Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development

Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor‐β (TGF‐β) in diethylnitro...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 56; no. 6; pp. 2255 - 2267
Main Authors Wu, Kun, Ding, Jin, Chen, Cheng, Sun, Wen, Ning, Bei-Fang, Wen, Wen, Huang, Lei, Han, Tao, Yang, Wen, Wang, Chao, Li, Zhong, Wu, Meng-Chao, Feng, Gen-Sheng, Xie, Wei-Fen, Wang, Hong-Yang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley
Wolters Kluwer Health, Inc
Subjects
Online AccessGet full text
ISSN0270-9139
1527-3350
1527-3350
DOI10.1002/hep.26007

Cover

Loading…
Abstract Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor‐β (TGF‐β) in diethylnitrosamine (DEN)‐induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2‐acetylaminofluorene/partial hepatectomy (2‐AAF/PHx) and 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF‐β induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T‐IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF‐β levels were positively correlated with T‐IC marker expression, which indicates a role of TGF‐β in T‐IC generation. Rat pluripotent LPC‐like WB‐F344 cells were exposed to low doses of TGF‐β for 18 weeks imitating the enhanced TGF‐β expression in cirrhotic liver. Interestingly, long‐term treatment of TGF‐β on WB‐F344 cells impaired their LPC potential but granted them T‐IC properties including expression of T‐IC markers, increased self‐renewal capacity, stronger chemoresistance, and tumorigenicity in NOD‐SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF‐β‐treated WB‐F344 cells. Introduction of the dominant‐negative mutant of Akt significantly attenuated T‐IC properties of those transformed WB‐F344 cells, indicating Akt was required in TGF‐β‐mediated‐generation of hepatic T‐ICs. We further demonstrate that TGF‐β‐induced Akt activation and LPC transformation was mediated by microRNA‐216a‐modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression. Conclusion: Hepatoma‐initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF‐β stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA‐216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T‐ICs. (HEPATOLOGY 2012;56:2255–2267)
AbstractList Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor‐β (TGF‐β) in diethylnitrosamine (DEN)‐induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2‐acetylaminofluorene/partial hepatectomy (2‐AAF/PHx) and 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF‐β induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T‐IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF‐β levels were positively correlated with T‐IC marker expression, which indicates a role of TGF‐β in T‐IC generation. Rat pluripotent LPC‐like WB‐F344 cells were exposed to low doses of TGF‐β for 18 weeks imitating the enhanced TGF‐β expression in cirrhotic liver. Interestingly, long‐term treatment of TGF‐β on WB‐F344 cells impaired their LPC potential but granted them T‐IC properties including expression of T‐IC markers, increased self‐renewal capacity, stronger chemoresistance, and tumorigenicity in NOD‐SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF‐β‐treated WB‐F344 cells. Introduction of the dominant‐negative mutant of Akt significantly attenuated T‐IC properties of those transformed WB‐F344 cells, indicating Akt was required in TGF‐β‐mediated‐generation of hepatic T‐ICs. We further demonstrate that TGF‐β‐induced Akt activation and LPC transformation was mediated by microRNA‐216a‐modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression. Conclusion: Hepatoma‐initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF‐β stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA‐216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T‐ICs. (HEPATOLOGY 2012;56:2255–2267)
Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor-[beta] (TGF-[beta]) in diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2-acetylaminofluorene/partial hepatectomy (2-AAF/PHx) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF-[beta] induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T-IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF-[beta] levels were positively correlated with T-IC marker expression, which indicates a role of TGF-[beta] in T-IC generation. Rat pluripotent LPC-like WB-F344 cells were exposed to low doses of TGF-[beta] for 18 weeks imitating the enhanced TGF-[beta] expression in cirrhotic liver. Interestingly, long-term treatment of TGF-[beta] on WB-F344 cells impaired their LPC potential but granted them T-IC properties including expression of T-IC markers, increased self-renewal capacity, stronger chemoresistance, and tumorigenicity in NOD-SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF-[beta]-treated WB-F344 cells. Introduction of the dominant-negative mutant of Akt significantly attenuated T-IC properties of those transformed WB-F344 cells, indicating Akt was required in TGF-[beta]-mediated-generation of hepatic T-ICs. We further demonstrate that TGF-[beta]-induced Akt activation and LPC transformation was mediated by microRNA-216a-modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression. Conclusion: Hepatoma-initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF-[beta] stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA-216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T-ICs. (HEPATOLOGY 2012;56:2255-2267) [PUBLICATION ABSTRACT]
Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor-β (TGF-β) in diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2-acetylaminofluorene/partial hepatectomy (2-AAF/PHx) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF-β induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T-IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF-β levels were positively correlated with T-IC marker expression, which indicates a role of TGF-β in T-IC generation. Rat pluripotent LPC-like WB-F344 cells were exposed to low doses of TGF-β for 18 weeks imitating the enhanced TGF-β expression in cirrhotic liver. Interestingly, long-term treatment of TGF-β on WB-F344 cells impaired their LPC potential but granted them T-IC properties including expression of T-IC markers, increased self-renewal capacity, stronger chemoresistance, and tumorigenicity in NOD-SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF-β-treated WB-F344 cells. Introduction of the dominant-negative mutant of Akt significantly attenuated T-IC properties of those transformed WB-F344 cells, indicating Akt was required in TGF-β-mediated-generation of hepatic T-ICs. We further demonstrate that TGF-β-induced Akt activation and LPC transformation was mediated by microRNA-216a-modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression.UNLABELLEDLiver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor-β (TGF-β) in diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2-acetylaminofluorene/partial hepatectomy (2-AAF/PHx) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF-β induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T-IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF-β levels were positively correlated with T-IC marker expression, which indicates a role of TGF-β in T-IC generation. Rat pluripotent LPC-like WB-F344 cells were exposed to low doses of TGF-β for 18 weeks imitating the enhanced TGF-β expression in cirrhotic liver. Interestingly, long-term treatment of TGF-β on WB-F344 cells impaired their LPC potential but granted them T-IC properties including expression of T-IC markers, increased self-renewal capacity, stronger chemoresistance, and tumorigenicity in NOD-SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF-β-treated WB-F344 cells. Introduction of the dominant-negative mutant of Akt significantly attenuated T-IC properties of those transformed WB-F344 cells, indicating Akt was required in TGF-β-mediated-generation of hepatic T-ICs. We further demonstrate that TGF-β-induced Akt activation and LPC transformation was mediated by microRNA-216a-modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression.Hepatoma-initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF-β stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA-216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T-ICs.CONCLUSIONHepatoma-initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF-β stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA-216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T-ICs.
Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC remains unclear. Herein we report the concurrent increase of liver progenitor cells (LPCs) and transforming growth factor-β (TGF-β) in diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis and cirrhotic livers of HCC patients. Using several experimental approaches, including 2-acetylaminofluorene/partial hepatectomy (2-AAF/PHx) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-elicited murine liver regeneration, we found that activation of LPCs in the absence of TGF-β induction was insufficient to trigger hepatocarcinogenesis. Moreover, a small fraction of LPCs was detected to coexpress tumor initiating cell (T-IC) markers during rat hepatocarcinogenesis and in human HCCs, and TGF-β levels were positively correlated with T-IC marker expression, which indicates a role of TGF-β in T-IC generation. Rat pluripotent LPC-like WB-F344 cells were exposed to low doses of TGF-β for 18 weeks imitating the enhanced TGF-β expression in cirrhotic liver. Interestingly, long-term treatment of TGF-β on WB-F344 cells impaired their LPC potential but granted them T-IC properties including expression of T-IC markers, increased self-renewal capacity, stronger chemoresistance, and tumorigenicity in NOD-SCID mice. Hyperactivation of Akt but not Notch, signal transducer and activator of transcription 3 (STAT3), or mammalian target of rapamycin (mTOR) was detected in TGF-β-treated WB-F344 cells. Introduction of the dominant-negative mutant of Akt significantly attenuated T-IC properties of those transformed WB-F344 cells, indicating Akt was required in TGF-β-mediated-generation of hepatic T-ICs. We further demonstrate that TGF-β-induced Akt activation and LPC transformation was mediated by microRNA-216a-modulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) suppression. Hepatoma-initiating cells may derive from hepatic progenitor cells exposed to chronic and constant TGF-β stimulation in cirrhotic liver, and pharmaceutical inhibition of microRNA-216a/PTEN/Akt signaling could be a novel strategy for HCC prevention and therapy targeting hepatic T-ICs.
Author Wen, Wen
Xie, Wei-Fen
Ning, Bei-Fang
Yang, Wen
Huang, Lei
Wang, Hong-Yang
Ding, Jin
Sun, Wen
Feng, Gen-Sheng
Wu, Kun
Wang, Chao
Wu, Meng-Chao
Chen, Cheng
Li, Zhong
Han, Tao
Author_xml – sequence: 1
  givenname: Kun
  surname: Wu
  fullname: Wu, Kun
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 2
  givenname: Jin
  surname: Ding
  fullname: Ding, Jin
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 4
  givenname: Wen
  surname: Sun
  fullname: Sun, Wen
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 5
  givenname: Bei-Fang
  surname: Ning
  fullname: Ning, Bei-Fang
  organization: Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
– sequence: 6
  givenname: Wen
  surname: Wen
  fullname: Wen, Wen
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 7
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 8
  givenname: Tao
  surname: Han
  fullname: Han, Tao
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 9
  givenname: Wen
  surname: Yang
  fullname: Yang, Wen
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 10
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 11
  givenname: Zhong
  surname: Li
  fullname: Li, Zhong
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 12
  givenname: Meng-Chao
  surname: Wu
  fullname: Wu, Meng-Chao
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 13
  givenname: Gen-Sheng
  surname: Feng
  fullname: Feng, Gen-Sheng
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
– sequence: 14
  givenname: Wei-Fen
  surname: Xie
  fullname: Xie, Wei-Fen
  organization: Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
– sequence: 15
  givenname: Hong-Yang
  surname: Wang
  fullname: Wang, Hong-Yang
  email: hywangk@vip.sina.com
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853036$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22898879$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEUhS1URNPCghdAlhBSWUzrn_HYXqKqNEhVYQEUsbFsx5O6zNjBdvrz9nhIAlIFq7v5vqN77zkAeyEGB8BLjI4xQuTk2q2OSYcQfwJmmBHeUMrQHpghwlEjMZX74CDnG4SQbIl4BvYJEVIILmcgzd1KF29hSTrkPqbRhyVcpnhXrmGvbYkJGlc0XPpbl2Hy2cESYVmPMTU--OKrXQ3rhiFDHRZwleIYS2WHaiRodbB1LNytG-JqdKE8B097PWT3YjsPwZf3Z59P583Fx_MPp-8uGtsKXm_ohGiJJD1eaMkRMQJbIamxiPRMOmxMj3tjhRaaYy6Jlqg3RjLjmEYGtfQQHG1y60Y_1y4XNfo87amDi-usMCG0pYSxCX39CL2J6xTqdhOFWcfabqJebam1Gd1CrZIfdXpQu29W4M0W0Nnqoa8vtT7_5TrBKKJd5U42nE0x5-R6ZX2pf4yhtuAHhZGaelW1V_W712q8fWTsQv_FbtPv_OAe_g-q-dmnndFsDJ-Lu_9j6PRDdZxypq4uz9U3_v1Ktl87dUl_AW65wSg
CODEN HPTLD9
CitedBy_id crossref_primary_10_1038_s41575_021_00508_3
crossref_primary_10_1002_hep_31792
crossref_primary_10_1002_mc_23298
crossref_primary_10_1155_2016_1492694
crossref_primary_10_1111_1751_2980_13072
crossref_primary_10_3390_cancers13194876
crossref_primary_10_1016_j_cellsig_2013_05_027
crossref_primary_10_1590_s0102_865020180030000002
crossref_primary_10_1002_hep_26369
crossref_primary_10_1016_j_jhep_2017_01_010
crossref_primary_10_1038_s41698_018_0048_z
crossref_primary_10_1002_advs_202207349
crossref_primary_10_4137_CMO_S7633
crossref_primary_10_1016_j_toxlet_2014_08_024
crossref_primary_10_3390_ijms242417152
crossref_primary_10_1186_s12885_015_1798_4
crossref_primary_10_14348_molcells_2015_2356
crossref_primary_10_1158_0008_5472_CAN_17_2061
crossref_primary_10_1042_BCJ20210254
crossref_primary_10_1111_fcp_12297
crossref_primary_10_4252_wjsc_v6_i5_579
crossref_primary_10_1007_s43152_024_00053_6
crossref_primary_10_1007_s12272_014_0439_9
crossref_primary_10_1016_j_canlet_2017_01_037
crossref_primary_10_1007_s13765_014_4179_9
crossref_primary_10_1038_nrgastro_2013_183
crossref_primary_10_18632_oncotarget_4089
crossref_primary_10_3390_cancers16223723
crossref_primary_10_18632_oncotarget_3435
crossref_primary_10_1002_cam4_2553
crossref_primary_10_1139_cjpp_2014_0032
crossref_primary_10_3390_ijms19071939
crossref_primary_10_1155_2014_486407
crossref_primary_10_1172_JCI66024
crossref_primary_10_3390_cancers11081076
crossref_primary_10_1016_j_gene_2018_10_087
crossref_primary_10_3390_ijms17030408
crossref_primary_10_1155_2016_6304385
crossref_primary_10_1016_j_freeradbiomed_2014_04_020
crossref_primary_10_1016_j_bbcan_2014_05_001
crossref_primary_10_3390_jcm5030037
crossref_primary_10_1016_j_bbi_2016_08_016
crossref_primary_10_1158_1535_7163_MCT_14_0209
crossref_primary_10_3892_ol_2024_14669
crossref_primary_10_7314_APJCP_2014_15_1_161
crossref_primary_10_3390_jcm5010007
crossref_primary_10_3390_ijms20071723
crossref_primary_10_3390_ijms242417539
crossref_primary_10_1002_hep_29372
crossref_primary_10_1053_j_gastro_2017_11_015
crossref_primary_10_1186_s13046_019_1326_5
crossref_primary_10_1007_s12072_013_9498_0
crossref_primary_10_1038_s41419_022_04759_z
crossref_primary_10_1007_s13346_024_01780_x
crossref_primary_10_1007_s13277_015_3920_2
crossref_primary_10_1016_j_jhep_2015_03_036
crossref_primary_10_1038_nrgastro_2014_6
crossref_primary_10_3390_cancers12102746
crossref_primary_10_1002_jcb_29496
crossref_primary_10_1016_j_dld_2019_07_014
crossref_primary_10_1016_j_neo_2014_07_005
crossref_primary_10_1038_onc_2016_89
crossref_primary_10_1158_0008_5472_CAN_14_0243
crossref_primary_10_1002_ar_23357
crossref_primary_10_1002_hep4_1145
crossref_primary_10_18632_oncotarget_15304
crossref_primary_10_1016_j_bbrc_2014_10_023
crossref_primary_10_1155_2019_8734362
crossref_primary_10_1007_s11684_013_0256_4
crossref_primary_10_1016_j_biopha_2017_12_035
crossref_primary_10_1016_j_gene_2018_10_051
crossref_primary_10_1111_fcp_12990
crossref_primary_10_1038_s41388_022_02246_5
crossref_primary_10_1080_15384101_2021_1874694
crossref_primary_10_1007_s12035_014_8867_6
crossref_primary_10_1186_1471_2121_15_5
crossref_primary_10_1016_j_canlet_2015_07_018
crossref_primary_10_1371_journal_pone_0079409
crossref_primary_10_1002_adtp_202000025
crossref_primary_10_1016_j_ijpharm_2022_121622
crossref_primary_10_1177_1535370215584935
crossref_primary_10_1016_j_canlet_2013_12_024
crossref_primary_10_1016_j_tox_2013_02_001
crossref_primary_10_1038_s41392_024_01851_y
crossref_primary_10_1002_jcp_24488
crossref_primary_10_3390_cancers10060183
crossref_primary_10_1177_1010428319834856
crossref_primary_10_1016_j_cellsig_2013_03_022
crossref_primary_10_1371_journal_pone_0144433
crossref_primary_10_1186_s40164_021_00212_7
crossref_primary_10_3390_molecules25122883
crossref_primary_10_1016_j_dld_2016_06_001
crossref_primary_10_1158_1535_7163_MCT_13_0099
crossref_primary_10_1053_j_gastro_2013_01_056
crossref_primary_10_3390_ijms17010030
crossref_primary_10_1186_s12935_015_0253_6
crossref_primary_10_1007_s11427_018_9365_7
crossref_primary_10_1016_j_canlet_2018_01_001
crossref_primary_10_1186_s12943_016_0572_9
crossref_primary_10_1002_hep_26323
crossref_primary_10_1038_oncsis_2016_6
crossref_primary_10_1111_liv_13377
crossref_primary_10_15406_mojcsr_2014_01_00012
crossref_primary_10_1002_adtp_202400126
crossref_primary_10_1016_j_canlet_2016_03_014
crossref_primary_10_1155_2013_924206
crossref_primary_10_3892_ol_2018_8672
crossref_primary_10_1016_S1499_3872_13_60104_6
crossref_primary_10_1007_s12015_023_10639_6
crossref_primary_10_1038_oncsis_2017_81
crossref_primary_10_1177_1010428317695923
crossref_primary_10_1016_j_omtn_2019_12_043
crossref_primary_10_1245_s10434_015_5035_9
crossref_primary_10_1016_j_semcancer_2017_11_007
crossref_primary_10_1586_17474124_2013_846826
crossref_primary_10_1016_j_biochi_2018_03_003
crossref_primary_10_1016_j_trecan_2022_10_005
crossref_primary_10_1186_s43556_024_00184_0
crossref_primary_10_1007_s11356_021_15571_1
crossref_primary_10_18632_oncotarget_12569
crossref_primary_10_1016_j_canlet_2015_07_041
crossref_primary_10_1039_C6MD00391E
crossref_primary_10_3389_fonc_2018_00357
crossref_primary_10_1002_cbin_10341
crossref_primary_10_1111_hepr_12747
crossref_primary_10_1016_j_yexcr_2019_111781
crossref_primary_10_1002_stem_3038
crossref_primary_10_1016_j_critrevonc_2016_08_006
crossref_primary_10_1016_j_msec_2020_111446
crossref_primary_10_1089_jir_2017_0130
crossref_primary_10_1371_journal_pone_0080789
crossref_primary_10_2131_jts_39_837
crossref_primary_10_1002_mc_22906
crossref_primary_10_3390_cancers12030684
crossref_primary_10_1016_j_neo_2014_08_010
crossref_primary_10_1111_acer_12279
crossref_primary_10_18632_aging_205725
crossref_primary_10_1038_s41388_019_1107_9
crossref_primary_10_1002_hep_28919
crossref_primary_10_1016_j_canlet_2016_03_033
crossref_primary_10_1016_j_bbcan_2023_188870
crossref_primary_10_1016_j_fob_2015_05_009
crossref_primary_10_1016_j_jinorgbio_2023_112200
crossref_primary_10_1002_mc_22592
crossref_primary_10_4254_wjh_v13_i3_328
crossref_primary_10_1016_j_jep_2018_11_007
crossref_primary_10_1016_j_ebiom_2019_01_058
crossref_primary_10_3389_fonc_2023_1073859
crossref_primary_10_3390_cancers11111652
crossref_primary_10_1016_j_abb_2015_11_004
crossref_primary_10_3748_wjg_v20_i30_10249
crossref_primary_10_1186_s12967_023_04425_8
crossref_primary_10_1002_jcp_24962
crossref_primary_10_1111_hepr_12606
crossref_primary_10_3389_fimmu_2020_00140
crossref_primary_10_1016_j_cellimm_2017_08_004
crossref_primary_10_1371_journal_pone_0096698
crossref_primary_10_3390_cancers11030345
crossref_primary_10_1038_onc_2014_258
crossref_primary_10_1002_hep_30166
crossref_primary_10_1007_s11684_023_1049_z
Cites_doi 10.1053/j.gastro.2007.06.016
10.1053/jhep.2002.32089
10.1038/nrc1232
10.1159/000218340
10.1053/jhep.2001.28457
10.1002/hep.22704
10.1016/j.canlet.2005.11.042
10.1016/j.ccr.2007.05.008
10.1016/j.ccr.2008.01.013
10.1172/JCI24282
10.1038/nm1377
10.1038/ncb1897
10.1002/hep.22283
10.1002/hep.21466
10.1002/hep.24530
10.1053/j.gastro.2004.09.014
10.1016/S1535-6108(04)00058-3
10.1083/jcb.200305112
10.1002/hep.21227
10.3181/00379727-204-43663
10.1016/j.stem.2011.06.005
10.3322/caac.20107
10.1016/j.cell.2008.07.001
10.1002/hep.23449
10.1038/nature08734
10.1182/blood-2009-11-255778
10.1073/pnas.0705395105
10.1038/nature04703
10.1073/pnas.111614398
10.1038/sj.onc.1210811
10.1038/sj.onc.1208475
10.1634/stemcells.2005-0108
10.1016/j.cell.2006.12.029
10.1002/hep.22580
10.1002/ajmg.a.10750
10.1016/0014-4827(84)90666-9
10.1038/nature07086
10.1016/j.stem.2007.02.001
10.1016/j.cell.2007.10.054
10.1074/jbc.R800071200
10.1038/ng1494
10.1038/nature05529
10.1016/S0140-6736(08)60383-9
10.1073/pnas.0810956106
10.1002/hep.24675
10.1158/0008-5472.CAN-07-6691
10.1002/hep.1840160604
10.1038/emm.2001.31
10.1002/hep.23544
10.1053/j.gastro.2007.05.022
10.1016/j.jhep.2010.05.003
10.1002/hep.510300614
10.1136/gut.2005.088690
10.1016/S0092-8674(04)00045-5
10.1002/hep.23793
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Study of Liver Diseases
2014 INIST-CNRS
Copyright © 2012 American Association for the Study of Liver Diseases.
Copyright_xml – notice: Copyright © 2012 American Association for the Study of Liver Diseases
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 American Association for the Study of Liver Diseases.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.26007
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 2267
ExternalDocumentID 2831418311
22898879
26853036
10_1002_hep_26007
HEP26007
ark_67375_WNG_X7ZW94V6_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology Key Program
  funderid: 2012ZX10002‐009; 011; 013
– fundername: National Natural Science Foundation of China
  funderid: 30921006; 31071236
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AANHP
ABWVN
ACLDA
ACRPL
ACYXJ
ADNMO
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
ACIJW
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c4877-36884292f1da9702b81c893bc02f59e1bbf1fbc8a8a71792a90fbb95be5a0b043
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Fri Jul 11 08:57:49 EDT 2025
Fri Jul 25 22:58:29 EDT 2025
Mon Jul 21 05:43:48 EDT 2025
Wed Apr 02 07:49:42 EDT 2025
Tue Jul 01 03:33:33 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Wed Jan 22 16:21:01 EST 2025
Wed Oct 30 09:59:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Liver cancer
Transforming growth factor
Liver
Gastroenterology
Digestive diseases
Hepatic disease
Malignant tumor
Tumor cell
Cancer
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
Copyright © 2012 American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-36884292f1da9702b81c893bc02f59e1bbf1fbc8a8a71792a90fbb95be5a0b043
Notes Ministry of Science and Technology Key Program - No. 2012ZX10002-009; No. 011; No. 013
Potential conflict of interest: Nothing to report.
Supported in part by grants from National Natural Science Foundation of China 30921006 and 31071236; Ministry of Science and Technology Key Program 2012ZX10002-009, 011, and 013; Shanghai Pujiang Program.
istex:EEBEE56350E618C8B60E5B3E2B20F4F45E535E35
ark:/67375/WNG-X7ZW94V6-N
ArticleID:HEP26007
National Natural Science Foundation of China - No. 30921006; No. 31071236
These authors contributed equally to this work.
Supported in part by grants from National Natural Science Foundation of China 30921006 and 31071236; Ministry of Science and Technology Key Program 2012ZX10002‐009, 011, and 013; Shanghai Pujiang Program.
fax: 86‐21‐65566851
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22898879
PQID 1221565464
PQPubID 996352
PageCount 13
ParticipantIDs proquest_miscellaneous_1223432554
proquest_journals_1221565464
pubmed_primary_22898879
pascalfrancis_primary_26853036
crossref_citationtrail_10_1002_hep_26007
crossref_primary_10_1002_hep_26007
wiley_primary_10_1002_hep_26007_HEP26007
istex_primary_ark_67375_WNG_X7ZW94V6_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wolters Kluwer Health, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wolters Kluwer Health, Inc
References Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009; 11: 881-889.
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109-1123.
Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: S35-S50.
You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. HEPATOLOGY 2010; 51: 1635-1644.
Im YH, Kim HT, Kim IY, Factor VM, Hahm KB, Anzano M, et al. Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res 2001; 61: 6665-6668.
Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-112.
Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 2007; 133: 937-950.
Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver. HEPATOLOGY 2001; 34: 859-867.
Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309-323.
Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003; 116A: 1-A10.
Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 2009; 106: 268-273.
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. HEPATOLOGY 2009; 49: 318-329.
Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56-61.
Fu CT, Zhu KY, Mi JQ, Liu YF, Murray ST, Fu YF, et al. An evolutionarily conserved PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation. Blood 2010; 115: 4715-4724.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 2011; 9: 50-63.
Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. HEPATOLOGY 2008; 47: 2059-2067.
Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008; 68: 4287-4295.
Grisham JW, Coleman WB, Smith GJ. Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc Soc Exp Biol Med 1993; 204: 270-279.
Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. HEPATOLOGY 2008; 48: 2047-2063.
Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, et al. Hepatitis B Virus S (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine treated HBx transgenic mice. HEPATOLOGY 2012; 55: 108-120.
Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J Biol Chem 2009; 284: 11755-11759.
Bissell DM. Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 2001; 33: 179-190.
Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005; 37: 19-24.
Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895-902.
Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676-680.
Dooley S, Weng H, Mertens PR. Hypotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular carcinoma. Dig Dis 2009; 27: 93-101.
Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27: 1749-1758.
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656-660.
Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371: 838-851.
Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. HEPATOLOGY 1999; 30: 1425-1433.
Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 2007; 56: 284-292.
Massagué J. TGF-β in cancer. Cell 2008; 134: 215-230.
Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 2001; 98: 6686-6691.
Sun W, Ding J, Wu K, Ning BF, Wen W, Sun HY, et al. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of hepatocytes and hepatoma cells. HEPATOLOGY 2011; 54: 1259-1272.
Tsao MS, Smith JD, Nelson KG, Grisham JW. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of 'oval' cells. Exp Cell Res 1984; 154: 38-52.
Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, et al. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 2005; 24: 3028-3041.
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008; 13: 153-166.
Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475-482.
Li WL, Su J, Yao YC, Tao XR, Yan YB, Yu HY, et al. Isolation and characterization of bipotent liver progenitor cells from adult mouse. Stem Cells 2006; 24: 322-332.
Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 2008; 105: 2445-2450.
Nguyen LN, Furuya MH, Wolfraim LA, Nguyen AP, Holdren MS, Campbell JS, et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. HEPATOLOGY 2007; 45: 31-41.
Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004; 5: 215-219.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, et al. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003; 163: 723-728.
Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L, et al. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver. HEPATOLOGY 2010; 51: 1373-1382.
Chiba T, Seki A, Aoki R, Ichikawa H, Negishi M, Miyagi S, et al. Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice. HEPATOLOGY 2010; 52: 1111-1123.
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658.
Hsia CC, Evarts RP, Nakatsukasa H, Marsden ER, Thorgeirsson SS. Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. HEPATOLOGY 1992; 16: 1327-1333.
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218.
Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. HEPATOLOGY 2006; 44: 240-251.
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22.
Chow LM, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241: 184-196.
Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12: 410-416.
Marquardt JU, Factor VM, Thorgeirsson SS. Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications. J Hepatol 2010; 53: 568-577.
Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. HEPATOLOGY 2002; 35: 519-524.
2010; 53
2004; 127
2011; 61
2010; 463
2004; 5
2011; 54
2008; 105
1992; 16
1993; 204
2012; 55
2009; 49
2005; 24
2009; 11
2001; 61
1984; 154
2006; 24
2007; 133
2010; 115
2008; 27
2007; 131
2003; 3
2008; 68
2006; 241
2009; 284
2005; 37
2007; 1
2006; 441
2001; 98
2003; 163
2007; 445
2007; 128
2006; 12
2002; 35
2005; 115
2008; 13
2007; 56
2007; 12
2009; 27
2011; 9
2004; 116
2006; 44
2008; 47
2008; 48
1999; 30
2008; 454
2001; 33
2008; 134
2001; 34
2003; 116A
2007; 45
2010; 52
2008; 371
2010; 51
2009; 106
Li (10.1002/hep.26007-BIB21|cit21) 2006; 24
Bartel (10.1002/hep.26007-BIB54|cit54) 2004; 116
Davis (10.1002/hep.26007-BIB56|cit56) 2008; 454
Meng (10.1002/hep.26007-BIB30|cit30) 2007; 133
Tsao (10.1002/hep.26007-BIB20|cit20) 1984; 154
Zavadil (10.1002/hep.26007-BIB16|cit16) 2001; 98
Hsia (10.1002/hep.26007-BIB7|cit7) 1992; 16
Yang (10.1002/hep.26007-BIB18|cit18) 2008; 68
Romero-Gallo (10.1002/hep.26007-BIB41|cit41) 2005; 24
Yang (10.1002/hep.26007-BIB37|cit37) 2008; 13
Yu (10.1002/hep.26007-BIB55|cit55) 2007; 131
Hill (10.1002/hep.26007-BIB51|cit51) 2009; 284
Guertin (10.1002/hep.26007-BIB29|cit29) 2007; 12
Chow (10.1002/hep.26007-BIB50|cit50) 2006; 241
Wang (10.1002/hep.26007-BIB11|cit11) 2012; 55
Nguyen (10.1002/hep.26007-BIB45|cit45) 2007; 45
Bataller (10.1002/hep.26007-BIB32|cit32) 2005; 115
Fu (10.1002/hep.26007-BIB52|cit52) 2010; 115
Tang (10.1002/hep.26007-BIB43|cit43) 2008; 105
Jemal (10.1002/hep.26007-BIB1|cit1) 2011; 61
Miyamoto (10.1002/hep.26007-BIB48|cit48) 2007; 1
Schuppan (10.1002/hep.26007-BIB4|cit4) 2008; 371
Cohen (10.1002/hep.26007-BIB13|cit13) 2003; 116A
Sun (10.1002/hep.26007-BIB22|cit22) 2011; 54
Lee (10.1002/hep.26007-BIB25|cit25) 2011; 9
Ma (10.1002/hep.26007-BIB26|cit26) 2008; 27
Blokzijl (10.1002/hep.26007-BIB24|cit24) 2003; 163
Theise (10.1002/hep.26007-BIB6|cit6) 1999; 30
Lee (10.1002/hep.26007-BIB8|cit8) 2006; 12
Fattovich (10.1002/hep.26007-BIB5|cit5) 2004; 127
Pardal (10.1002/hep.26007-BIB46|cit46) 2003; 3
Bruix (10.1002/hep.26007-BIB3|cit3) 2004; 5
Im (10.1002/hep.26007-BIB42|cit42) 2001; 61
Chiba (10.1002/hep.26007-BIB10|cit10) 2007; 133
Dubrovska (10.1002/hep.26007-BIB49|cit49) 2009; 106
Paik (10.1002/hep.26007-BIB47|cit47) 2007; 128
Kato (10.1002/hep.26007-BIB31|cit31) 2009; 11
Xue (10.1002/hep.26007-BIB36|cit36) 2007; 445
Naka (10.1002/hep.26007-BIB28|cit28) 2010; 463
Massagué (10.1002/hep.26007-BIB15|cit15) 2008; 134
Mishra (10.1002/hep.26007-BIB34|cit34) 2009; 49
Inoki (10.1002/hep.26007-BIB27|cit27) 2005; 37
Yilmaz (10.1002/hep.26007-BIB53|cit53) 2006; 441
Bissell (10.1002/hep.26007-BIB14|cit14) 2001; 33
Chiba (10.1002/hep.26007-BIB9|cit9) 2010; 52
Inagaki (10.1002/hep.26007-BIB12|cit12) 2007; 56
Bruix (10.1002/hep.26007-BIB2|cit2) 2002; 35
Bissell (10.1002/hep.26007-BIB17|cit17) 2001; 34
Coulouarn (10.1002/hep.26007-BIB23|cit23) 2008; 47
Marquardt (10.1002/hep.26007-BIB33|cit33) 2010; 53
Thenappan (10.1002/hep.26007-BIB44|cit44) 2010; 51
Grisham (10.1002/hep.26007-BIB19|cit19) 1993; 204
Chiba (10.1002/hep.26007-BIB38|cit38) 2006; 44
You (10.1002/hep.26007-BIB39|cit39) 2010; 51
Dooley (10.1002/hep.26007-BIB40|cit40) 2009; 27
Aravalli (10.1002/hep.26007-BIB35|cit35) 2008; 48
References_xml – reference: Massagué J. TGF-β in cancer. Cell 2008; 134: 215-230.
– reference: Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008; 13: 153-166.
– reference: Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658.
– reference: Nguyen LN, Furuya MH, Wolfraim LA, Nguyen AP, Holdren MS, Campbell JS, et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. HEPATOLOGY 2007; 45: 31-41.
– reference: Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: S35-S50.
– reference: Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27: 1749-1758.
– reference: Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 2001; 98: 6686-6691.
– reference: Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008; 68: 4287-4295.
– reference: Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 2007; 56: 284-292.
– reference: Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475-482.
– reference: Sun W, Ding J, Wu K, Ning BF, Wen W, Sun HY, et al. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of hepatocytes and hepatoma cells. HEPATOLOGY 2011; 54: 1259-1272.
– reference: Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. HEPATOLOGY 2008; 48: 2047-2063.
– reference: Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309-323.
– reference: Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J Biol Chem 2009; 284: 11755-11759.
– reference: Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 2007; 133: 937-950.
– reference: Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, et al. Hepatitis B Virus S (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine treated HBx transgenic mice. HEPATOLOGY 2012; 55: 108-120.
– reference: Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. HEPATOLOGY 2006; 44: 240-251.
– reference: Li WL, Su J, Yao YC, Tao XR, Yan YB, Yu HY, et al. Isolation and characterization of bipotent liver progenitor cells from adult mouse. Stem Cells 2006; 24: 322-332.
– reference: Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. HEPATOLOGY 1999; 30: 1425-1433.
– reference: Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003; 116A: 1-A10.
– reference: Grisham JW, Coleman WB, Smith GJ. Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc Soc Exp Biol Med 1993; 204: 270-279.
– reference: Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, et al. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003; 163: 723-728.
– reference: Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895-902.
– reference: Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004; 5: 215-219.
– reference: Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109-1123.
– reference: Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-112.
– reference: Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L, et al. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver. HEPATOLOGY 2010; 51: 1373-1382.
– reference: Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. HEPATOLOGY 2008; 47: 2059-2067.
– reference: Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656-660.
– reference: Im YH, Kim HT, Kim IY, Factor VM, Hahm KB, Anzano M, et al. Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res 2001; 61: 6665-6668.
– reference: You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. HEPATOLOGY 2010; 51: 1635-1644.
– reference: Chiba T, Seki A, Aoki R, Ichikawa H, Negishi M, Miyagi S, et al. Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice. HEPATOLOGY 2010; 52: 1111-1123.
– reference: Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12: 410-416.
– reference: Marquardt JU, Factor VM, Thorgeirsson SS. Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications. J Hepatol 2010; 53: 568-577.
– reference: Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 2011; 9: 50-63.
– reference: Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005; 37: 19-24.
– reference: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22.
– reference: Bissell DM. Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 2001; 33: 179-190.
– reference: Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371: 838-851.
– reference: Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver. HEPATOLOGY 2001; 34: 859-867.
– reference: Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 2009; 106: 268-273.
– reference: Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
– reference: Tsao MS, Smith JD, Nelson KG, Grisham JW. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of 'oval' cells. Exp Cell Res 1984; 154: 38-52.
– reference: Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
– reference: Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. HEPATOLOGY 2002; 35: 519-524.
– reference: Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, et al. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 2005; 24: 3028-3041.
– reference: Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 2008; 105: 2445-2450.
– reference: Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. HEPATOLOGY 2009; 49: 318-329.
– reference: Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218.
– reference: Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56-61.
– reference: Fu CT, Zhu KY, Mi JQ, Liu YF, Murray ST, Fu YF, et al. An evolutionarily conserved PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation. Blood 2010; 115: 4715-4724.
– reference: Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009; 11: 881-889.
– reference: Chow LM, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241: 184-196.
– reference: Hsia CC, Evarts RP, Nakatsukasa H, Marsden ER, Thorgeirsson SS. Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. HEPATOLOGY 1992; 16: 1327-1333.
– reference: Dooley S, Weng H, Mertens PR. Hypotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular carcinoma. Dig Dis 2009; 27: 93-101.
– reference: Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676-680.
– volume: 27
  start-page: 1749
  year: 2008
  end-page: 1758
  article-title: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway
  publication-title: Oncogene
– volume: 35
  start-page: 519
  year: 2002
  end-page: 524
  article-title: Prognostic prediction and treatment strategy in hepatocellular carcinoma
  publication-title: HEPATOLOGY
– volume: 1
  start-page: 101
  year: 2007
  end-page: 112
  article-title: Foxo3a is essential for maintenance of the hematopoietic stem cell pool
  publication-title: Cell Stem Cell
– volume: 115
  start-page: 209
  year: 2005
  end-page: 218
  article-title: Liver fibrosis
  publication-title: J Clin Invest
– volume: 3
  start-page: 895
  year: 2003
  end-page: 902
  article-title: Applying the principles of stem‐cell biology to cancer
  publication-title: Nat Rev Cancer
– volume: 133
  start-page: 937
  year: 2007
  end-page: 950
  article-title: Enhanced self‐renewal capability in hepatic stem/progenitor cells drives cancer initiation
  publication-title: Gastroenterology
– volume: 5
  start-page: 215
  year: 2004
  end-page: 219
  article-title: Focus on hepatocellular carcinoma
  publication-title: Cancer Cell
– volume: 12
  start-page: 410
  year: 2006
  end-page: 416
  article-title: A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells
  publication-title: Nat Med
– volume: 11
  start-page: 881
  year: 2009
  end-page: 889
  article-title: TGF‐beta activates Akt kinase through a microRNA‐dependent amplifying circuit targeting PTEN
  publication-title: Nat Cell Biol
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 128
  start-page: 309
  year: 2007
  end-page: 323
  article-title: FoxOs are lineage‐restricted redundant tumor suppressors and regulate endothelial cell homeostasis
  publication-title: Cell
– volume: 61
  start-page: 69
  year: 2011
  end-page: 90
  article-title: Global cancer statistics
  publication-title: CA Cancer J Clin
– volume: 13
  start-page: 153
  year: 2008
  end-page: 166
  article-title: Significance of CD90+ cancer stem cells in human liver cancer
  publication-title: Cancer Cell
– volume: 9
  start-page: 50
  year: 2011
  end-page: 63
  article-title: CD24(+) liver tumor‐initiating cells drive self‐renewal and tumor initiation through STAT3‐mediated NANOG regulation
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 1327
  year: 1992
  end-page: 1333
  article-title: Occurrence of oval‐type cells in hepatitis B virus‐associated human hepatocarcinogenesis
  publication-title: HEPATOLOGY
– volume: 106
  start-page: 268
  year: 2009
  end-page: 273
  article-title: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem‐like cell populations
  publication-title: Proc Natl Acad Sci U S A
– volume: 37
  start-page: 19
  year: 2005
  end-page: 24
  article-title: Dysregulation of the TSC‐mTOR pathway in human disease
  publication-title: Nat Genet
– volume: 134
  start-page: 215
  year: 2008
  end-page: 230
  article-title: TGF‐β in cancer
  publication-title: Cell
– volume: 204
  start-page: 270
  year: 1993
  end-page: 279
  article-title: Isolation, culture, and transplantation of rat hepatocytic precursor (stem‐like) cells
  publication-title: Proc Soc Exp Biol Med
– volume: 54
  start-page: 1259
  year: 2011
  end-page: 1272
  article-title: Gankyrin‐mediated dedifferentiation facilitates the tumorigenicity of hepatocytes and hepatoma cells
  publication-title: HEPATOLOGY
– volume: 56
  start-page: 284
  year: 2007
  end-page: 292
  article-title: Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis
  publication-title: Gut
– volume: 98
  start-page: 6686
  year: 2001
  end-page: 6691
  article-title: Genetic programs of epithelial cell plasticity directed by transforming growth factor‐beta
  publication-title: Proc Natl Acad Sci U S A
– volume: 133
  start-page: 647
  year: 2007
  end-page: 658
  article-title: MicroRNA‐21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer
  publication-title: Gastroenterology
– volume: 44
  start-page: 240
  year: 2006
  end-page: 251
  article-title: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell‐like properties
  publication-title: HEPATOLOGY
– volume: 115
  start-page: 4715
  year: 2010
  end-page: 4724
  article-title: An evolutionarily conserved PTEN‐C/EBPalpha‐CTNNA1 axis controls myeloid development and transformation
  publication-title: Blood
– volume: 12
  start-page: 9
  year: 2007
  end-page: 22
  article-title: Defining the role of mTOR in cancer
  publication-title: Cancer Cell
– volume: 241
  start-page: 184
  year: 2006
  end-page: 196
  article-title: PTEN function in normal and neoplastic growth
  publication-title: Cancer Lett
– volume: 48
  start-page: 2047
  year: 2008
  end-page: 2063
  article-title: Molecular mechanisms of hepatocellular carcinoma
  publication-title: HEPATOLOGY
– volume: 105
  start-page: 2445
  year: 2008
  end-page: 2450
  article-title: Progenitor/stem cells give rise to liver cancer due to aberrant TGF‐beta and IL‐6 signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 68
  start-page: 4287
  year: 2008
  end-page: 4295
  article-title: Wnt/beta‐catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells
  publication-title: Cancer Res
– volume: 51
  start-page: 1373
  year: 2010
  end-page: 1382
  article-title: Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver
  publication-title: HEPATOLOGY
– volume: 371
  start-page: 838
  year: 2008
  end-page: 851
  article-title: Liver cirrhosis
  publication-title: Lancet
– volume: 127
  start-page: S35
  year: 2004
  end-page: S50
  article-title: Hepatocellular carcinoma in cirrhosis: incidence and risk factors
  publication-title: Gastroenterology
– volume: 454
  start-page: 56
  year: 2008
  end-page: 61
  article-title: SMAD proteins control DROSHA‐mediated microRNA maturation
  publication-title: Nature
– volume: 27
  start-page: 93
  year: 2009
  end-page: 101
  article-title: Hypotheses on the role of transforming growth factor‐beta in the onset and progression of hepatocellular carcinoma
  publication-title: Dig Dis
– volume: 30
  start-page: 1425
  year: 1999
  end-page: 1433
  article-title: The canals of Hering and hepatic stem cells in humans
  publication-title: HEPATOLOGY
– volume: 131
  start-page: 1109
  year: 2007
  end-page: 1123
  article-title: let‐7 regulates self renewal and tumorigenicity of breast cancer cells
  publication-title: Cell
– volume: 55
  start-page: 108
  year: 2012
  end-page: 120
  article-title: Hepatitis B Virus S (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine treated HBx transgenic mice
  publication-title: HEPATOLOGY
– volume: 47
  start-page: 2059
  year: 2008
  end-page: 2067
  article-title: Transforming growth factor‐beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer
  publication-title: HEPATOLOGY
– volume: 61
  start-page: 6665
  year: 2001
  end-page: 6668
  article-title: Heterozygous mice for the transforming growth factor‐beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis
  publication-title: Cancer Res
– volume: 51
  start-page: 1635
  year: 2010
  end-page: 1644
  article-title: Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor‐beta
  publication-title: HEPATOLOGY
– volume: 52
  start-page: 1111
  year: 2010
  end-page: 1123
  article-title: Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf‐dependent and ‐independent manners in mice
  publication-title: HEPATOLOGY
– volume: 463
  start-page: 676
  year: 2010
  end-page: 680
  article-title: TGF‐beta‐FOXO signalling maintains leukaemia‐initiating cells in chronic myeloid leukaemia
  publication-title: Nature
– volume: 49
  start-page: 318
  year: 2009
  end-page: 329
  article-title: Liver stem cells and hepatocellular carcinoma
  publication-title: HEPATOLOGY
– volume: 24
  start-page: 3028
  year: 2005
  end-page: 3041
  article-title: Inactivation of TGF‐beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy
  publication-title: Oncogene
– volume: 34
  start-page: 859
  year: 2001
  end-page: 867
  article-title: Transforming growth factor beta and the liver
  publication-title: HEPATOLOGY
– volume: 445
  start-page: 656
  year: 2007
  end-page: 660
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
– volume: 45
  start-page: 31
  year: 2007
  end-page: 41
  article-title: Transforming growth factor‐beta differentially regulates oval cell and hepatocyte proliferation
  publication-title: HEPATOLOGY
– volume: 284
  start-page: 11755
  year: 2009
  end-page: 11759
  article-title: PTEN, stem cells, and cancer stem cells
  publication-title: J Biol Chem
– volume: 33
  start-page: 179
  year: 2001
  end-page: 190
  article-title: Chronic liver injury, TGF‐beta, and cancer
  publication-title: Exp Mol Med
– volume: 116A
  start-page: 1
  year: 2003
  end-page: A10
  article-title: TGF beta/Smad signaling system and its pathologic correlates
  publication-title: Am J Med Genet A
– volume: 441
  start-page: 475
  year: 2006
  end-page: 482
  article-title: Pten dependence distinguishes haematopoietic stem cells from leukaemia‐initiating cells
  publication-title: Nature
– volume: 24
  start-page: 322
  year: 2006
  end-page: 332
  article-title: Isolation and characterization of bipotent liver progenitor cells from adult mouse
  publication-title: Stem Cells
– volume: 163
  start-page: 723
  year: 2003
  end-page: 728
  article-title: Cross‐talk between the Notch and TGF‐beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3
  publication-title: J Cell Biol
– volume: 53
  start-page: 568
  year: 2010
  end-page: 577
  article-title: Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications
  publication-title: J Hepatol
– volume: 154
  start-page: 38
  year: 1984
  end-page: 52
  article-title: A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’ cells
  publication-title: Exp Cell Res
– volume: 133
  start-page: 937
  year: 2007
  ident: 10.1002/hep.26007-BIB10|cit10
  article-title: Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.06.016
– volume: 35
  start-page: 519
  year: 2002
  ident: 10.1002/hep.26007-BIB2|cit2
  article-title: Prognostic prediction and treatment strategy in hepatocellular carcinoma
  publication-title: HEPATOLOGY
  doi: 10.1053/jhep.2002.32089
– volume: 3
  start-page: 895
  year: 2003
  ident: 10.1002/hep.26007-BIB46|cit46
  article-title: Applying the principles of stem-cell biology to cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1232
– volume: 27
  start-page: 93
  year: 2009
  ident: 10.1002/hep.26007-BIB40|cit40
  article-title: Hypotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular carcinoma
  publication-title: Dig Dis
  doi: 10.1159/000218340
– volume: 34
  start-page: 859
  year: 2001
  ident: 10.1002/hep.26007-BIB17|cit17
  article-title: Transforming growth factor beta and the liver
  publication-title: HEPATOLOGY
  doi: 10.1053/jhep.2001.28457
– volume: 49
  start-page: 318
  year: 2009
  ident: 10.1002/hep.26007-BIB34|cit34
  article-title: Liver stem cells and hepatocellular carcinoma
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22704
– volume: 241
  start-page: 184
  year: 2006
  ident: 10.1002/hep.26007-BIB50|cit50
  article-title: PTEN function in normal and neoplastic growth
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2005.11.042
– volume: 12
  start-page: 9
  year: 2007
  ident: 10.1002/hep.26007-BIB29|cit29
  article-title: Defining the role of mTOR in cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.05.008
– volume: 13
  start-page: 153
  year: 2008
  ident: 10.1002/hep.26007-BIB37|cit37
  article-title: Significance of CD90+ cancer stem cells in human liver cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.01.013
– volume: 115
  start-page: 209
  year: 2005
  ident: 10.1002/hep.26007-BIB32|cit32
  article-title: Liver fibrosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI24282
– volume: 12
  start-page: 410
  year: 2006
  ident: 10.1002/hep.26007-BIB8|cit8
  article-title: A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells
  publication-title: Nat Med
  doi: 10.1038/nm1377
– volume: 11
  start-page: 881
  year: 2009
  ident: 10.1002/hep.26007-BIB31|cit31
  article-title: TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1897
– volume: 47
  start-page: 2059
  year: 2008
  ident: 10.1002/hep.26007-BIB23|cit23
  article-title: Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22283
– volume: 45
  start-page: 31
  year: 2007
  ident: 10.1002/hep.26007-BIB45|cit45
  article-title: Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.21466
– volume: 54
  start-page: 1259
  year: 2011
  ident: 10.1002/hep.26007-BIB22|cit22
  article-title: Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of hepatocytes and hepatoma cells
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.24530
– volume: 127
  start-page: S35
  year: 2004
  ident: 10.1002/hep.26007-BIB5|cit5
  article-title: Hepatocellular carcinoma in cirrhosis: incidence and risk factors
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.09.014
– volume: 5
  start-page: 215
  year: 2004
  ident: 10.1002/hep.26007-BIB3|cit3
  article-title: Focus on hepatocellular carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(04)00058-3
– volume: 163
  start-page: 723
  year: 2003
  ident: 10.1002/hep.26007-BIB24|cit24
  article-title: Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200305112
– volume: 44
  start-page: 240
  year: 2006
  ident: 10.1002/hep.26007-BIB38|cit38
  article-title: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.21227
– volume: 204
  start-page: 270
  year: 1993
  ident: 10.1002/hep.26007-BIB19|cit19
  article-title: Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells
  publication-title: Proc Soc Exp Biol Med
  doi: 10.3181/00379727-204-43663
– volume: 61
  start-page: 6665
  year: 2001
  ident: 10.1002/hep.26007-BIB42|cit42
  article-title: Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis
  publication-title: Cancer Res
– volume: 9
  start-page: 50
  year: 2011
  ident: 10.1002/hep.26007-BIB25|cit25
  article-title: CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.06.005
– volume: 61
  start-page: 69
  year: 2011
  ident: 10.1002/hep.26007-BIB1|cit1
  article-title: Global cancer statistics
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.20107
– volume: 134
  start-page: 215
  year: 2008
  ident: 10.1002/hep.26007-BIB15|cit15
  article-title: TGF-β in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.001
– volume: 51
  start-page: 1373
  year: 2010
  ident: 10.1002/hep.26007-BIB44|cit44
  article-title: Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23449
– volume: 463
  start-page: 676
  year: 2010
  ident: 10.1002/hep.26007-BIB28|cit28
  article-title: TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia
  publication-title: Nature
  doi: 10.1038/nature08734
– volume: 115
  start-page: 4715
  year: 2010
  ident: 10.1002/hep.26007-BIB52|cit52
  article-title: An evolutionarily conserved PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation
  publication-title: Blood
  doi: 10.1182/blood-2009-11-255778
– volume: 105
  start-page: 2445
  year: 2008
  ident: 10.1002/hep.26007-BIB43|cit43
  article-title: Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0705395105
– volume: 441
  start-page: 475
  year: 2006
  ident: 10.1002/hep.26007-BIB53|cit53
  article-title: Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
  publication-title: Nature
  doi: 10.1038/nature04703
– volume: 98
  start-page: 6686
  year: 2001
  ident: 10.1002/hep.26007-BIB16|cit16
  article-title: Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.111614398
– volume: 27
  start-page: 1749
  year: 2008
  ident: 10.1002/hep.26007-BIB26|cit26
  article-title: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210811
– volume: 24
  start-page: 3028
  year: 2005
  ident: 10.1002/hep.26007-BIB41|cit41
  article-title: Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208475
– volume: 24
  start-page: 322
  year: 2006
  ident: 10.1002/hep.26007-BIB21|cit21
  article-title: Isolation and characterization of bipotent liver progenitor cells from adult mouse
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0108
– volume: 128
  start-page: 309
  year: 2007
  ident: 10.1002/hep.26007-BIB47|cit47
  article-title: FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.029
– volume: 48
  start-page: 2047
  year: 2008
  ident: 10.1002/hep.26007-BIB35|cit35
  article-title: Molecular mechanisms of hepatocellular carcinoma
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22580
– volume: 116A
  start-page: 1
  year: 2003
  ident: 10.1002/hep.26007-BIB13|cit13
  article-title: TGF beta/Smad signaling system and its pathologic correlates
  publication-title: Am J Med Genet A
  doi: 10.1002/ajmg.a.10750
– volume: 154
  start-page: 38
  year: 1984
  ident: 10.1002/hep.26007-BIB20|cit20
  article-title: A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’ cells
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(84)90666-9
– volume: 454
  start-page: 56
  year: 2008
  ident: 10.1002/hep.26007-BIB56|cit56
  article-title: SMAD proteins control DROSHA-mediated microRNA maturation
  publication-title: Nature
  doi: 10.1038/nature07086
– volume: 1
  start-page: 101
  year: 2007
  ident: 10.1002/hep.26007-BIB48|cit48
  article-title: Foxo3a is essential for maintenance of the hematopoietic stem cell pool
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.02.001
– volume: 131
  start-page: 1109
  year: 2007
  ident: 10.1002/hep.26007-BIB55|cit55
  article-title: let-7 regulates self renewal and tumorigenicity of breast cancer cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.054
– volume: 284
  start-page: 11755
  year: 2009
  ident: 10.1002/hep.26007-BIB51|cit51
  article-title: PTEN, stem cells, and cancer stem cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R800071200
– volume: 37
  start-page: 19
  year: 2005
  ident: 10.1002/hep.26007-BIB27|cit27
  article-title: Dysregulation of the TSC-mTOR pathway in human disease
  publication-title: Nat Genet
  doi: 10.1038/ng1494
– volume: 445
  start-page: 656
  year: 2007
  ident: 10.1002/hep.26007-BIB36|cit36
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
  doi: 10.1038/nature05529
– volume: 371
  start-page: 838
  year: 2008
  ident: 10.1002/hep.26007-BIB4|cit4
  article-title: Liver cirrhosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60383-9
– volume: 106
  start-page: 268
  year: 2009
  ident: 10.1002/hep.26007-BIB49|cit49
  article-title: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0810956106
– volume: 55
  start-page: 108
  year: 2012
  ident: 10.1002/hep.26007-BIB11|cit11
  article-title: Hepatitis B Virus S (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine treated HBx transgenic mice
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.24675
– volume: 68
  start-page: 4287
  year: 2008
  ident: 10.1002/hep.26007-BIB18|cit18
  article-title: Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-6691
– volume: 16
  start-page: 1327
  year: 1992
  ident: 10.1002/hep.26007-BIB7|cit7
  article-title: Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.1840160604
– volume: 33
  start-page: 179
  year: 2001
  ident: 10.1002/hep.26007-BIB14|cit14
  article-title: Chronic liver injury, TGF-beta, and cancer
  publication-title: Exp Mol Med
  doi: 10.1038/emm.2001.31
– volume: 51
  start-page: 1635
  year: 2010
  ident: 10.1002/hep.26007-BIB39|cit39
  article-title: Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23544
– volume: 133
  start-page: 647
  year: 2007
  ident: 10.1002/hep.26007-BIB30|cit30
  article-title: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.05.022
– volume: 53
  start-page: 568
  year: 2010
  ident: 10.1002/hep.26007-BIB33|cit33
  article-title: Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2010.05.003
– volume: 30
  start-page: 1425
  year: 1999
  ident: 10.1002/hep.26007-BIB6|cit6
  article-title: The canals of Hering and hepatic stem cells in humans
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.510300614
– volume: 56
  start-page: 284
  year: 2007
  ident: 10.1002/hep.26007-BIB12|cit12
  article-title: Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis
  publication-title: Gut
  doi: 10.1136/gut.2005.088690
– volume: 116
  start-page: 281
  year: 2004
  ident: 10.1002/hep.26007-BIB54|cit54
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 52
  start-page: 1111
  year: 2010
  ident: 10.1002/hep.26007-BIB9|cit9
  article-title: Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23793
SSID ssj0009428
Score 2.499117
Snippet Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the mechanism underlying the progression from cirrhosis to HCC...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2255
SubjectTerms AC133 Antigen
Animals
Antigens, CD - metabolism
Antigens, Differentiation - metabolism
Antigens, Neoplasm - metabolism
Biological and medical sciences
Biomarkers, Tumor - metabolism
Cell Adhesion Molecules - metabolism
Cell Transformation, Neoplastic - metabolism
Cell Transformation, Neoplastic - pathology
Diethylnitrosamine
Epithelial Cell Adhesion Molecule
Gastroenterology. Liver. Pancreas. Abdomen
Glycoproteins - metabolism
Hepatology
Humans
Liver - metabolism
Liver cancer
Liver cirrhosis
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Liver Neoplasms, Experimental - chemically induced
Liver Neoplasms, Experimental - metabolism
Liver Neoplasms, Experimental - pathology
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Male
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, SCID
MicroRNAs - metabolism
Neoplastic Stem Cells - metabolism
Peptides - metabolism
Pluripotent Stem Cells - drug effects
Pluripotent Stem Cells - metabolism
Pluripotent Stem Cells - pathology
Proteins
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
PTEN Phosphohydrolase - metabolism
Rats
Rats, Wistar
STAT3 Transcription Factor - metabolism
Thy-1 Antigens - metabolism
TOR Serine-Threonine Kinases - metabolism
Transforming Growth Factor beta - metabolism
Transforming Growth Factor beta - pharmacology
Tumors
Title Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development
URI https://api.istex.fr/ark:/67375/WNG-X7ZW94V6-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.26007
https://www.ncbi.nlm.nih.gov/pubmed/22898879
https://www.proquest.com/docview/1221565464
https://www.proquest.com/docview/1223432554
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UCuKL98toLVFEfJntTDq34JNI6yJ0EbF2ESEkmaSV1tllNwvikz_B3-gv8ZzMZVmpIL4N7MlCzpycfGfy5TsAz2pn8sypMnZFYuMsVyrWZZ3GeWpqYRB_W0MnukeTYnycvZ3m0y142d-FafUhhg9utDJCvqYFrvRyby0aembno6CujvmXuFoEiN6vpaNEFvqqYtWV0Omy6FWFEr43jNzYi66QW78RN1It0T2u7WtxGfDcxLFhIzq8AZ_7KbT8k_PRyuuR-f6HuuN_zvEmXO8AKnvVRtQt2LLNbbh61B3B3wE_tkTCNsz3kBc3P3aK1bw_Y233HqatV-yUBG0Z5hDL_Iz51dfZ4tePn1-IrKSIa83ozGDJVFOzeeAEovUFsUSYoUhcsHrNZ7oLx4cHH16P4651Q2ywAsK0VVQVNcJyaa1EmXBdpQaRkTYJd7mwqdYuddpUqlJYTwquROK0Frm2uUp0ku3fg-1m1tgHwLCCM6nCwtBUPHO1FcbgWCyETGrz_aKM4EX_EqXpdM2pvcaFbBWZuUQvyuDFCJ4OpvNWzOMyo-chEgYLtTgn9luZy5PJGzktP52I7GMhJxHsboTKMIAXiIEQGUSw08eO7DLDUqYcQRbdIMsieDL8jGuanK4aO1sFG7rvi0gvgvttzK3_HCtk3BgETjtEzt8nIscH78LDw383fQTXEBHylq-zA9t-sbKPEXV5vRuW1293oipT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFtQX75fRWqOI-DLbmencAr6Ito7aXURauwgSkkzSSuvssjsL4pM_wd_oL_GczGVZqSC-DczJQM6cJN9JvnwH4ElpdRJbmfk2DYwfJ1L6KitDPwl1yTXib6PpRHc4SovD-O04Ga_B8-4uTKMP0W-40chw8zUNcNqQ3l6qhp6Y6cDJq1-ADaroTfULXn1Yikfx2FVWxbwroPNl3ukKBdF233RlNdogx34jdqSco4NsU9niPOi5imTdUrR3FT53nWgYKKeDRa0G-vsf-o7_28trcKXFqOxFE1TXYc1UN-DisD2Fvwl1YYiHrVndoV5c_9gxJvT1CWsK-DBlasmOSdOW4TRiWD1h9eLrZPbrx88vxFeSRLdmdGwwZ7Iq2dTRAtH6jIgiTFMwzli5pDTdgsO93YOXhd9Wb_A1JkE4c6V5TrWwbFhKngWRykON4EjpILIJN6FSNrRK5zKXmFLySPLAKsUTZRIZqCDeuQ3r1aQyd4FhEqdDibmhzqPYloZrjW0xF9KhSXbSzINn3V8UupU2pwobZ6IRZY4EelE4L3rwuDedNnoe5xk9daHQW8jZKRHgskQcjV6LcfbpiMcfUzHyYGslVvoGUYowCMGBB5td8Ih2cpiLMEKcRZfIYg8e9a9xWJPTZWUmC2dDV34R7Hlwpwm65ccxSca1gWO3Xej8vSOi2H3vHu79u-lDuFQcDPfF_pvRu_twGQFi1NB3NmG9ni3MAwRhtdpyY-038sQubQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahRBEC1iAsEX75cxMbYi4stsZiZza_IkmnW9ZAlizBKEprunO5HE2WV3FoJP-QS_0S-xqueyrEQQ3wa2eqFrqrpPTZ8-BfC8sDqJrcx8mwbGjxMpfZUVoZ-EuuAa8bfRdKK7P0wHh_H7UTJagd32LkytD9F9cKPMcOs1JfiksNsL0dBTM-k5dfVrsBanmCyEiD4ttKN47BqrYtkV0PEyb2WFgmi7G7q0Ga2RXy-IHCln6B9bN7a4CnkuA1m3E_Vvwtd2DjUB5aw3r1RP__hD3vE_J3kLbjQIlb2qQ-o2rJjyDqzvN2fwd6EaGGJha1a1mBd3P3aC5Xx1yur2PUyZSrITUrRluIgYVo1ZNf8-nv66_PmN2EqSyNaMDg1mTJYFmzhSIFqfE02EaQrFKSsWhKZ7cNjf-_x64De9G3yNJRCuW2meUycsGxaSZ0Gk8lAjNFI6iGzCTaiUDa3SucwlFpQ8kjywSvFEmUQGKoh37sNqOS7NQ2BYwulQYmWo8yi2heFa41ishHRokp008-Bl-xKFboTNqb_GuaglmSOBXhTOix4860wntZrHVUYvXCR0FnJ6RvS3LBFHw7dilB0f8fhLKoYebC2FSjcgShEEITTwYLONHdEsDTMRRoiy6ApZ7MHT7mdManK6LM147mzowi9CPQ8e1DG3-HMskXFn4DhtFzl_n4gY7B24h0f_bvoE1g_e9MXHd8MPG3Ad0WFUc3c2YbWazs1jRGCV2nKZ9htsRS0l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatic+transforming+growth+factor+beta+gives+rise+to+tumor-initiating+cells+and+promotes+liver+cancer+development&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Wu%2C+Kun&rft.au=Ding%2C+Jin&rft.au=Chen%2C+Cheng&rft.au=Sun%2C+Wen&rft.date=2012-12-01&rft.issn=1527-3350&rft.eissn=1527-3350&rft.volume=56&rft.issue=6&rft.spage=2255&rft_id=info:doi/10.1002%2Fhep.26007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon