Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain y...
Saved in:
Published in | Plant, cell and environment Vol. 41; no. 7; pp. 1579 - 1592 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.
Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability. |
---|---|
AbstractList | Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability. Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm 2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability. Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm² less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. |
Author | Brown, Kathleen M. Galindo‐Castañeda, Tania Lynch, Jonathan P. |
Author_xml | – sequence: 1 givenname: Tania surname: Galindo‐Castañeda fullname: Galindo‐Castañeda, Tania organization: The Pennsylvania State University – sequence: 2 givenname: Kathleen M. surname: Brown fullname: Brown, Kathleen M. organization: The Pennsylvania State University – sequence: 3 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29574982$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9rFDEUB_AgLXZbPfgPSMCLHqbNm8kkM0dZahUKFdHzkB9v2pRMsiYzXda_3rRbPRSsgZAQPu-R5HtMDkIMSMgbYKdQxtnG4Ck00MsXZAWNaKuGcXZAVgw4q6Ts4Ygc53zLWDmQ_UtyVPet5H1Xr8j1N7SLQUtTjDM1Mc3OKE_1kiwG6qZNineY6XWK2_mGqmDLVrlAdw69pUuwmKiPW7q5ibnMtGSq7pTzSjvv5h0tdFLuF74ih6PyGV8_rifkx6fz7-vP1eXVxZf1x8vK8E7KSqMYpeqVGPtRW1GbDk3b695wxjkKbBoDvNESWyvBjK0AoQGkFlLXxY3NCXm_71su_nPBPA-Tywa9VwHjkocaQHQSROnyX8qgE6LlTBb67gm9jUsK5SFFtRKkFLwr6u2jWvSEdtgkN6m0G_78dgEf9sCkmHPC8S8BNtwnOZQkh4ckiz17Yo2b1eximEsA_rmKrfO4-3fr4ev6fF_xGyZSrxg |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2024_100907 crossref_primary_10_1111_eva_13673 crossref_primary_10_1007_s00122_021_03819_w crossref_primary_10_2134_agronj2019_02_0096 crossref_primary_10_1093_jxb_ery048 crossref_primary_10_1093_jxb_erz258 crossref_primary_10_3389_fpls_2023_1223532 crossref_primary_10_1111_pce_13615 crossref_primary_10_1007_s00425_021_03760_8 crossref_primary_10_1007_s11104_024_06892_4 crossref_primary_10_3390_plants13081075 crossref_primary_10_1111_pbr_13248 crossref_primary_10_1111_pce_14552 crossref_primary_10_1093_jxb_ery252 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1111_pce_14270 crossref_primary_10_1111_pce_15161 crossref_primary_10_1111_tpj_15560 crossref_primary_10_1093_jxb_ery379 crossref_primary_10_3390_agronomy14061228 crossref_primary_10_1071_SR21021 crossref_primary_10_1080_23311932_2025_2452347 crossref_primary_10_3390_agronomy11112230 crossref_primary_10_1093_aob_mcy059 crossref_primary_10_1007_s11033_022_07679_5 crossref_primary_10_1038_s41598_019_41922_7 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1093_jxb_erz271 crossref_primary_10_1007_s11738_022_03440_4 crossref_primary_10_1093_aob_mcaa068 crossref_primary_10_1007_s11032_020_01156_2 crossref_primary_10_15302_J_FASE_2019278 crossref_primary_10_1371_journal_pone_0239075 crossref_primary_10_3390_plants12132520 crossref_primary_10_1111_tpj_15774 crossref_primary_10_1007_s00344_022_10807_x crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_1002_pld3_274 crossref_primary_10_1371_journal_pone_0286736 crossref_primary_10_1111_pce_14213 crossref_primary_10_1111_tpj_14722 crossref_primary_10_1002_tpg2_20003 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1111_pce_14175 crossref_primary_10_1007_s40502_019_00451_1 crossref_primary_10_3389_fpls_2020_00546 crossref_primary_10_1007_s11120_024_01083_9 crossref_primary_10_1016_j_plaphy_2020_12_023 crossref_primary_10_1007_s11104_021_05133_2 crossref_primary_10_1016_j_fcr_2021_108378 crossref_primary_10_3389_fpls_2019_00237 crossref_primary_10_1002_ppj2_20035 crossref_primary_10_1007_s11032_020_01112_0 crossref_primary_10_1080_01904167_2024_2304165 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_1093_jxb_eraa165 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1111_tpj_16672 crossref_primary_10_1080_01490451_2019_1616857 crossref_primary_10_1093_aob_mcab144 crossref_primary_10_1073_pnas_2219668120 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1093_jxb_eraa084 crossref_primary_10_1111_aab_12807 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_3390_genes10020139 crossref_primary_10_1016_j_fcr_2022_108547 crossref_primary_10_1007_s11104_022_05331_6 crossref_primary_10_3117_plantroot_16_21 crossref_primary_10_3390_agronomy12112671 crossref_primary_10_1111_nph_15738 |
Cites_doi | 10.1007/s00572-009-0266-x 10.1104/pp.103.029306 10.2135/cropsci2000.402358x 10.1007/s00709-003-0027-1 10.1046/j.1365-3040.2001.00695.x 10.1007/s00122-014-2414-8 10.1016/j.gloenvcha.2010.04.004 10.1104/pp.114.249037 10.1093/aob/mct069 10.1104/pp.15.00187 10.1093/jxb/erv007 10.1007/s11104-007-9266-9 10.1046/j.1469-8137.2003.00695.x 10.1038/nmeth.2089 10.1111/j.1469-8137.2009.02839.x 10.1002/j.1537-2197.1921.tb05617.x 10.1104/pp.111.175489 10.4141/cjps94-087 10.1007/s11104-012-1138-2 10.1201/9780203909423.pt6 10.18637/jss.v040.i01 10.1071/BT06118 10.1104/pp.114.241711 10.1111/pce.12451 10.1104/pp.113.233916 10.1007/s00709-011-0309-y 10.1071/FP03078 10.1093/jxb/erv074 10.1016/j.fcr.2014.10.009 10.1016/S0003-2670(00)88444-5 10.1007/s11104-004-1697-y 10.1093/jxb/erw243 10.1093/aob/mcq199 10.1104/pp.17.4.619 10.1111/j.1744-7909.2007.00450.x 10.1071/FP03046 10.1007/s00425-003-1007-6 10.2135/cropsci1996.0011183X003600060043x 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 10.1093/aob/mct259 10.1007/978-0-387-98141-3 10.1002/jpln.201500155 10.1128/AEM.64.12.5004-5007.1998 10.3389/fpls.2013.00355 10.1071/FP04046 10.1093/jexbot/52.355.329 10.1093/oxfordjournals.aob.a087235 10.1104/pp.15.00145 10.1007/s11104-010-0623-8 10.1111/j.1365-3040.1990.tb01071.x 10.1104/pp.114.250449 10.1023/A:1012728819326 10.1104/pp.111.175414 10.1111/j.1399-3054.1980.tb02661.x 10.1007/s00572-004-0296-3 10.1007/978-1-4020-8435-5_5 10.1111/j.1365-3040.2009.02099.x 10.1139/B09-105 10.1071/FP09197 10.1016/S0007-1536(70)80110-3 10.1023/A:1010933404324 10.1046/j.1469-8137.1998.00242.x 10.1023/A:1012791706800 10.1046/j.1469-8137.2003.00907.x 10.1111/j.1469-8137.1980.tb04556.x 10.1111/j.1365-3040.2007.01639.x 10.1007/s11104-012-1453-7 10.1071/FP05005 10.1007/s11104-004-1096-4 10.1093/aob/mcs293 10.1104/pp.91.1.266 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.13197 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA Calcium & Calcified Tissue Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1592 |
ExternalDocumentID | 29574982 10_1111_pce_13197 PCE13197 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: North Central Region SARE program funderid: GNE13‐059 – fundername: The National Institute of Food and Agriculture, U.S. Department of Agriculture funderid: 2014‐67013‐21572 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4877-be6f7a9a6f9fbd62c8ec59b9c4044e6e33c143b7e5d71cf5616b117b67b259bf3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:28:57 EDT 2025 Thu Jul 10 18:56:54 EDT 2025 Fri Jul 25 10:45:40 EDT 2025 Wed Feb 19 02:33:31 EST 2025 Thu Apr 24 23:03:59 EDT 2025 Tue Jul 01 04:28:40 EDT 2025 Wed Jan 22 16:22:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | living cortical area root cortical aerenchyma maize root anatomy phosphorus |
Language | English |
License | 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4877-be6f7a9a6f9fbd62c8ec59b9c4044e6e33c143b7e5d71cf5616b117b67b259bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7265-9790 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13197 |
PMID | 29574982 |
PQID | 2057177648 |
PQPubID | 37957 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2116871614 proquest_miscellaneous_2018665407 proquest_journals_2057177648 pubmed_primary_29574982 crossref_primary_10_1111_pce_13197 crossref_citationtrail_10_1111_pce_13197 wiley_primary_10_1111_pce_13197_PCE13197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1980; 49 2015; 38 2013; 4 1990; 13 1980; 84 2005a; 270 2004; 161 2013; 367 2007; 30 1996; 36 2001; 45 2003; 157 2012; 249 2011; 156 2015; 171 2010; 20 2004; 31 1942; 17 2015; 178 2005; 269 2007; 295 2011b; 107 2013; 112 2014; 166 1994; 74 2001; 52 2010; 33 2003; 217 2010; 37 2004; 223 2010 2002; 72 2015; 168 2009; 182 2015; 167 1986; 58 2011; 40 2009 2008 1970; 55 2005b; 32 1995 2015; 128 1998; 139 2002 2007; 55 2001; 24 2003; 30 1998; 64 2003; 133 2014b; 166 2014; 113 1921; 8 2010; 88 2011a; 156 1989; 91 2004; 14 2015; 66 1962; 27 2000; 40 2014a; 166 2017 1960 2014 2012; 357 2001; 236 2016; 67 2011; 341 2007; 49 2012; 9 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 Wolf A. (e_1_2_7_72_1) 1995 e_1_2_7_13_1 e_1_2_7_43_1 Smith S. E. (e_1_2_7_62_1) 2008 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Saengwilai P. (e_1_2_7_55_1) 2014 Barber S. A. (e_1_2_7_3_1) 1995 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 Esau K. (e_1_2_7_18_1) 1960 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 R Core Team (e_1_2_7_53_1) 2014 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – year: 2009 – volume: 74 start-page: 471 year: 1994 end-page: 477 article-title: Influence of N supply on development and dry matter accumulation of an old and a new maize hybrid publication-title: Canadian Journal of Plant Science – volume: 139 start-page: 647 year: 1998 end-page: 656 article-title: Effects of phosphorus availability and vesicular–arbuscular mycorrhizas on the carbon budget of common bean ( ) publication-title: New Phytologist – volume: 49 start-page: 265 year: 1980 end-page: 270 article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply publication-title: Physiologia Plantarum – volume: 55 start-page: 493 year: 2007 end-page: 512 article-title: Turner review no. 14. Roots of the second green revolution publication-title: Australian Journal of Botany – volume: 341 start-page: 75 year: 2011 end-page: 87 article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field publication-title: Plant and Soil – volume: 113 start-page: 181 year: 2014 end-page: 189 article-title: Root cortical aerenchyma inhibits radial nutrient transport in maize ( ) publication-title: Annals of Botany – volume: 64 start-page: 5004 year: 1998 end-page: 5007 article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi publication-title: Applied and Environmental Microbiology – volume: 133 start-page: 1947 year: 2003 end-page: 1958 article-title: How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects publication-title: Plant Physiology – volume: 166 start-page: 726 year: 2014 end-page: 735 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low‐nitrogen soils in maize publication-title: Plant Physiology – volume: 8 start-page: 207 year: 1921 end-page: 211 article-title: Note on the histology of grain roots publication-title: American Journal of Botany – volume: 112 start-page: 429 year: 2013 end-page: 437 article-title: Root cortical burden influences drought tolerance in maize publication-title: Annals of Botany – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 30 start-page: 493 year: 2003 end-page: 506 article-title: Physiological roles for aerenchyma in phosphorus‐stressed roots publication-title: Functional Plant Biology – volume: 217 start-page: 382 year: 2003 end-page: 391 article-title: Aerenchyma formation in roots of maize during sulphate starvation publication-title: Planta – volume: 269 start-page: 45 year: 2005 end-page: 56 article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition publication-title: Plant and Soil – year: 2014 – volume: 38 start-page: 1775 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – volume: 40 start-page: 358 year: 2000 end-page: 364 article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi publication-title: Crop Science – volume: 168 start-page: 1603 year: 2015 end-page: 1615 article-title: Reduced lateral root branching density improves drought tolerance in maize publication-title: Plant Physiology – volume: 161 start-page: 35 year: 2004 end-page: 49 article-title: Aerenchyma formation publication-title: New Phytologist – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 17 start-page: 619 year: 1942 end-page: 631 article-title: Growth rates of maize under field conditions publication-title: Plant Physiology – volume: 167 start-page: 1430 year: 2015 end-page: 1439 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology – volume: 52 start-page: 329 year: 2001 end-page: 339 article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean ( L.) genotypes publication-title: Journal of Experimental Botany – volume: 20 start-page: 103 year: 2010 end-page: 115 article-title: Comparative study of mycorrhizal susceptibility and anatomy of four palm species publication-title: Mycorrhiza – volume: 156 start-page: 1190 year: 2011a end-page: 1201 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology – volume: 66 start-page: 2055 year: 2015 end-page: 2065 article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize publication-title: Journal of Experimental Botany – volume: 91 start-page: 266 year: 1989 end-page: 271 article-title: Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen‐ or phosphate‐starvation in adventitious roots of L publication-title: Plant Physiology – year: 2008 – volume: 295 start-page: 103 year: 2007 end-page: 113 article-title: QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “ ” cross publication-title: Plant and Soil – volume: 58 start-page: 719 year: 1986 end-page: 727 article-title: Progressive cortical senescence and formation of lysigenous gas space (Aerenchyma) distinguished by nuclear staining in adventitious roots of publication-title: Annals of Botany – volume: 49 start-page: 598 year: 2007 end-page: 604 article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots publication-title: Journal of Integrative Plant Biology – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 40 start-page: 1 year: 2011 end-page: 29 article-title: The split‐apply‐combine strategy for data analysis publication-title: Journal of Statistical Software – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – start-page: 782 year: 2002 end-page: 838 – volume: 67 start-page: 4545 year: 2016 end-page: 4557 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.) publication-title: Journal of Experimental Botany – volume: 84 start-page: 489 year: 1980 end-page: 500 article-title: An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots publication-title: New Phytologist – volume: 30 start-page: 973 year: 2003 end-page: 985 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: Potential utility for phosphorus acquisition from stratified soils publication-title: Functional Plant Biology – volume: 182 start-page: 829 year: 2009 end-page: 837 article-title: induces changes in root system architecture of rice independently of common symbiosis signaling publication-title: New Phytologist – volume: 37 start-page: 313 year: 2010 end-page: 322 article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition publication-title: Functional Plant Biology – year: 1960 – volume: 171 start-page: 86 year: 2015 end-page: 98 article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.) publication-title: Field Crops Research – volume: 36 start-page: 1676 year: 1996 end-page: 1683 article-title: Simple sequence repeat markers developed from maize sequences found in the GENBANK database: Map construction publication-title: Crop Science – volume: 357 start-page: 189 year: 2012 end-page: 203 article-title: RootScan: Software for high‐throughput analysis of root anatomical traits publication-title: Plant and Soil – volume: 30 start-page: 580 year: 2007 end-page: 589 article-title: Trade‐off between root porosity and mechanical strength in species with different types of aerenchyma publication-title: Plant, Cell & Environment – volume: 66 start-page: 2347 year: 2015 end-page: 2358 article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress publication-title: Journal of Experimental Botany – volume: 270 start-page: 299 year: 2005a end-page: 310 article-title: Mapping of QTL controlling root hair length in maize ( L.) under phosphorus deficiency publication-title: Plant and Soil – volume: 157 start-page: 423 year: 2003 end-page: 447 article-title: Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist – volume: 178 start-page: 807 year: 2015 end-page: 815 article-title: Root morphological traits related to phosphorus‐uptake efficiency of soybean, sunflower, and maize publication-title: Journal of Plant Nutrition and Soil Science – year: 2010 – volume: 20 start-page: 428 year: 2010 end-page: 439 article-title: Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion publication-title: Global Environmental Change – volume: 236 start-page: 221 year: 2001 end-page: 235 article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in : A modeling approach publication-title: Plant and Soil – start-page: 83 year: 2008 end-page: 116 – volume: 166 start-page: 590 year: 2014 end-page: 602 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology – volume: 31 start-page: 949 year: 2004 end-page: 958 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings publication-title: Functional Plant Biology – volume: 107 start-page: 829 year: 2011b end-page: 841 article-title: Theoretical evidence for the functional benefit of root cortical aaerenchyma in soils with low phosphorus availability publication-title: Annals of Botany – volume: 156 start-page: 1041 year: 2011 end-page: 1049 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops publication-title: Plant Physiology – volume: 223 start-page: 183 year: 2004 end-page: 189 article-title: Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte determined by proton induced X‐ray emission publication-title: Protoplasma – volume: 128 start-page: 93 year: 2015 end-page: 106 article-title: QTL mapping and phenotypic variation of root anatomical traits in maize ( L.) publication-title: Theoretical and Applied Genetics – volume: 236 start-page: 243 year: 2001 end-page: 250 article-title: Root hairs confer a competitive advantage under low phosphorus availability publication-title: Plant and Soil – volume: 33 start-page: 740 year: 2010 end-page: 749 article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.) publication-title: Plant, Cell & Environment – volume: 13 start-page: 547 year: 1990 end-page: 554 article-title: An automated greenhouse sand culture system suitable for studies of P nutrition publication-title: Plant, Cell & Environment – volume: 249 start-page: 671 year: 2012 end-page: 686 article-title: Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation publication-title: Protoplasma – volume: 166 start-page: 1943 year: 2014b end-page: 1955 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiology – volume: 27 start-page: 31 year: 1962 end-page: 36 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Analytica Chimica Acta – volume: 14 start-page: 65 year: 2004 end-page: 77 article-title: Mycorrhiza in sedges—An overview publication-title: Mycorrhiza – volume: 88 start-page: 165 year: 2010 end-page: 173 article-title: Exploring the role of root anatomy in P‐mediated control of colonization by arbuscular mycorrhizal fungi publication-title: Botany – year: 1995 – volume: 72 start-page: 311 year: 2002 end-page: 328 article-title: The global biogeography of roots publication-title: Ecological Monographs – volume: 166 start-page: 2166 year: 2014a end-page: 2178 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiology – volume: 367 start-page: 263 year: 2013 end-page: 274 article-title: Spatial distribution and phenotypic variation in root cortical aerenchyma of maize ( L.) publication-title: Plant and Soil – year: 2017 – start-page: 25 year: 1995 end-page: 34 – year: 2014 article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize ( L.) publication-title: Plant Physiology – volume: 55 start-page: 158 year: 1970 end-page: 161 article-title: Improved procedures for clearing roots and staining parasitic and vesicular‐arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Transactions of the British Mycological Society – volume: 32 start-page: 749 year: 2005b end-page: 762 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( ) publication-title: Functional Plant Biology – volume: 24 start-page: 459 year: 2001 end-page: 467 article-title: Regulation of root hair density by phosphorus availability in publication-title: Plant, Cell & Environment – ident: e_1_2_7_16_1 doi: 10.1007/s00572-009-0266-x – ident: e_1_2_7_71_1 doi: 10.1104/pp.103.029306 – ident: e_1_2_7_28_1 doi: 10.2135/cropsci2000.402358x – ident: e_1_2_7_56_1 doi: 10.1007/s00709-003-0027-1 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-3040.2001.00695.x – year: 2014 ident: e_1_2_7_55_1 article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize ( Zea mays L.) publication-title: Plant Physiology – ident: e_1_2_7_9_1 doi: 10.1007/s00122-014-2414-8 – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_7_62_1 – ident: e_1_2_7_65_1 doi: 10.1016/j.gloenvcha.2010.04.004 – ident: e_1_2_7_12_1 doi: 10.1104/pp.114.249037 – ident: e_1_2_7_27_1 doi: 10.1093/aob/mct069 – ident: e_1_2_7_76_1 doi: 10.1104/pp.15.00187 – ident: e_1_2_7_75_1 doi: 10.1093/jxb/erv007 – ident: e_1_2_7_40_1 doi: 10.1007/s11104-007-9266-9 – ident: e_1_2_7_66_1 doi: 10.1046/j.1469-8137.2003.00695.x – ident: e_1_2_7_58_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_7_25_1 doi: 10.1111/j.1469-8137.2009.02839.x – ident: e_1_2_7_17_1 doi: 10.1002/j.1537-2197.1921.tb05617.x – ident: e_1_2_7_51_1 doi: 10.1104/pp.111.175489 – ident: e_1_2_7_41_1 doi: 10.4141/cjps94-087 – ident: e_1_2_7_10_1 doi: 10.1007/s11104-012-1138-2 – ident: e_1_2_7_30_1 doi: 10.1201/9780203909423.pt6 – ident: e_1_2_7_69_1 doi: 10.18637/jss.v040.i01 – ident: e_1_2_7_8_1 – ident: e_1_2_7_33_1 doi: 10.1071/BT06118 – ident: e_1_2_7_54_1 doi: 10.1104/pp.114.241711 – ident: e_1_2_7_36_1 doi: 10.1111/pce.12451 – ident: e_1_2_7_50_1 doi: 10.1104/pp.113.233916 – ident: e_1_2_7_61_1 doi: 10.1007/s00709-011-0309-y – ident: e_1_2_7_43_1 doi: 10.1071/FP03078 – ident: e_1_2_7_73_1 doi: 10.1093/jxb/erv074 – ident: e_1_2_7_13_1 doi: 10.1016/j.fcr.2014.10.009 – ident: e_1_2_7_44_1 doi: 10.1016/S0003-2670(00)88444-5 – ident: e_1_2_7_78_1 doi: 10.1007/s11104-004-1697-y – ident: e_1_2_7_23_1 doi: 10.1093/jxb/erw243 – ident: e_1_2_7_52_1 doi: 10.1093/aob/mcq199 – ident: e_1_2_7_49_1 – ident: e_1_2_7_2_1 doi: 10.1104/pp.17.4.619 – ident: e_1_2_7_20_1 doi: 10.1111/j.1744-7909.2007.00450.x – ident: e_1_2_7_21_1 doi: 10.1071/FP03046 – ident: e_1_2_7_5_1 doi: 10.1007/s00425-003-1007-6 – ident: e_1_2_7_59_1 doi: 10.2135/cropsci1996.0011183X003600060043x – ident: e_1_2_7_57_1 doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 – ident: e_1_2_7_26_1 doi: 10.1093/aob/mct259 – ident: e_1_2_7_68_1 doi: 10.1007/978-0-387-98141-3 – ident: e_1_2_7_22_1 doi: 10.1002/jpln.201500155 – ident: e_1_2_7_67_1 doi: 10.1128/AEM.64.12.5004-5007.1998 – ident: e_1_2_7_74_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_7_80_1 doi: 10.1071/FP04046 – ident: e_1_2_7_70_1 – ident: e_1_2_7_47_1 doi: 10.1093/jexbot/52.355.329 – ident: e_1_2_7_14_1 doi: 10.1093/oxfordjournals.aob.a087235 – ident: e_1_2_7_42_1 doi: 10.1104/pp.15.00145 – ident: e_1_2_7_64_1 doi: 10.1007/s11104-010-0623-8 – volume-title: R: A language and environment for statistical computing year: 2014 ident: e_1_2_7_53_1 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-3040.1990.tb01071.x – ident: e_1_2_7_11_1 doi: 10.1104/pp.114.250449 – ident: e_1_2_7_39_1 doi: 10.1023/A:1012728819326 – ident: e_1_2_7_34_1 doi: 10.1104/pp.111.175414 – ident: e_1_2_7_29_1 doi: 10.1111/j.1399-3054.1980.tb02661.x – ident: e_1_2_7_45_1 doi: 10.1007/s00572-004-0296-3 – volume-title: Soil nutrient bioavailability: A mechanistic approach year: 1995 ident: e_1_2_7_3_1 – ident: e_1_2_7_37_1 doi: 10.1007/978-1-4020-8435-5_5 – ident: e_1_2_7_77_1 doi: 10.1111/j.1365-3040.2009.02099.x – ident: e_1_2_7_60_1 doi: 10.1139/B09-105 – ident: e_1_2_7_81_1 doi: 10.1071/FP09197 – volume-title: Plant anatomy year: 1960 ident: e_1_2_7_18_1 – ident: e_1_2_7_48_1 doi: 10.1016/S0007-1536(70)80110-3 – ident: e_1_2_7_6_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_7_46_1 doi: 10.1046/j.1469-8137.1998.00242.x – ident: e_1_2_7_4_1 doi: 10.1023/A:1012791706800 – ident: e_1_2_7_19_1 doi: 10.1046/j.1469-8137.2003.00907.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1469-8137.1980.tb04556.x – ident: e_1_2_7_63_1 doi: 10.1111/j.1365-3040.2007.01639.x – ident: e_1_2_7_7_1 doi: 10.1007/s11104-012-1453-7 – ident: e_1_2_7_79_1 doi: 10.1071/FP05005 – ident: e_1_2_7_32_1 doi: 10.1007/s11104-004-1096-4 – ident: e_1_2_7_35_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_7_15_1 doi: 10.1104/pp.91.1.266 – start-page: 25 volume-title: Recommended soil testing procedures for the Northeastern United States. Northeast Regional Bull year: 1995 ident: e_1_2_7_72_1 |
SSID | ssj0001479 |
Score | 2.5102034 |
Snippet | Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1579 |
SubjectTerms | Arbuscular mycorrhizas Biomass Cell size Colonization Corn Crop yield Edible Grain - growth & development Exploration genotype Genotypes Grain grain yield greenhouses Hypotheses leaves living cortical area maize Mesocosms Metabolism Mycorrhizae - metabolism Phosphorus Phosphorus - deficiency Phosphorus - metabolism Phosphorus content Plant growth Plant Roots - anatomy & histology Plant Roots - metabolism Plant Roots - physiology Plant Shoots - metabolism Plant Shoots - physiology root anatomy root cortical aerenchyma Roots soil Soil improvement soil nutrients vesicular arbuscular mycorrhizae Zea mays Zea mays - growth & development Zea mays - metabolism |
Title | Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13197 https://www.ncbi.nlm.nih.gov/pubmed/29574982 https://www.proquest.com/docview/2057177648 https://www.proquest.com/docview/2018665407 https://www.proquest.com/docview/2116871614 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CaKGXPtLXtmlRSw-9eFnZsmTRUxsSQqGlhAZyKBhJHidLtvay9iZsfn1H8qNNX5QeDAKPYSxprO8bjz4BvNKZIVBhZ5HRiYiE4zoyWOqIsIdDCqckCamLDx_l4bF4f5KebMGbYS9Mpw8xJtx8ZITvtQ9wY5sfgnzpcMppAvmd5L5WywOio-_SUVx0Onu-fFEpzXtVIV_FMz55fS36BWBex6thwTm4A18GV7s6k_PpurVTd_WTiuN_vstduN0DUfa2mzn3YAurHbjZHU252YEb72qCjZv7cHrkxV2xYASxW0ZcNSS_mQ3bH9g85CSwYadE59szZqqCmmZesY0vjWN-i9qKLepLtjyrG7pW64aZCzNfdPrgG0amX838Ch_A8cH-573DqD-dIXJEclRkUZbKaCNLXdpCxi5Dl2qrnZgJgZJG2REWswrTQnFXEk6TlnNlpbJEuWyZPITtqq7wMTCZlGmmMHFGGEFUP0NMZEFkJ9YzTLWcwOthnHLXS5f7EzQW-UBhqAPz0IETeDmaLju9jt8Z7Q6Dnfch2-QxIVeulBTZBF6MtynY_B8UU2G99jZBH5BI8F9sOJeehXIxgUfdRBo9iXWqhM5ieqEwHf7sYv5pbz80nvy76VO45R3siol3YbtdrfEZQabWPg-x8Q22lxH7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILjwJloYBBIHHJap04dnzgAH1oSx9CVSv1Fmyv067YJqtNltX2N_FX-E-MnWShvMSlBw6RLGUUje0Z-5vJ-DPAS5koBBW6FygZsYAZKgNlMxkg9jAW3SmKfOpib5_3j9j74_h4Cb60Z2FqfohFws15hl-vnYO7hPQPXj42tkvRgkRTUrlj5zMM2Mo32xs4u6_CcGvzcL0fNHcKBAahuQi05ZlQUvFMZnrAQ5NYE0stDesxZjnqZhBBaGHjgaAmQ3TBNaVCc6ExUNBZhN-9AlfdDeKOqX_j4DtZFWU1s58rmBRC0obHyNUNLVS9uPv9AmkvImS_xW3dhq_t4NSVLZ-600p3zflPvJH_y-jdgVsN1iZva-e4C0s2X4Hr9e2b8xW49q5AZDy_BycHjr_WDghGERXBcNzn94n2JzzI0KddbElOJsWsOiUqH2BTDXMyd9V_xJ3Cm5BRMSPj06LEZzItifqshqOaAn1OUPRMDc_tfTi6lO4-gOW8yO1DIDzK4kTYyCimmNVhYm3EBxjPhbJnY8k78Lo1jNQ07OzukpBR2kZpOGGpn7AOvFiIjmtKkt8JrbXWlTarUpmGCM6pEJwlHXi-eI3riftJpHJbTJ2Mp0DEOP8vMpRyF2hT1oHV2nIXmoQyFkwmIXbI29-fVUw_rG_6xqN_F30GN_qHe7vp7vb-zmO46ZSta6fXYLmaTO0TRIiVfuodk8DHy7blb83BcT8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXHgXKQgGDQOKS1Tpx7PjAAbpdtRSqqqJSb8F2nHbFNlntg1X6l_gr_CjGTjZQXuLSA4dIljKKxvaM_c1k_BnguUwUggrdC5SMWMAMlYGyuQwQexiL7hRFPnXxfo9vH7K3R_HRCnxZnoWp-SHahJvzDL9eOwcfZ_kPTj42tkvRgERTUblrqwXGa9NXO32c3BdhONj6sLkdNFcKBAaRuQi05blQUvFc5jrjoUmsiaWWhvUYsxxVMwggtLBxJqjJEVxwTanQXGiME3Qe4XcvwWXGe9LdE9E_-M5VRVlN7OfqJYWQtKExcmVDrarnN79fEO15gOx3uMFN-Locm7qw5VN3PtNdc_YTbeR_Mni34EaDtMnr2jVuw4ot1uBqffdmtQZX3pSIi6s7cHzg2GttRjCGmBEMxn12n2h_voMMfdLFTsnxpFzMTogqMmyqYUEqV_tH3Bm8CRmVCzI-Kaf4TOZToj6r4agmQK8Iip6q4Zm9C4cX0t17sFqUhb0PhEd5nAgbGcUUszpMrI14htFcKHs2lrwDL5d2kZqGm91dETJKlzEaTljqJ6wDz1rRcU1I8juhjaVxpc2aNE1DhOZUCM6SDjxtX-Nq4n4RqcKWcyfjCRAxyv-LDKXchdmUdWC9NtxWk1DGgskkxA558_uziun-5pZvPPh30Sdwbb8_SN_t7O0-hOtO17pwegNWZ5O5fYTwcKYfe7ck8PGiTfkb-TFv7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+root+cortical+burden+improves+growth+and+grain+yield+under+low+phosphorus+availability+in+maize&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Galindo-Casta%C3%B1eda%2C+Tania&rft.au=Brown%2C+Kathleen+M&rft.au=Lynch%2C+Jonathan+P&rft.date=2018-07-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=41&rft.issue=7&rft.spage=1579&rft_id=info:doi/10.1111%2Fpce.13197&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |