332. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918. S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576. Y. F. Hu, J. Yang, Q. S. Jing, S. M. Niu, W. Z. Wu, Z. L. Wang, ACS Nano 2013, 7, 10424. X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4, 123. S. M. Niu, Z. L. Wang, Nano Energy 2015, 14, 161. R. Pelc, R. M. Fujita, Mar Policy 2002, 26, 471. 2007; 17 2015; 12 2002; 26 2015; 14 2014; 5 2013; 3 2014; 4 2013; 25 2010; 14 2012; 1 2013; 2 2008; 18 2013; 73 2005; 4 2014; 26 2014; 24 2008; 147 2013; 7 2009; 19 2011; 6 2014; 6 2013; 6 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – reference: Y. Yang, H. L. Zhang, R. Y. Liu, X. N. Wen, T. C. Hou, Z. L. Wang, Adv. Energy Mater. 2013, 3, 1563. – reference: Y. Suzuki, IEEJ Trans. Electr. Electron. 2011, 6, 101. – reference: S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918. – reference: S. M. Niu, Z. L. Wang, Nano Energy 2015, 14, 161. – reference: S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, S. Roy, J. Micromech. Microeng. 2007, 17, 1257. – reference: Y. N. Xie, S. H. Wang, S. M. Niu, L. Lin, Q. S. Jing, J. Yang, Z. Y. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599. – reference: A. Lal, R. Duggirala, H. Li, IEEE Pervas. Comput. 2005, 4, 53. – reference: P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, T. Bourouina, J. Micromech. Microeng. 2009, 19, 115025. – reference: Y. B. Xie, D. Bos, L. J. de Vreede, H. L. de Boer, M. J. van derMeulen, M. Versluis, A. J. Sprenkels, A. van denBerg, J. C. T. Eijkel, Nat. Commun. 2014, 5, 3575. – reference: Y. F. Hu, J. Yang, Q. S. Jing, S. M. Niu, W. Z. Wu, Z. L. Wang, ACS Nano 2013, 7, 10424. – reference: F. Yi, L. Lin, S. M. Niu, J. Yang, W. Z. Wu, S. H. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 7488. – reference: Y. J. Su, Y. Yang, X. D. Zhong, H. L. Zhang, Z. M. Wu, Y. D. Jiang, Z. L. Wang, ACS Appl. Mater. Inter. 2014, 6, 553. – reference: S. H. Wang, Y. N. Xie, S. M. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818. – reference: H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401. – reference: S. M. Niu, Y. Liu, X. Y. Chen, S. H. Wang, Y. S. Zhou, L. Lin, Y. N. Xie, Z. L. Wang, Nano Energy 2015, 12, 760. – reference: S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 3332. – reference: A. F. D. Falcao, Renew. Sustain. Energy Rev. 2010, 14, 899. – reference: R. Pelc, R. M. Fujita, Mar Policy 2002, 26, 471. – reference: V. Nguyen, R. S. Yang, Nano Energy 2013, 2, 604. – reference: S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Mater. 2013, 25, 6184. – reference: S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576. – reference: F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328. – reference: C. R. Saha, T. O'Donnell, N. Wang, R. McCloskey, Sens. Actuators A 2008, 147, 248. – reference: H. W. Lo, Y. C. Tai, J. Micromech. Microeng. 2008, 18, 104006. – reference: X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4, 123. – reference: G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426. – reference: A. Van Dongeren, R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, R. Ranasinghe, Coast. Eng. 2013, 73, 178. – volume: 26 start-page: 471 year: 2002 publication-title: Mar Policy – volume: 7 start-page: 10424 year: 2013 publication-title: ACS Nano – volume: 14 start-page: 161 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 3575 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 553 year: 2014 publication-title: ACS Appl. Mater. Inter. – volume: 17 start-page: 1257 year: 2007 publication-title: J. Micromech. Microeng. – volume: 6 start-page: 101 year: 2011 publication-title: IEEJ Trans. Electr. Electron. – volume: 18 start-page: 104006 year: 2008 publication-title: J. Micromech. Microeng. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 19 start-page: 115025 year: 2009 publication-title: J. Micromech. Microeng. – volume: 14 start-page: 899 year: 2010 publication-title: Renew. Sustain. Energy Rev. – volume: 2 start-page: 604 year: 2013 publication-title: Nano Energy – volume: 4 start-page: 53 year: 2005 publication-title: IEEE Pervas. Comput. – volume: 4 start-page: 123 year: 2014 publication-title: Nano Energy – volume: 5 start-page: 3426 year: 2014 publication-title: Nat. Commun. – volume: 26 start-page: 3918 year: 2014 publication-title: Adv. Mater. – volume: 12 start-page: 760 year: 2015 publication-title: Nano Energy – volume: 6 start-page: 3576 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1563 year: 2013 publication-title: Adv. Energy Mater. – volume: 24 start-page: 3332 year: 2014 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 6184 year: 2013 publication-title: Adv. Mater. – volume: 147 start-page: 248 year: 2008 publication-title: Sens. Actuators A – volume: 73 start-page: 178 year: 2013 publication-title: Coast. Eng. – volume: 26 start-page: 6599 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 7488 year: 2014 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 1401 year: 2014 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 2818 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_4_1_1 doi: 10.1088/0960-1317/17/7/007 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201302808 – ident: e_1_2_4_16_1 doi: 10.1016/S0308-597X(02)00045-3 – ident: e_1_2_4_19_1 doi: 10.1002/adfm.201302453 – ident: e_1_2_4_27_1 doi: 10.1016/j.coastaleng.2012.11.004 – ident: e_1_2_4_17_1 doi: 10.1016/j.nanoen.2013.07.012 – ident: e_1_2_4_26_1 doi: 10.1039/c3ee42571a – ident: e_1_2_4_18_1 doi: 10.1002/aenm.201300376 – ident: e_1_2_4_24_1 doi: 10.1016/j.nanoen.2015.01.013 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201400172 – ident: e_1_2_4_23_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_4_8_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_4_15_1 doi: 10.1016/j.rser.2009.11.003 – ident: e_1_2_4_7_1 doi: 10.1109/MPRV.2005.21 – ident: e_1_2_4_9_1 doi: 10.1038/ncomms4426 – ident: e_1_2_4_10_1 doi: 10.1016/j.nanoen.2013.12.016 – ident: e_1_2_4_20_1 doi: 10.1002/adfm.201402703 – ident: e_1_2_4_3_1 doi: 10.1002/tee.20631 – ident: e_1_2_4_6_1 doi: 10.1038/ncomms4575 – ident: e_1_2_4_13_1 doi: 10.1002/adma.201305303 – ident: e_1_2_4_21_1 doi: 10.1021/am404611h – ident: e_1_2_4_2_1 doi: 10.1016/j.sna.2008.03.008 – ident: e_1_2_4_12_1 doi: 10.1002/adma.201402428 – ident: e_1_2_4_4_1 doi: 10.1088/0960-1317/18/10/104006 – ident: e_1_2_4_22_1 doi: 10.1002/adfm.201303799 – ident: e_1_2_4_14_1 doi: 10.1021/nn405209u – ident: e_1_2_4_5_1 doi: 10.1088/0960-1317/19/11/115025 |
SSID | ssj0000491033 |
Score | 2.606739 |
Snippet | Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as... Water waves are increasingly regarded as a promising source for large-scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Charge Electronics Energy harvesting Harvesting mechanical energy harvesting Nanostructure rolling structure Spherical shells triboelectric nanogenerators Water waves wave energy Wave power |
Title | Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy |
URI | https://api.istex.fr/ark:/67375/WNG-9KL6P5KQ-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501467 https://www.proquest.com/docview/1751199209 https://www.proquest.com/docview/1778059798 https://www.proquest.com/docview/1877811505 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F5AIHxK8IFLRICA6RIet_HwOkVKSJQG2VcLJ2N-sqpbWrtBGUU18AiWfkSZjZtTc2FChcrGQ9tmzP5_HM7sw3hDwRwotF4gqwfsHc8cMgcwTLfCeEl6s_F5kUHAPF8STc2vPfzoJZq_W1lrW0OhXP5ZcL60r-R6swBnrFKtl_0Kw9KQzAb9AvbEHDsL2cjpcLUZhGNguJhrLY1yzSEEf3XsLnaY5LARhknvWGuTwscMSycCOfgNbQjqaQxYUETDnEZkHIvIHFT8UnmwuxuTQ512e9KUdexSl2LRrqwsG6fzuoUgqUqSk8QmF8EOuJe2NcZgteZKr8bOp1kZWeiF0cwQ5rigzBwQd-ACDeX49qj7saKacsWFBL_zBWFnwCJ4zLiU1VHzPcTZVpDmoINKXWv1h8wyDLVY60AgxXSU17jya19k-fPJuIaEib3RSPT-3xV0jHhajDbZPO4PV4e8dO2kE4xfqeLtqobqEiAu27L5oX0XB0OvjOfm5EMfVYSDszuzfI9TIKoQMDqZukpfJb5FqNm_I2OW-AizbARTW4aJFTDS5agYuW4KIWXNSCiwK46BpcFMD1_fybhRXVsKIIK2pgdYfsbQ53X205ZbsOR0LUGzmKRwzsecwTyZSMpSuRry5jXAS-FCzsgycsGUTsfqTmXpDIzA995meB4iqDsMK7S9p5kat7hAoOMq70uPAzX0ZhAnF9Es4zHkovzGLZJU71bFNZctljS5XD9GKFdskzK39sWFx-K_lUq8qK8eVHzH2MgnQ6eZMmo-3wXTB6n466ZKPSZVqahJMUfHGG-dz9pEse291gsHEVjueqWKEMthFJoiT-gww8zxhjtaBLXI2Tv1x2OhhOxvbf_Uvf7gNydf2CbpA2YEI9BC_7VDwqsf8DP2HSrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+Nanogenerator+Based+on+Fully+Enclosed+Rolling+Spherical+Structure+for+Harvesting+Low%E2%80%90Frequency+Water+Wave+Energy&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Xiaofeng&rft.au=Niu%2C+Simiao&rft.au=Yin%2C+Yajiang&rft.au=Yi%2C+Fang&rft.date=2015-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.201501467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201501467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |