An Autotaxin/Lysophosphatidic Acid/Interleukin‐6 Amplification Loop Drives Scleroderma Fibrosis
Objective We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA‐producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin‐6 (IL‐6) pathways...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 12; pp. 2964 - 2974 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA‐producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin‐6 (IL‐6) pathways in SSc.
Methods
We evaluated the effect of a novel ATX inhibitor, PAT‐048, on fibrosis and IL‐6 expression in the mouse model of bleomycin‐induced dermal fibrosis. We used dermal fibroblasts from SSc patients and control subjects to evaluate LPA‐induced expression of IL‐6, and IL‐6–induced expression of ATX. We next evaluated whether LPA‐induced ATX expression is dependent on IL‐6, and whether baseline IL‐6 expression in fibroblasts from SSc patients is dependent on ATX. Finally, we compared ATX and IL‐6 expression in the skin of patients with SSc and healthy control subjects.
Results
PAT‐048 markedly attenuated bleomycin‐induced dermal fibrosis when treatment was initiated before or after the development of fibrosis. LPA stimulated expression of IL‐6 in human dermal fibroblasts, and IL‐6 stimulated fibroblast expression of ATX, connecting the ATX/LPA and IL‐6 pathways in an amplification loop. IL‐6 knockdown abrogated LPA‐induced ATX expression in fibroblasts, and ATX inhibition attenuated IL‐6 expression in fibroblasts and the skin of bleomycin‐challenged mice. Expression of both ATX and IL‐6 was increased in SSc skin, and LPA‐induced IL‐6 levels and IL‐6–induced ATX levels were increased in fibroblasts from SSc patients compared with controls.
Conclusion
ATX is required for the development and maintenance of dermal fibrosis in a mouse model of bleomycin‐induced SSc and enables 2 major mediators of SSc fibrogenesis, LPA and IL‐6, to amplify the production of each other. Our results suggest that concurrent inhibition of these 2 pathways may be an effective therapeutic strategy for dermal fibrosis in SSc. |
---|---|
AbstractList | Objective We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA-producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin-6 (IL-6) pathways in SSc. Methods We evaluated the effect of a novel ATX inhibitor, PAT-048, on fibrosis and IL-6 expression in the mouse model of bleomycin-induced dermal fibrosis. We used dermal fibroblasts from SSc patients and control subjects to evaluate LPA-induced expression of IL-6, and IL-6-induced expression of ATX. We next evaluated whether LPA-induced ATX expression is dependent on IL-6, and whether baseline IL-6 expression in fibroblasts from SSc patients is dependent on ATX. Finally, we compared ATX and IL-6 expression in the skin of patients with SSc and healthy control subjects. Results PAT-048 markedly attenuated bleomycin-induced dermal fibrosis when treatment was initiated before or after the development of fibrosis. LPA stimulated expression of IL-6 in human dermal fibroblasts, and IL-6 stimulated fibroblast expression of ATX, connecting the ATX/LPA and IL-6 pathways in an amplification loop. IL-6 knockdown abrogated LPA-induced ATX expression in fibroblasts, and ATX inhibition attenuated IL-6 expression in fibroblasts and the skin of bleomycin-challenged mice. Expression of both ATX and IL-6 was increased in SSc skin, and LPA-induced IL-6 levels and IL-6-induced ATX levels were increased in fibroblasts from SSc patients compared with controls. Conclusion ATX is required for the development and maintenance of dermal fibrosis in a mouse model of bleomycin-induced SSc and enables 2 major mediators of SSc fibrogenesis, LPA and IL-6, to amplify the production of each other. Our results suggest that concurrent inhibition of these 2 pathways may be an effective therapeutic strategy for dermal fibrosis in SSc. Objective We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA‐producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin‐6 (IL‐6) pathways in SSc. Methods We evaluated the effect of a novel ATX inhibitor, PAT‐048, on fibrosis and IL‐6 expression in the mouse model of bleomycin‐induced dermal fibrosis. We used dermal fibroblasts from SSc patients and control subjects to evaluate LPA‐induced expression of IL‐6, and IL‐6–induced expression of ATX. We next evaluated whether LPA‐induced ATX expression is dependent on IL‐6, and whether baseline IL‐6 expression in fibroblasts from SSc patients is dependent on ATX. Finally, we compared ATX and IL‐6 expression in the skin of patients with SSc and healthy control subjects. Results PAT‐048 markedly attenuated bleomycin‐induced dermal fibrosis when treatment was initiated before or after the development of fibrosis. LPA stimulated expression of IL‐6 in human dermal fibroblasts, and IL‐6 stimulated fibroblast expression of ATX, connecting the ATX/LPA and IL‐6 pathways in an amplification loop. IL‐6 knockdown abrogated LPA‐induced ATX expression in fibroblasts, and ATX inhibition attenuated IL‐6 expression in fibroblasts and the skin of bleomycin‐challenged mice. Expression of both ATX and IL‐6 was increased in SSc skin, and LPA‐induced IL‐6 levels and IL‐6–induced ATX levels were increased in fibroblasts from SSc patients compared with controls. Conclusion ATX is required for the development and maintenance of dermal fibrosis in a mouse model of bleomycin‐induced SSc and enables 2 major mediators of SSc fibrogenesis, LPA and IL‐6, to amplify the production of each other. Our results suggest that concurrent inhibition of these 2 pathways may be an effective therapeutic strategy for dermal fibrosis in SSc. We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA-producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin-6 (IL-6) pathways in SSc. We evaluated the effect of a novel ATX inhibitor, PAT-048, on fibrosis and IL-6 expression in the mouse model of bleomycin-induced dermal fibrosis. We used dermal fibroblasts from SSc patients and control subjects to evaluate LPA-induced expression of IL-6, and IL-6-induced expression of ATX. We next evaluated whether LPA-induced ATX expression is dependent on IL-6, and whether baseline IL-6 expression in fibroblasts from SSc patients is dependent on ATX. Finally, we compared ATX and IL-6 expression in the skin of patients with SSc and healthy control subjects. PAT-048 markedly attenuated bleomycin-induced dermal fibrosis when treatment was initiated before or after the development of fibrosis. LPA stimulated expression of IL-6 in human dermal fibroblasts, and IL-6 stimulated fibroblast expression of ATX, connecting the ATX/LPA and IL-6 pathways in an amplification loop. IL-6 knockdown abrogated LPA-induced ATX expression in fibroblasts, and ATX inhibition attenuated IL-6 expression in fibroblasts and the skin of bleomycin-challenged mice. Expression of both ATX and IL-6 was increased in SSc skin, and LPA-induced IL-6 levels and IL-6-induced ATX levels were increased in fibroblasts from SSc patients compared with controls. ATX is required for the development and maintenance of dermal fibrosis in a mouse model of bleomycin-induced SSc and enables 2 major mediators of SSc fibrogenesis, LPA and IL-6, to amplify the production of each other. Our results suggest that concurrent inhibition of these 2 pathways may be an effective therapeutic strategy for dermal fibrosis in SSc. |
Author | Pace, Veronica A. Lafyatis, Robert Bain, Gretchen George, Leaya Goulet, Lance Black, Katharine E. Tager, Andrew M. Probst, Clemens K. Castelino, Flavia V. |
Author_xml | – sequence: 1 givenname: Flavia V. surname: Castelino fullname: Castelino, Flavia V. email: fcastelino@mgh.harvard.edu organization: Massachusetts General Hospital and Harvard Medical School – sequence: 2 givenname: Gretchen surname: Bain fullname: Bain, Gretchen organization: PharmAkea – sequence: 3 givenname: Veronica A. surname: Pace fullname: Pace, Veronica A. organization: Massachusetts General Hospital and Harvard Medical School – sequence: 4 givenname: Katharine E. surname: Black fullname: Black, Katharine E. organization: Massachusetts General Hospital and Harvard Medical School – sequence: 5 givenname: Leaya surname: George fullname: George, Leaya organization: Massachusetts General Hospital and Harvard Medical School – sequence: 6 givenname: Clemens K. surname: Probst fullname: Probst, Clemens K. organization: Massachusetts General Hospital and Harvard Medical School – sequence: 7 givenname: Lance surname: Goulet fullname: Goulet, Lance organization: PharmAkea – sequence: 8 givenname: Robert surname: Lafyatis fullname: Lafyatis, Robert organization: Boston University – sequence: 9 givenname: Andrew M. surname: Tager fullname: Tager, Andrew M. email: amtager@mgh.harvard.edu organization: Massachusetts General Hospital and Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27390295$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1O3DAQB3CroiqfB16gitRLe1jWduw4PkYUKNJKlQo9RxNnIgyJndoJ7d54hD4jT4K7Cz0gtb7Yh9-MPPPfJzvOOyTkmNETRilfQphOcq20ekP2eM6LheRU7ry8mWa75CjGW5qOVrSg8h3Z5SrXlGu5R6ByWTVPfoJf1i1X6-jHGx_HG5hsa01WGdsuL92Eocf5zrrHh99FVg1jbztrkvEuW3k_Zp-DvceYXZkeg28xDJCd2yb4aOMhedtBH_Ho-T4g38_Prk-_LFZfLy5Pq9XCiFKpRSFbihSgYY2CDoDxXILsSlXSomUSOhQNMq1LoVvOKKe6EZ3RaAQDlHmZH5CP275j8D9mjFM92Giw78Ghn2PNyqLMBRc5TfTDK3rr5-DS75ISQomSbdT7ZzU3A7b1GOwAYV2_LC-BT1tg0qAxYPeXMFr_yaZO2dSbbJJdvrLGTpsFTgFs_7-Kn7bH9b9b19W3623FE9ecoFY |
CitedBy_id | crossref_primary_10_1007_s12016_021_08891_0 crossref_primary_10_1002_art_42514 crossref_primary_10_3390_cells10040939 crossref_primary_10_1002_med_21551 crossref_primary_10_1016_j_bmc_2020_115795 crossref_primary_10_3389_fmolb_2021_761721 crossref_primary_10_1007_s12026_017_8926_y crossref_primary_10_1111_bph_15190 crossref_primary_10_1002_art_42477 crossref_primary_10_1038_s41390_024_03610_9 crossref_primary_10_3390_cancers11111626 crossref_primary_10_3390_cells12030511 crossref_primary_10_3390_jpm14090968 crossref_primary_10_1016_j_bbalip_2020_158641 crossref_primary_10_1016_j_smim_2022_101648 crossref_primary_10_1080_13543784_2021_1923693 crossref_primary_10_1016_j_ocarto_2020_100080 crossref_primary_10_1002_acr2_11678 crossref_primary_10_1038_s41598_019_43576_x crossref_primary_10_1016_j_trsl_2019_02_010 crossref_primary_10_1016_j_pharmthera_2023_108414 crossref_primary_10_3390_cancers11101577 crossref_primary_10_2147_CPAA_S228362 crossref_primary_10_1002_bmc_5301 crossref_primary_10_1167_iovs_61_13_29 crossref_primary_10_3389_fmed_2023_1166343 crossref_primary_10_3390_molecules25051107 crossref_primary_10_1007_s10753_019_01015_z crossref_primary_10_1080_14712598_2023_2196009 crossref_primary_10_1016_j_isci_2023_107931 crossref_primary_10_18632_oncotarget_25231 crossref_primary_10_33590_emj_10310340 crossref_primary_10_1002_art_40547 crossref_primary_10_1038_s41598_024_74610_2 crossref_primary_10_1016_j_chembiol_2022_12_006 crossref_primary_10_1016_j_matbio_2023_03_010 crossref_primary_10_1111_head_14922 crossref_primary_10_3390_diagnostics12081865 crossref_primary_10_3390_cells10061390 crossref_primary_10_1016_j_lfs_2018_12_040 crossref_primary_10_3390_biomedicines10010163 crossref_primary_10_1021_acs_jmedchem_1c00913 crossref_primary_10_1021_acs_jmedchem_3c01861 crossref_primary_10_1021_acs_jmedchem_7b00032 crossref_primary_10_1016_j_bmc_2019_04_031 crossref_primary_10_1093_ecco_jcc_jjac017 crossref_primary_10_1007_s00018_021_03874_y crossref_primary_10_1016_j_bmcl_2024_129690 crossref_primary_10_1159_000530288 crossref_primary_10_1042_EBC20190088 crossref_primary_10_1093_rheumatology_key151 crossref_primary_10_1183_16000617_0015_2024 crossref_primary_10_1186_s13075_019_1881_3 crossref_primary_10_1016_j_jtct_2021_06_001 crossref_primary_10_1360_SSV_2022_0140 crossref_primary_10_1016_S2213_2600_20_30225_3 crossref_primary_10_1074_jbc_RA119_012009 crossref_primary_10_1016_j_matbio_2024_08_005 crossref_primary_10_1097_BOR_0000000000000544 crossref_primary_10_1016_j_immuni_2021_10_009 crossref_primary_10_1002_cpdd_1021 crossref_primary_10_2174_0929867328666210325102749 crossref_primary_10_3390_ijms221810006 crossref_primary_10_1016_S2213_2600_18_30269_8 crossref_primary_10_1080_14728214_2020_1836156 crossref_primary_10_5301_jsrd_5000258 crossref_primary_10_3389_fimmu_2021_687397 crossref_primary_10_3390_cancers10030073 crossref_primary_10_1096_fj_201700159R crossref_primary_10_3390_cancers12020374 crossref_primary_10_1080_13543784_2023_2242762 crossref_primary_10_1016_j_ejmech_2023_115130 crossref_primary_10_15252_emmm_202216333 crossref_primary_10_3389_fimmu_2020_01272 crossref_primary_10_3389_fmed_2018_00180 crossref_primary_10_1186_s12890_021_01603_6 crossref_primary_10_1016_j_ejmech_2021_113951 |
Cites_doi | 10.1083/jcb.200204026 10.1002/art.22186 10.1136/annrheumdis-2011-200955 10.1186/ar4672 10.1002/art.38098 10.1371/journal.pone.0002696 10.1002/art.1780401110 10.1165/rcmb.2012-0004OC 10.1189/jlb.0802397 10.1016/j.ejcb.2010.10.007 10.1097/01.mcg.0000225642.90898.0e 10.1002/art.38990 10.7150/ijms.6.168 10.1007/s10067-010-1610-4 10.1016/j.ajpath.2011.09.013 10.1038/jid.2013.140 10.1002/art.39658 10.4049/jimmunol.1302470 10.1111/j.0022-202X.2005.23855.x 10.1172/JCI200422123 10.2353/ajpath.2007.070112 10.1111/j.1346-8138.2011.01395.x 10.1074/jbc.M605142200 10.1128/MCB.02419-05 10.1016/j.bbalip.2008.06.005 10.1016/j.biochi.2013.04.010 10.1016/0092-8674(89)90438-8 10.1002/art.30262 10.1016/S1074-7613(00)80334-9 10.1371/journal.pone.0027851 10.1146/annurev.pharmtox.010909.105753 10.1038/nm1685 10.1165/rcmb.2004-0175OC 10.1016/j.clinbiochem.2006.10.009 10.1194/jlr.M014985 10.1016/S2213-2600(14)70232-2 10.1038/jid.2009.154 |
ContentType | Journal Article |
Copyright | 2016, American College of Rheumatology 2016, American College of Rheumatology. |
Copyright_xml | – notice: 2016, American College of Rheumatology – notice: 2016, American College of Rheumatology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. |
DOI | 10.1002/art.39797 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-5205 |
EndPage | 2974 |
ExternalDocumentID | 4265702861 27390295 10_1002_art_39797 ART39797 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIH funderid: R01‐HL‐095732 – fundername: Scleroderma Research Foundation grant – fundername: NIH funderid: K08‐AR‐062592 – fundername: Scleroderma Foundation – fundername: NHLBI NIH HHS grantid: R01 HL095732 – fundername: NIDDK NIH HHS grantid: P30 DK043351 – fundername: NIAMS NIH HHS grantid: K08 AR062592 |
GroupedDBID | 0R~ 1OC 24P 33P 3SF 4.4 52O 52U 52V 53G 5VS AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 DCZOG DIK DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 FUBAC G-S G.N GODZA HGLYW KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM NF~ O66 O9- OK1 OVD P2W PQQKQ QB0 ROL SUPJJ SV3 TEORI V9Y WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR YCJ AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. |
ID | FETCH-LOGICAL-c4877-65d0e0aab1b7afaa1235a5f87806d15afe4be199849d210209b4fc9ec41ae5383 |
ISSN | 2326-5191 |
IngestDate | Thu Jul 10 22:28:38 EDT 2025 Fri Jul 25 12:24:10 EDT 2025 Mon Jul 21 05:47:19 EDT 2025 Tue Jul 01 00:55:51 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Jan 22 16:51:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016, American College of Rheumatology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4877-65d0e0aab1b7afaa1235a5f87806d15afe4be199849d210209b4fc9ec41ae5383 |
Notes | Dr. Lafyatis has received consulting fees from Sanofi and Genentech (less than $10,000 each). Dr. Tager has received consulting fees from PharmAkea (less than $10,000). Dr. Castelino's work was supported by the NIH (grant K08‐AR‐062592) and a Scleroderma Foundation grant. Dr. Tager's work was supported by the NIH (grant R01‐HL‐095732) and a Scleroderma Research Foundation grant. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/art.39797 |
PMID | 27390295 |
PQID | 1844748130 |
PQPubID | 946334 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1868342430 proquest_journals_1844748130 pubmed_primary_27390295 crossref_primary_10_1002_art_39797 crossref_citationtrail_10_1002_art_39797 wiley_primary_10_1002_art_39797_ART39797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheumatol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 40 2012 2013; 65 2006; 54 2002; 158 2012; 180 2008; 14 2011; 30 2011; 52 1992; 19 2012; 39 2008; 3 2014; 193 1997; 6 2011; 6 2003; 73 2014; 66 2008; 1781 2012; 71 2015; 67 2004; 31 2004; 114 1990; 137 2014; 2 2007; 170 2011; 90 2005; 125 1995; 22 2006; 26 2014; 16 2011; 63 2013; 133 2009; 6 2007; 40 2006; 281 2007; 41 2012; 47 2009; 129 2014; 96 1989; 58 2016; 68 2010; 50 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Feghali CA (e_1_2_7_16_1) 1992; 19 Amira Pharmaceuticals (e_1_2_7_25_1) 2012 Clements P (e_1_2_7_5_1) 1995; 22 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Khanna D (e_1_2_7_18_1) 2014; 66 Sappino AP (e_1_2_7_26_1) 1990; 137 e_1_2_7_37_1 e_1_2_7_38_1 Khanna D (e_1_2_7_7_1) 2014; 66 e_1_2_7_39_1 17222397 - Clin Biochem. 2007 Feb;40(3-4):274-7 23639740 - Biochimie. 2014 Jan;96:140-3 15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25 25172494 - J Immunol. 2014 Oct 1;193(7):3755-68 21305523 - Arthritis Rheum. 2011 May;63(5):1405-15 1404155 - J Rheumatol. 1992 Aug;19(8):1207-11 17577119 - J Clin Gastroenterol. 2007 Jul;41(6):616-23 25059342 - Arthritis Res Ther. 2014 Jul 24;16(4):R157 16117781 - J Invest Dermatol. 2005 Sep;125(3):421-7 21145125 - Eur J Cell Biol. 2011 Jun-Jul;90(6-7):484-94 16829511 - J Biol Chem. 2006 Sep 1;281(35):25822-30 19536142 - J Invest Dermatol. 2009 Dec;129(12 ):2772-6 22140473 - PLoS One. 2011;6(11):e27851 1698026 - Am J Pathol. 1990 Sep;137(3):585-91 23677168 - J Invest Dermatol. 2013 Oct;133(10 ):2332-9 22062222 - Am J Pathol. 2012 Jan;180(1):165-76 9075932 - Immunity. 1997 Mar;6(3):315-25 25504959 - Arthritis Rheumatol. 2015 Apr;67(4):1062-73 26945694 - Arthritis Rheumatol. 2016 Aug;68(8):2003-15 18066075 - Nat Med. 2008 Jan;14 (1):45-54 25439569 - Lancet Respir Med. 2014 Nov;2(11):933-42 17075814 - Arthritis Rheum. 2006 Nov;54(11):3655-60 12119361 - J Cell Biol. 2002 Jul 22;158(2):227-33 12773503 - J Leukoc Biol. 2003 Jun;73(6):713-21 21049277 - Clin Rheumatol. 2011 Feb;30(2):231-7 18621144 - Biochim Biophys Acta. 2008 Sep;1781(9):513-8 20055701 - Annu Rev Pharmacol Toxicol. 2010;50:157-86 2788034 - Cell. 1989 Aug 11;58(3):573-81 21421848 - J Lipid Res. 2011 Jun;52(6):1247-55 15205180 - Am J Respir Cell Mol Biol. 2004 Oct;31(4):395-404 22586157 - Ann Rheum Dis. 2012 Jul;71(7):1235-42 18648520 - PLoS One. 2008 Jul 16;3(7):e2696 22744859 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):566-74 22044263 - J Dermatol. 2012 Jan;39(1):3-10 17525249 - Am J Pathol. 2007 Jun;170(6):1807-16 16782887 - Mol Cell Biol. 2006 Jul;26(13):5015-22 19521548 - Int J Med Sci. 2009 Jun 05;6(4):168-76 |
References_xml | – volume: 19 start-page: 1207 year: 1992 end-page: 11 article-title: Mechanisms of pathogenesis in scleroderma. I. Overproduction of interleukin 6 by fibroblasts cultured from affected skin sites of patients with scleroderma publication-title: J Rheumatol – volume: 66 start-page: S387 issue: Suppl year: 2014 article-title: SAR100842, an antagonist of lysophaphatidic acid receptor 1, as a potential treatment for patients with systemic sclerosis: results from a phase 2a study [abstract] publication-title: Arthritis Rheumatol – volume: 170 start-page: 1807 year: 2007 end-page: 16 article-title: The myofibroblast: one function, multiple origins publication-title: Am J Pathol – volume: 133 start-page: 2332 year: 2013 end-page: 9 article-title: Enpp2/autotaxin in dermal papilla precursors is dispensable for hair follicle morphogenesis publication-title: J Invest Dermatol – volume: 3 start-page: e2696 year: 2008 article-title: Molecular subsets in the gene expression signatures of scleroderma skin publication-title: PLoS One – volume: 125 start-page: 421 year: 2005 end-page: 7 article-title: Production of lysophosphatidic acid in blister fluid: involvement of a lysophospholipase D activity publication-title: J Invest Dermatol – volume: 6 start-page: 315 year: 1997 end-page: 25 article-title: Role of IL‐6 and its soluble receptor in induction of chemokines and leukocyte recruitment publication-title: Immunity – volume: 129 start-page: 2772 year: 2009 end-page: 6 article-title: In vitro analysis of LIPH mutations causing hypotrichosis simplex: evidence confirming the role of lipase H and lysophosphatidic acid in hair growth publication-title: J Invest Dermatol – volume: 67 start-page: 1062 year: 2015 end-page: 73 article-title: Myofibroblasts in cutaneous fibrosis originate from adiponectin‐positive intradermal progenitors publication-title: Arthritis Rheumatol – volume: 6 start-page: e27851 year: 2011 article-title: Stat3 mediates expression of autotaxin in breast cancer publication-title: PLoS One – volume: 114 start-page: 1714 year: 2004 end-page: 25 article-title: Platelet‐derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer publication-title: J Clin Invest – volume: 66 start-page: S386 issue: Suppl year: 2014 article-title: Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis: week 24 data from a phase 2/3 trial [abstract] publication-title: Arthritis Rheumatol – volume: 30 start-page: 231 year: 2011 end-page: 7 article-title: Serum chemokine and cytokine levels as indicators of disease activity in patients with systemic sclerosis publication-title: Clin Rheumatol – volume: 41 start-page: 616 year: 2007 end-page: 23 article-title: Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C publication-title: J Clin Gastroenterol – volume: 71 start-page: 1235 year: 2012 end-page: 42 article-title: Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis publication-title: Ann Rheum Dis – volume: 22 start-page: 1281 year: 1995 end-page: 5 article-title: Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis publication-title: J Rheumatol – volume: 65 start-page: 2737 year: 2013 end-page: 47 article-title: 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism collaborative initiative publication-title: Arthritis Rheum – year: 2012 – volume: 281 start-page: 25822 year: 2006 end-page: 30 article-title: Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid publication-title: J Biol Chem – volume: 68 start-page: 2003 year: 2016 end-page: 15 article-title: Identification of optimal mouse models of systemic sclerosis by interspecies comparative genomics publication-title: Arthritis Rheumatol – volume: 50 start-page: 157 year: 2010 end-page: 86 article-title: LPA receptors: subtypes and biological actions publication-title: Annu Rev Pharmacol Toxicol – volume: 73 start-page: 713 year: 2003 end-page: 21 article-title: Essential involvement of IL‐6 in the skin wound‐healing process as evidenced by delayed wound healing in IL‐6‐deficient mice publication-title: J Leukoc Biol – volume: 58 start-page: 573 year: 1989 end-page: 81 article-title: Interleukin‐6 triggers the association of its receptor with a possible signal transducer, gp130 publication-title: Cell – volume: 96 start-page: 140 year: 2014 end-page: 3 article-title: Involvement of autotaxin/lysophosphatidic acid signaling in obesity and impaired glucose homeostasis publication-title: Biochimie – volume: 180 start-page: 165 year: 2012 end-page: 76 article-title: Blockade of interleukin‐6 receptor alleviates disease in mouse model of scleroderma publication-title: Am J Pathol – volume: 39 start-page: 3 year: 2012 end-page: 10 article-title: Congenital hair loss disorders: rare, but not too rare publication-title: J Dermatol – volume: 63 start-page: 1405 year: 2011 end-page: 15 article-title: Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma publication-title: Arthritis Rheum – volume: 31 start-page: 395 year: 2004 end-page: 404 article-title: Inhibition of pulmonary fibrosis by the chemokine IP‐10/CXCL10 publication-title: Am J Respir Cell Mol Biol – volume: 158 start-page: 227 year: 2002 end-page: 33 article-title: Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production publication-title: J Cell Biol – volume: 14 start-page: 45 year: 2008 end-page: 54 article-title: The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak publication-title: Nat Med – volume: 16 start-page: R157 year: 2014 article-title: Targeting IL‐6 by both passive or active immunization strategies prevents bleomycin‐induced skin fibrosis publication-title: Arthritis Res Ther – volume: 6 start-page: 168 year: 2009 end-page: 76 article-title: Elevated serum levels of arachidonoyl‐lysophosphatidic acid and sphingosine 1‐phosphate in systemic sclerosis publication-title: Int J Med Sci – volume: 2 start-page: 933 year: 2014 end-page: 42 article-title: Combination therapy: the future of management for idiopathic pulmonary fibrosis? publication-title: Lancet Respir Med – volume: 40 start-page: 274 year: 2007 end-page: 7 article-title: Measurement of lysophospholipase D/autotaxin activity in human serum samples publication-title: Clin Biochem – volume: 26 start-page: 5015 year: 2006 end-page: 22 article-title: Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development publication-title: Mol Cell Biol – volume: 54 start-page: 3655 year: 2006 end-page: 60 article-title: Myofibroblasts and hyalinized collagen as markers of skin disease in systemic sclerosis publication-title: Arthritis Rheum – volume: 1781 start-page: 513 year: 2008 end-page: 8 article-title: Two pathways for lysophosphatidic acid production publication-title: Biochim Biophys Acta – volume: 193 start-page: 3755 year: 2014 end-page: 68 article-title: Blockade of IL‐6 trans signaling attenuates pulmonary fibrosis publication-title: J Immunol – volume: 90 start-page: 484 year: 2011 end-page: 94 article-title: The soluble interleukin 6 receptor: generation and role in inflammation and cancer publication-title: Eur J Cell Biol – volume: 52 start-page: 1247 year: 2011 end-page: 55 article-title: Adipose‐specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid publication-title: J Lipid Res – volume: 40 start-page: 1984 year: 1997 end-page: 91 article-title: The value of the Health Assessment Questionnaire and special patient‐generated scales to demonstrate change in systemic sclerosis patients over time publication-title: Arthritis Rheum – volume: 137 start-page: 585 year: 1990 end-page: 91 article-title: Smooth muscle differentiation in scleroderma fibroblastic cells publication-title: Am J Pathol – volume: 47 start-page: 566 year: 2012 end-page: 74 article-title: Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis publication-title: Am J Respir Cell Mol Biol – ident: e_1_2_7_24_1 doi: 10.1083/jcb.200204026 – ident: e_1_2_7_27_1 doi: 10.1002/art.22186 – ident: e_1_2_7_29_1 doi: 10.1136/annrheumdis-2011-200955 – ident: e_1_2_7_30_1 doi: 10.1186/ar4672 – ident: e_1_2_7_20_1 doi: 10.1002/art.38098 – ident: e_1_2_7_42_1 doi: 10.1371/journal.pone.0002696 – ident: e_1_2_7_6_1 doi: 10.1002/art.1780401110 – ident: e_1_2_7_14_1 doi: 10.1165/rcmb.2012-0004OC – ident: e_1_2_7_31_1 doi: 10.1189/jlb.0802397 – ident: e_1_2_7_36_1 doi: 10.1016/j.ejcb.2010.10.007 – ident: e_1_2_7_13_1 doi: 10.1097/01.mcg.0000225642.90898.0e – volume-title: Patent: autotaxin inhibitors and uses thereof year: 2012 ident: e_1_2_7_25_1 – ident: e_1_2_7_41_1 doi: 10.1002/art.38990 – ident: e_1_2_7_4_1 doi: 10.7150/ijms.6.168 – ident: e_1_2_7_17_1 doi: 10.1007/s10067-010-1610-4 – ident: e_1_2_7_32_1 doi: 10.1016/j.ajpath.2011.09.013 – ident: e_1_2_7_37_1 doi: 10.1038/jid.2013.140 – ident: e_1_2_7_43_1 doi: 10.1002/art.39658 – ident: e_1_2_7_34_1 doi: 10.4049/jimmunol.1302470 – volume: 137 start-page: 585 year: 1990 ident: e_1_2_7_26_1 article-title: Smooth muscle differentiation in scleroderma fibroblastic cells publication-title: Am J Pathol – ident: e_1_2_7_3_1 doi: 10.1111/j.0022-202X.2005.23855.x – ident: e_1_2_7_19_1 doi: 10.1172/JCI200422123 – ident: e_1_2_7_28_1 doi: 10.2353/ajpath.2007.070112 – ident: e_1_2_7_10_1 doi: 10.1111/j.1346-8138.2011.01395.x – ident: e_1_2_7_11_1 doi: 10.1074/jbc.M605142200 – ident: e_1_2_7_12_1 doi: 10.1128/MCB.02419-05 – ident: e_1_2_7_9_1 doi: 10.1016/j.bbalip.2008.06.005 – ident: e_1_2_7_39_1 doi: 10.1016/j.biochi.2013.04.010 – ident: e_1_2_7_35_1 doi: 10.1016/0092-8674(89)90438-8 – ident: e_1_2_7_2_1 doi: 10.1002/art.30262 – ident: e_1_2_7_33_1 doi: 10.1016/S1074-7613(00)80334-9 – volume: 19 start-page: 1207 year: 1992 ident: e_1_2_7_16_1 article-title: Mechanisms of pathogenesis in scleroderma. I. Overproduction of interleukin 6 by fibroblasts cultured from affected skin sites of patients with scleroderma publication-title: J Rheumatol – volume: 66 start-page: S387 year: 2014 ident: e_1_2_7_7_1 article-title: SAR100842, an antagonist of lysophaphatidic acid receptor 1, as a potential treatment for patients with systemic sclerosis: results from a phase 2a study [abstract] publication-title: Arthritis Rheumatol – ident: e_1_2_7_15_1 doi: 10.1371/journal.pone.0027851 – volume: 22 start-page: 1281 year: 1995 ident: e_1_2_7_5_1 article-title: Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis publication-title: J Rheumatol – ident: e_1_2_7_8_1 doi: 10.1146/annurev.pharmtox.010909.105753 – ident: e_1_2_7_22_1 doi: 10.1038/nm1685 – ident: e_1_2_7_23_1 doi: 10.1165/rcmb.2004-0175OC – volume: 66 start-page: S386 year: 2014 ident: e_1_2_7_18_1 article-title: Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis: week 24 data from a phase 2/3 trial [abstract] publication-title: Arthritis Rheumatol – ident: e_1_2_7_21_1 doi: 10.1016/j.clinbiochem.2006.10.009 – ident: e_1_2_7_40_1 doi: 10.1194/jlr.M014985 – ident: e_1_2_7_44_1 doi: 10.1016/S2213-2600(14)70232-2 – ident: e_1_2_7_38_1 doi: 10.1038/jid.2009.154 – reference: 12119361 - J Cell Biol. 2002 Jul 22;158(2):227-33 – reference: 25172494 - J Immunol. 2014 Oct 1;193(7):3755-68 – reference: 16829511 - J Biol Chem. 2006 Sep 1;281(35):25822-30 – reference: 15205180 - Am J Respir Cell Mol Biol. 2004 Oct;31(4):395-404 – reference: 22140473 - PLoS One. 2011;6(11):e27851 – reference: 18648520 - PLoS One. 2008 Jul 16;3(7):e2696 – reference: 12773503 - J Leukoc Biol. 2003 Jun;73(6):713-21 – reference: 19536142 - J Invest Dermatol. 2009 Dec;129(12 ):2772-6 – reference: 17075814 - Arthritis Rheum. 2006 Nov;54(11):3655-60 – reference: 17222397 - Clin Biochem. 2007 Feb;40(3-4):274-7 – reference: 21305523 - Arthritis Rheum. 2011 May;63(5):1405-15 – reference: 25059342 - Arthritis Res Ther. 2014 Jul 24;16(4):R157 – reference: 18621144 - Biochim Biophys Acta. 2008 Sep;1781(9):513-8 – reference: 26945694 - Arthritis Rheumatol. 2016 Aug;68(8):2003-15 – reference: 23639740 - Biochimie. 2014 Jan;96:140-3 – reference: 16117781 - J Invest Dermatol. 2005 Sep;125(3):421-7 – reference: 21049277 - Clin Rheumatol. 2011 Feb;30(2):231-7 – reference: 15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25 – reference: 20055701 - Annu Rev Pharmacol Toxicol. 2010;50:157-86 – reference: 16782887 - Mol Cell Biol. 2006 Jul;26(13):5015-22 – reference: 21421848 - J Lipid Res. 2011 Jun;52(6):1247-55 – reference: 21145125 - Eur J Cell Biol. 2011 Jun-Jul;90(6-7):484-94 – reference: 25439569 - Lancet Respir Med. 2014 Nov;2(11):933-42 – reference: 9075932 - Immunity. 1997 Mar;6(3):315-25 – reference: 18066075 - Nat Med. 2008 Jan;14 (1):45-54 – reference: 2788034 - Cell. 1989 Aug 11;58(3):573-81 – reference: 1698026 - Am J Pathol. 1990 Sep;137(3):585-91 – reference: 22586157 - Ann Rheum Dis. 2012 Jul;71(7):1235-42 – reference: 1404155 - J Rheumatol. 1992 Aug;19(8):1207-11 – reference: 23677168 - J Invest Dermatol. 2013 Oct;133(10 ):2332-9 – reference: 22062222 - Am J Pathol. 2012 Jan;180(1):165-76 – reference: 22744859 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):566-74 – reference: 17525249 - Am J Pathol. 2007 Jun;170(6):1807-16 – reference: 19521548 - Int J Med Sci. 2009 Jun 05;6(4):168-76 – reference: 17577119 - J Clin Gastroenterol. 2007 Jul;41(6):616-23 – reference: 22044263 - J Dermatol. 2012 Jan;39(1):3-10 – reference: 25504959 - Arthritis Rheumatol. 2015 Apr;67(4):1062-73 |
SSID | ssj0000970605 |
Score | 2.4878995 |
Snippet | Objective
We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of... We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study... Objective We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2964 |
SubjectTerms | Animals Benzoates - pharmacology Bleomycin - toxicity Case-Control Studies Cytokines Disease Models, Animal Enzyme-Linked Immunosorbent Assay Female Fibroblasts Fibroblasts - drug effects Fibroblasts - metabolism Fibrosis Humans Immunohistochemistry Interleukin-6 - metabolism Lysophospholipids - metabolism Lysophospholipids - pharmacology Mice Phosphodiesterase Inhibitors - pharmacology Phosphoric Diester Hydrolases - drug effects Phosphoric Diester Hydrolases - metabolism Real-Time Polymerase Chain Reaction RNA, Small Interfering Rodents Scleroderma, Systemic - metabolism Scleroderma, Systemic - pathology Skin - metabolism Skin - pathology |
Title | An Autotaxin/Lysophosphatidic Acid/Interleukin‐6 Amplification Loop Drives Scleroderma Fibrosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39797 https://www.ncbi.nlm.nih.gov/pubmed/27390295 https://www.proquest.com/docview/1844748130 https://www.proquest.com/docview/1868342430 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDcLBQXEASnKbh7O6xgKy1JahESLeotsx9Guuk1W2QQBv4CfzYzjpNk-JOASRbFjW54vzsx45jMhrzn3MpHT0BIyFBb1HW5xhwVWCC94MctBh8bc4cPPwfyY7p_4J6PR70HUUlPzifh1ZV7J_0gVnoFcMUv2HyTbNwoP4B7kC1eQMFz_SsYJ-irqsmY_0LyfHfzEMwnKzXoB5dlSmIlQQ1Jev5VsTpeFFZgJxpDn2lVnHpTl2nxXKfLZr9B8hWejnTFzBmZ0uVluhsprUtULxYGk8FItZAPqbsvhBHrqvOTlqdTpW_uTgYthjwGUQJ1VXtnZin1fsvPY2resZTH4UCkA9Vj9ot3736Ri72UDpyv6HLtIEIbZizqdQjsvnGAQCCLVIgcKXQDGsO0PV-QgGiLPHa6vcct5fmnhb4lkQRIT3KgMh3VAZuszNd2gqsW22x7qeYFluyu6QW66YHAo4_zjp95bZ8fIMuR31FS2O-27Qjpp_fK2bnPJYNm2f5QCc3SX3NGWh5G0MLpHRrK4T24d6tiKByRNCqNH0_QilgzE0nQLScYWkgxEktEiyRggyeiQ9JAcz94f7c0tffyGJcCKDa3Az2xpM8YdHrKcMcyqZn4ehZEdZI7Pckm5xBRNGmfoOLBjTnMRS0EdJuE_6j0iO0VZyCfEYHjKgcxcAX9W6kGj1KOupLjpz13m0zF5001cKjQ3PR6RskpbVm03helO1XSPyau-6rolZLmq0m43-6n-XjepE1Ea0giUtjF52RfDaopbZKyQZYN1ggiGRrHO41ZqfS-dlGGwSozXd5-CLapunl7byDNy-_x72CU7ddXI56De1vyFQt4fspakTw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Autotaxin%2FLysophosphatidic+Acid%2FInterleukin-6+Amplification+Loop+Drives+Scleroderma+Fibrosis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Castelino%2C+Flavia+V&rft.au=Bain%2C+Gretchen&rft.au=Pace%2C+Veronica+A&rft.au=Black%2C+Katharine+E&rft.date=2016-12-01&rft.eissn=2326-5205&rft.volume=68&rft.issue=12&rft.spage=2964&rft_id=info:doi/10.1002%2Fart.39797&rft_id=info%3Apmid%2F27390295&rft.externalDocID=27390295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon |