The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases

SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclea...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 110; no. 6; pp. 1731 - 1750
Main Authors Kobayashi, Takanori, Shinkawa, Haruka, Nagano, Atsushi J., Nishizawa, Naoko K.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. Significance Statement We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice (Oryza sativa) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs.
AbstractList Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
SUMMARYUnder low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. Significance Statement We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice (Oryza sativa) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs.
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice ( Oryza sativa ) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3 , which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice ( Oryza sativa ) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs.
Author Kobayashi, Takanori
Shinkawa, Haruka
Nagano, Atsushi J.
Nishizawa, Naoko K.
Author_xml – sequence: 1
  givenname: Takanori
  orcidid: 0000-0001-7118-6955
  surname: Kobayashi
  fullname: Kobayashi, Takanori
  email: abkoba@ishikawa‐pu.ac.jp
  organization: Ishikawa Prefectural University
– sequence: 2
  givenname: Haruka
  surname: Shinkawa
  fullname: Shinkawa, Haruka
  organization: Ishikawa Prefectural University
– sequence: 3
  givenname: Atsushi J.
  surname: Nagano
  fullname: Nagano, Atsushi J.
  organization: Keio University
– sequence: 4
  givenname: Naoko K.
  surname: Nishizawa
  fullname: Nishizawa, Naoko K.
  organization: Ishikawa Prefectural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35411594$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9LHDEYxkOx1NX20C9QAr20h9H8z8yxiFWLoMgWxMuQyWRslmwyJhla_Uz9kM3srhdpaS4JeX_P85I3zwHY88EbAN5jdITLOs7j6ghzKeQrsMBU8IpiersHFqgRqJIMk31wkNIKISypYG_APuUMY96wBfi9_GFgp5LV0JlJW2_gkx1HE2GOyicd7Zht8HBQOocIr1J3d3FdU6h8D3OR3rspq2j68Mv6VMpnN7diU9wcm1lnnc0qGxitNtDGYjblcvekNsaT7-dmxUoHn2NwMAxFfH5zB6fOPkw2Ww-dvVfJpLfg9aBcMu92-yH4_vV0eXJeXV6dXZx8uaw0q6WssKx1x2vNGo2wQkpqTdRApOkQwx1RYmB1LfggGBpoJzSlTHAqh6brCFOkp4fg09Z3jOFhMim3a5u0cU55E6bUEolrwikh5P-oYA1vMBGioB9foKswRV8eUqgacUIZ4oX6sKOmbm36dox2reJj-_xlBTjeAjqGlKIZWj3P187TU9a1GLVzKNoSinYTiqL4_ELxbPo3duf-0zrz-G-wXV5_2yr-ACx2xv0
CitedBy_id crossref_primary_10_1016_j_xplc_2022_100349
crossref_primary_10_1111_ppl_70134
crossref_primary_10_3389_fpls_2023_1145510
crossref_primary_10_1271_kagakutoseibutsu_61_237
crossref_primary_10_1017_S1479262123000424
crossref_primary_10_1111_nph_19706
crossref_primary_10_1186_s12284_022_00598_w
Cites_doi 10.1104/pp.116.2.725
10.5511/plantbiotechnology.14.0730a
10.1046/j.1365-313X.2003.01878.x
10.1016/j.cell.2016.04.038
10.1111/j.1365-313X.2005.02624.x
10.1104/pp.80.1.175
10.1111/ppl.12698
10.1007/s00425-015-2354-9
10.3389/fpls.2013.00259
10.1111/j.1365-313X.2009.04015.x
10.3389/fpls.2019.00098
10.1111/pce.13655
10.1016/j.tibs.2009.08.005
10.1093/nar/gks1125
10.1104/pp.107.112821
10.1263/jbb.104.34
10.1038/ncomms1716
10.1111/j.1365-313X.2004.02146.x
10.1016/j.pbi.2018.05.001
10.1186/1471-2229-10-166
10.1104/pp.121.3.947
10.1093/dnares/dsq023
10.1074/jbc.M110.180026
10.1093/jxb/erl054
10.1038/s41477-018-0266-y
10.1073/pnas.0707010104
10.1104/pp.110.169508
10.1111/pce.13363
10.1074/jbc.M109.036871
10.1080/00380768.1976.10433004
10.1128/MCB.00726-12
10.3389/fpls.2017.01045
10.1093/nar/gkq1085
10.1186/1471-2164-15-461
10.1093/pcp/pcy145
10.1073/pnas.1916892116
10.1371/journal.pone.0040112
10.1039/C7MT00152E
10.1016/j.molp.2021.06.027
10.1186/s12284-014-0027-0
10.1080/00380768.1999.10415831
10.1186/1939-8433-6-22
10.1007/s11103-019-00917-8
10.1046/j.1365-313X.1994.6020271.x
10.1038/ncomms3792
10.1016/j.tplants.2013.07.002
10.1093/jxb/eraa441
10.1016/j.plantsci.2014.04.002
10.1371/journal.pone.0206910
10.1128/EC.00060-12
10.1104/pp.16.01323
10.1007/s004250000453
10.1016/j.bbrc.2010.11.050
10.3389/fpls.2015.00934
10.1080/15592324.2020.1758455
10.1074/jbc.M708732200
10.1111/nph.16232
10.1016/j.jplph.2014.09.001
10.1093/jxb/eraa012
10.1093/aob/mcn207
10.1073/pnas.2109063118
10.1073/pnas.1907971116
10.1080/00380768.2020.1783966
10.1111/j.1365-313X.2007.03149.x
10.1093/jxb/erl001
10.1104/pp.15.00049
10.1038/nplants.2017.29
10.1105/tpc.19.00541
10.1093/plcell/koab075
10.1094/MPMI-04-12-0078-IA
10.1111/nph.12577
10.3389/fpls.2019.00006
10.1016/S1360-1385(02)02251-3
10.1093/jexbot/51.348.1179
10.1042/BJ20112131
10.1104/pp.17.00794
10.1016/j.molp.2021.09.011
10.1146/annurev-arplant-042809-112256
10.1111/nph.16005
10.1038/35053080
10.1038/s41467-020-14440-8
10.1016/j.freeradbiomed.2018.10.439
10.1515/hsz-2014-0300
10.1016/j.bbamcr.2012.05.009
10.1105/tpc.108.065433
10.1007/s11103-016-0486-3
10.1016/j.plaphy.2016.04.052
10.1111/jipb.12933
10.1016/0014-5793(86)81535-6
10.1111/j.1365-313X.2001.00951.x
10.1146/annurev-arplant-042811-105522
10.1093/jxb/eraa546
10.1093/nar/gky1106
10.1073/pnas.1318869111
10.1104/pp.114.250837
10.1093/jxb/eraa556
10.1104/pp.102.019869
10.1111/j.1365-313X.2010.04158.x
10.1093/jxb/eri131
10.1038/s41598-019-43600-0
10.1093/pcp/pcz038
10.1104/pp.19.00760
10.1038/nrm2688
10.1007/s11103-020-01065-0
10.1104/pp.18.00289
ContentType Journal Article
Copyright 2022 Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright © 2022 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2022 Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: Copyright © 2022 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.15767
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Genetics Abstracts

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 1750
ExternalDocumentID 35411594
10_1111_tpj_15767
TPJ15767
Genre article
Journal Article
GrantInformation_xml – fundername: Core Research for Evolutional Science and Technology
  funderid: JPMJCR15O2
– fundername: University of Tokyo
– fundername: Advanced Low Carbon Technology Research and Development Program
– fundername: Japan Society for the Promotion of Science KAKENHI
  funderid: JP15H05617; JP15H01187; JP18H02115; JP20H05514
– fundername: Shimane University
– fundername: Precursory Research for Embryonic Science and Technology
– fundername: Japan Science and Technology Agency
– fundername: Ryukoku University
– fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: JP15H01187
– fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: JP18H02115
– fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: JP15H05617
– fundername: Core Research for Evolutional Science and Technology
  grantid: JPMJCR15O2
– fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: JP20H05514
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4877-178cb58c49c01a0a7cc2af27eb041b2a6f48865f640f3b6c3346537f9bb24a2d3
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:40:08 EDT 2025
Fri Jul 11 01:47:56 EDT 2025
Sat Jul 19 05:41:23 EDT 2025
Wed Feb 19 02:25:33 EST 2025
Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 03:57:39 EDT 2025
Wed Jan 22 16:22:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords iron sensing
ubiquitin ligase
rice (Oryza sativa)
protein-level regulation
transcriptional regulation
basic leucine zipper transcription factor
glutaredoxin
iron deficiency response
gene expression
Language English
License 2022 Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-178cb58c49c01a0a7cc2af27eb041b2a6f48865f640f3b6c3346537f9bb24a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7118-6955
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.15767
PMID 35411594
PQID 2680523405
PQPubID 31702
PageCount 1750
ParticipantIDs proquest_miscellaneous_2718253222
proquest_miscellaneous_2649591266
proquest_journals_2680523405
pubmed_primary_35411594
crossref_citationtrail_10_1111_tpj_15767
crossref_primary_10_1111_tpj_15767
wiley_primary_10_1111_tpj_15767_TPJ15767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 163
2007; 104
2010; 10
2013; 4
2019a; 116
2019; 10
2010; 17
2019b; 10
2011; 62
1999; 45
2020; 15
2018; 41
2020; 11
2018; 45
2021; 72
2013; 6
2012; 11
1986; 80
2009; 10
2018; 4
2004; 39
2014; 15
2019; 9
2010; 35
2006; 57
2009; 60
2002; 7
2015; 242
2003; 36
2019; 224
2016; 165
2020; 32
2016; 91
2001; 25
2012; 32
2006; 45
2019; 47
2019; 179
2022; 15
2009; 103
2014; 31
2018; 13
2016; 172
2017; 8
2013; 26
2017; 3
1976; 22
2020; 62
2000; 51
1999; 121
2008; 146
1998; 116
2012; 446
2017; 9
2010; 62
2011; 155
2015; 173
2013; 18
2001; 212
2019; 60
2021; 33
2021; 118
2019; 116
2009; 284
2020b; 225
2020; 43
2014; 7
2016b; 7
2012; 63
2011; 286
2014; 201
2019b; 101
2020a; 66
2015; 6
2009; 21
2012; 1823
2010; 403
2015; 167
2020; 182
2019a; 133
2013; 41
2020; 104
2001; 409
2007; 51
2017; 175
2011; 39
2014; 111
2003; 132
2008; 283
2016a; 106
2021; 14
1986; 208
2012; 3
2020; 71
2015; 396
2012; 7
2014; 224
2018; 59
2005; 56
1994; 6
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Verma P.K. (e_1_2_10_95_1) 2016; 7
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 118
  year: 2021
  article-title: IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 166
  year: 2010
  article-title: Identification of a novel iron regulated basic helix‐loop‐helix protein involved in Fe homeostasis in
  publication-title: BMC Plant Biology
– volume: 104
  start-page: 34
  year: 2007
  end-page: 41
  article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation
  publication-title: Journal of Bioscience and Bioengineering
– volume: 224
  start-page: 36
  year: 2014
  end-page: 43
  article-title: Iron sensors and signals in response to iron deficiency
  publication-title: Plant Science
– volume: 66
  start-page: 579
  year: 2020a
  end-page: 592
  article-title: The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice ( L.) under Fe‐deficient conditions
  publication-title: Soil Science and Plant Nutrition
– volume: 59
  start-page: 1739
  year: 2018
  end-page: 1752
  article-title: The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis
  publication-title: Plant and Cell Physiology
– volume: 35
  start-page: 43
  year: 2010
  end-page: 52
  article-title: Glutaredoxins: roles in iron homeostasis
  publication-title: Trends in Biochemical Sciences
– volume: 7
  start-page: 27
  year: 2014
  article-title: Iron deficiency responses in rice roots
  publication-title: Rice
– volume: 57
  start-page: 1685
  year: 2006
  end-page: 1696
  article-title: Genome‐wide analysis of plant glutaredoxin systems
  publication-title: Journal of Experimental Botany
– volume: 10
  start-page: 6
  year: 2019
  article-title: The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors?
  publication-title: Frontiers in Plant Science
– volume: 33
  start-page: 2015
  year: 2021
  end-page: 2031
  article-title: Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization
  publication-title: The Plant Cell
– volume: 212
  start-page: 864
  year: 2001
  end-page: 871
  article-title: evidence that from encodes a dioxygenase that converts 2′‐deoxymugineic acid to mugineic acid in transgenic rice
  publication-title: Planta
– volume: 72
  start-page: 2056
  year: 2021
  end-page: 2070
  article-title: Transcriptional integration of plant responses to iron availability
  publication-title: Journal of Experimental Botany
– volume: 72
  start-page: 2196
  year: 2021
  end-page: 2211
  article-title: Iron deficiency‐inducible peptide‐coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice
  publication-title: Journal of Experimental Botany
– volume: 283
  start-page: 13407
  year: 2008
  end-page: 13417
  article-title: A novel NAC transcription factor IDEF2 that recognizes the iron deficiency‐responsive element 2 regulates the genes involved in iron homeostasis in plants
  publication-title: Jouanal of Biological Chemistry
– volume: 9
  start-page: 7091
  year: 2019
  article-title: Lasy‐Seq: a high‐throughput library preparation method for RNA‐Seq and its application in the analysis of plant responses to fluctuating temperatures
  publication-title: Scientific Reports
– volume: 104
  start-page: 19150
  year: 2007
  end-page: 19155
  article-title: The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 163
  start-page: 282
  year: 2018
  end-page: 296
  article-title: Rice HRZ ubiquitin ligases are crucial for response to excess iron
  publication-title: Physiologia Plantarum
– volume: 172
  start-page: 1973
  year: 2016
  end-page: 1988
  article-title: Ubiquitination‐related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis
  publication-title: Plant Physiology
– volume: 72
  start-page: 2071
  year: 2021
  end-page: 2082
  article-title: The many facets of protein ubiquitination and degradation in plant root iron‐deficiency responses
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 271
  year: 1994
  end-page: 282
  article-title: Efficient transformation of rice ( L.) mediated by and sequence analysis of the boundaries of the T‐DNA
  publication-title: The Plant Journal
– volume: 62
  start-page: 379
  year: 2010
  end-page: 390
  article-title: Rice metal‐nicotianamine transporter, OsYSL2, is required for the long‐distance transport of iron and manganese
  publication-title: The Plant Journal
– volume: 225
  start-page: 1247
  year: 2020b
  end-page: 1260
  article-title: A transcription factor OsbHLH156 regulates strategy II iron acquisition through localizing IRO2 to the nucleus in rice
  publication-title: New Phytologist
– volume: 132
  start-page: 1989
  year: 2003
  end-page: 1997
  article-title: Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status
  publication-title: Plant Physiology
– volume: 26
  start-page: 151
  year: 2013
  end-page: 159
  article-title: From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 284
  start-page: 26510
  year: 2009
  end-page: 26518
  article-title: OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice
  publication-title: Jouanal of Biological Chemistry
– volume: 39
  start-page: 415
  year: 2004
  end-page: 424
  article-title: OsYSL2 is a rice metal‐nicotianamine transporter that is regulated by iron and expressed in the phloem
  publication-title: The Plant Journal
– volume: 25
  start-page: 159
  year: 2001
  end-page: 167
  article-title: Nicotianamine synthase gene expression differs in barley and rice under Fe‐deficient conditions
  publication-title: The Plant Journal
– volume: 21
  start-page: 2378
  year: 2009
  end-page: 2390
  article-title: Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell‐free assay system
  publication-title: The Plant Cell
– volume: 4
  start-page: 2792
  year: 2013
  article-title: Iron‐binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation
  publication-title: Nature Communications
– volume: 111
  start-page: 4043
  year: 2014
  end-page: 4048
  article-title: Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 116
  start-page: 24933
  year: 2019
  end-page: 24942
  article-title: The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 56
  start-page: 1305
  year: 2005
  end-page: 1316
  article-title: Expression of iron‐acquisition‐related genes in iron‐deficient rice is co‐ordinately induced by partially conserved iron‐deficiency‐responsive elements
  publication-title: Journal of Experimental Botany
– volume: 155
  start-page: 821
  year: 2011
  end-page: 834
  article-title: iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis
  publication-title: Plant Physiology
– volume: 32
  start-page: 508
  year: 2020
  end-page: 524
  article-title: The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis
  publication-title: The Plant Cell
– volume: 60
  start-page: 1440
  year: 2019
  end-page: 1446
  article-title: Understanding the complexity of iron sensing and signaling cascades in plants
  publication-title: Plant and Cell Physiology
– volume: 7
  start-page: 193
  year: 2002
  end-page: 195
  article-title: Gateway vectors for Agrobacterium‐mediated plant transformation
  publication-title: Trends in Plant Science
– volume: 286
  start-page: 5446
  year: 2011
  end-page: 5454
  article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants
  publication-title: Jouanal of Biological Chemistry
– volume: 8
  start-page: 1045
  year: 2017
  article-title: Arabidopsis glutaredoxin S17 contributes to vegetative growth, mineral accumulation, and redox balance during iron deficiency
  publication-title: Frontiers in Plant Science
– volume: 22
  start-page: 423
  year: 1976
  end-page: 433
  article-title: Naturally occurring iron‐chelating compounds in oat‐ and rice‐root washing. I. Activity measurement and preliminary characterization
  publication-title: Soil Science and Plant Nutrition
– volume: 14
  start-page: 1699
  year: 2021
  end-page: 1713
  article-title: The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice
  publication-title: Molecular Plant
– volume: 133
  start-page: 11
  year: 2019a
  end-page: 20
  article-title: Iron transport and its regulation in plants
  publication-title: Free Radical Biology and Medicine
– volume: 4
  start-page: 259
  year: 2013
  article-title: The iron‐sulfur cluster assembly machineries in plants: current knowledge and open questions
  publication-title: Frontiers in Plant Science
– volume: 31
  start-page: 377
  year: 2014
  end-page: 388
  article-title: Transcriptional regulation of the biosynthesis of phytoalexin: a lesson from specialized metabolites in rice
  publication-title: Plant Biotechnology
– volume: 3
  start-page: 752
  year: 2012
  article-title: Rice APC/C controls tillering by mediating the degradation of MONOCULM 1
  publication-title: Nature Communications
– volume: 71
  start-page: 1694
  year: 2020
  end-page: 1705
  article-title: FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT‐dependent and‐independent gene signatures
  publication-title: Journal of Experimental Botany
– volume: 224
  start-page: 11
  year: 2019
  end-page: 18
  article-title: Iron acquisition strategies in land plants: not so different after all
  publication-title: New Phytologist
– volume: 10
  start-page: 385
  year: 2009
  end-page: 397
  article-title: The ubiquitin–26S proteasome system at the nexus of plant biology
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 39
  start-page: D1141
  year: 2011
  end-page: D1148
  article-title: RiceXPro: a platform for monitoring gene expression in rice grown under natural field conditions
  publication-title: Nucleic Acids Research
– volume: 403
  start-page: 435
  year: 2010
  end-page: 441
  article-title: Engineered mutated glutaredoxins mimicking peculiar plant class III glutaredoxins bind iron–sulfur centers and possess reductase activity
  publication-title: Biochemical and Biophysical Research Communications
– volume: 201
  start-page: 781
  year: 2014
  end-page: 794
  article-title: Spatial transcriptomes of iron‐deficient and cadmium‐stressed rice
  publication-title: New Phytologist
– volume: 3
  start-page: 1
  year: 2017
  end-page: 6
  article-title: Shoot‐to‐root mobile polypeptides involved in systemic regulation of nitrogen acquisition
  publication-title: Nature Plants
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
– volume: 208
  start-page: 73
  year: 1986
  end-page: 76
  article-title: Structure of rubredoxin from the bacterium Desulfovibrio desulfuricans
  publication-title: FEBS Letters
– volume: 45
  start-page: 681
  year: 1999
  end-page: 691
  article-title: Presence of nicotianamine synthase isozymes and their homologues in the root of graminaceous plants
  publication-title: Soil Science and Plant Nutrition
– volume: 396
  start-page: 495
  year: 2015
  end-page: 509
  article-title: Plant‐specific CC‐type glutaredoxins: functions in developmental processes and stress responses
  publication-title: Biological Chemistry
– volume: 7
  start-page: 740
  year: 2016b
  article-title: Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2. 1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana
  publication-title: Frontiers in Plant Science
– volume: 45
  start-page: 36
  year: 2018
  end-page: 49
  article-title: The Arabidopsis bZIP transcription factor family—an update
  publication-title: Current Opinion in Plant Biology
– volume: 62
  start-page: 299
  year: 2011
  end-page: 334
  article-title: The cullin‐RING ubiquitin‐protein ligases
  publication-title: Annual Review of Plant Biology
– volume: 45
  start-page: 335
  year: 2006
  end-page: 346
  article-title: Rice plants take up iron as an Fe ‐phytosiderophore and as Fe
  publication-title: The Plant Journal
– volume: 15
  start-page: 461
  year: 2014
  article-title: Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and negative regulator of resistance (NRR) proteins
  publication-title: BMC Genomics
– volume: 36
  start-page: 366
  year: 2003
  end-page: 381
  article-title: Three rice nicotianamine synthase genes, , , and are expressed in cells involved in long‐distance transport of iron and differentially regulated by iron
  publication-title: The Plant Journal
– volume: 167
  start-page: 273
  year: 2015
  end-page: 286
  article-title: Iron‐binding E3 ligase mediates iron response in plants by targeting basic helix‐loop‐helix transcription factors
  publication-title: Plant Physiology
– volume: 9
  start-page: 876
  year: 2017
  end-page: 890
  article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana
  publication-title: Metallomics
– volume: 10
  start-page: 98
  year: 2019b
  article-title: Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants
  publication-title: Frontiers in Plant Science
– volume: 18
  start-page: 555
  year: 2013
  end-page: 565
  article-title: Hormone defense networking in rice: tales from a different world
  publication-title: Trends in Plant Science
– volume: 15
  start-page: 138
  year: 2022
  end-page: 150
  article-title: A reciprocal inhibitory module for Pi and iron signaling
  publication-title: Molecular Plant
– volume: 242
  start-page: 1195
  year: 2015
  end-page: 1206
  article-title: Expression of a rice glutaredoxin in aleurone layers of developing and mature seeds: subcellular localization and possible functions in antioxidant defense
  publication-title: Planta
– volume: 63
  start-page: 131
  year: 2012
  end-page: 152
  article-title: Iron uptake, translocation, and regulation in higher plants
  publication-title: Annual Review of Plant Biology
– volume: 446
  start-page: 333
  year: 2012
  end-page: 348
  article-title: The biological roles of glutaredoxins
  publication-title: Biochemical Journal
– volume: 7
  year: 2012
  article-title: Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days
  publication-title: PLoS One
– volume: 60
  start-page: 948
  year: 2009
  end-page: 961
  article-title: The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes
  publication-title: The Plant Journal
– volume: 41
  start-page: D1206
  year: 2013
  end-page: D1213
  article-title: RiceXPro version 3.0: expanding the informatics resource for rice transcriptome
  publication-title: Nucleic Acids Research
– volume: 62
  start-page: 668
  year: 2020
  end-page: 689
  article-title: FER‐LIKE FE DEFICIENCY‐INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis
  publication-title: Journal of Integrative Plant Biology
– volume: 47
  start-page: D442
  year: 2019
  end-page: D450
  article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data
  publication-title: Nucleic Acids Research
– volume: 4
  start-page: 953
  year: 2018
  end-page: 963
  article-title: IRON MAN is a ubiquitous family of peptides that control iron transport in plants
  publication-title: Nature Plants
– volume: 104
  start-page: 629
  year: 2020
  end-page: 645
  article-title: Defects in the rice aconitase‐encoding gene alter iron homeostasis
  publication-title: Plant Molecular Biology
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Shoot‐to‐root mobile CEPD‐like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis
  publication-title: Nature Communications
– volume: 116
  start-page: 725
  year: 1998
  end-page: 732
  article-title: Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by Fe‐deficiency in barley roots
  publication-title: Plant Physiology
– volume: 57
  start-page: 2867
  year: 2006
  end-page: 2878
  article-title: Isolation and characterization of IRO2, a novel iron‐regulated bHLH transcription factor in graminaceous plants
  publication-title: Jouanal of Experimental Botany
– volume: 146
  start-page: 333
  year: 2008
  end-page: 350
  article-title: Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice
  publication-title: Plant Physiology
– volume: 13
  year: 2018
  article-title: OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1
  publication-title: PLoS One
– volume: 106
  start-page: 208
  year: 2016a
  end-page: 217
  article-title: Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast
  publication-title: Plant Physiology and Biochemistry
– volume: 32
  start-page: 4998
  year: 2012
  end-page: 5008
  article-title: Iron‐induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron‐dependent gene suppression
  publication-title: Molecular and Cellular Biology
– volume: 103
  start-page: 1
  year: 2009
  end-page: 11
  article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1‐like transporters
  publication-title: Annals of Botany
– volume: 409
  start-page: 346
  year: 2001
  end-page: 349
  article-title: Maize encodes a membrane protein directly involved in Fe(III) uptake
  publication-title: Nature
– volume: 11
  start-page: 806
  year: 2012
  end-page: 819
  article-title: The monothiol glutaredoxin Grx4 exerts an iron‐dependent inhibitory effect on Php4 function
  publication-title: Eukaryotic Cell
– volume: 116
  start-page: 17584
  year: 2019a
  end-page: 17591
  article-title: Arabidopsis BRUTUS‐LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 80
  start-page: 175
  year: 1986
  end-page: 180
  article-title: Evidence for a specific uptake system for iron phytosiderophore in roots of grasses
  publication-title: Plant Physiology
– volume: 182
  start-page: 1420
  year: 2020
  end-page: 1439
  article-title: Putative cis‐regulatory elements predict iron deficiency responses in Arabidopsis roots
  publication-title: Plant Physiology
– volume: 6
  start-page: 22
  year: 2013
  article-title: Development of a novel prediction method of ‐elements to hypothesize collaborative functions of ‐element pairs in iron‐deficient rice
  publication-title: Rice
– volume: 175
  start-page: 543
  year: 2017
  end-page: 554
  article-title: POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis
  publication-title: Plant Physiology
– volume: 15
  start-page: 1758455
  year: 2020
  article-title: Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress
  publication-title: Plant Signaling & Behavior
– volume: 41
  start-page: 2463
  year: 2018
  end-page: 2474
  article-title: The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors
  publication-title: Plant, Cell and Environment
– volume: 1823
  start-page: 1491
  year: 2012
  end-page: 1508
  article-title: The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism
  publication-title: Biochimica et Biophysica Acta
– volume: 121
  start-page: 947
  year: 1999
  end-page: 956
  article-title: Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants
  publication-title: Plant Physiology
– volume: 179
  start-page: 88
  year: 2019
  end-page: 106
  article-title: The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H ‐ATPase activity and iron homeostasis
  publication-title: Plant Physiology
– volume: 51
  start-page: 1179
  year: 2000
  end-page: 1188
  article-title: Induced activity of adenine phosphoribosyltransferase (APRT) in Fe‐deficient barley roots: a possible role for phytosiderophore production
  publication-title: Journal of Experimental Botany
– volume: 167
  start-page: 1643
  year: 2015
  end-page: 1658
  article-title: Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long‐day photoperiod
  publication-title: Plant Physiology
– volume: 101
  start-page: 471
  year: 2019b
  end-page: 486
  article-title: OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice
  publication-title: Plant Molecular Biology
– volume: 43
  start-page: 261
  year: 2020
  end-page: 274
  article-title: POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis
  publication-title: Plant, Cell and Environment
– volume: 17
  start-page: 353
  year: 2010
  end-page: 367
  article-title: Genome‐wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice
  publication-title: DNA Research
– volume: 51
  start-page: 366
  year: 2007
  end-page: 377
  article-title: The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe‐deficient conditions
  publication-title: The Plant Journal
– volume: 173
  start-page: 19
  year: 2015
  end-page: 27
  article-title: Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells
  publication-title: Journal of Plant Physiology
– volume: 6
  start-page: 934
  year: 2015
  article-title: Overexpression of the CC‐type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants
  publication-title: Frontiers in Plant Science
– volume: 91
  start-page: 533
  year: 2016
  end-page: 547
  article-title: Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots
  publication-title: Plant Molecular Biology
– ident: e_1_2_10_89_1
  doi: 10.1104/pp.116.2.725
– ident: e_1_2_10_56_1
  doi: 10.5511/plantbiotechnology.14.0730a
– ident: e_1_2_10_27_1
  doi: 10.1046/j.1365-313X.2003.01878.x
– ident: e_1_2_10_69_1
  doi: 10.1016/j.cell.2016.04.038
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1365-313X.2005.02624.x
– ident: e_1_2_10_75_1
  doi: 10.1104/pp.80.1.175
– ident: e_1_2_10_2_1
  doi: 10.1111/ppl.12698
– ident: e_1_2_10_59_1
  doi: 10.1007/s00425-015-2354-9
– ident: e_1_2_10_6_1
  doi: 10.3389/fpls.2013.00259
– ident: e_1_2_10_38_1
  doi: 10.1111/j.1365-313X.2009.04015.x
– ident: e_1_2_10_73_1
  doi: 10.3389/fpls.2019.00098
– ident: e_1_2_10_103_1
  doi: 10.1111/pce.13655
– ident: e_1_2_10_77_1
  doi: 10.1016/j.tibs.2009.08.005
– ident: e_1_2_10_80_1
  doi: 10.1093/nar/gks1125
– ident: e_1_2_10_61_1
  doi: 10.1104/pp.107.112821
– ident: e_1_2_10_60_1
  doi: 10.1263/jbb.104.34
– ident: e_1_2_10_54_1
  doi: 10.1038/ncomms1716
– ident: e_1_2_10_49_1
  doi: 10.1111/j.1365-313X.2004.02146.x
– ident: e_1_2_10_10_1
  doi: 10.1016/j.pbi.2018.05.001
– ident: e_1_2_10_106_1
  doi: 10.1186/1471-2229-10-166
– ident: e_1_2_10_91_1
  doi: 10.1104/pp.121.3.947
– ident: e_1_2_10_15_1
  doi: 10.1093/dnares/dsq023
– ident: e_1_2_10_62_1
  doi: 10.1074/jbc.M110.180026
– ident: e_1_2_10_63_1
  doi: 10.1093/jxb/erl054
– ident: e_1_2_10_17_1
  doi: 10.1038/s41477-018-0266-y
– ident: e_1_2_10_46_1
  doi: 10.1073/pnas.0707010104
– ident: e_1_2_10_50_1
  doi: 10.1104/pp.110.169508
– ident: e_1_2_10_83_1
  doi: 10.1111/pce.13363
– ident: e_1_2_10_68_1
  doi: 10.1074/jbc.M109.036871
– ident: e_1_2_10_90_1
  doi: 10.1080/00380768.1976.10433004
– ident: e_1_2_10_92_1
  doi: 10.1128/MCB.00726-12
– ident: e_1_2_10_102_1
  doi: 10.3389/fpls.2017.01045
– ident: e_1_2_10_79_1
  doi: 10.1093/nar/gkq1085
– ident: e_1_2_10_4_1
  doi: 10.1186/1471-2164-15-461
– ident: e_1_2_10_25_1
  doi: 10.1093/pcp/pcy145
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.1916892116
– ident: e_1_2_10_78_1
  doi: 10.1371/journal.pone.0040112
– ident: e_1_2_10_24_1
  doi: 10.1039/C7MT00152E
– ident: e_1_2_10_101_1
  doi: 10.1016/j.molp.2021.06.027
– volume: 7
  start-page: 740
  year: 2016
  ident: e_1_2_10_95_1
  article-title: Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2. 1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana
  publication-title: Frontiers in Plant Science
– ident: e_1_2_10_37_1
  doi: 10.1186/s12284-014-0027-0
– ident: e_1_2_10_22_1
  doi: 10.1080/00380768.1999.10415831
– ident: e_1_2_10_31_1
  doi: 10.1186/1939-8433-6-22
– ident: e_1_2_10_47_1
  doi: 10.1007/s11103-019-00917-8
– ident: e_1_2_10_21_1
  doi: 10.1046/j.1365-313X.1994.6020271.x
– ident: e_1_2_10_41_1
  doi: 10.1038/ncomms3792
– ident: e_1_2_10_9_1
  doi: 10.1016/j.tplants.2013.07.002
– ident: e_1_2_10_87_1
  doi: 10.1093/jxb/eraa441
– ident: e_1_2_10_44_1
  doi: 10.1016/j.plantsci.2014.04.002
– ident: e_1_2_10_58_1
  doi: 10.1371/journal.pone.0206910
– ident: e_1_2_10_93_1
  doi: 10.1128/EC.00060-12
– ident: e_1_2_10_105_1
  doi: 10.1104/pp.16.01323
– ident: e_1_2_10_42_1
  doi: 10.1007/s004250000453
– ident: e_1_2_10_5_1
  doi: 10.1016/j.bbrc.2010.11.050
– ident: e_1_2_10_11_1
  doi: 10.3389/fpls.2015.00934
– ident: e_1_2_10_3_1
  doi: 10.1080/15592324.2020.1758455
– ident: e_1_2_10_66_1
  doi: 10.1074/jbc.M708732200
– ident: e_1_2_10_99_1
  doi: 10.1111/nph.16232
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jplph.2014.09.001
– ident: e_1_2_10_82_1
  doi: 10.1093/jxb/eraa012
– ident: e_1_2_10_7_1
  doi: 10.1093/aob/mcn207
– ident: e_1_2_10_51_1
  doi: 10.1073/pnas.2109063118
– ident: e_1_2_10_74_1
  doi: 10.1073/pnas.1907971116
– ident: e_1_2_10_97_1
  doi: 10.1080/00380768.2020.1783966
– ident: e_1_2_10_64_1
  doi: 10.1111/j.1365-313X.2007.03149.x
– ident: e_1_2_10_76_1
  doi: 10.1093/jxb/erl001
– ident: e_1_2_10_35_1
  doi: 10.1104/pp.15.00049
– ident: e_1_2_10_67_1
  doi: 10.1038/nplants.2017.29
– ident: e_1_2_10_13_1
  doi: 10.1105/tpc.19.00541
– ident: e_1_2_10_100_1
  doi: 10.1093/plcell/koab075
– ident: e_1_2_10_16_1
  doi: 10.1094/MPMI-04-12-0078-IA
– ident: e_1_2_10_65_1
  doi: 10.1111/nph.12577
– ident: e_1_2_10_14_1
  doi: 10.3389/fpls.2019.00006
– ident: e_1_2_10_33_1
  doi: 10.1016/S1360-1385(02)02251-3
– ident: e_1_2_10_30_1
  doi: 10.1093/jexbot/51.348.1179
– ident: e_1_2_10_88_1
  doi: 10.1042/BJ20112131
– ident: e_1_2_10_104_1
  doi: 10.1104/pp.17.00794
– ident: e_1_2_10_19_1
  doi: 10.1016/j.molp.2021.09.011
– ident: e_1_2_10_26_1
  doi: 10.1146/annurev-arplant-042809-112256
– ident: e_1_2_10_18_1
  doi: 10.1111/nph.16005
– ident: e_1_2_10_8_1
  doi: 10.1038/35053080
– ident: e_1_2_10_70_1
  doi: 10.1038/s41467-020-14440-8
– ident: e_1_2_10_45_1
  doi: 10.1016/j.freeradbiomed.2018.10.439
– ident: e_1_2_10_20_1
  doi: 10.1515/hsz-2014-0300
– ident: e_1_2_10_53_1
  doi: 10.1016/j.bbamcr.2012.05.009
– ident: e_1_2_10_98_1
  doi: 10.1105/tpc.108.065433
– ident: e_1_2_10_39_1
  doi: 10.1007/s11103-016-0486-3
– ident: e_1_2_10_94_1
  doi: 10.1016/j.plaphy.2016.04.052
– ident: e_1_2_10_52_1
  doi: 10.1111/jipb.12933
– ident: e_1_2_10_86_1
  doi: 10.1016/0014-5793(86)81535-6
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1365-313X.2001.00951.x
– ident: e_1_2_10_43_1
  doi: 10.1146/annurev-arplant-042811-105522
– ident: e_1_2_10_40_1
  doi: 10.1093/jxb/eraa546
– ident: e_1_2_10_71_1
  doi: 10.1093/nar/gky1106
– ident: e_1_2_10_72_1
  doi: 10.1073/pnas.1318869111
– ident: e_1_2_10_84_1
  doi: 10.1104/pp.114.250837
– ident: e_1_2_10_12_1
  doi: 10.1093/jxb/eraa556
– ident: e_1_2_10_57_1
  doi: 10.1104/pp.102.019869
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1365-313X.2010.04158.x
– ident: e_1_2_10_48_1
  doi: 10.1093/jxb/eri131
– ident: e_1_2_10_32_1
  doi: 10.1038/s41598-019-43600-0
– ident: e_1_2_10_36_1
  doi: 10.1093/pcp/pcz038
– ident: e_1_2_10_81_1
  doi: 10.1104/pp.19.00760
– ident: e_1_2_10_96_1
  doi: 10.1038/nrm2688
– ident: e_1_2_10_85_1
  doi: 10.1007/s11103-020-01065-0
– ident: e_1_2_10_107_1
  doi: 10.1104/pp.18.00289
SSID ssj0017364
Score 2.4577756
Snippet SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases...
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice ( Oryza sativa ) ubiquitin ligases...
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1...
SUMMARYUnder low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1731
SubjectTerms basic leucine zipper transcription factor
Biosynthesis
Degradation
Downstream effects
Gene expression
Gene regulation
Genes
glutaredoxin
Iron
Iron deficiency
iron deficiency response
iron sensing
Leucine
leucine zipper
Leucine zipper proteins
Nutrient deficiency
Oryza sativa
phytoalexins
Plant cells
Proteasome 26S
protein content
Proteins
protein‐level regulation
proteome
Proteomes
Rice
rice (Oryza sativa)
Salicylic acid
Transcription factors
transcriptional regulation
Translocation
Ubiquitin
ubiquitin ligase
ubiquitin-protein ligase
Utilization
Yeast
yeasts
Title The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15767
https://www.ncbi.nlm.nih.gov/pubmed/35411594
https://www.proquest.com/docview/2680523405
https://www.proquest.com/docview/2649591266
https://www.proquest.com/docview/2718253222
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7L4oMv3i-jq0TxwZcubZKmDT6puI4L6jLswrAIJckkS9mhHact6P4mf6TnpBdcb4hvgZyUJD0n50tyzhdCnmkV65hzFXFM8RFK-8j41ERJvtKJjY1zApOT33-Q8xNxuEyXO-TFmAvT80NMB25oGWG9RgPXpvnByNsNmDmgZcwkx1gtBESLiToqyXhPHQUIPQKvyQZWIYzimVpe9kW_AMzLeDU4nIPr5NPY1T7O5Hy_a82-vfiJxfE_x3KDXBuAKH3Za85NsuOqW-TKqxrA4tfb5BuoDwUPV1q6dh1evtOLcrNxW9qicxuXGto_10M_Nub03VHOqa5WFCAlPQOFxtD2-ktZNVD9drGUoTIUFbbr6cEdRVYjisl2FGxgPaSFUsxt24ZPDcH0tPbQeL44pZ0pP3dlW1Z0XZ6BE27ukJODN8ev59HwsENkYX-EpJS5NWluhbJxomOdWcu0Z5kzsUgM09LDsiJTL0XsuZGWc2SBy7wyhgnNVvwu2a3qyt0nVInc8NTwxMpYOM609dIqI1yWKK8TPyPPx19c2IH1HB_fWBfj7gfmvghzPyNPJ9FNT_XxO6G9UU-Kwdqbgkl8GIID9p2RJ1M12ClevujK1R3KwFZUJYCH_iIDQIGlePc1I_d6HZx6wlMB4F0JGFDQpD93sTg-OgyFB_8u-pBcZZjXEY6X9shuu-3cI0BbrXkczOo7NSUoCg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61Cvri_bJaNYoPvkyZSTKXgC8q1m1ta1m2sBTKkGSTMrjMrLszoP1N_kjPyVyw3hDfAjkZksw5OV8u5zuEvFAyVCHnMuAY4iOkcoF2sQ6ibK4iE2prBQYnHxwm42OxN4tnG-RVHwvT8kMMB25oGX69RgPHA-kfrLxegp0DXE4vkcuY0dtvqCYDeVSU8pY8CjB6AH6TdbxC-I5naHrRG_0CMS8iVu9ydm6Q076z7UuTT9tNrbfN-U88jv87mpvkeodF6etWeW6RDVveJlfeVIAXv94h30CDKDi5wtCFbfD-nZ4Xy6Vd0Rr9W7_a0DZjD_241ie7RxmnqpxTQJX0DHQaX7dXX4pyDdXvJ7PEV_qixHYtQ7ilSGxEMd6OghksushQiuFtK_-p7j09rRw0Hk9OaKOLz01RFyVdFGfgh9d3yfHOu-nbcdDldggMbJGQlzIzOs6MkCaMVKhSY5hyLLU6FJFmKnGwsiSxS0TouE4M50gElzqpNROKzfk9sllWpX1AqBSZ5rHmkUlCYTlTxiVGamHTSDoVuRF52f_j3HTE55h_Y5H3GyCY-9zP_Yg8H0SXLdvH74S2ekXJO4Nf5yzB3BAc4O-IPBuqwVTx_kWVtmpQBnajMgJI9BcZwAosxuuvEbnfKuHQEx4LwO9SwIC8Kv25i_n0aM8XHv676FNydTw92M_3dw8_PCLXGIZ5-NOmLbJZrxr7GMBXrZ94G_sOklYsJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYhLedOFAgZx4JIqsZ2HxQkoy7ZAWa1aaVVVimyvXUWskrCbSNDfxI9kJi9RXkLcLHkc2c6M57M985mQZ0r6yudcehxTfIRUztMu1F6QLFRgfG2twOTkD4fR5FgczMP5BnnR58K0_BDDgRtaRrNeo4GXC_eDkVclmDmg5fgSuSwiP0GV3psN3FFBzFvuKIDoHrhN1tEKYRjP0PSiM_oFYV4ErI3HGV8np31f20CTT7t1pXfN-U80jv85mBtkq0Oi9GWrOjfJhs1vkSuvCkCLX2-Tb6A_FFxcZujS1nj7Ts-zsrQrWqF369ca2r7XQz-u9cn-NOFU5QsKmJKegUZjbHvxJcvXUP12No-ayqYosV3LD24p0hpRzLajYATLLi-UYnLbqvlUF01PCweNJ7MTWuvsc51VWU6X2Rl44fUdcjx-c_R64nUvO3gGNkjISpkYHSZGSOMHylexMUw5Flvti0AzFTlYV6LQRcJ3XEeGc6SBi53UmgnFFvwu2cyL3G4TKkWieah5YCJfWM6UcZGRWtg4kE4FbkSe9784NR3tOb6-sUz77Q_MfdrM_Yg8HUTLluvjd0I7vZ6knbmvUxbhyxAcwO-IPBmqwVDx9kXltqhRBvaiMgBA9BcZQAosxMuvEbnX6uDQEx4KQO9SwIAaTfpzF9Oj6UFTuP_voo_J1eneOH2_f_juAbnGMMejOWraIZvVqrYPAXlV-lFjYd8BEgMq3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+basic+leucine+zipper+transcription+factor+OsbZIP83+and+the+glutaredoxins+OsGRX6+and+OsGRX9+facilitate+rice+iron+utilization+under+the+control+of+OsHRZ+ubiquitin+ligases&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Kobayashi%2C+Takanori&rft.au=Shinkawa%2C+Haruka&rft.au=Nagano%2C+Atsushi+J&rft.au=Nishizawa%2C+Naoko+K&rft.date=2022-06-01&rft.issn=0960-7412&rft.volume=110&rft.issue=6+p.1731-1750&rft.spage=1731&rft.epage=1750&rft_id=info:doi/10.1111%2Ftpj.15767&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon