RANK‐Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis
Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purp...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 12; pp. 2889 - 2900 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL‐6–induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis.
Methods
Myeloid precursors from wild‐type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL‐6. Osteoprotegerin, anti–IL‐6 receptor (anti–IL‐6R), and hydroxyurea were used to block RANKL, the IL‐6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro–computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum–transfer arthritis in WT and RANK‐deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures.
Results
TNF/IL‐6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL‐6R, NFATc1, DNAX‐activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL‐6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL‐6 family members (IL‐6, leukemia inhibitory factor, oncostatin M) were up‐regulated in the synovium of arthritic mice.
Conclusion
The persistence of bone erosion and synovial osteoclasts in Rank‐deficient mice, and the ability of TNF/IL‐6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone‐resorbing cells in inflamed joints. |
---|---|
AbstractList | Objective Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Methods Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. Results TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice. Conclusion The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints. Objective Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin‐6 (IL‐6), induce RANKL‐independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL‐6–induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Methods Myeloid precursors from wild‐type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL‐6. Osteoprotegerin, anti–IL‐6 receptor (anti–IL‐6R), and hydroxyurea were used to block RANKL, the IL‐6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro–computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum–transfer arthritis in WT and RANK‐deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. Results TNF/IL‐6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL‐6R, NFATc1, DNAX‐activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL‐6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL‐6 family members (IL‐6, leukemia inhibitory factor, oncostatin M) were up‐regulated in the synovium of arthritic mice. Conclusion The persistence of bone erosion and synovial osteoclasts in Rank‐deficient mice, and the ability of TNF/IL‐6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone‐resorbing cells in inflamed joints. Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis.OBJECTIVEProinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis.Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures.METHODSMyeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures.TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice.RESULTSTNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice.The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.CONCLUSIONThe persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints. Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice. The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints. |
Author | O'Brien, William Aliprantis, Antonios O. Charles, Julia F. Ge, Xianpeng Yan, Jing Gravallese, Ellen M. Fissel, Brian M. Maeda, Yukiko |
Author_xml | – sequence: 1 givenname: William surname: O'Brien fullname: O'Brien, William organization: Brigham and Women's Hospital and Harvard Medical School – sequence: 2 givenname: Brian M. surname: Fissel fullname: Fissel, Brian M. organization: Brigham and Women's Hospital and Harvard Medical School – sequence: 3 givenname: Yukiko surname: Maeda fullname: Maeda, Yukiko organization: University of Massachusetts Medical School – sequence: 4 givenname: Jing surname: Yan fullname: Yan, Jing organization: Brigham and Women's Hospital and Harvard Medical School – sequence: 5 givenname: Xianpeng surname: Ge fullname: Ge, Xianpeng organization: Brigham and Women's Hospital and Harvard Medical School – sequence: 6 givenname: Ellen M. surname: Gravallese fullname: Gravallese, Ellen M. organization: University of Massachusetts Medical School – sequence: 7 givenname: Antonios O. surname: Aliprantis fullname: Aliprantis, Antonios O. organization: Brigham and Women's Hospital and Harvard Medical School – sequence: 8 givenname: Julia F. surname: Charles fullname: Charles, Julia F. email: jfcharles@partners.org organization: Brigham and Women's Hospital and Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27563728$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1KxDAQAOAgiv8HX0AKXvSwmjRpkx5X8WdRFBY9l2maYKRN1iSL7M1H8Bl9EuPu6kFQzCEJ4ZsJM7OFVq2zCqE9go8JxvkJ-HhMK0H5CtrMaV4OihwXq193UpENtBvCE06r4rjExTrayHlRUp6LTTQeD2-v31_fRrZVE5U2G7O7EJWTHYSYXTjfQzTOZmDb7DT9nJ17Fz4fjM1GVnfQJ-D8LBv6-OhNNGEHrWnogtpdntvo4eL8_uxqcHN3OTob3gwkE5wPOAjdSKpL4BVrQHLZNAwEKIbbljdSEw0tMK1L3fBK0lxhVZaSE1CEEMbpNjpc5J149zxVIda9CVJ1HVjlpqEmohSU5anif1BaJCwoSfTgB31yU29TIUkxxpmgFCe1v1TTpldtPfGmBz-rvxqbwNECyNSu4JX-JgTXn3Or09zq-dySPflhpYnzrkcPpvsr4sV0avZ76no4vl9EfAD2lKmK |
CitedBy_id | crossref_primary_10_1073_pnas_2006093117 crossref_primary_10_1038_s41419_019_1594_1 crossref_primary_10_1038_s41467_021_22454_z crossref_primary_10_1007_s00018_018_2817_9 crossref_primary_10_1093_rb_rbaa006 crossref_primary_10_1097_BOR_0000000000000449 crossref_primary_10_1007_s00296_018_4218_7 crossref_primary_10_3390_ph17070963 crossref_primary_10_1002_jbm4_10350 crossref_primary_10_1007_s11914_023_00788_5 crossref_primary_10_1038_s41598_023_42231_w crossref_primary_10_1016_j_intimp_2020_107219 crossref_primary_10_3389_fphar_2022_821492 crossref_primary_10_1088_1361_6498_ac125b crossref_primary_10_2139_ssrn_4093540 crossref_primary_10_3389_fimmu_2017_01376 crossref_primary_10_1073_pnas_2218019120 crossref_primary_10_1016_j_bonr_2020_100258 crossref_primary_10_1016_j_bonr_2021_100757 crossref_primary_10_1172_JCI141008 crossref_primary_10_1038_s41419_020_2548_3 crossref_primary_10_1242_jcs_213967 crossref_primary_10_1038_s41374_022_00772_0 crossref_primary_10_1002_ejp_1662 crossref_primary_10_1177_1721727X231194595 crossref_primary_10_1016_j_exger_2021_111596 crossref_primary_10_3389_fimmu_2019_00629 crossref_primary_10_1155_2018_2318386 crossref_primary_10_1002_art_39835 crossref_primary_10_1002_jcp_25875 crossref_primary_10_3389_fimmu_2018_02263 crossref_primary_10_1007_s00774_020_01191_1 crossref_primary_10_1111_cei_13188 crossref_primary_10_1002_jcp_31299 crossref_primary_10_1186_s12969_022_00698_3 crossref_primary_10_12677_ACM_2024_142395 crossref_primary_10_1002_jor_23780 crossref_primary_10_1016_j_intimp_2022_109095 crossref_primary_10_1093_rheumatology_kex386 crossref_primary_10_1111_jam_14776 crossref_primary_10_3892_etm_2024_12706 crossref_primary_10_3389_fimmu_2019_00097 crossref_primary_10_1038_s41586_020_2222_z crossref_primary_10_1016_j_bone_2024_117181 crossref_primary_10_1111_jcmm_15052 crossref_primary_10_1093_toxsci_kfae109 crossref_primary_10_3390_jcm8122091 crossref_primary_10_1002_art_40194 crossref_primary_10_1002_JPER_18_0630 crossref_primary_10_1002_acr2_11060 crossref_primary_10_1016_j_eng_2025_03_014 crossref_primary_10_1038_s41590_019_0526_7 crossref_primary_10_3390_ijms20102583 crossref_primary_10_1146_annurev_pathmechdis_031521_040919 crossref_primary_10_1172_JCI93356 crossref_primary_10_1097_JD9_0000000000000141 crossref_primary_10_1016_j_taap_2019_114702 crossref_primary_10_1080_25785826_2023_2220931 crossref_primary_10_1515_reveh_2023_0024 crossref_primary_10_1016_j_autrev_2021_102884 crossref_primary_10_1016_j_jaut_2019_102382 crossref_primary_10_3389_fcimb_2023_1275086 crossref_primary_10_1002_art_42478 crossref_primary_10_1096_fj_202402831R crossref_primary_10_1186_s12891_018_2356_4 crossref_primary_10_1002_art_41666 crossref_primary_10_1002_jor_25102 crossref_primary_10_1007_s00281_019_00753_4 crossref_primary_10_1186_s12903_022_02165_7 crossref_primary_10_1093_jbmr_zjae015 crossref_primary_10_3390_cells9102157 crossref_primary_10_3390_ijms25052688 crossref_primary_10_1016_j_jse_2017_10_030 crossref_primary_10_3390_ijms23105725 crossref_primary_10_1111_imm_13855 crossref_primary_10_1016_j_isci_2024_110734 crossref_primary_10_3390_ijms222010922 crossref_primary_10_1016_j_atherosclerosis_2020_02_016 crossref_primary_10_3389_fimmu_2025_1551542 crossref_primary_10_3390_biomedicines10123096 crossref_primary_10_1248_bpb_b20_00517 crossref_primary_10_3390_ijms23094693 crossref_primary_10_3389_fpain_2022_1030899 crossref_primary_10_1152_physrev_00036_2016 crossref_primary_10_3389_fmed_2022_962969 crossref_primary_10_1056_NEJMra2103726 crossref_primary_10_1210_clinem_dgad711 crossref_primary_10_1126_scitranslmed_aaw4626 crossref_primary_10_1084_jem_20211539 crossref_primary_10_1002_jcp_30849 crossref_primary_10_1007_s00223_017_0380_2 crossref_primary_10_1021_acsnano_2c11777 crossref_primary_10_1097_j_pain_0000000000002543 crossref_primary_10_3389_fendo_2022_779264 crossref_primary_10_1016_j_bone_2024_117262 crossref_primary_10_1016_j_bbrc_2020_02_079 crossref_primary_10_3390_ijms21103620 crossref_primary_10_1016_j_pharmthera_2024_108635 crossref_primary_10_1101_cshperspect_a031245 crossref_primary_10_1007_s00011_018_1195_y crossref_primary_10_1007_s11914_020_00610_6 crossref_primary_10_1172_JCI151827 crossref_primary_10_3389_fimmu_2021_687037 crossref_primary_10_3390_molecules28041693 crossref_primary_10_1007_s40200_021_00945_6 crossref_primary_10_4110_in_2019_19_e2 crossref_primary_10_3389_fcell_2022_966950 crossref_primary_10_1146_annurev_physiol_021119_034332 |
Cites_doi | 10.1016/j.tem.2012.05.005 10.1002/art.11481 10.1002/art.23417 10.1016/S0165-2478(02)00202-X 10.1084/jem.20050978 10.1084/jem.20051150 10.1073/pnas.1206392110 10.1172/JCI35711 10.1359/jbmr.090320 10.1038/nrrheum.2012.153 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P 10.1002/jbmr.4 10.4049/jimmunol.0803007 10.3892/ijo.2015.3009 10.1172/JCI46262 10.1172/JCI60920 10.1093/rheumatology/keu284 10.1136/ard.2006.057497 10.1073/pnas.0401602101 10.1182/blood-2004-08-3171 10.1074/jbc.275.7.4858 10.1111/j.0105-2896.2009.00849.x 10.1124/pr.114.009639 10.1016/j.archoralbio.2015.06.002 10.1002/art.38218 10.1002/art.38286 10.1359/JBMR.0301233 10.1002/art.27659 10.1016/j.bone.2010.12.023 10.1186/1471-2105-13-134 10.1136/annrheumdis-2014-207137 10.1038/nature09387 10.1172/JCI11176 10.1016/S0002-9440(10)63016-7 10.1084/jem.20020439 10.1172/JCI71882 10.1053/berh.2000.0124 10.1111/j.1365-2249.2012.04601.x 10.1111/j.0105-2896.2005.00325.x 10.1038/nature02444 10.1016/S1534-5807(02)00369-6 10.1126/science.7660125 10.1002/0471142735.im1522s81 10.1172/JCI0215582 |
ContentType | Journal Article |
Copyright | 2016, American College of Rheumatology 2016, American College of Rheumatology. |
Copyright_xml | – notice: 2016, American College of Rheumatology – notice: 2016, American College of Rheumatology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 |
DOI | 10.1002/art.39837 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-5205 |
EndPage | 2900 |
ExternalDocumentID | 4265702981 27563728 10_1002_art_39837 ART39837 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Bettina Looram Fund – fundername: Rheumatology Research Foundation – fundername: NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases) funderid: R01‐AR‐055952, R01‐AR‐060363, K08‐AR‐062590 – fundername: National Institute on Aging funderid: R01‐AG‐046257 – fundername: Burroughs Wellcome Fund – fundername: NIAMS NIH HHS grantid: R01 AR055952 – fundername: NIAMS NIH HHS grantid: K08 AR062590 – fundername: NIA NIH HHS grantid: R01 AG046257 – fundername: NIAMS NIH HHS grantid: R01 AR060363 |
GroupedDBID | 0R~ 1OC 24P 33P 3SF 4.4 52O 52U 52V 53G 5VS AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 DCZOG DIK DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 FUBAC G-S G.N GODZA HGLYW KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM NF~ O66 O9- OK1 OVD P2W PQQKQ QB0 ROL SUPJJ SV3 TEORI V9Y WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR YCJ AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 |
ID | FETCH-LOGICAL-c4877-7a8fbc3f6a794bac7cbb4a8ae40dd7bcf1fada4ff6fb79c32e0e66c71ae111473 |
ISSN | 2326-5191 2326-5205 |
IngestDate | Thu Jul 10 19:19:06 EDT 2025 Fri Jul 11 07:20:11 EDT 2025 Fri Jul 25 10:43:49 EDT 2025 Mon Jul 21 05:47:20 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 00:55:52 EDT 2025 Wed Jan 22 16:51:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016, American College of Rheumatology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4877-7a8fbc3f6a794bac7cbb4a8ae40dd7bcf1fada4ff6fb79c32e0e66c71ae111473 |
Notes | Supported by the NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grant R01‐AR‐055952 to Dr. Gravallese, grant R01‐AR‐060363 to Drs. Aliprantis and Charles, and grant K08‐AR‐062590 to Dr. Charles, and National Institute on Aging grant R01‐AG‐046257 to Drs. Aliprantis and Charles), the Burroughs Wellcome Fund (grant to Dr. Aliprantis), the Rheumatology Research Foundation (grant to Drs. O'Brien, Aliprantis, and Charles), and the Bettina Looram Fund (grant to Dr. Charles). Dr. O'Brien and Mr. Fissel contributed equally to this work. Dr. Gravallese has received consulting fees from Lilly, GlaxoSmithKline, Novo Nordisk, Flexion, and AbbVie (less than $10,000 each), research grants from AbbVie and Lilly, and royalties from UpToDate. Dr. Charles receives royalties from UpToDate. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/art.39837 |
PMID | 27563728 |
PQID | 1844748330 |
PQPubID | 946334 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1868342605 proquest_miscellaneous_1835683831 proquest_journals_1844748330 pubmed_primary_27563728 crossref_primary_10_1002_art_39837 crossref_citationtrail_10_1002_art_39837 wiley_primary_10_1002_art_39837_ART39837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheumatol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 101 2009; 24 2012; 122 2002; 110 2010 2002; 196 2000; 43 2015; 54 2008; 58 2016; 75 2008 2002; 3 2000; 275 2004; 428 2012; 169 2012; 13 2014; 66 2010; 62 2015; 67 2015; 47 2004; 50 2010; 25 2015; 60 2004; 19 2002; 84 2000; 106 2005; 202 2010; 233 2005; 105 2005; 208 2008; 118 1995; 269 2001; 15 2009; 183 2015 2011; 48 2013; 110 2007; 66 2012; 23 2001; 159 2012; 8 2011; 121 2014; 124 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Shen J (e_1_2_8_14_1) 2015 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 14969390 - J Bone Miner Res. 2004 Feb;19(2):207-13 26051628 - Transl Res. 2016 Jan;167(1):138-51 15073337 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6158-63 11696430 - Am J Pathol. 2001 Nov;159(5):1689-99 16147974 - J Exp Med. 2005 Sep 5;202(5):589-95 20200955 - J Bone Miner Res. 2010 Jun;25(6):1282-94 16935911 - Ann Rheum Dis. 2007 Mar;66(3):358-63 25329696 - J Clin Invest. 2014 Nov;124(11):5057-73 26025971 - Ann Rheum Dis. 2016 Jun;75(6):1187-95 12479813 - Dev Cell. 2002 Dec;3(6):889-901 24431283 - Arthritis Rheumatol. 2014 Jan;66(1):121-9 20193006 - Immunol Rev. 2010 Jan;233(1):286-300 12438440 - J Clin Invest. 2002 Nov;110(10):1419-27 11120755 - J Clin Invest. 2000 Dec;106(12):1481-8 21737885 - J Clin Invest. 2011 Jul;121(7):2534-42 7660125 - Science. 1995 Sep 8;269(5229):1427-9 19587010 - J Immunol. 2009 Aug 1;183(3):1862-70 20881962 - Nature. 2010 Nov 4;468(7320):98-102 22708584 - BMC Bioinformatics. 2012 Jun 18;13:134 16275763 - J Exp Med. 2005 Nov 7;202(9):1261-9 11358413 - Best Pract Res Clin Rheumatol. 2001 Mar;15(1):27-48 24574213 - Arthritis Rheumatol. 2014 Mar;66(3):538-48 18846253 - J Clin Invest. 2008 Nov;118(11):3775-89 14730597 - Arthritis Rheum. 2004 Jan;50(1):36-42 10671521 - J Biol Chem. 2000 Feb 18;275(7):4858-64 18438830 - Arthritis Rheum. 2008 May;58(5):1299-309 23007741 - Nat Rev Rheumatol. 2012 Nov;8(11):656-64 18491295 - Curr Protoc Immunol. 2008 May;Chapter 15:Unit 15.22 16313340 - Immunol Rev. 2005 Dec;208:50-65 25065011 - Rheumatology (Oxford). 2015 Jan;54(1):83-90 20662064 - Arthritis Rheum. 2010 Nov;62(11):3322-33 15507530 - Blood. 2005 Feb 15;105(4):1777-84 22705116 - Trends Endocrinol Metab. 2012 Nov;23(11):582-90 25697599 - Pharmacol Rev. 2015;67(2):280-309 21193069 - Bone. 2011 Apr 1;48(4):938-44 23114597 - J Clin Invest. 2012 Dec;122(12):4592-605 22774981 - Clin Exp Immunol. 2012 Aug;169(2):71-8 26099662 - Arch Oral Biol. 2015 Sep;60(9):1273-82 23341620 - Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2163-8 10693863 - Arthritis Rheum. 2000 Feb;43(2):250-8 25997536 - Int J Oncol. 2015 Jul;47(1):391-7 12093872 - J Exp Med. 2002 Jul 1;196(1):77-85 15085135 - Nature. 2004 Apr 15;428(6984):758-63 19338457 - J Bone Miner Res. 2009 Sep;24(9):1572-85 12413742 - Immunol Lett. 2002 Dec 3;84(3):231-40 |
References_xml | – volume: 13 start-page: 134 year: 2012 article-title: Primer‐BLAST: a tool to design target‐specific primers for polymerase chain reaction publication-title: BMC Bioinformatics – volume: 67 start-page: 280 year: 2015 end-page: 309 article-title: Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases publication-title: Pharmacol Rev – volume: 43 start-page: 250 year: 2000 end-page: 8 article-title: Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor publication-title: Arthritis Rheum – volume: 3 start-page: 889 year: 2002 end-page: 901 article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts publication-title: Dev Cell – volume: 54 start-page: 83 year: 2015 end-page: 90 article-title: Relationship between types of radiographic damage and disability in patients with rheumatoid arthritis in the EURIDISS cohort: a longitudinal study publication-title: Rheumatology (Oxford) – volume: 19 start-page: 207 year: 2004 end-page: 13 article-title: RANK signaling is not required for TNFα‐mediated increase in CD11 osteoclast precursors but is essential for mature osteoclast formation in TNFα‐mediated inflammatory arthritis publication-title: J Bone Miner Res – volume: 122 start-page: 4592 year: 2012 end-page: 605 article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function publication-title: J Clin Invest – volume: 275 start-page: 4858 year: 2000 end-page: 64 article-title: Tumor necrosis factor‐α induces differentiation of and bone resorption by osteoclasts publication-title: J Biol Chem – volume: 121 start-page: 2534 year: 2011 end-page: 42 article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection publication-title: J Clin Invest – volume: 159 start-page: 1689 year: 2001 end-page: 99 article-title: TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis publication-title: Am J Pathol – volume: 66 start-page: 121 year: 2014 end-page: 9 article-title: Combination of tumor necrosis factor α and interleukin‐6 induces mouse osteoclast‐like cells with bone resorption activity both in vitro and in vivo publication-title: Arthritis Rheumatol – volume: 48 start-page: 938 year: 2011 end-page: 44 article-title: RANKL‐independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II publication-title: Bone – volume: 47 start-page: 391 year: 2015 end-page: 7 article-title: Human mesenchymal stem cells enhance cancer cell proliferation via IL‐6 secretion and activation of ERK1/2 publication-title: Int J Oncol – volume: 169 start-page: 71 year: 2012 end-page: 8 article-title: K/BxN serum transfer arthritis is delayed and less severe in leukaemia inhibitory factor (LIF)‐deficient mice publication-title: Clin Exp Immunol – volume: 124 start-page: 5057 year: 2014 end-page: 73 article-title: RBP‐J imposes a requirement for ITAM‐mediated costimulation of osteoclastogenesis publication-title: J Clin Invest – volume: 101 start-page: 6158 year: 2004 end-page: 63 article-title: The immunomodulatory adapter proteins DAP12 and Fc receptor γ‐chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 656 year: 2012 end-page: 64 article-title: Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment publication-title: Nat Rev Rheumatol – volume: 202 start-page: 589 year: 2005 end-page: 95 article-title: Osteoclast differentiation independent of the TRANCE‐RANK‐TRAF6 axis publication-title: J Exp Med – volume: 66 start-page: 358 year: 2007 end-page: 63 article-title: Radiological damage in patients with rheumatoid arthritis on sustained remission publication-title: Ann Rheum Dis – volume: 110 start-page: 2163 year: 2013 end-page: 8 article-title: SLC4A2‐mediated Cl / exchange activity is essential for calpain‐dependent regulation of the actin cytoskeleton in osteoclasts publication-title: Proc Natl Acad Sci U S A – volume: 233 start-page: 286 year: 2010 end-page: 300 article-title: Transcriptional regulation of bone and joint remodeling by NFAT publication-title: Immunol Rev – volume: 50 start-page: 36 year: 2004 end-page: 42 article-title: Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission publication-title: Arthritis Rheum – volume: 269 start-page: 1427 year: 1995 end-page: 9 article-title: Inducible gene targeting in mice publication-title: Science – volume: 196 start-page: 77 year: 2002 end-page: 85 article-title: Critical roles for interleukin 1 and tumor necrosis factor α in antibody‐induced arthritis publication-title: J Exp Med – year: 2010 article-title: Osteoclast differentiation factor RANKL controls development of progestin‐driven mammary cancer publication-title: Nature – volume: 428 start-page: 758 year: 2004 end-page: 63 article-title: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis publication-title: Nature – year: 2008 article-title: The K/BxN arthritis model publication-title: Curr Protoc Immunol – volume: 208 start-page: 50 year: 2005 end-page: 65 article-title: Role of ITAM‐containing adapter proteins and their receptors in the immune system and bone publication-title: Immunol Rev – volume: 15 start-page: 27 year: 2001 end-page: 48 article-title: What is the natural history of rheumatoid arthritis? publication-title: Best Pract Res Clin Rheumatol – volume: 60 start-page: 1273 year: 2015 end-page: 82 article-title: RANKL pretreatment plays an important role in the differentiation of pit‐forming osteoclasts induced by TNF‐α on murine bone marrow macrophages publication-title: Arch Oral Biol – volume: 105 start-page: 1777 year: 2005 end-page: 84 article-title: BCL‐6 negatively regulates macrophage proliferation by suppressing autocrine IL‐6 production publication-title: Blood – volume: 62 start-page: 3322 year: 2010 end-page: 33 article-title: C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcγ receptor modulation publication-title: Arthritis Rheum – volume: 75 start-page: 1187 year: 2016 end-page: 95 article-title: RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation publication-title: Ann Rheum Dis – volume: 25 start-page: 1282 year: 2010 end-page: 94 article-title: IKKβ activation is sufficient for RANK‐independent osteoclast differentiation and osteolysis publication-title: J Bone Miner Res – year: 2015 article-title: Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis publication-title: Transl Res – volume: 118 start-page: 3775 year: 2008 end-page: 89 article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism publication-title: J Clin Invest – volume: 23 start-page: 582 year: 2012 end-page: 90 article-title: New insights into osteoclastogenic signaling mechanisms publication-title: Trends Endocrinol Metab – volume: 106 start-page: 1481 year: 2000 end-page: 8 article-title: TNF‐α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand publication-title: J Clin Invest – volume: 66 start-page: 538 year: 2014 end-page: 48 article-title: Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell‐derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis publication-title: Arthritis Rheumatol – volume: 58 start-page: 1299 year: 2008 end-page: 309 article-title: Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve‐month, multicenter, randomized, double‐blind, placebo‐controlled, phase II clinical trial publication-title: Arthritis Rheum – volume: 84 start-page: 231 year: 2002 end-page: 40 article-title: Characterization of anti‐mouse interleukin‐6 receptor antibody publication-title: Immunol Lett – volume: 110 start-page: 1419 year: 2002 end-page: 27 article-title: Osteoclasts are essential for TNF‐α‐mediated joint destruction publication-title: J Clin Invest – volume: 24 start-page: 1572 year: 2009 end-page: 85 article-title: Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis publication-title: J Bone Miner Res – volume: 202 start-page: 1261 year: 2005 end-page: 9 article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis publication-title: J Exp Med – volume: 183 start-page: 1862 year: 2009 end-page: 70 article-title: The mechanism of osteoclast differentiation induced by IL‐1 publication-title: J Immunol – ident: e_1_2_8_10_1 doi: 10.1016/j.tem.2012.05.005 – ident: e_1_2_8_6_1 doi: 10.1002/art.11481 – ident: e_1_2_8_27_1 doi: 10.1002/art.23417 – ident: e_1_2_8_34_1 doi: 10.1016/S0165-2478(02)00202-X – ident: e_1_2_8_23_1 doi: 10.1084/jem.20050978 – ident: e_1_2_8_38_1 doi: 10.1084/jem.20051150 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.1206392110 – ident: e_1_2_8_29_1 doi: 10.1172/JCI35711 – ident: e_1_2_8_35_1 doi: 10.1359/jbmr.090320 – ident: e_1_2_8_2_1 doi: 10.1038/nrrheum.2012.153 – ident: e_1_2_8_7_1 doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P – ident: e_1_2_8_43_1 doi: 10.1002/jbmr.4 – ident: e_1_2_8_17_1 doi: 10.4049/jimmunol.0803007 – ident: e_1_2_8_39_1 doi: 10.3892/ijo.2015.3009 – ident: e_1_2_8_9_1 doi: 10.1172/JCI46262 – ident: e_1_2_8_33_1 doi: 10.1172/JCI60920 – ident: e_1_2_8_4_1 doi: 10.1093/rheumatology/keu284 – ident: e_1_2_8_5_1 doi: 10.1136/ard.2006.057497 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.0401602101 – ident: e_1_2_8_40_1 doi: 10.1182/blood-2004-08-3171 – ident: e_1_2_8_20_1 doi: 10.1074/jbc.275.7.4858 – ident: e_1_2_8_13_1 doi: 10.1111/j.0105-2896.2009.00849.x – ident: e_1_2_8_15_1 doi: 10.1124/pr.114.009639 – ident: e_1_2_8_19_1 doi: 10.1016/j.archoralbio.2015.06.002 – ident: e_1_2_8_25_1 doi: 10.1002/art.38218 – ident: e_1_2_8_24_1 doi: 10.1002/art.38286 – ident: e_1_2_8_26_1 doi: 10.1359/JBMR.0301233 – year: 2015 ident: e_1_2_8_14_1 article-title: Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis publication-title: Transl Res – ident: e_1_2_8_37_1 doi: 10.1002/art.27659 – ident: e_1_2_8_21_1 doi: 10.1016/j.bone.2010.12.023 – ident: e_1_2_8_46_1 doi: 10.1186/1471-2105-13-134 – ident: e_1_2_8_16_1 doi: 10.1136/annrheumdis-2014-207137 – ident: e_1_2_8_28_1 doi: 10.1038/nature09387 – ident: e_1_2_8_18_1 doi: 10.1172/JCI11176 – ident: e_1_2_8_8_1 doi: 10.1016/S0002-9440(10)63016-7 – ident: e_1_2_8_41_1 doi: 10.1084/jem.20020439 – ident: e_1_2_8_22_1 doi: 10.1172/JCI71882 – ident: e_1_2_8_3_1 doi: 10.1053/berh.2000.0124 – ident: e_1_2_8_45_1 doi: 10.1111/j.1365-2249.2012.04601.x – ident: e_1_2_8_11_1 doi: 10.1111/j.0105-2896.2005.00325.x – ident: e_1_2_8_12_1 doi: 10.1038/nature02444 – ident: e_1_2_8_44_1 doi: 10.1016/S1534-5807(02)00369-6 – ident: e_1_2_8_30_1 doi: 10.1126/science.7660125 – ident: e_1_2_8_36_1 doi: 10.1002/0471142735.im1522s81 – ident: e_1_2_8_42_1 doi: 10.1172/JCI0215582 – reference: 12413742 - Immunol Lett. 2002 Dec 3;84(3):231-40 – reference: 16935911 - Ann Rheum Dis. 2007 Mar;66(3):358-63 – reference: 20662064 - Arthritis Rheum. 2010 Nov;62(11):3322-33 – reference: 19338457 - J Bone Miner Res. 2009 Sep;24(9):1572-85 – reference: 26099662 - Arch Oral Biol. 2015 Sep;60(9):1273-82 – reference: 21193069 - Bone. 2011 Apr 1;48(4):938-44 – reference: 25697599 - Pharmacol Rev. 2015;67(2):280-309 – reference: 16147974 - J Exp Med. 2005 Sep 5;202(5):589-95 – reference: 14730597 - Arthritis Rheum. 2004 Jan;50(1):36-42 – reference: 23114597 - J Clin Invest. 2012 Dec;122(12):4592-605 – reference: 23341620 - Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2163-8 – reference: 22705116 - Trends Endocrinol Metab. 2012 Nov;23(11):582-90 – reference: 16275763 - J Exp Med. 2005 Nov 7;202(9):1261-9 – reference: 26025971 - Ann Rheum Dis. 2016 Jun;75(6):1187-95 – reference: 12093872 - J Exp Med. 2002 Jul 1;196(1):77-85 – reference: 14969390 - J Bone Miner Res. 2004 Feb;19(2):207-13 – reference: 26051628 - Transl Res. 2016 Jan;167(1):138-51 – reference: 11696430 - Am J Pathol. 2001 Nov;159(5):1689-99 – reference: 24574213 - Arthritis Rheumatol. 2014 Mar;66(3):538-48 – reference: 7660125 - Science. 1995 Sep 8;269(5229):1427-9 – reference: 12479813 - Dev Cell. 2002 Dec;3(6):889-901 – reference: 20881962 - Nature. 2010 Nov 4;468(7320):98-102 – reference: 10671521 - J Biol Chem. 2000 Feb 18;275(7):4858-64 – reference: 18846253 - J Clin Invest. 2008 Nov;118(11):3775-89 – reference: 18491295 - Curr Protoc Immunol. 2008 May;Chapter 15:Unit 15.22 – reference: 15507530 - Blood. 2005 Feb 15;105(4):1777-84 – reference: 21737885 - J Clin Invest. 2011 Jul;121(7):2534-42 – reference: 22774981 - Clin Exp Immunol. 2012 Aug;169(2):71-8 – reference: 25065011 - Rheumatology (Oxford). 2015 Jan;54(1):83-90 – reference: 24431283 - Arthritis Rheumatol. 2014 Jan;66(1):121-9 – reference: 15073337 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6158-63 – reference: 20200955 - J Bone Miner Res. 2010 Jun;25(6):1282-94 – reference: 19587010 - J Immunol. 2009 Aug 1;183(3):1862-70 – reference: 18438830 - Arthritis Rheum. 2008 May;58(5):1299-309 – reference: 10693863 - Arthritis Rheum. 2000 Feb;43(2):250-8 – reference: 11120755 - J Clin Invest. 2000 Dec;106(12):1481-8 – reference: 20193006 - Immunol Rev. 2010 Jan;233(1):286-300 – reference: 16313340 - Immunol Rev. 2005 Dec;208:50-65 – reference: 15085135 - Nature. 2004 Apr 15;428(6984):758-63 – reference: 22708584 - BMC Bioinformatics. 2012 Jun 18;13:134 – reference: 11358413 - Best Pract Res Clin Rheumatol. 2001 Mar;15(1):27-48 – reference: 12438440 - J Clin Invest. 2002 Nov;110(10):1419-27 – reference: 25997536 - Int J Oncol. 2015 Jul;47(1):391-7 – reference: 25329696 - J Clin Invest. 2014 Nov;124(11):5057-73 – reference: 23007741 - Nat Rev Rheumatol. 2012 Nov;8(11):656-64 |
SSID | ssj0000970605 |
Score | 2.5430639 |
Snippet | Objective
Proinflammatory molecules promote osteoclast‐mediated bone erosion by up‐regulating local RANKL production. However, recent evidence suggests that... Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations... Objective Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2889 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Animals Arthritis Arthritis, Experimental - genetics Arthritis, Experimental - immunology Bone Resorption - genetics Bone Resorption - immunology Cell growth Cell Proliferation - drug effects Cell Proliferation - genetics Enzyme Inhibitors - pharmacology Hydroxyurea - pharmacology In Vitro Techniques Interleukin-6 - pharmacology Mice Mice, Knockout NFATC Transcription Factors - genetics Osteogenesis - drug effects Osteogenesis - genetics Osteogenesis - immunology Osteoprotegerin - pharmacology RANK Ligand - pharmacology Real-Time Polymerase Chain Reaction Receptor Activator of Nuclear Factor-kappa B - genetics Receptors, IgG - genetics Receptors, Interleukin-6 - antagonists & inhibitors Rodents Tumor Necrosis Factor-alpha - pharmacology Tumor necrosis factor-TNF X-Ray Microtomography |
Title | RANK‐Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39837 https://www.ncbi.nlm.nih.gov/pubmed/27563728 https://www.proquest.com/docview/1844748330 https://www.proquest.com/docview/1835683831 https://www.proquest.com/docview/1868342605 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUJcEG8KCwoIJKRVShI7tnPsolbtProItVI5RbbjaFeFBpX0wj_iXzK2UzfdXZbHJYqcaet4vo5n7PE3CL0haUZ1VhYhUzoKiZYqlCIqQgUhM9UcE6rMaeTTCR3NyNE8nXc6P1tZS-ta9tSPa8-V_I9WoQ30ak7J_oNm_ZdCA9yDfuEKGobrX-n4U39yHI59Idv64Ax0VilwiOuD4eZUot0eOKzAmRzAjNikNo6XJUDhq9ti76_qc8tt1PZUfaMFx-pcr420JWwCp3RUyWqhm7NaR732au3bhB0a8mSbvedWczxIzOa_2-ZYGcOyzSAQurBe7Of14mJReVPkVmePNtNrszoR00uZHn-2gVt7B74dDcGhdJ_WrbYkStsGm_I2MJO2-eWuHtGVecHxzIKiejjjjmVml3t7cpYPZycn-XQwn-4-tXM9-DEpM2z1EGjfSiAisdH7-Ngv50WZoSFKbSnD5jU2PFZR8t7_8K73cyWk2Y2QrIszvYfuNrFJ0HdAu486evkA3T5tsi8eoo-X8RZs8RZ4vAWAt8DgLWjwFlwsgzbeAg-tR2g2HEw_jMKmIkeoILBlIRO8lAqXVIAZl0IxJSURXGgSFQWTqoxLUQhSlrSULFM40ZGmVLFYaJhTCcOP0d4SOvAUBVqWMRiQOElERgpJMy2TOGKaS0P5SGUXvduMVK4aunpTNeVL7oi2kxwGNbeD2kWvveg3x9FyndD-Zrjz5i_8PY85IYxwjKMueuUfg4E1u2Ziqau1kcEp5Zjj-CYZkDC1HtIueuJU6Xti6itglnB4Iavb33cxhxDW3jy7ua_P0Z3tX20f7dWrtX4BrnEtX1pQ_gIt2LmY |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RANK-Independent+Osteoclast+Formation+and+Bone+Erosion+in+Inflammatory+Arthritis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=O%27Brien%2C+William&rft.au=Fissel%2C+Brian+M&rft.au=Maeda%2C+Yukiko&rft.au=Yan%2C+Jing&rft.date=2016-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=68&rft.issue=12&rft.spage=2889&rft_id=info:doi/10.1002%2Fart.39837&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4265702981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon |