RANK‐Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis

Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purp...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 12; pp. 2889 - 2900
Main Authors O'Brien, William, Fissel, Brian M., Maeda, Yukiko, Yan, Jing, Ge, Xianpeng, Gravallese, Ellen M., Aliprantis, Antonios O., Charles, Julia F.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL‐6–induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Methods Myeloid precursors from wild‐type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL‐6. Osteoprotegerin, anti–IL‐6 receptor (anti–IL‐6R), and hydroxyurea were used to block RANKL, the IL‐6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro–computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum–transfer arthritis in WT and RANK‐deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. Results TNF/IL‐6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL‐6R, NFATc1, DNAX‐activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL‐6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL‐6 family members (IL‐6, leukemia inhibitory factor, oncostatin M) were up‐regulated in the synovium of arthritic mice. Conclusion The persistence of bone erosion and synovial osteoclasts in Rank‐deficient mice, and the ability of TNF/IL‐6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone‐resorbing cells in inflamed joints.
AbstractList Objective Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Methods Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. Results TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice. Conclusion The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.
Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL‐6–induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Methods Myeloid precursors from wild‐type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL‐6. Osteoprotegerin, anti–IL‐6 receptor (anti–IL‐6R), and hydroxyurea were used to block RANKL, the IL‐6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro–computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum–transfer arthritis in WT and RANK‐deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. Results TNF/IL‐6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL‐6R, NFATc1, DNAX‐activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL‐6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL‐6 family members (IL‐6, leukemia inhibitory factor, oncostatin M) were up‐regulated in the synovium of arthritic mice. Conclusion The persistence of bone erosion and synovial osteoclasts in Rank‐deficient mice, and the ability of TNF/IL‐6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone‐resorbing cells in inflamed joints.
Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis.OBJECTIVEProinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis.Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures.METHODSMyeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures.TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice.RESULTSTNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice.The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.CONCLUSIONThe persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.
Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice. The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.
Author O'Brien, William
Aliprantis, Antonios O.
Charles, Julia F.
Ge, Xianpeng
Yan, Jing
Gravallese, Ellen M.
Fissel, Brian M.
Maeda, Yukiko
Author_xml – sequence: 1
  givenname: William
  surname: O'Brien
  fullname: O'Brien, William
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 2
  givenname: Brian M.
  surname: Fissel
  fullname: Fissel, Brian M.
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 3
  givenname: Yukiko
  surname: Maeda
  fullname: Maeda, Yukiko
  organization: University of Massachusetts Medical School
– sequence: 4
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 5
  givenname: Xianpeng
  surname: Ge
  fullname: Ge, Xianpeng
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 6
  givenname: Ellen M.
  surname: Gravallese
  fullname: Gravallese, Ellen M.
  organization: University of Massachusetts Medical School
– sequence: 7
  givenname: Antonios O.
  surname: Aliprantis
  fullname: Aliprantis, Antonios O.
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 8
  givenname: Julia F.
  surname: Charles
  fullname: Charles, Julia F.
  email: jfcharles@partners.org
  organization: Brigham and Women's Hospital and Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27563728$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1KxDAQAOAgiv8HX0AKXvSwmjRpkx5X8WdRFBY9l2maYKRN1iSL7M1H8Bl9EuPu6kFQzCEJ4ZsJM7OFVq2zCqE9go8JxvkJ-HhMK0H5CtrMaV4OihwXq193UpENtBvCE06r4rjExTrayHlRUp6LTTQeD2-v31_fRrZVE5U2G7O7EJWTHYSYXTjfQzTOZmDb7DT9nJ17Fz4fjM1GVnfQJ-D8LBv6-OhNNGEHrWnogtpdntvo4eL8_uxqcHN3OTob3gwkE5wPOAjdSKpL4BVrQHLZNAwEKIbbljdSEw0tMK1L3fBK0lxhVZaSE1CEEMbpNjpc5J149zxVIda9CVJ1HVjlpqEmohSU5anif1BaJCwoSfTgB31yU29TIUkxxpmgFCe1v1TTpldtPfGmBz-rvxqbwNECyNSu4JX-JgTXn3Or09zq-dySPflhpYnzrkcPpvsr4sV0avZ76no4vl9EfAD2lKmK
CitedBy_id crossref_primary_10_1073_pnas_2006093117
crossref_primary_10_1038_s41419_019_1594_1
crossref_primary_10_1038_s41467_021_22454_z
crossref_primary_10_1007_s00018_018_2817_9
crossref_primary_10_1093_rb_rbaa006
crossref_primary_10_1097_BOR_0000000000000449
crossref_primary_10_1007_s00296_018_4218_7
crossref_primary_10_3390_ph17070963
crossref_primary_10_1002_jbm4_10350
crossref_primary_10_1007_s11914_023_00788_5
crossref_primary_10_1038_s41598_023_42231_w
crossref_primary_10_1016_j_intimp_2020_107219
crossref_primary_10_3389_fphar_2022_821492
crossref_primary_10_1088_1361_6498_ac125b
crossref_primary_10_2139_ssrn_4093540
crossref_primary_10_3389_fimmu_2017_01376
crossref_primary_10_1073_pnas_2218019120
crossref_primary_10_1016_j_bonr_2020_100258
crossref_primary_10_1016_j_bonr_2021_100757
crossref_primary_10_1172_JCI141008
crossref_primary_10_1038_s41419_020_2548_3
crossref_primary_10_1242_jcs_213967
crossref_primary_10_1038_s41374_022_00772_0
crossref_primary_10_1002_ejp_1662
crossref_primary_10_1177_1721727X231194595
crossref_primary_10_1016_j_exger_2021_111596
crossref_primary_10_3389_fimmu_2019_00629
crossref_primary_10_1155_2018_2318386
crossref_primary_10_1002_art_39835
crossref_primary_10_1002_jcp_25875
crossref_primary_10_3389_fimmu_2018_02263
crossref_primary_10_1007_s00774_020_01191_1
crossref_primary_10_1111_cei_13188
crossref_primary_10_1002_jcp_31299
crossref_primary_10_1186_s12969_022_00698_3
crossref_primary_10_12677_ACM_2024_142395
crossref_primary_10_1002_jor_23780
crossref_primary_10_1016_j_intimp_2022_109095
crossref_primary_10_1093_rheumatology_kex386
crossref_primary_10_1111_jam_14776
crossref_primary_10_3892_etm_2024_12706
crossref_primary_10_3389_fimmu_2019_00097
crossref_primary_10_1038_s41586_020_2222_z
crossref_primary_10_1016_j_bone_2024_117181
crossref_primary_10_1111_jcmm_15052
crossref_primary_10_1093_toxsci_kfae109
crossref_primary_10_3390_jcm8122091
crossref_primary_10_1002_art_40194
crossref_primary_10_1002_JPER_18_0630
crossref_primary_10_1002_acr2_11060
crossref_primary_10_1016_j_eng_2025_03_014
crossref_primary_10_1038_s41590_019_0526_7
crossref_primary_10_3390_ijms20102583
crossref_primary_10_1146_annurev_pathmechdis_031521_040919
crossref_primary_10_1172_JCI93356
crossref_primary_10_1097_JD9_0000000000000141
crossref_primary_10_1016_j_taap_2019_114702
crossref_primary_10_1080_25785826_2023_2220931
crossref_primary_10_1515_reveh_2023_0024
crossref_primary_10_1016_j_autrev_2021_102884
crossref_primary_10_1016_j_jaut_2019_102382
crossref_primary_10_3389_fcimb_2023_1275086
crossref_primary_10_1002_art_42478
crossref_primary_10_1096_fj_202402831R
crossref_primary_10_1186_s12891_018_2356_4
crossref_primary_10_1002_art_41666
crossref_primary_10_1002_jor_25102
crossref_primary_10_1007_s00281_019_00753_4
crossref_primary_10_1186_s12903_022_02165_7
crossref_primary_10_1093_jbmr_zjae015
crossref_primary_10_3390_cells9102157
crossref_primary_10_3390_ijms25052688
crossref_primary_10_1016_j_jse_2017_10_030
crossref_primary_10_3390_ijms23105725
crossref_primary_10_1111_imm_13855
crossref_primary_10_1016_j_isci_2024_110734
crossref_primary_10_3390_ijms222010922
crossref_primary_10_1016_j_atherosclerosis_2020_02_016
crossref_primary_10_3389_fimmu_2025_1551542
crossref_primary_10_3390_biomedicines10123096
crossref_primary_10_1248_bpb_b20_00517
crossref_primary_10_3390_ijms23094693
crossref_primary_10_3389_fpain_2022_1030899
crossref_primary_10_1152_physrev_00036_2016
crossref_primary_10_3389_fmed_2022_962969
crossref_primary_10_1056_NEJMra2103726
crossref_primary_10_1210_clinem_dgad711
crossref_primary_10_1126_scitranslmed_aaw4626
crossref_primary_10_1084_jem_20211539
crossref_primary_10_1002_jcp_30849
crossref_primary_10_1007_s00223_017_0380_2
crossref_primary_10_1021_acsnano_2c11777
crossref_primary_10_1097_j_pain_0000000000002543
crossref_primary_10_3389_fendo_2022_779264
crossref_primary_10_1016_j_bone_2024_117262
crossref_primary_10_1016_j_bbrc_2020_02_079
crossref_primary_10_3390_ijms21103620
crossref_primary_10_1016_j_pharmthera_2024_108635
crossref_primary_10_1101_cshperspect_a031245
crossref_primary_10_1007_s00011_018_1195_y
crossref_primary_10_1007_s11914_020_00610_6
crossref_primary_10_1172_JCI151827
crossref_primary_10_3389_fimmu_2021_687037
crossref_primary_10_3390_molecules28041693
crossref_primary_10_1007_s40200_021_00945_6
crossref_primary_10_4110_in_2019_19_e2
crossref_primary_10_3389_fcell_2022_966950
crossref_primary_10_1146_annurev_physiol_021119_034332
Cites_doi 10.1016/j.tem.2012.05.005
10.1002/art.11481
10.1002/art.23417
10.1016/S0165-2478(02)00202-X
10.1084/jem.20050978
10.1084/jem.20051150
10.1073/pnas.1206392110
10.1172/JCI35711
10.1359/jbmr.090320
10.1038/nrrheum.2012.153
10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P
10.1002/jbmr.4
10.4049/jimmunol.0803007
10.3892/ijo.2015.3009
10.1172/JCI46262
10.1172/JCI60920
10.1093/rheumatology/keu284
10.1136/ard.2006.057497
10.1073/pnas.0401602101
10.1182/blood-2004-08-3171
10.1074/jbc.275.7.4858
10.1111/j.0105-2896.2009.00849.x
10.1124/pr.114.009639
10.1016/j.archoralbio.2015.06.002
10.1002/art.38218
10.1002/art.38286
10.1359/JBMR.0301233
10.1002/art.27659
10.1016/j.bone.2010.12.023
10.1186/1471-2105-13-134
10.1136/annrheumdis-2014-207137
10.1038/nature09387
10.1172/JCI11176
10.1016/S0002-9440(10)63016-7
10.1084/jem.20020439
10.1172/JCI71882
10.1053/berh.2000.0124
10.1111/j.1365-2249.2012.04601.x
10.1111/j.0105-2896.2005.00325.x
10.1038/nature02444
10.1016/S1534-5807(02)00369-6
10.1126/science.7660125
10.1002/0471142735.im1522s81
10.1172/JCI0215582
ContentType Journal Article
Copyright 2016, American College of Rheumatology
2016, American College of Rheumatology.
Copyright_xml – notice: 2016, American College of Rheumatology
– notice: 2016, American College of Rheumatology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
DOI 10.1002/art.39837
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts

MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2326-5205
EndPage 2900
ExternalDocumentID 4265702981
27563728
10_1002_art_39837
ART39837
Genre article
Journal Article
GrantInformation_xml – fundername: Bettina Looram Fund
– fundername: Rheumatology Research Foundation
– fundername: NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases)
  funderid: R01‐AR‐055952, R01‐AR‐060363, K08‐AR‐062590
– fundername: National Institute on Aging
  funderid: R01‐AG‐046257
– fundername: Burroughs Wellcome Fund
– fundername: NIAMS NIH HHS
  grantid: R01 AR055952
– fundername: NIAMS NIH HHS
  grantid: K08 AR062590
– fundername: NIA NIH HHS
  grantid: R01 AG046257
– fundername: NIAMS NIH HHS
  grantid: R01 AR060363
GroupedDBID 0R~
1OC
24P
33P
3SF
4.4
52O
52U
52V
53G
5VS
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
DCZOG
DIK
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
FUBAC
G-S
G.N
GODZA
HGLYW
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
NF~
O66
O9-
OK1
OVD
P2W
PQQKQ
QB0
ROL
SUPJJ
SV3
TEORI
V9Y
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
YCJ
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
ID FETCH-LOGICAL-c4877-7a8fbc3f6a794bac7cbb4a8ae40dd7bcf1fada4ff6fb79c32e0e66c71ae111473
ISSN 2326-5191
2326-5205
IngestDate Thu Jul 10 19:19:06 EDT 2025
Fri Jul 11 07:20:11 EDT 2025
Fri Jul 25 10:43:49 EDT 2025
Mon Jul 21 05:47:20 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 00:55:52 EDT 2025
Wed Jan 22 16:51:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016, American College of Rheumatology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4877-7a8fbc3f6a794bac7cbb4a8ae40dd7bcf1fada4ff6fb79c32e0e66c71ae111473
Notes Supported by the NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grant R01‐AR‐055952 to Dr. Gravallese, grant R01‐AR‐060363 to Drs. Aliprantis and Charles, and grant K08‐AR‐062590 to Dr. Charles, and National Institute on Aging grant R01‐AG‐046257 to Drs. Aliprantis and Charles), the Burroughs Wellcome Fund (grant to Dr. Aliprantis), the Rheumatology Research Foundation (grant to Drs. O'Brien, Aliprantis, and Charles), and the Bettina Looram Fund (grant to Dr. Charles).
Dr. O'Brien and Mr. Fissel contributed equally to this work.
Dr. Gravallese has received consulting fees from Lilly, GlaxoSmithKline, Novo Nordisk, Flexion, and AbbVie (less than $10,000 each), research grants from AbbVie and Lilly, and royalties from UpToDate. Dr. Charles receives royalties from UpToDate.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1002/art.39837
PMID 27563728
PQID 1844748330
PQPubID 946334
PageCount 12
ParticipantIDs proquest_miscellaneous_1868342605
proquest_miscellaneous_1835683831
proquest_journals_1844748330
pubmed_primary_27563728
crossref_primary_10_1002_art_39837
crossref_citationtrail_10_1002_art_39837
wiley_primary_10_1002_art_39837_ART39837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheumatol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 101
2009; 24
2012; 122
2002; 110
2010
2002; 196
2000; 43
2015; 54
2008; 58
2016; 75
2008
2002; 3
2000; 275
2004; 428
2012; 169
2012; 13
2014; 66
2010; 62
2015; 67
2015; 47
2004; 50
2010; 25
2015; 60
2004; 19
2002; 84
2000; 106
2005; 202
2010; 233
2005; 105
2005; 208
2008; 118
1995; 269
2001; 15
2009; 183
2015
2011; 48
2013; 110
2007; 66
2012; 23
2001; 159
2012; 8
2011; 121
2014; 124
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Shen J (e_1_2_8_14_1) 2015
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
14969390 - J Bone Miner Res. 2004 Feb;19(2):207-13
26051628 - Transl Res. 2016 Jan;167(1):138-51
15073337 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6158-63
11696430 - Am J Pathol. 2001 Nov;159(5):1689-99
16147974 - J Exp Med. 2005 Sep 5;202(5):589-95
20200955 - J Bone Miner Res. 2010 Jun;25(6):1282-94
16935911 - Ann Rheum Dis. 2007 Mar;66(3):358-63
25329696 - J Clin Invest. 2014 Nov;124(11):5057-73
26025971 - Ann Rheum Dis. 2016 Jun;75(6):1187-95
12479813 - Dev Cell. 2002 Dec;3(6):889-901
24431283 - Arthritis Rheumatol. 2014 Jan;66(1):121-9
20193006 - Immunol Rev. 2010 Jan;233(1):286-300
12438440 - J Clin Invest. 2002 Nov;110(10):1419-27
11120755 - J Clin Invest. 2000 Dec;106(12):1481-8
21737885 - J Clin Invest. 2011 Jul;121(7):2534-42
7660125 - Science. 1995 Sep 8;269(5229):1427-9
19587010 - J Immunol. 2009 Aug 1;183(3):1862-70
20881962 - Nature. 2010 Nov 4;468(7320):98-102
22708584 - BMC Bioinformatics. 2012 Jun 18;13:134
16275763 - J Exp Med. 2005 Nov 7;202(9):1261-9
11358413 - Best Pract Res Clin Rheumatol. 2001 Mar;15(1):27-48
24574213 - Arthritis Rheumatol. 2014 Mar;66(3):538-48
18846253 - J Clin Invest. 2008 Nov;118(11):3775-89
14730597 - Arthritis Rheum. 2004 Jan;50(1):36-42
10671521 - J Biol Chem. 2000 Feb 18;275(7):4858-64
18438830 - Arthritis Rheum. 2008 May;58(5):1299-309
23007741 - Nat Rev Rheumatol. 2012 Nov;8(11):656-64
18491295 - Curr Protoc Immunol. 2008 May;Chapter 15:Unit 15.22
16313340 - Immunol Rev. 2005 Dec;208:50-65
25065011 - Rheumatology (Oxford). 2015 Jan;54(1):83-90
20662064 - Arthritis Rheum. 2010 Nov;62(11):3322-33
15507530 - Blood. 2005 Feb 15;105(4):1777-84
22705116 - Trends Endocrinol Metab. 2012 Nov;23(11):582-90
25697599 - Pharmacol Rev. 2015;67(2):280-309
21193069 - Bone. 2011 Apr 1;48(4):938-44
23114597 - J Clin Invest. 2012 Dec;122(12):4592-605
22774981 - Clin Exp Immunol. 2012 Aug;169(2):71-8
26099662 - Arch Oral Biol. 2015 Sep;60(9):1273-82
23341620 - Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2163-8
10693863 - Arthritis Rheum. 2000 Feb;43(2):250-8
25997536 - Int J Oncol. 2015 Jul;47(1):391-7
12093872 - J Exp Med. 2002 Jul 1;196(1):77-85
15085135 - Nature. 2004 Apr 15;428(6984):758-63
19338457 - J Bone Miner Res. 2009 Sep;24(9):1572-85
12413742 - Immunol Lett. 2002 Dec 3;84(3):231-40
References_xml – volume: 13
  start-page: 134
  year: 2012
  article-title: Primer‐BLAST: a tool to design target‐specific primers for polymerase chain reaction
  publication-title: BMC Bioinformatics
– volume: 67
  start-page: 280
  year: 2015
  end-page: 309
  article-title: Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases
  publication-title: Pharmacol Rev
– volume: 43
  start-page: 250
  year: 2000
  end-page: 8
  article-title: Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor
  publication-title: Arthritis Rheum
– volume: 3
  start-page: 889
  year: 2002
  end-page: 901
  article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
  publication-title: Dev Cell
– volume: 54
  start-page: 83
  year: 2015
  end-page: 90
  article-title: Relationship between types of radiographic damage and disability in patients with rheumatoid arthritis in the EURIDISS cohort: a longitudinal study
  publication-title: Rheumatology (Oxford)
– volume: 19
  start-page: 207
  year: 2004
  end-page: 13
  article-title: RANK signaling is not required for TNFα‐mediated increase in CD11 osteoclast precursors but is essential for mature osteoclast formation in TNFα‐mediated inflammatory arthritis
  publication-title: J Bone Miner Res
– volume: 122
  start-page: 4592
  year: 2012
  end-page: 605
  article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
  publication-title: J Clin Invest
– volume: 275
  start-page: 4858
  year: 2000
  end-page: 64
  article-title: Tumor necrosis factor‐α induces differentiation of and bone resorption by osteoclasts
  publication-title: J Biol Chem
– volume: 121
  start-page: 2534
  year: 2011
  end-page: 42
  article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection
  publication-title: J Clin Invest
– volume: 159
  start-page: 1689
  year: 2001
  end-page: 99
  article-title: TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis
  publication-title: Am J Pathol
– volume: 66
  start-page: 121
  year: 2014
  end-page: 9
  article-title: Combination of tumor necrosis factor α and interleukin‐6 induces mouse osteoclast‐like cells with bone resorption activity both in vitro and in vivo
  publication-title: Arthritis Rheumatol
– volume: 48
  start-page: 938
  year: 2011
  end-page: 44
  article-title: RANKL‐independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II
  publication-title: Bone
– volume: 47
  start-page: 391
  year: 2015
  end-page: 7
  article-title: Human mesenchymal stem cells enhance cancer cell proliferation via IL‐6 secretion and activation of ERK1/2
  publication-title: Int J Oncol
– volume: 169
  start-page: 71
  year: 2012
  end-page: 8
  article-title: K/BxN serum transfer arthritis is delayed and less severe in leukaemia inhibitory factor (LIF)‐deficient mice
  publication-title: Clin Exp Immunol
– volume: 124
  start-page: 5057
  year: 2014
  end-page: 73
  article-title: RBP‐J imposes a requirement for ITAM‐mediated costimulation of osteoclastogenesis
  publication-title: J Clin Invest
– volume: 101
  start-page: 6158
  year: 2004
  end-page: 63
  article-title: The immunomodulatory adapter proteins DAP12 and Fc receptor γ‐chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 656
  year: 2012
  end-page: 64
  article-title: Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment
  publication-title: Nat Rev Rheumatol
– volume: 202
  start-page: 589
  year: 2005
  end-page: 95
  article-title: Osteoclast differentiation independent of the TRANCE‐RANK‐TRAF6 axis
  publication-title: J Exp Med
– volume: 66
  start-page: 358
  year: 2007
  end-page: 63
  article-title: Radiological damage in patients with rheumatoid arthritis on sustained remission
  publication-title: Ann Rheum Dis
– volume: 110
  start-page: 2163
  year: 2013
  end-page: 8
  article-title: SLC4A2‐mediated Cl / exchange activity is essential for calpain‐dependent regulation of the actin cytoskeleton in osteoclasts
  publication-title: Proc Natl Acad Sci U S A
– volume: 233
  start-page: 286
  year: 2010
  end-page: 300
  article-title: Transcriptional regulation of bone and joint remodeling by NFAT
  publication-title: Immunol Rev
– volume: 50
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission
  publication-title: Arthritis Rheum
– volume: 269
  start-page: 1427
  year: 1995
  end-page: 9
  article-title: Inducible gene targeting in mice
  publication-title: Science
– volume: 196
  start-page: 77
  year: 2002
  end-page: 85
  article-title: Critical roles for interleukin 1 and tumor necrosis factor α in antibody‐induced arthritis
  publication-title: J Exp Med
– year: 2010
  article-title: Osteoclast differentiation factor RANKL controls development of progestin‐driven mammary cancer
  publication-title: Nature
– volume: 428
  start-page: 758
  year: 2004
  end-page: 63
  article-title: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
  publication-title: Nature
– year: 2008
  article-title: The K/BxN arthritis model
  publication-title: Curr Protoc Immunol
– volume: 208
  start-page: 50
  year: 2005
  end-page: 65
  article-title: Role of ITAM‐containing adapter proteins and their receptors in the immune system and bone
  publication-title: Immunol Rev
– volume: 15
  start-page: 27
  year: 2001
  end-page: 48
  article-title: What is the natural history of rheumatoid arthritis?
  publication-title: Best Pract Res Clin Rheumatol
– volume: 60
  start-page: 1273
  year: 2015
  end-page: 82
  article-title: RANKL pretreatment plays an important role in the differentiation of pit‐forming osteoclasts induced by TNF‐α on murine bone marrow macrophages
  publication-title: Arch Oral Biol
– volume: 105
  start-page: 1777
  year: 2005
  end-page: 84
  article-title: BCL‐6 negatively regulates macrophage proliferation by suppressing autocrine IL‐6 production
  publication-title: Blood
– volume: 62
  start-page: 3322
  year: 2010
  end-page: 33
  article-title: C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcγ receptor modulation
  publication-title: Arthritis Rheum
– volume: 75
  start-page: 1187
  year: 2016
  end-page: 95
  article-title: RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation
  publication-title: Ann Rheum Dis
– volume: 25
  start-page: 1282
  year: 2010
  end-page: 94
  article-title: IKKβ activation is sufficient for RANK‐independent osteoclast differentiation and osteolysis
  publication-title: J Bone Miner Res
– year: 2015
  article-title: Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis
  publication-title: Transl Res
– volume: 118
  start-page: 3775
  year: 2008
  end-page: 89
  article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
  publication-title: J Clin Invest
– volume: 23
  start-page: 582
  year: 2012
  end-page: 90
  article-title: New insights into osteoclastogenic signaling mechanisms
  publication-title: Trends Endocrinol Metab
– volume: 106
  start-page: 1481
  year: 2000
  end-page: 8
  article-title: TNF‐α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
  publication-title: J Clin Invest
– volume: 66
  start-page: 538
  year: 2014
  end-page: 48
  article-title: Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell‐derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis
  publication-title: Arthritis Rheumatol
– volume: 58
  start-page: 1299
  year: 2008
  end-page: 309
  article-title: Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve‐month, multicenter, randomized, double‐blind, placebo‐controlled, phase II clinical trial
  publication-title: Arthritis Rheum
– volume: 84
  start-page: 231
  year: 2002
  end-page: 40
  article-title: Characterization of anti‐mouse interleukin‐6 receptor antibody
  publication-title: Immunol Lett
– volume: 110
  start-page: 1419
  year: 2002
  end-page: 27
  article-title: Osteoclasts are essential for TNF‐α‐mediated joint destruction
  publication-title: J Clin Invest
– volume: 24
  start-page: 1572
  year: 2009
  end-page: 85
  article-title: Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis
  publication-title: J Bone Miner Res
– volume: 202
  start-page: 1261
  year: 2005
  end-page: 9
  article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
  publication-title: J Exp Med
– volume: 183
  start-page: 1862
  year: 2009
  end-page: 70
  article-title: The mechanism of osteoclast differentiation induced by IL‐1
  publication-title: J Immunol
– ident: e_1_2_8_10_1
  doi: 10.1016/j.tem.2012.05.005
– ident: e_1_2_8_6_1
  doi: 10.1002/art.11481
– ident: e_1_2_8_27_1
  doi: 10.1002/art.23417
– ident: e_1_2_8_34_1
  doi: 10.1016/S0165-2478(02)00202-X
– ident: e_1_2_8_23_1
  doi: 10.1084/jem.20050978
– ident: e_1_2_8_38_1
  doi: 10.1084/jem.20051150
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.1206392110
– ident: e_1_2_8_29_1
  doi: 10.1172/JCI35711
– ident: e_1_2_8_35_1
  doi: 10.1359/jbmr.090320
– ident: e_1_2_8_2_1
  doi: 10.1038/nrrheum.2012.153
– ident: e_1_2_8_7_1
  doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P
– ident: e_1_2_8_43_1
  doi: 10.1002/jbmr.4
– ident: e_1_2_8_17_1
  doi: 10.4049/jimmunol.0803007
– ident: e_1_2_8_39_1
  doi: 10.3892/ijo.2015.3009
– ident: e_1_2_8_9_1
  doi: 10.1172/JCI46262
– ident: e_1_2_8_33_1
  doi: 10.1172/JCI60920
– ident: e_1_2_8_4_1
  doi: 10.1093/rheumatology/keu284
– ident: e_1_2_8_5_1
  doi: 10.1136/ard.2006.057497
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.0401602101
– ident: e_1_2_8_40_1
  doi: 10.1182/blood-2004-08-3171
– ident: e_1_2_8_20_1
  doi: 10.1074/jbc.275.7.4858
– ident: e_1_2_8_13_1
  doi: 10.1111/j.0105-2896.2009.00849.x
– ident: e_1_2_8_15_1
  doi: 10.1124/pr.114.009639
– ident: e_1_2_8_19_1
  doi: 10.1016/j.archoralbio.2015.06.002
– ident: e_1_2_8_25_1
  doi: 10.1002/art.38218
– ident: e_1_2_8_24_1
  doi: 10.1002/art.38286
– ident: e_1_2_8_26_1
  doi: 10.1359/JBMR.0301233
– year: 2015
  ident: e_1_2_8_14_1
  article-title: Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis
  publication-title: Transl Res
– ident: e_1_2_8_37_1
  doi: 10.1002/art.27659
– ident: e_1_2_8_21_1
  doi: 10.1016/j.bone.2010.12.023
– ident: e_1_2_8_46_1
  doi: 10.1186/1471-2105-13-134
– ident: e_1_2_8_16_1
  doi: 10.1136/annrheumdis-2014-207137
– ident: e_1_2_8_28_1
  doi: 10.1038/nature09387
– ident: e_1_2_8_18_1
  doi: 10.1172/JCI11176
– ident: e_1_2_8_8_1
  doi: 10.1016/S0002-9440(10)63016-7
– ident: e_1_2_8_41_1
  doi: 10.1084/jem.20020439
– ident: e_1_2_8_22_1
  doi: 10.1172/JCI71882
– ident: e_1_2_8_3_1
  doi: 10.1053/berh.2000.0124
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1365-2249.2012.04601.x
– ident: e_1_2_8_11_1
  doi: 10.1111/j.0105-2896.2005.00325.x
– ident: e_1_2_8_12_1
  doi: 10.1038/nature02444
– ident: e_1_2_8_44_1
  doi: 10.1016/S1534-5807(02)00369-6
– ident: e_1_2_8_30_1
  doi: 10.1126/science.7660125
– ident: e_1_2_8_36_1
  doi: 10.1002/0471142735.im1522s81
– ident: e_1_2_8_42_1
  doi: 10.1172/JCI0215582
– reference: 12413742 - Immunol Lett. 2002 Dec 3;84(3):231-40
– reference: 16935911 - Ann Rheum Dis. 2007 Mar;66(3):358-63
– reference: 20662064 - Arthritis Rheum. 2010 Nov;62(11):3322-33
– reference: 19338457 - J Bone Miner Res. 2009 Sep;24(9):1572-85
– reference: 26099662 - Arch Oral Biol. 2015 Sep;60(9):1273-82
– reference: 21193069 - Bone. 2011 Apr 1;48(4):938-44
– reference: 25697599 - Pharmacol Rev. 2015;67(2):280-309
– reference: 16147974 - J Exp Med. 2005 Sep 5;202(5):589-95
– reference: 14730597 - Arthritis Rheum. 2004 Jan;50(1):36-42
– reference: 23114597 - J Clin Invest. 2012 Dec;122(12):4592-605
– reference: 23341620 - Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2163-8
– reference: 22705116 - Trends Endocrinol Metab. 2012 Nov;23(11):582-90
– reference: 16275763 - J Exp Med. 2005 Nov 7;202(9):1261-9
– reference: 26025971 - Ann Rheum Dis. 2016 Jun;75(6):1187-95
– reference: 12093872 - J Exp Med. 2002 Jul 1;196(1):77-85
– reference: 14969390 - J Bone Miner Res. 2004 Feb;19(2):207-13
– reference: 26051628 - Transl Res. 2016 Jan;167(1):138-51
– reference: 11696430 - Am J Pathol. 2001 Nov;159(5):1689-99
– reference: 24574213 - Arthritis Rheumatol. 2014 Mar;66(3):538-48
– reference: 7660125 - Science. 1995 Sep 8;269(5229):1427-9
– reference: 12479813 - Dev Cell. 2002 Dec;3(6):889-901
– reference: 20881962 - Nature. 2010 Nov 4;468(7320):98-102
– reference: 10671521 - J Biol Chem. 2000 Feb 18;275(7):4858-64
– reference: 18846253 - J Clin Invest. 2008 Nov;118(11):3775-89
– reference: 18491295 - Curr Protoc Immunol. 2008 May;Chapter 15:Unit 15.22
– reference: 15507530 - Blood. 2005 Feb 15;105(4):1777-84
– reference: 21737885 - J Clin Invest. 2011 Jul;121(7):2534-42
– reference: 22774981 - Clin Exp Immunol. 2012 Aug;169(2):71-8
– reference: 25065011 - Rheumatology (Oxford). 2015 Jan;54(1):83-90
– reference: 24431283 - Arthritis Rheumatol. 2014 Jan;66(1):121-9
– reference: 15073337 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6158-63
– reference: 20200955 - J Bone Miner Res. 2010 Jun;25(6):1282-94
– reference: 19587010 - J Immunol. 2009 Aug 1;183(3):1862-70
– reference: 18438830 - Arthritis Rheum. 2008 May;58(5):1299-309
– reference: 10693863 - Arthritis Rheum. 2000 Feb;43(2):250-8
– reference: 11120755 - J Clin Invest. 2000 Dec;106(12):1481-8
– reference: 20193006 - Immunol Rev. 2010 Jan;233(1):286-300
– reference: 16313340 - Immunol Rev. 2005 Dec;208:50-65
– reference: 15085135 - Nature. 2004 Apr 15;428(6984):758-63
– reference: 22708584 - BMC Bioinformatics. 2012 Jun 18;13:134
– reference: 11358413 - Best Pract Res Clin Rheumatol. 2001 Mar;15(1):27-48
– reference: 12438440 - J Clin Invest. 2002 Nov;110(10):1419-27
– reference: 25997536 - Int J Oncol. 2015 Jul;47(1):391-7
– reference: 25329696 - J Clin Invest. 2014 Nov;124(11):5057-73
– reference: 23007741 - Nat Rev Rheumatol. 2012 Nov;8(11):656-64
SSID ssj0000970605
Score 2.5430639
Snippet Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that...
Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations...
Objective Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2889
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Animals
Arthritis
Arthritis, Experimental - genetics
Arthritis, Experimental - immunology
Bone Resorption - genetics
Bone Resorption - immunology
Cell growth
Cell Proliferation - drug effects
Cell Proliferation - genetics
Enzyme Inhibitors - pharmacology
Hydroxyurea - pharmacology
In Vitro Techniques
Interleukin-6 - pharmacology
Mice
Mice, Knockout
NFATC Transcription Factors - genetics
Osteogenesis - drug effects
Osteogenesis - genetics
Osteogenesis - immunology
Osteoprotegerin - pharmacology
RANK Ligand - pharmacology
Real-Time Polymerase Chain Reaction
Receptor Activator of Nuclear Factor-kappa B - genetics
Receptors, IgG - genetics
Receptors, Interleukin-6 - antagonists & inhibitors
Rodents
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-TNF
X-Ray Microtomography
Title RANK‐Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39837
https://www.ncbi.nlm.nih.gov/pubmed/27563728
https://www.proquest.com/docview/1844748330
https://www.proquest.com/docview/1835683831
https://www.proquest.com/docview/1868342605
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUJcEG8KCwoIJKRVShI7tnPsolbtProItVI5RbbjaFeFBpX0wj_iXzK2UzfdXZbHJYqcaet4vo5n7PE3CL0haUZ1VhYhUzoKiZYqlCIqQgUhM9UcE6rMaeTTCR3NyNE8nXc6P1tZS-ta9tSPa8-V_I9WoQ30ak7J_oNm_ZdCA9yDfuEKGobrX-n4U39yHI59Idv64Ax0VilwiOuD4eZUot0eOKzAmRzAjNikNo6XJUDhq9ti76_qc8tt1PZUfaMFx-pcr420JWwCp3RUyWqhm7NaR732au3bhB0a8mSbvedWczxIzOa_2-ZYGcOyzSAQurBe7Of14mJReVPkVmePNtNrszoR00uZHn-2gVt7B74dDcGhdJ_WrbYkStsGm_I2MJO2-eWuHtGVecHxzIKiejjjjmVml3t7cpYPZycn-XQwn-4-tXM9-DEpM2z1EGjfSiAisdH7-Ngv50WZoSFKbSnD5jU2PFZR8t7_8K73cyWk2Y2QrIszvYfuNrFJ0HdAu486evkA3T5tsi8eoo-X8RZs8RZ4vAWAt8DgLWjwFlwsgzbeAg-tR2g2HEw_jMKmIkeoILBlIRO8lAqXVIAZl0IxJSURXGgSFQWTqoxLUQhSlrSULFM40ZGmVLFYaJhTCcOP0d4SOvAUBVqWMRiQOElERgpJMy2TOGKaS0P5SGUXvduMVK4aunpTNeVL7oi2kxwGNbeD2kWvveg3x9FyndD-Zrjz5i_8PY85IYxwjKMueuUfg4E1u2Ziqau1kcEp5Zjj-CYZkDC1HtIueuJU6Xti6itglnB4Iavb33cxhxDW3jy7ua_P0Z3tX20f7dWrtX4BrnEtX1pQ_gIt2LmY
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RANK-Independent+Osteoclast+Formation+and+Bone+Erosion+in+Inflammatory+Arthritis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=O%27Brien%2C+William&rft.au=Fissel%2C+Brian+M&rft.au=Maeda%2C+Yukiko&rft.au=Yan%2C+Jing&rft.date=2016-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=68&rft.issue=12&rft.spage=2889&rft_id=info:doi/10.1002%2Fart.39837&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4265702981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon