Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize

Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain y...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 41; no. 7; pp. 1579 - 1592
Main Authors Galindo‐Castañeda, Tania, Brown, Kathleen M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability.
AbstractList Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm 2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress. Living cortical area of maize root tissue is reduced under suboptimal phosphorus availability through the production of aerenchyma. Using greenhouse and field‐grown maize genotypes with contrasting living cortical area, we tested the hypothesis that plants with reduced living cortical area would have decreased respiratory carbon and phosphorus demand, greater soil exploration, and greater phosphorus capture. Genotypes with reduced living cortical area had reduced root segment respiration and phosphorus content, greater shoot biomass, phosphorus content, and grain yield under suboptimal phosphorus availability. Our results support the hypothesis that reduced living cortical area may have adaptive value under suboptimal phosphorus availability.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm² less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.
Author Brown, Kathleen M.
Galindo‐Castañeda, Tania
Lynch, Jonathan P.
Author_xml – sequence: 1
  givenname: Tania
  surname: Galindo‐Castañeda
  fullname: Galindo‐Castañeda, Tania
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Kathleen M.
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: The Pennsylvania State University
– sequence: 3
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29574982$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9rFDEUB_AgLXZbPfgPSMCLHqbNm8kkM0dZahUKFdHzkB9v2pRMsiYzXda_3rRbPRSsgZAQPu-R5HtMDkIMSMgbYKdQxtnG4Ck00MsXZAWNaKuGcXZAVgw4q6Ts4Ygc53zLWDmQ_UtyVPet5H1Xr8j1N7SLQUtTjDM1Mc3OKE_1kiwG6qZNineY6XWK2_mGqmDLVrlAdw69pUuwmKiPW7q5ibnMtGSq7pTzSjvv5h0tdFLuF74ih6PyGV8_rifkx6fz7-vP1eXVxZf1x8vK8E7KSqMYpeqVGPtRW1GbDk3b695wxjkKbBoDvNESWyvBjK0AoQGkFlLXxY3NCXm_71su_nPBPA-Tywa9VwHjkocaQHQSROnyX8qgE6LlTBb67gm9jUsK5SFFtRKkFLwr6u2jWvSEdtgkN6m0G_78dgEf9sCkmHPC8S8BNtwnOZQkh4ckiz17Yo2b1eximEsA_rmKrfO4-3fr4ev6fF_xGyZSrxg
CitedBy_id crossref_primary_10_1016_j_rhisph_2024_100907
crossref_primary_10_1111_eva_13673
crossref_primary_10_1007_s00122_021_03819_w
crossref_primary_10_2134_agronj2019_02_0096
crossref_primary_10_1093_jxb_ery048
crossref_primary_10_1093_jxb_erz258
crossref_primary_10_3389_fpls_2023_1223532
crossref_primary_10_1111_pce_13615
crossref_primary_10_1007_s00425_021_03760_8
crossref_primary_10_1007_s11104_024_06892_4
crossref_primary_10_3390_plants13081075
crossref_primary_10_1111_pbr_13248
crossref_primary_10_1111_pce_14552
crossref_primary_10_1093_jxb_ery252
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1111_pce_14270
crossref_primary_10_1111_pce_15161
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1093_jxb_ery379
crossref_primary_10_3390_agronomy14061228
crossref_primary_10_1071_SR21021
crossref_primary_10_1080_23311932_2025_2452347
crossref_primary_10_3390_agronomy11112230
crossref_primary_10_1093_aob_mcy059
crossref_primary_10_1007_s11033_022_07679_5
crossref_primary_10_1038_s41598_019_41922_7
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1093_jxb_erz271
crossref_primary_10_1007_s11738_022_03440_4
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1007_s11032_020_01156_2
crossref_primary_10_15302_J_FASE_2019278
crossref_primary_10_1371_journal_pone_0239075
crossref_primary_10_3390_plants12132520
crossref_primary_10_1111_tpj_15774
crossref_primary_10_1007_s00344_022_10807_x
crossref_primary_10_1007_s11104_022_05527_w
crossref_primary_10_1002_pld3_274
crossref_primary_10_1371_journal_pone_0286736
crossref_primary_10_1111_pce_14213
crossref_primary_10_1111_tpj_14722
crossref_primary_10_1002_tpg2_20003
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1111_pce_14175
crossref_primary_10_1007_s40502_019_00451_1
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1007_s11120_024_01083_9
crossref_primary_10_1016_j_plaphy_2020_12_023
crossref_primary_10_1007_s11104_021_05133_2
crossref_primary_10_1016_j_fcr_2021_108378
crossref_primary_10_3389_fpls_2019_00237
crossref_primary_10_1002_ppj2_20035
crossref_primary_10_1007_s11032_020_01112_0
crossref_primary_10_1080_01904167_2024_2304165
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_1093_jxb_eraa165
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_1111_tpj_16672
crossref_primary_10_1080_01490451_2019_1616857
crossref_primary_10_1093_aob_mcab144
crossref_primary_10_1073_pnas_2219668120
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1093_jxb_eraa084
crossref_primary_10_1111_aab_12807
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_3390_genes10020139
crossref_primary_10_1016_j_fcr_2022_108547
crossref_primary_10_1007_s11104_022_05331_6
crossref_primary_10_3117_plantroot_16_21
crossref_primary_10_3390_agronomy12112671
crossref_primary_10_1111_nph_15738
Cites_doi 10.1007/s00572-009-0266-x
10.1104/pp.103.029306
10.2135/cropsci2000.402358x
10.1007/s00709-003-0027-1
10.1046/j.1365-3040.2001.00695.x
10.1007/s00122-014-2414-8
10.1016/j.gloenvcha.2010.04.004
10.1104/pp.114.249037
10.1093/aob/mct069
10.1104/pp.15.00187
10.1093/jxb/erv007
10.1007/s11104-007-9266-9
10.1046/j.1469-8137.2003.00695.x
10.1038/nmeth.2089
10.1111/j.1469-8137.2009.02839.x
10.1002/j.1537-2197.1921.tb05617.x
10.1104/pp.111.175489
10.4141/cjps94-087
10.1007/s11104-012-1138-2
10.1201/9780203909423.pt6
10.18637/jss.v040.i01
10.1071/BT06118
10.1104/pp.114.241711
10.1111/pce.12451
10.1104/pp.113.233916
10.1007/s00709-011-0309-y
10.1071/FP03078
10.1093/jxb/erv074
10.1016/j.fcr.2014.10.009
10.1016/S0003-2670(00)88444-5
10.1007/s11104-004-1697-y
10.1093/jxb/erw243
10.1093/aob/mcq199
10.1104/pp.17.4.619
10.1111/j.1744-7909.2007.00450.x
10.1071/FP03046
10.1007/s00425-003-1007-6
10.2135/cropsci1996.0011183X003600060043x
10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
10.1093/aob/mct259
10.1007/978-0-387-98141-3
10.1002/jpln.201500155
10.1128/AEM.64.12.5004-5007.1998
10.3389/fpls.2013.00355
10.1071/FP04046
10.1093/jexbot/52.355.329
10.1093/oxfordjournals.aob.a087235
10.1104/pp.15.00145
10.1007/s11104-010-0623-8
10.1111/j.1365-3040.1990.tb01071.x
10.1104/pp.114.250449
10.1023/A:1012728819326
10.1104/pp.111.175414
10.1111/j.1399-3054.1980.tb02661.x
10.1007/s00572-004-0296-3
10.1007/978-1-4020-8435-5_5
10.1111/j.1365-3040.2009.02099.x
10.1139/B09-105
10.1071/FP09197
10.1016/S0007-1536(70)80110-3
10.1023/A:1010933404324
10.1046/j.1469-8137.1998.00242.x
10.1023/A:1012791706800
10.1046/j.1469-8137.2003.00907.x
10.1111/j.1469-8137.1980.tb04556.x
10.1111/j.1365-3040.2007.01639.x
10.1007/s11104-012-1453-7
10.1071/FP05005
10.1007/s11104-004-1096-4
10.1093/aob/mcs293
10.1104/pp.91.1.266
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.13197
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
AGRICOLA
Calcium & Calcified Tissue Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1592
ExternalDocumentID 29574982
10_1111_pce_13197
PCE13197
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: North Central Region SARE program
  funderid: GNE13‐059
– fundername: The National Institute of Food and Agriculture, U.S. Department of Agriculture
  funderid: 2014‐67013‐21572
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4877-be6f7a9a6f9fbd62c8ec59b9c4044e6e33c143b7e5d71cf5616b117b67b259bf3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:28:57 EDT 2025
Thu Jul 10 18:56:54 EDT 2025
Fri Jul 25 10:45:40 EDT 2025
Wed Feb 19 02:33:31 EST 2025
Thu Apr 24 23:03:59 EDT 2025
Tue Jul 01 04:28:40 EDT 2025
Wed Jan 22 16:22:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords living cortical area
root cortical aerenchyma
maize
root anatomy
phosphorus
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-be6f7a9a6f9fbd62c8ec59b9c4044e6e33c143b7e5d71cf5616b117b67b259bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7265-9790
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13197
PMID 29574982
PQID 2057177648
PQPubID 37957
PageCount 14
ParticipantIDs proquest_miscellaneous_2116871614
proquest_miscellaneous_2018665407
proquest_journals_2057177648
pubmed_primary_29574982
crossref_primary_10_1111_pce_13197
crossref_citationtrail_10_1111_pce_13197
wiley_primary_10_1111_pce_13197_PCE13197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1980; 49
2015; 38
2013; 4
1990; 13
1980; 84
2005a; 270
2004; 161
2013; 367
2007; 30
1996; 36
2001; 45
2003; 157
2012; 249
2011; 156
2015; 171
2010; 20
2004; 31
1942; 17
2015; 178
2005; 269
2007; 295
2011b; 107
2013; 112
2014; 166
1994; 74
2001; 52
2010; 33
2003; 217
2010; 37
2004; 223
2010
2002; 72
2015; 168
2009; 182
2015; 167
1986; 58
2011; 40
2009
2008
1970; 55
2005b; 32
1995
2015; 128
1998; 139
2002
2007; 55
2001; 24
2003; 30
1998; 64
2003; 133
2014b; 166
2014; 113
1921; 8
2010; 88
2011a; 156
1989; 91
2004; 14
2015; 66
1962; 27
2000; 40
2014a; 166
2017
1960
2014
2012; 357
2001; 236
2016; 67
2011; 341
2007; 49
2012; 9
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
Wolf A. (e_1_2_7_72_1) 1995
e_1_2_7_13_1
e_1_2_7_43_1
Smith S. E. (e_1_2_7_62_1) 2008
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Saengwilai P. (e_1_2_7_55_1) 2014
Barber S. A. (e_1_2_7_3_1) 1995
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
Esau K. (e_1_2_7_18_1) 1960
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
R Core Team (e_1_2_7_53_1) 2014
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – year: 2009
– volume: 74
  start-page: 471
  year: 1994
  end-page: 477
  article-title: Influence of N supply on development and dry matter accumulation of an old and a new maize hybrid
  publication-title: Canadian Journal of Plant Science
– volume: 139
  start-page: 647
  year: 1998
  end-page: 656
  article-title: Effects of phosphorus availability and vesicular–arbuscular mycorrhizas on the carbon budget of common bean ( )
  publication-title: New Phytologist
– volume: 49
  start-page: 265
  year: 1980
  end-page: 270
  article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply
  publication-title: Physiologia Plantarum
– volume: 55
  start-page: 493
  year: 2007
  end-page: 512
  article-title: Turner review no. 14. Roots of the second green revolution
  publication-title: Australian Journal of Botany
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field
  publication-title: Plant and Soil
– volume: 113
  start-page: 181
  year: 2014
  end-page: 189
  article-title: Root cortical aerenchyma inhibits radial nutrient transport in maize ( )
  publication-title: Annals of Botany
– volume: 64
  start-page: 5004
  year: 1998
  end-page: 5007
  article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi
  publication-title: Applied and Environmental Microbiology
– volume: 133
  start-page: 1947
  year: 2003
  end-page: 1958
  article-title: How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects
  publication-title: Plant Physiology
– volume: 166
  start-page: 726
  year: 2014
  end-page: 735
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low‐nitrogen soils in maize
  publication-title: Plant Physiology
– volume: 8
  start-page: 207
  year: 1921
  end-page: 211
  article-title: Note on the histology of grain roots
  publication-title: American Journal of Botany
– volume: 112
  start-page: 429
  year: 2013
  end-page: 437
  article-title: Root cortical burden influences drought tolerance in maize
  publication-title: Annals of Botany
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 30
  start-page: 493
  year: 2003
  end-page: 506
  article-title: Physiological roles for aerenchyma in phosphorus‐stressed roots
  publication-title: Functional Plant Biology
– volume: 217
  start-page: 382
  year: 2003
  end-page: 391
  article-title: Aerenchyma formation in roots of maize during sulphate starvation
  publication-title: Planta
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition
  publication-title: Plant and Soil
– year: 2014
– volume: 38
  start-page: 1775
  year: 2015
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 358
  year: 2000
  end-page: 364
  article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi
  publication-title: Crop Science
– volume: 168
  start-page: 1603
  year: 2015
  end-page: 1615
  article-title: Reduced lateral root branching density improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 161
  start-page: 35
  year: 2004
  end-page: 49
  article-title: Aerenchyma formation
  publication-title: New Phytologist
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 17
  start-page: 619
  year: 1942
  end-page: 631
  article-title: Growth rates of maize under field conditions
  publication-title: Plant Physiology
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 52
  start-page: 329
  year: 2001
  end-page: 339
  article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean ( L.) genotypes
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 103
  year: 2010
  end-page: 115
  article-title: Comparative study of mycorrhizal susceptibility and anatomy of four palm species
  publication-title: Mycorrhiza
– volume: 156
  start-page: 1190
  year: 2011a
  end-page: 1201
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
– volume: 66
  start-page: 2055
  year: 2015
  end-page: 2065
  article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize
  publication-title: Journal of Experimental Botany
– volume: 91
  start-page: 266
  year: 1989
  end-page: 271
  article-title: Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen‐ or phosphate‐starvation in adventitious roots of L
  publication-title: Plant Physiology
– year: 2008
– volume: 295
  start-page: 103
  year: 2007
  end-page: 113
  article-title: QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “ ” cross
  publication-title: Plant and Soil
– volume: 58
  start-page: 719
  year: 1986
  end-page: 727
  article-title: Progressive cortical senescence and formation of lysigenous gas space (Aerenchyma) distinguished by nuclear staining in adventitious roots of
  publication-title: Annals of Botany
– volume: 49
  start-page: 598
  year: 2007
  end-page: 604
  article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots
  publication-title: Journal of Integrative Plant Biology
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 40
  start-page: 1
  year: 2011
  end-page: 29
  article-title: The split‐apply‐combine strategy for data analysis
  publication-title: Journal of Statistical Software
– volume: 4
  start-page: 355
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
– start-page: 782
  year: 2002
  end-page: 838
– volume: 67
  start-page: 4545
  year: 2016
  end-page: 4557
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.)
  publication-title: Journal of Experimental Botany
– volume: 84
  start-page: 489
  year: 1980
  end-page: 500
  article-title: An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots
  publication-title: New Phytologist
– volume: 30
  start-page: 973
  year: 2003
  end-page: 985
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: Potential utility for phosphorus acquisition from stratified soils
  publication-title: Functional Plant Biology
– volume: 182
  start-page: 829
  year: 2009
  end-page: 837
  article-title: induces changes in root system architecture of rice independently of common symbiosis signaling
  publication-title: New Phytologist
– volume: 37
  start-page: 313
  year: 2010
  end-page: 322
  article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition
  publication-title: Functional Plant Biology
– year: 1960
– volume: 171
  start-page: 86
  year: 2015
  end-page: 98
  article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.)
  publication-title: Field Crops Research
– volume: 36
  start-page: 1676
  year: 1996
  end-page: 1683
  article-title: Simple sequence repeat markers developed from maize sequences found in the GENBANK database: Map construction
  publication-title: Crop Science
– volume: 357
  start-page: 189
  year: 2012
  end-page: 203
  article-title: RootScan: Software for high‐throughput analysis of root anatomical traits
  publication-title: Plant and Soil
– volume: 30
  start-page: 580
  year: 2007
  end-page: 589
  article-title: Trade‐off between root porosity and mechanical strength in species with different types of aerenchyma
  publication-title: Plant, Cell & Environment
– volume: 66
  start-page: 2347
  year: 2015
  end-page: 2358
  article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: Journal of Experimental Botany
– volume: 270
  start-page: 299
  year: 2005a
  end-page: 310
  article-title: Mapping of QTL controlling root hair length in maize ( L.) under phosphorus deficiency
  publication-title: Plant and Soil
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  article-title: Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytologist
– volume: 178
  start-page: 807
  year: 2015
  end-page: 815
  article-title: Root morphological traits related to phosphorus‐uptake efficiency of soybean, sunflower, and maize
  publication-title: Journal of Plant Nutrition and Soil Science
– year: 2010
– volume: 20
  start-page: 428
  year: 2010
  end-page: 439
  article-title: Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion
  publication-title: Global Environmental Change
– volume: 236
  start-page: 221
  year: 2001
  end-page: 235
  article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in : A modeling approach
  publication-title: Plant and Soil
– start-page: 83
  year: 2008
  end-page: 116
– volume: 166
  start-page: 590
  year: 2014
  end-page: 602
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
– volume: 31
  start-page: 949
  year: 2004
  end-page: 958
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings
  publication-title: Functional Plant Biology
– volume: 107
  start-page: 829
  year: 2011b
  end-page: 841
  article-title: Theoretical evidence for the functional benefit of root cortical aaerenchyma in soils with low phosphorus availability
  publication-title: Annals of Botany
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops
  publication-title: Plant Physiology
– volume: 223
  start-page: 183
  year: 2004
  end-page: 189
  article-title: Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte determined by proton induced X‐ray emission
  publication-title: Protoplasma
– volume: 128
  start-page: 93
  year: 2015
  end-page: 106
  article-title: QTL mapping and phenotypic variation of root anatomical traits in maize ( L.)
  publication-title: Theoretical and Applied Genetics
– volume: 236
  start-page: 243
  year: 2001
  end-page: 250
  article-title: Root hairs confer a competitive advantage under low phosphorus availability
  publication-title: Plant and Soil
– volume: 33
  start-page: 740
  year: 2010
  end-page: 749
  article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.)
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 547
  year: 1990
  end-page: 554
  article-title: An automated greenhouse sand culture system suitable for studies of P nutrition
  publication-title: Plant, Cell & Environment
– volume: 249
  start-page: 671
  year: 2012
  end-page: 686
  article-title: Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation
  publication-title: Protoplasma
– volume: 166
  start-page: 1943
  year: 2014b
  end-page: 1955
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytica Chimica Acta
– volume: 14
  start-page: 65
  year: 2004
  end-page: 77
  article-title: Mycorrhiza in sedges—An overview
  publication-title: Mycorrhiza
– volume: 88
  start-page: 165
  year: 2010
  end-page: 173
  article-title: Exploring the role of root anatomy in P‐mediated control of colonization by arbuscular mycorrhizal fungi
  publication-title: Botany
– year: 1995
– volume: 72
  start-page: 311
  year: 2002
  end-page: 328
  article-title: The global biogeography of roots
  publication-title: Ecological Monographs
– volume: 166
  start-page: 2166
  year: 2014a
  end-page: 2178
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 367
  start-page: 263
  year: 2013
  end-page: 274
  article-title: Spatial distribution and phenotypic variation in root cortical aerenchyma of maize ( L.)
  publication-title: Plant and Soil
– year: 2017
– start-page: 25
  year: 1995
  end-page: 34
– year: 2014
  article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize ( L.)
  publication-title: Plant Physiology
– volume: 55
  start-page: 158
  year: 1970
  end-page: 161
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular‐arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Transactions of the British Mycological Society
– volume: 32
  start-page: 749
  year: 2005b
  end-page: 762
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( )
  publication-title: Functional Plant Biology
– volume: 24
  start-page: 459
  year: 2001
  end-page: 467
  article-title: Regulation of root hair density by phosphorus availability in
  publication-title: Plant, Cell & Environment
– ident: e_1_2_7_16_1
  doi: 10.1007/s00572-009-0266-x
– ident: e_1_2_7_71_1
  doi: 10.1104/pp.103.029306
– ident: e_1_2_7_28_1
  doi: 10.2135/cropsci2000.402358x
– ident: e_1_2_7_56_1
  doi: 10.1007/s00709-003-0027-1
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-3040.2001.00695.x
– year: 2014
  ident: e_1_2_7_55_1
  article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize ( Zea mays L.)
  publication-title: Plant Physiology
– ident: e_1_2_7_9_1
  doi: 10.1007/s00122-014-2414-8
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_7_62_1
– ident: e_1_2_7_65_1
  doi: 10.1016/j.gloenvcha.2010.04.004
– ident: e_1_2_7_12_1
  doi: 10.1104/pp.114.249037
– ident: e_1_2_7_27_1
  doi: 10.1093/aob/mct069
– ident: e_1_2_7_76_1
  doi: 10.1104/pp.15.00187
– ident: e_1_2_7_75_1
  doi: 10.1093/jxb/erv007
– ident: e_1_2_7_40_1
  doi: 10.1007/s11104-007-9266-9
– ident: e_1_2_7_66_1
  doi: 10.1046/j.1469-8137.2003.00695.x
– ident: e_1_2_7_58_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1469-8137.2009.02839.x
– ident: e_1_2_7_17_1
  doi: 10.1002/j.1537-2197.1921.tb05617.x
– ident: e_1_2_7_51_1
  doi: 10.1104/pp.111.175489
– ident: e_1_2_7_41_1
  doi: 10.4141/cjps94-087
– ident: e_1_2_7_10_1
  doi: 10.1007/s11104-012-1138-2
– ident: e_1_2_7_30_1
  doi: 10.1201/9780203909423.pt6
– ident: e_1_2_7_69_1
  doi: 10.18637/jss.v040.i01
– ident: e_1_2_7_8_1
– ident: e_1_2_7_33_1
  doi: 10.1071/BT06118
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.114.241711
– ident: e_1_2_7_36_1
  doi: 10.1111/pce.12451
– ident: e_1_2_7_50_1
  doi: 10.1104/pp.113.233916
– ident: e_1_2_7_61_1
  doi: 10.1007/s00709-011-0309-y
– ident: e_1_2_7_43_1
  doi: 10.1071/FP03078
– ident: e_1_2_7_73_1
  doi: 10.1093/jxb/erv074
– ident: e_1_2_7_13_1
  doi: 10.1016/j.fcr.2014.10.009
– ident: e_1_2_7_44_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_7_78_1
  doi: 10.1007/s11104-004-1697-y
– ident: e_1_2_7_23_1
  doi: 10.1093/jxb/erw243
– ident: e_1_2_7_52_1
  doi: 10.1093/aob/mcq199
– ident: e_1_2_7_49_1
– ident: e_1_2_7_2_1
  doi: 10.1104/pp.17.4.619
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1744-7909.2007.00450.x
– ident: e_1_2_7_21_1
  doi: 10.1071/FP03046
– ident: e_1_2_7_5_1
  doi: 10.1007/s00425-003-1007-6
– ident: e_1_2_7_59_1
  doi: 10.2135/cropsci1996.0011183X003600060043x
– ident: e_1_2_7_57_1
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– ident: e_1_2_7_26_1
  doi: 10.1093/aob/mct259
– ident: e_1_2_7_68_1
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_2_7_22_1
  doi: 10.1002/jpln.201500155
– ident: e_1_2_7_67_1
  doi: 10.1128/AEM.64.12.5004-5007.1998
– ident: e_1_2_7_74_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_7_80_1
  doi: 10.1071/FP04046
– ident: e_1_2_7_70_1
– ident: e_1_2_7_47_1
  doi: 10.1093/jexbot/52.355.329
– ident: e_1_2_7_14_1
  doi: 10.1093/oxfordjournals.aob.a087235
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.15.00145
– ident: e_1_2_7_64_1
  doi: 10.1007/s11104-010-0623-8
– volume-title: R: A language and environment for statistical computing
  year: 2014
  ident: e_1_2_7_53_1
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-3040.1990.tb01071.x
– ident: e_1_2_7_11_1
  doi: 10.1104/pp.114.250449
– ident: e_1_2_7_39_1
  doi: 10.1023/A:1012728819326
– ident: e_1_2_7_34_1
  doi: 10.1104/pp.111.175414
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1399-3054.1980.tb02661.x
– ident: e_1_2_7_45_1
  doi: 10.1007/s00572-004-0296-3
– volume-title: Soil nutrient bioavailability: A mechanistic approach
  year: 1995
  ident: e_1_2_7_3_1
– ident: e_1_2_7_37_1
  doi: 10.1007/978-1-4020-8435-5_5
– ident: e_1_2_7_77_1
  doi: 10.1111/j.1365-3040.2009.02099.x
– ident: e_1_2_7_60_1
  doi: 10.1139/B09-105
– ident: e_1_2_7_81_1
  doi: 10.1071/FP09197
– volume-title: Plant anatomy
  year: 1960
  ident: e_1_2_7_18_1
– ident: e_1_2_7_48_1
  doi: 10.1016/S0007-1536(70)80110-3
– ident: e_1_2_7_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_46_1
  doi: 10.1046/j.1469-8137.1998.00242.x
– ident: e_1_2_7_4_1
  doi: 10.1023/A:1012791706800
– ident: e_1_2_7_19_1
  doi: 10.1046/j.1469-8137.2003.00907.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.1980.tb04556.x
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1365-3040.2007.01639.x
– ident: e_1_2_7_7_1
  doi: 10.1007/s11104-012-1453-7
– ident: e_1_2_7_79_1
  doi: 10.1071/FP05005
– ident: e_1_2_7_32_1
  doi: 10.1007/s11104-004-1096-4
– ident: e_1_2_7_35_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_7_15_1
  doi: 10.1104/pp.91.1.266
– start-page: 25
  volume-title: Recommended soil testing procedures for the Northeastern United States. Northeast Regional Bull
  year: 1995
  ident: e_1_2_7_72_1
SSID ssj0001479
Score 2.5102034
Snippet Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1579
SubjectTerms Arbuscular mycorrhizas
Biomass
Cell size
Colonization
Corn
Crop yield
Edible Grain - growth & development
Exploration
genotype
Genotypes
Grain
grain yield
greenhouses
Hypotheses
leaves
living cortical area
maize
Mesocosms
Metabolism
Mycorrhizae - metabolism
Phosphorus
Phosphorus - deficiency
Phosphorus - metabolism
Phosphorus content
Plant growth
Plant Roots - anatomy & histology
Plant Roots - metabolism
Plant Roots - physiology
Plant Shoots - metabolism
Plant Shoots - physiology
root anatomy
root cortical aerenchyma
Roots
soil
Soil improvement
soil nutrients
vesicular arbuscular mycorrhizae
Zea mays
Zea mays - growth & development
Zea mays - metabolism
Title Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13197
https://www.ncbi.nlm.nih.gov/pubmed/29574982
https://www.proquest.com/docview/2057177648
https://www.proquest.com/docview/2018665407
https://www.proquest.com/docview/2116871614
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CaKGXPtLXtmlRSw-9eFnZsmTRUxsSQqGlhAZyKBhJHidLtvay9iZsfn1H8qNNX5QeDAKPYSxprO8bjz4BvNKZIVBhZ5HRiYiE4zoyWOqIsIdDCqckCamLDx_l4bF4f5KebMGbYS9Mpw8xJtx8ZITvtQ9wY5sfgnzpcMppAvmd5L5WywOio-_SUVx0Onu-fFEpzXtVIV_FMz55fS36BWBex6thwTm4A18GV7s6k_PpurVTd_WTiuN_vstduN0DUfa2mzn3YAurHbjZHU252YEb72qCjZv7cHrkxV2xYASxW0ZcNSS_mQ3bH9g85CSwYadE59szZqqCmmZesY0vjWN-i9qKLepLtjyrG7pW64aZCzNfdPrgG0amX838Ch_A8cH-573DqD-dIXJEclRkUZbKaCNLXdpCxi5Dl2qrnZgJgZJG2REWswrTQnFXEk6TlnNlpbJEuWyZPITtqq7wMTCZlGmmMHFGGEFUP0NMZEFkJ9YzTLWcwOthnHLXS5f7EzQW-UBhqAPz0IETeDmaLju9jt8Z7Q6Dnfch2-QxIVeulBTZBF6MtynY_B8UU2G99jZBH5BI8F9sOJeehXIxgUfdRBo9iXWqhM5ieqEwHf7sYv5pbz80nvy76VO45R3siol3YbtdrfEZQabWPg-x8Q22lxH7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILjwJloYBBIHHJap04dnzgAH1oSx9CVSv1Fmyv067YJqtNltX2N_FX-E-MnWShvMSlBw6RLGUUje0Z-5vJ-DPAS5koBBW6FygZsYAZKgNlMxkg9jAW3SmKfOpib5_3j9j74_h4Cb60Z2FqfohFws15hl-vnYO7hPQPXj42tkvRgkRTUrlj5zMM2Mo32xs4u6_CcGvzcL0fNHcKBAahuQi05ZlQUvFMZnrAQ5NYE0stDesxZjnqZhBBaGHjgaAmQ3TBNaVCc6ExUNBZhN-9AlfdDeKOqX_j4DtZFWU1s58rmBRC0obHyNUNLVS9uPv9AmkvImS_xW3dhq_t4NSVLZ-600p3zflPvJH_y-jdgVsN1iZva-e4C0s2X4Hr9e2b8xW49q5AZDy_BycHjr_WDghGERXBcNzn94n2JzzI0KddbElOJsWsOiUqH2BTDXMyd9V_xJ3Cm5BRMSPj06LEZzItifqshqOaAn1OUPRMDc_tfTi6lO4-gOW8yO1DIDzK4kTYyCimmNVhYm3EBxjPhbJnY8k78Lo1jNQ07OzukpBR2kZpOGGpn7AOvFiIjmtKkt8JrbXWlTarUpmGCM6pEJwlHXi-eI3riftJpHJbTJ2Mp0DEOP8vMpRyF2hT1oHV2nIXmoQyFkwmIXbI29-fVUw_rG_6xqN_F30GN_qHe7vp7vb-zmO46ZSta6fXYLmaTO0TRIiVfuodk8DHy7blb83BcT8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXHgXKQgGDQOKS1Tpx7PjAAbpdtRSqqqJSb8F2nHbFNlntg1X6l_gr_CjGTjZQXuLSA4dIljKKxvaM_c1k_BnguUwUggrdC5SMWMAMlYGyuQwQexiL7hRFPnXxfo9vH7K3R_HRCnxZnoWp-SHahJvzDL9eOwcfZ_kPTj42tkvRgERTUblrqwXGa9NXO32c3BdhONj6sLkdNFcKBAaRuQi05blQUvFc5jrjoUmsiaWWhvUYsxxVMwggtLBxJqjJEVxwTanQXGiME3Qe4XcvwWXGe9LdE9E_-M5VRVlN7OfqJYWQtKExcmVDrarnN79fEO15gOx3uMFN-Locm7qw5VN3PtNdc_YTbeR_Mni34EaDtMnr2jVuw4ot1uBqffdmtQZX3pSIi6s7cHzg2GttRjCGmBEMxn12n2h_voMMfdLFTsnxpFzMTogqMmyqYUEqV_tH3Bm8CRmVCzI-Kaf4TOZToj6r4agmQK8Iip6q4Zm9C4cX0t17sFqUhb0PhEd5nAgbGcUUszpMrI14htFcKHs2lrwDL5d2kZqGm91dETJKlzEaTljqJ6wDz1rRcU1I8juhjaVxpc2aNE1DhOZUCM6SDjxtX-Nq4n4RqcKWcyfjCRAxyv-LDKXchdmUdWC9NtxWk1DGgskkxA558_uziun-5pZvPPh30Sdwbb8_SN_t7O0-hOtO17pwegNWZ5O5fYTwcKYfe7ck8PGiTfkb-TFv7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+root+cortical+burden+improves+growth+and+grain+yield+under+low+phosphorus+availability+in+maize&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Galindo-Casta%C3%B1eda%2C+Tania&rft.au=Brown%2C+Kathleen+M&rft.au=Lynch%2C+Jonathan+P&rft.date=2018-07-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=41&rft.issue=7&rft.spage=1579&rft_id=info:doi/10.1111%2Fpce.13197&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon