The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases
SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclea...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 110; no. 6; pp. 1731 - 1750 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Significance Statement
We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice (Oryza sativa) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs. |
---|---|
AbstractList | Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. SUMMARYUnder low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. SUMMARY Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. Significance Statement We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice (Oryza sativa) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs. Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice ( Oryza sativa ) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron‐related genes at the transcript level, but their protein‐level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA‐type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ‐interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome‐ and OsHRZ‐dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron‐deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron‐related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3 , which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway. We identified new regulatory components of plant iron deficiency responses, the basic leucine zipper transcription factor OsbZIP83 and two glutaredoxins, OsGRX6 and OsGRX9, which facilitate rice ( Oryza sativa ) iron utilization. OsbZIP83, OsGRX6 and OsGRX9 interact with OsHRZ ubiquitin ligases and are subjected to OsHRZ‐dependent degradation via the 26S proteasome pathway, linking the protein‐level and transcript‐level regulation of iron deficiency responses downstream of OsHRZs. |
Author | Kobayashi, Takanori Shinkawa, Haruka Nagano, Atsushi J. Nishizawa, Naoko K. |
Author_xml | – sequence: 1 givenname: Takanori orcidid: 0000-0001-7118-6955 surname: Kobayashi fullname: Kobayashi, Takanori email: abkoba@ishikawa‐pu.ac.jp organization: Ishikawa Prefectural University – sequence: 2 givenname: Haruka surname: Shinkawa fullname: Shinkawa, Haruka organization: Ishikawa Prefectural University – sequence: 3 givenname: Atsushi J. surname: Nagano fullname: Nagano, Atsushi J. organization: Keio University – sequence: 4 givenname: Naoko K. surname: Nishizawa fullname: Nishizawa, Naoko K. organization: Ishikawa Prefectural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35411594$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9LHDEYxkOx1NX20C9QAr20h9H8z8yxiFWLoMgWxMuQyWRslmwyJhla_Uz9kM3srhdpaS4JeX_P85I3zwHY88EbAN5jdITLOs7j6ghzKeQrsMBU8IpiersHFqgRqJIMk31wkNIKISypYG_APuUMY96wBfi9_GFgp5LV0JlJW2_gkx1HE2GOyicd7Zht8HBQOocIr1J3d3FdU6h8D3OR3rspq2j68Mv6VMpnN7diU9wcm1lnnc0qGxitNtDGYjblcvekNsaT7-dmxUoHn2NwMAxFfH5zB6fOPkw2Ww-dvVfJpLfg9aBcMu92-yH4_vV0eXJeXV6dXZx8uaw0q6WssKx1x2vNGo2wQkpqTdRApOkQwx1RYmB1LfggGBpoJzSlTHAqh6brCFOkp4fg09Z3jOFhMim3a5u0cU55E6bUEolrwikh5P-oYA1vMBGioB9foKswRV8eUqgacUIZ4oX6sKOmbm36dox2reJj-_xlBTjeAjqGlKIZWj3P187TU9a1GLVzKNoSinYTiqL4_ELxbPo3duf-0zrz-G-wXV5_2yr-ACx2xv0 |
CitedBy_id | crossref_primary_10_1016_j_xplc_2022_100349 crossref_primary_10_1111_ppl_70134 crossref_primary_10_3389_fpls_2023_1145510 crossref_primary_10_1271_kagakutoseibutsu_61_237 crossref_primary_10_1017_S1479262123000424 crossref_primary_10_1111_nph_19706 crossref_primary_10_1186_s12284_022_00598_w |
Cites_doi | 10.1104/pp.116.2.725 10.5511/plantbiotechnology.14.0730a 10.1046/j.1365-313X.2003.01878.x 10.1016/j.cell.2016.04.038 10.1111/j.1365-313X.2005.02624.x 10.1104/pp.80.1.175 10.1111/ppl.12698 10.1007/s00425-015-2354-9 10.3389/fpls.2013.00259 10.1111/j.1365-313X.2009.04015.x 10.3389/fpls.2019.00098 10.1111/pce.13655 10.1016/j.tibs.2009.08.005 10.1093/nar/gks1125 10.1104/pp.107.112821 10.1263/jbb.104.34 10.1038/ncomms1716 10.1111/j.1365-313X.2004.02146.x 10.1016/j.pbi.2018.05.001 10.1186/1471-2229-10-166 10.1104/pp.121.3.947 10.1093/dnares/dsq023 10.1074/jbc.M110.180026 10.1093/jxb/erl054 10.1038/s41477-018-0266-y 10.1073/pnas.0707010104 10.1104/pp.110.169508 10.1111/pce.13363 10.1074/jbc.M109.036871 10.1080/00380768.1976.10433004 10.1128/MCB.00726-12 10.3389/fpls.2017.01045 10.1093/nar/gkq1085 10.1186/1471-2164-15-461 10.1093/pcp/pcy145 10.1073/pnas.1916892116 10.1371/journal.pone.0040112 10.1039/C7MT00152E 10.1016/j.molp.2021.06.027 10.1186/s12284-014-0027-0 10.1080/00380768.1999.10415831 10.1186/1939-8433-6-22 10.1007/s11103-019-00917-8 10.1046/j.1365-313X.1994.6020271.x 10.1038/ncomms3792 10.1016/j.tplants.2013.07.002 10.1093/jxb/eraa441 10.1016/j.plantsci.2014.04.002 10.1371/journal.pone.0206910 10.1128/EC.00060-12 10.1104/pp.16.01323 10.1007/s004250000453 10.1016/j.bbrc.2010.11.050 10.3389/fpls.2015.00934 10.1080/15592324.2020.1758455 10.1074/jbc.M708732200 10.1111/nph.16232 10.1016/j.jplph.2014.09.001 10.1093/jxb/eraa012 10.1093/aob/mcn207 10.1073/pnas.2109063118 10.1073/pnas.1907971116 10.1080/00380768.2020.1783966 10.1111/j.1365-313X.2007.03149.x 10.1093/jxb/erl001 10.1104/pp.15.00049 10.1038/nplants.2017.29 10.1105/tpc.19.00541 10.1093/plcell/koab075 10.1094/MPMI-04-12-0078-IA 10.1111/nph.12577 10.3389/fpls.2019.00006 10.1016/S1360-1385(02)02251-3 10.1093/jexbot/51.348.1179 10.1042/BJ20112131 10.1104/pp.17.00794 10.1016/j.molp.2021.09.011 10.1146/annurev-arplant-042809-112256 10.1111/nph.16005 10.1038/35053080 10.1038/s41467-020-14440-8 10.1016/j.freeradbiomed.2018.10.439 10.1515/hsz-2014-0300 10.1016/j.bbamcr.2012.05.009 10.1105/tpc.108.065433 10.1007/s11103-016-0486-3 10.1016/j.plaphy.2016.04.052 10.1111/jipb.12933 10.1016/0014-5793(86)81535-6 10.1111/j.1365-313X.2001.00951.x 10.1146/annurev-arplant-042811-105522 10.1093/jxb/eraa546 10.1093/nar/gky1106 10.1073/pnas.1318869111 10.1104/pp.114.250837 10.1093/jxb/eraa556 10.1104/pp.102.019869 10.1111/j.1365-313X.2010.04158.x 10.1093/jxb/eri131 10.1038/s41598-019-43600-0 10.1093/pcp/pcz038 10.1104/pp.19.00760 10.1038/nrm2688 10.1007/s11103-020-01065-0 10.1104/pp.18.00289 |
ContentType | Journal Article |
Copyright | 2022 Society for Experimental Biology and John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2022 Society for Experimental Biology and John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | AAYXX CITATION NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/tpj.15767 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 1750 |
ExternalDocumentID | 35411594 10_1111_tpj_15767 TPJ15767 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Core Research for Evolutional Science and Technology funderid: JPMJCR15O2 – fundername: University of Tokyo – fundername: Advanced Low Carbon Technology Research and Development Program – fundername: Japan Society for the Promotion of Science KAKENHI funderid: JP15H05617; JP15H01187; JP18H02115; JP20H05514 – fundername: Shimane University – fundername: Precursory Research for Embryonic Science and Technology – fundername: Japan Science and Technology Agency – fundername: Ryukoku University – fundername: Japan Society for the Promotion of Science KAKENHI grantid: JP15H01187 – fundername: Japan Society for the Promotion of Science KAKENHI grantid: JP18H02115 – fundername: Japan Society for the Promotion of Science KAKENHI grantid: JP15H05617 – fundername: Core Research for Evolutional Science and Technology grantid: JPMJCR15O2 – fundername: Japan Society for the Promotion of Science KAKENHI grantid: JP20H05514 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7QO 7QP 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4877-178cb58c49c01a0a7cc2af27eb041b2a6f48865f640f3b6c3346537f9bb24a2d3 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:40:08 EDT 2025 Fri Jul 11 01:47:56 EDT 2025 Sat Jul 19 05:41:23 EDT 2025 Wed Feb 19 02:25:33 EST 2025 Thu Apr 24 22:59:43 EDT 2025 Tue Jul 01 03:57:39 EDT 2025 Wed Jan 22 16:22:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | iron sensing ubiquitin ligase rice (Oryza sativa) protein-level regulation transcriptional regulation basic leucine zipper transcription factor glutaredoxin iron deficiency response gene expression |
Language | English |
License | 2022 Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4877-178cb58c49c01a0a7cc2af27eb041b2a6f48865f640f3b6c3346537f9bb24a2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7118-6955 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.15767 |
PMID | 35411594 |
PQID | 2680523405 |
PQPubID | 31702 |
PageCount | 1750 |
ParticipantIDs | proquest_miscellaneous_2718253222 proquest_miscellaneous_2649591266 proquest_journals_2680523405 pubmed_primary_35411594 crossref_citationtrail_10_1111_tpj_15767 crossref_primary_10_1111_tpj_15767 wiley_primary_10_1111_tpj_15767_TPJ15767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 163 2007; 104 2010; 10 2013; 4 2019a; 116 2019; 10 2010; 17 2019b; 10 2011; 62 1999; 45 2020; 15 2018; 41 2020; 11 2018; 45 2021; 72 2013; 6 2012; 11 1986; 80 2009; 10 2018; 4 2004; 39 2014; 15 2019; 9 2010; 35 2006; 57 2009; 60 2002; 7 2015; 242 2003; 36 2019; 224 2016; 165 2020; 32 2016; 91 2001; 25 2012; 32 2006; 45 2019; 47 2019; 179 2022; 15 2009; 103 2014; 31 2018; 13 2016; 172 2017; 8 2013; 26 2017; 3 1976; 22 2020; 62 2000; 51 1999; 121 2008; 146 1998; 116 2012; 446 2017; 9 2010; 62 2011; 155 2015; 173 2013; 18 2001; 212 2019; 60 2021; 33 2021; 118 2019; 116 2009; 284 2020b; 225 2020; 43 2014; 7 2016b; 7 2012; 63 2011; 286 2014; 201 2019b; 101 2020a; 66 2015; 6 2009; 21 2012; 1823 2010; 403 2015; 167 2020; 182 2019a; 133 2013; 41 2020; 104 2001; 409 2007; 51 2017; 175 2011; 39 2014; 111 2003; 132 2008; 283 2016a; 106 2021; 14 1986; 208 2012; 3 2020; 71 2015; 396 2012; 7 2014; 224 2018; 59 2005; 56 1994; 6 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 Verma P.K. (e_1_2_10_95_1) 2016; 7 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 118 year: 2021 article-title: IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 166 year: 2010 article-title: Identification of a novel iron regulated basic helix‐loop‐helix protein involved in Fe homeostasis in publication-title: BMC Plant Biology – volume: 104 start-page: 34 year: 2007 end-page: 41 article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation publication-title: Journal of Bioscience and Bioengineering – volume: 224 start-page: 36 year: 2014 end-page: 43 article-title: Iron sensors and signals in response to iron deficiency publication-title: Plant Science – volume: 66 start-page: 579 year: 2020a end-page: 592 article-title: The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice ( L.) under Fe‐deficient conditions publication-title: Soil Science and Plant Nutrition – volume: 59 start-page: 1739 year: 2018 end-page: 1752 article-title: The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis publication-title: Plant and Cell Physiology – volume: 35 start-page: 43 year: 2010 end-page: 52 article-title: Glutaredoxins: roles in iron homeostasis publication-title: Trends in Biochemical Sciences – volume: 7 start-page: 27 year: 2014 article-title: Iron deficiency responses in rice roots publication-title: Rice – volume: 57 start-page: 1685 year: 2006 end-page: 1696 article-title: Genome‐wide analysis of plant glutaredoxin systems publication-title: Journal of Experimental Botany – volume: 10 start-page: 6 year: 2019 article-title: The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? publication-title: Frontiers in Plant Science – volume: 33 start-page: 2015 year: 2021 end-page: 2031 article-title: Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization publication-title: The Plant Cell – volume: 212 start-page: 864 year: 2001 end-page: 871 article-title: evidence that from encodes a dioxygenase that converts 2′‐deoxymugineic acid to mugineic acid in transgenic rice publication-title: Planta – volume: 72 start-page: 2056 year: 2021 end-page: 2070 article-title: Transcriptional integration of plant responses to iron availability publication-title: Journal of Experimental Botany – volume: 72 start-page: 2196 year: 2021 end-page: 2211 article-title: Iron deficiency‐inducible peptide‐coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice publication-title: Journal of Experimental Botany – volume: 283 start-page: 13407 year: 2008 end-page: 13417 article-title: A novel NAC transcription factor IDEF2 that recognizes the iron deficiency‐responsive element 2 regulates the genes involved in iron homeostasis in plants publication-title: Jouanal of Biological Chemistry – volume: 9 start-page: 7091 year: 2019 article-title: Lasy‐Seq: a high‐throughput library preparation method for RNA‐Seq and its application in the analysis of plant responses to fluctuating temperatures publication-title: Scientific Reports – volume: 104 start-page: 19150 year: 2007 end-page: 19155 article-title: The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 163 start-page: 282 year: 2018 end-page: 296 article-title: Rice HRZ ubiquitin ligases are crucial for response to excess iron publication-title: Physiologia Plantarum – volume: 172 start-page: 1973 year: 2016 end-page: 1988 article-title: Ubiquitination‐related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis publication-title: Plant Physiology – volume: 72 start-page: 2071 year: 2021 end-page: 2082 article-title: The many facets of protein ubiquitination and degradation in plant root iron‐deficiency responses publication-title: Journal of Experimental Botany – volume: 6 start-page: 271 year: 1994 end-page: 282 article-title: Efficient transformation of rice ( L.) mediated by and sequence analysis of the boundaries of the T‐DNA publication-title: The Plant Journal – volume: 62 start-page: 379 year: 2010 end-page: 390 article-title: Rice metal‐nicotianamine transporter, OsYSL2, is required for the long‐distance transport of iron and manganese publication-title: The Plant Journal – volume: 225 start-page: 1247 year: 2020b end-page: 1260 article-title: A transcription factor OsbHLH156 regulates strategy II iron acquisition through localizing IRO2 to the nucleus in rice publication-title: New Phytologist – volume: 132 start-page: 1989 year: 2003 end-page: 1997 article-title: Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status publication-title: Plant Physiology – volume: 26 start-page: 151 year: 2013 end-page: 159 article-title: From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways publication-title: Molecular Plant‐Microbe Interactions – volume: 284 start-page: 26510 year: 2009 end-page: 26518 article-title: OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice publication-title: Jouanal of Biological Chemistry – volume: 39 start-page: 415 year: 2004 end-page: 424 article-title: OsYSL2 is a rice metal‐nicotianamine transporter that is regulated by iron and expressed in the phloem publication-title: The Plant Journal – volume: 25 start-page: 159 year: 2001 end-page: 167 article-title: Nicotianamine synthase gene expression differs in barley and rice under Fe‐deficient conditions publication-title: The Plant Journal – volume: 21 start-page: 2378 year: 2009 end-page: 2390 article-title: Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell‐free assay system publication-title: The Plant Cell – volume: 4 start-page: 2792 year: 2013 article-title: Iron‐binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation publication-title: Nature Communications – volume: 111 start-page: 4043 year: 2014 end-page: 4048 article-title: Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 116 start-page: 24933 year: 2019 end-page: 24942 article-title: The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 1305 year: 2005 end-page: 1316 article-title: Expression of iron‐acquisition‐related genes in iron‐deficient rice is co‐ordinately induced by partially conserved iron‐deficiency‐responsive elements publication-title: Journal of Experimental Botany – volume: 155 start-page: 821 year: 2011 end-page: 834 article-title: iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis publication-title: Plant Physiology – volume: 32 start-page: 508 year: 2020 end-page: 524 article-title: The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis publication-title: The Plant Cell – volume: 60 start-page: 1440 year: 2019 end-page: 1446 article-title: Understanding the complexity of iron sensing and signaling cascades in plants publication-title: Plant and Cell Physiology – volume: 7 start-page: 193 year: 2002 end-page: 195 article-title: Gateway vectors for Agrobacterium‐mediated plant transformation publication-title: Trends in Plant Science – volume: 286 start-page: 5446 year: 2011 end-page: 5454 article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants publication-title: Jouanal of Biological Chemistry – volume: 8 start-page: 1045 year: 2017 article-title: Arabidopsis glutaredoxin S17 contributes to vegetative growth, mineral accumulation, and redox balance during iron deficiency publication-title: Frontiers in Plant Science – volume: 22 start-page: 423 year: 1976 end-page: 433 article-title: Naturally occurring iron‐chelating compounds in oat‐ and rice‐root washing. I. Activity measurement and preliminary characterization publication-title: Soil Science and Plant Nutrition – volume: 14 start-page: 1699 year: 2021 end-page: 1713 article-title: The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice publication-title: Molecular Plant – volume: 133 start-page: 11 year: 2019a end-page: 20 article-title: Iron transport and its regulation in plants publication-title: Free Radical Biology and Medicine – volume: 4 start-page: 259 year: 2013 article-title: The iron‐sulfur cluster assembly machineries in plants: current knowledge and open questions publication-title: Frontiers in Plant Science – volume: 31 start-page: 377 year: 2014 end-page: 388 article-title: Transcriptional regulation of the biosynthesis of phytoalexin: a lesson from specialized metabolites in rice publication-title: Plant Biotechnology – volume: 3 start-page: 752 year: 2012 article-title: Rice APC/C controls tillering by mediating the degradation of MONOCULM 1 publication-title: Nature Communications – volume: 71 start-page: 1694 year: 2020 end-page: 1705 article-title: FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT‐dependent and‐independent gene signatures publication-title: Journal of Experimental Botany – volume: 224 start-page: 11 year: 2019 end-page: 18 article-title: Iron acquisition strategies in land plants: not so different after all publication-title: New Phytologist – volume: 10 start-page: 385 year: 2009 end-page: 397 article-title: The ubiquitin–26S proteasome system at the nexus of plant biology publication-title: Nature Reviews Molecular Cell Biology – volume: 39 start-page: D1141 year: 2011 end-page: D1148 article-title: RiceXPro: a platform for monitoring gene expression in rice grown under natural field conditions publication-title: Nucleic Acids Research – volume: 403 start-page: 435 year: 2010 end-page: 441 article-title: Engineered mutated glutaredoxins mimicking peculiar plant class III glutaredoxins bind iron–sulfur centers and possess reductase activity publication-title: Biochemical and Biophysical Research Communications – volume: 201 start-page: 781 year: 2014 end-page: 794 article-title: Spatial transcriptomes of iron‐deficient and cadmium‐stressed rice publication-title: New Phytologist – volume: 3 start-page: 1 year: 2017 end-page: 6 article-title: Shoot‐to‐root mobile polypeptides involved in systemic regulation of nitrogen acquisition publication-title: Nature Plants – volume: 165 start-page: 1280 year: 2016 end-page: 1292 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell – volume: 208 start-page: 73 year: 1986 end-page: 76 article-title: Structure of rubredoxin from the bacterium Desulfovibrio desulfuricans publication-title: FEBS Letters – volume: 45 start-page: 681 year: 1999 end-page: 691 article-title: Presence of nicotianamine synthase isozymes and their homologues in the root of graminaceous plants publication-title: Soil Science and Plant Nutrition – volume: 396 start-page: 495 year: 2015 end-page: 509 article-title: Plant‐specific CC‐type glutaredoxins: functions in developmental processes and stress responses publication-title: Biological Chemistry – volume: 7 start-page: 740 year: 2016b article-title: Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2. 1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana publication-title: Frontiers in Plant Science – volume: 45 start-page: 36 year: 2018 end-page: 49 article-title: The Arabidopsis bZIP transcription factor family—an update publication-title: Current Opinion in Plant Biology – volume: 62 start-page: 299 year: 2011 end-page: 334 article-title: The cullin‐RING ubiquitin‐protein ligases publication-title: Annual Review of Plant Biology – volume: 45 start-page: 335 year: 2006 end-page: 346 article-title: Rice plants take up iron as an Fe ‐phytosiderophore and as Fe publication-title: The Plant Journal – volume: 15 start-page: 461 year: 2014 article-title: Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and negative regulator of resistance (NRR) proteins publication-title: BMC Genomics – volume: 36 start-page: 366 year: 2003 end-page: 381 article-title: Three rice nicotianamine synthase genes, , , and are expressed in cells involved in long‐distance transport of iron and differentially regulated by iron publication-title: The Plant Journal – volume: 167 start-page: 273 year: 2015 end-page: 286 article-title: Iron‐binding E3 ligase mediates iron response in plants by targeting basic helix‐loop‐helix transcription factors publication-title: Plant Physiology – volume: 9 start-page: 876 year: 2017 end-page: 890 article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana publication-title: Metallomics – volume: 10 start-page: 98 year: 2019b article-title: Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants publication-title: Frontiers in Plant Science – volume: 18 start-page: 555 year: 2013 end-page: 565 article-title: Hormone defense networking in rice: tales from a different world publication-title: Trends in Plant Science – volume: 15 start-page: 138 year: 2022 end-page: 150 article-title: A reciprocal inhibitory module for Pi and iron signaling publication-title: Molecular Plant – volume: 242 start-page: 1195 year: 2015 end-page: 1206 article-title: Expression of a rice glutaredoxin in aleurone layers of developing and mature seeds: subcellular localization and possible functions in antioxidant defense publication-title: Planta – volume: 63 start-page: 131 year: 2012 end-page: 152 article-title: Iron uptake, translocation, and regulation in higher plants publication-title: Annual Review of Plant Biology – volume: 446 start-page: 333 year: 2012 end-page: 348 article-title: The biological roles of glutaredoxins publication-title: Biochemical Journal – volume: 7 year: 2012 article-title: Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days publication-title: PLoS One – volume: 60 start-page: 948 year: 2009 end-page: 961 article-title: The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes publication-title: The Plant Journal – volume: 41 start-page: D1206 year: 2013 end-page: D1213 article-title: RiceXPro version 3.0: expanding the informatics resource for rice transcriptome publication-title: Nucleic Acids Research – volume: 62 start-page: 668 year: 2020 end-page: 689 article-title: FER‐LIKE FE DEFICIENCY‐INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis publication-title: Journal of Integrative Plant Biology – volume: 47 start-page: D442 year: 2019 end-page: D450 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Research – volume: 4 start-page: 953 year: 2018 end-page: 963 article-title: IRON MAN is a ubiquitous family of peptides that control iron transport in plants publication-title: Nature Plants – volume: 104 start-page: 629 year: 2020 end-page: 645 article-title: Defects in the rice aconitase‐encoding gene alter iron homeostasis publication-title: Plant Molecular Biology – volume: 11 start-page: 1 year: 2020 end-page: 9 article-title: Shoot‐to‐root mobile CEPD‐like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis publication-title: Nature Communications – volume: 116 start-page: 725 year: 1998 end-page: 732 article-title: Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by Fe‐deficiency in barley roots publication-title: Plant Physiology – volume: 57 start-page: 2867 year: 2006 end-page: 2878 article-title: Isolation and characterization of IRO2, a novel iron‐regulated bHLH transcription factor in graminaceous plants publication-title: Jouanal of Experimental Botany – volume: 146 start-page: 333 year: 2008 end-page: 350 article-title: Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice publication-title: Plant Physiology – volume: 13 year: 2018 article-title: OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1 publication-title: PLoS One – volume: 106 start-page: 208 year: 2016a end-page: 217 article-title: Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast publication-title: Plant Physiology and Biochemistry – volume: 32 start-page: 4998 year: 2012 end-page: 5008 article-title: Iron‐induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron‐dependent gene suppression publication-title: Molecular and Cellular Biology – volume: 103 start-page: 1 year: 2009 end-page: 11 article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1‐like transporters publication-title: Annals of Botany – volume: 409 start-page: 346 year: 2001 end-page: 349 article-title: Maize encodes a membrane protein directly involved in Fe(III) uptake publication-title: Nature – volume: 11 start-page: 806 year: 2012 end-page: 819 article-title: The monothiol glutaredoxin Grx4 exerts an iron‐dependent inhibitory effect on Php4 function publication-title: Eukaryotic Cell – volume: 116 start-page: 17584 year: 2019a end-page: 17591 article-title: Arabidopsis BRUTUS‐LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 80 start-page: 175 year: 1986 end-page: 180 article-title: Evidence for a specific uptake system for iron phytosiderophore in roots of grasses publication-title: Plant Physiology – volume: 182 start-page: 1420 year: 2020 end-page: 1439 article-title: Putative cis‐regulatory elements predict iron deficiency responses in Arabidopsis roots publication-title: Plant Physiology – volume: 6 start-page: 22 year: 2013 article-title: Development of a novel prediction method of ‐elements to hypothesize collaborative functions of ‐element pairs in iron‐deficient rice publication-title: Rice – volume: 175 start-page: 543 year: 2017 end-page: 554 article-title: POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis publication-title: Plant Physiology – volume: 15 start-page: 1758455 year: 2020 article-title: Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress publication-title: Plant Signaling & Behavior – volume: 41 start-page: 2463 year: 2018 end-page: 2474 article-title: The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors publication-title: Plant, Cell and Environment – volume: 1823 start-page: 1491 year: 2012 end-page: 1508 article-title: The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism publication-title: Biochimica et Biophysica Acta – volume: 121 start-page: 947 year: 1999 end-page: 956 article-title: Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants publication-title: Plant Physiology – volume: 179 start-page: 88 year: 2019 end-page: 106 article-title: The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H ‐ATPase activity and iron homeostasis publication-title: Plant Physiology – volume: 51 start-page: 1179 year: 2000 end-page: 1188 article-title: Induced activity of adenine phosphoribosyltransferase (APRT) in Fe‐deficient barley roots: a possible role for phytosiderophore production publication-title: Journal of Experimental Botany – volume: 167 start-page: 1643 year: 2015 end-page: 1658 article-title: Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long‐day photoperiod publication-title: Plant Physiology – volume: 101 start-page: 471 year: 2019b end-page: 486 article-title: OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice publication-title: Plant Molecular Biology – volume: 43 start-page: 261 year: 2020 end-page: 274 article-title: POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis publication-title: Plant, Cell and Environment – volume: 17 start-page: 353 year: 2010 end-page: 367 article-title: Genome‐wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice publication-title: DNA Research – volume: 51 start-page: 366 year: 2007 end-page: 377 article-title: The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe‐deficient conditions publication-title: The Plant Journal – volume: 173 start-page: 19 year: 2015 end-page: 27 article-title: Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells publication-title: Journal of Plant Physiology – volume: 6 start-page: 934 year: 2015 article-title: Overexpression of the CC‐type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants publication-title: Frontiers in Plant Science – volume: 91 start-page: 533 year: 2016 end-page: 547 article-title: Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots publication-title: Plant Molecular Biology – ident: e_1_2_10_89_1 doi: 10.1104/pp.116.2.725 – ident: e_1_2_10_56_1 doi: 10.5511/plantbiotechnology.14.0730a – ident: e_1_2_10_27_1 doi: 10.1046/j.1365-313X.2003.01878.x – ident: e_1_2_10_69_1 doi: 10.1016/j.cell.2016.04.038 – ident: e_1_2_10_29_1 doi: 10.1111/j.1365-313X.2005.02624.x – ident: e_1_2_10_75_1 doi: 10.1104/pp.80.1.175 – ident: e_1_2_10_2_1 doi: 10.1111/ppl.12698 – ident: e_1_2_10_59_1 doi: 10.1007/s00425-015-2354-9 – ident: e_1_2_10_6_1 doi: 10.3389/fpls.2013.00259 – ident: e_1_2_10_38_1 doi: 10.1111/j.1365-313X.2009.04015.x – ident: e_1_2_10_73_1 doi: 10.3389/fpls.2019.00098 – ident: e_1_2_10_103_1 doi: 10.1111/pce.13655 – ident: e_1_2_10_77_1 doi: 10.1016/j.tibs.2009.08.005 – ident: e_1_2_10_80_1 doi: 10.1093/nar/gks1125 – ident: e_1_2_10_61_1 doi: 10.1104/pp.107.112821 – ident: e_1_2_10_60_1 doi: 10.1263/jbb.104.34 – ident: e_1_2_10_54_1 doi: 10.1038/ncomms1716 – ident: e_1_2_10_49_1 doi: 10.1111/j.1365-313X.2004.02146.x – ident: e_1_2_10_10_1 doi: 10.1016/j.pbi.2018.05.001 – ident: e_1_2_10_106_1 doi: 10.1186/1471-2229-10-166 – ident: e_1_2_10_91_1 doi: 10.1104/pp.121.3.947 – ident: e_1_2_10_15_1 doi: 10.1093/dnares/dsq023 – ident: e_1_2_10_62_1 doi: 10.1074/jbc.M110.180026 – ident: e_1_2_10_63_1 doi: 10.1093/jxb/erl054 – ident: e_1_2_10_17_1 doi: 10.1038/s41477-018-0266-y – ident: e_1_2_10_46_1 doi: 10.1073/pnas.0707010104 – ident: e_1_2_10_50_1 doi: 10.1104/pp.110.169508 – ident: e_1_2_10_83_1 doi: 10.1111/pce.13363 – ident: e_1_2_10_68_1 doi: 10.1074/jbc.M109.036871 – ident: e_1_2_10_90_1 doi: 10.1080/00380768.1976.10433004 – ident: e_1_2_10_92_1 doi: 10.1128/MCB.00726-12 – ident: e_1_2_10_102_1 doi: 10.3389/fpls.2017.01045 – ident: e_1_2_10_79_1 doi: 10.1093/nar/gkq1085 – ident: e_1_2_10_4_1 doi: 10.1186/1471-2164-15-461 – ident: e_1_2_10_25_1 doi: 10.1093/pcp/pcy145 – ident: e_1_2_10_34_1 doi: 10.1073/pnas.1916892116 – ident: e_1_2_10_78_1 doi: 10.1371/journal.pone.0040112 – ident: e_1_2_10_24_1 doi: 10.1039/C7MT00152E – ident: e_1_2_10_101_1 doi: 10.1016/j.molp.2021.06.027 – volume: 7 start-page: 740 year: 2016 ident: e_1_2_10_95_1 article-title: Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2. 1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana publication-title: Frontiers in Plant Science – ident: e_1_2_10_37_1 doi: 10.1186/s12284-014-0027-0 – ident: e_1_2_10_22_1 doi: 10.1080/00380768.1999.10415831 – ident: e_1_2_10_31_1 doi: 10.1186/1939-8433-6-22 – ident: e_1_2_10_47_1 doi: 10.1007/s11103-019-00917-8 – ident: e_1_2_10_21_1 doi: 10.1046/j.1365-313X.1994.6020271.x – ident: e_1_2_10_41_1 doi: 10.1038/ncomms3792 – ident: e_1_2_10_9_1 doi: 10.1016/j.tplants.2013.07.002 – ident: e_1_2_10_87_1 doi: 10.1093/jxb/eraa441 – ident: e_1_2_10_44_1 doi: 10.1016/j.plantsci.2014.04.002 – ident: e_1_2_10_58_1 doi: 10.1371/journal.pone.0206910 – ident: e_1_2_10_93_1 doi: 10.1128/EC.00060-12 – ident: e_1_2_10_105_1 doi: 10.1104/pp.16.01323 – ident: e_1_2_10_42_1 doi: 10.1007/s004250000453 – ident: e_1_2_10_5_1 doi: 10.1016/j.bbrc.2010.11.050 – ident: e_1_2_10_11_1 doi: 10.3389/fpls.2015.00934 – ident: e_1_2_10_3_1 doi: 10.1080/15592324.2020.1758455 – ident: e_1_2_10_66_1 doi: 10.1074/jbc.M708732200 – ident: e_1_2_10_99_1 doi: 10.1111/nph.16232 – ident: e_1_2_10_55_1 doi: 10.1016/j.jplph.2014.09.001 – ident: e_1_2_10_82_1 doi: 10.1093/jxb/eraa012 – ident: e_1_2_10_7_1 doi: 10.1093/aob/mcn207 – ident: e_1_2_10_51_1 doi: 10.1073/pnas.2109063118 – ident: e_1_2_10_74_1 doi: 10.1073/pnas.1907971116 – ident: e_1_2_10_97_1 doi: 10.1080/00380768.2020.1783966 – ident: e_1_2_10_64_1 doi: 10.1111/j.1365-313X.2007.03149.x – ident: e_1_2_10_76_1 doi: 10.1093/jxb/erl001 – ident: e_1_2_10_35_1 doi: 10.1104/pp.15.00049 – ident: e_1_2_10_67_1 doi: 10.1038/nplants.2017.29 – ident: e_1_2_10_13_1 doi: 10.1105/tpc.19.00541 – ident: e_1_2_10_100_1 doi: 10.1093/plcell/koab075 – ident: e_1_2_10_16_1 doi: 10.1094/MPMI-04-12-0078-IA – ident: e_1_2_10_65_1 doi: 10.1111/nph.12577 – ident: e_1_2_10_14_1 doi: 10.3389/fpls.2019.00006 – ident: e_1_2_10_33_1 doi: 10.1016/S1360-1385(02)02251-3 – ident: e_1_2_10_30_1 doi: 10.1093/jexbot/51.348.1179 – ident: e_1_2_10_88_1 doi: 10.1042/BJ20112131 – ident: e_1_2_10_104_1 doi: 10.1104/pp.17.00794 – ident: e_1_2_10_19_1 doi: 10.1016/j.molp.2021.09.011 – ident: e_1_2_10_26_1 doi: 10.1146/annurev-arplant-042809-112256 – ident: e_1_2_10_18_1 doi: 10.1111/nph.16005 – ident: e_1_2_10_8_1 doi: 10.1038/35053080 – ident: e_1_2_10_70_1 doi: 10.1038/s41467-020-14440-8 – ident: e_1_2_10_45_1 doi: 10.1016/j.freeradbiomed.2018.10.439 – ident: e_1_2_10_20_1 doi: 10.1515/hsz-2014-0300 – ident: e_1_2_10_53_1 doi: 10.1016/j.bbamcr.2012.05.009 – ident: e_1_2_10_98_1 doi: 10.1105/tpc.108.065433 – ident: e_1_2_10_39_1 doi: 10.1007/s11103-016-0486-3 – ident: e_1_2_10_94_1 doi: 10.1016/j.plaphy.2016.04.052 – ident: e_1_2_10_52_1 doi: 10.1111/jipb.12933 – ident: e_1_2_10_86_1 doi: 10.1016/0014-5793(86)81535-6 – ident: e_1_2_10_23_1 doi: 10.1111/j.1365-313X.2001.00951.x – ident: e_1_2_10_43_1 doi: 10.1146/annurev-arplant-042811-105522 – ident: e_1_2_10_40_1 doi: 10.1093/jxb/eraa546 – ident: e_1_2_10_71_1 doi: 10.1093/nar/gky1106 – ident: e_1_2_10_72_1 doi: 10.1073/pnas.1318869111 – ident: e_1_2_10_84_1 doi: 10.1104/pp.114.250837 – ident: e_1_2_10_12_1 doi: 10.1093/jxb/eraa556 – ident: e_1_2_10_57_1 doi: 10.1104/pp.102.019869 – ident: e_1_2_10_28_1 doi: 10.1111/j.1365-313X.2010.04158.x – ident: e_1_2_10_48_1 doi: 10.1093/jxb/eri131 – ident: e_1_2_10_32_1 doi: 10.1038/s41598-019-43600-0 – ident: e_1_2_10_36_1 doi: 10.1093/pcp/pcz038 – ident: e_1_2_10_81_1 doi: 10.1104/pp.19.00760 – ident: e_1_2_10_96_1 doi: 10.1038/nrm2688 – ident: e_1_2_10_85_1 doi: 10.1007/s11103-020-01065-0 – ident: e_1_2_10_107_1 doi: 10.1104/pp.18.00289 |
SSID | ssj0017364 |
Score | 2.4577756 |
Snippet | SUMMARY
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases... Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice ( Oryza sativa ) ubiquitin ligases... Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1... SUMMARYUnder low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1731 |
SubjectTerms | basic leucine zipper transcription factor Biosynthesis Degradation Downstream effects Gene expression Gene regulation Genes glutaredoxin Iron Iron deficiency iron deficiency response iron sensing Leucine leucine zipper Leucine zipper proteins Nutrient deficiency Oryza sativa phytoalexins Plant cells Proteasome 26S protein content Proteins protein‐level regulation proteome Proteomes Rice rice (Oryza sativa) Salicylic acid Transcription factors transcriptional regulation Translocation Ubiquitin ubiquitin ligase ubiquitin-protein ligase Utilization Yeast yeasts |
Title | The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15767 https://www.ncbi.nlm.nih.gov/pubmed/35411594 https://www.proquest.com/docview/2680523405 https://www.proquest.com/docview/2649591266 https://www.proquest.com/docview/2718253222 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7L4oMv3i-jq0TxwZcubZKmDT6puI4L6jLswrAIJckkS9mhHact6P4mf6TnpBdcb4hvgZyUJD0n50tyzhdCnmkV65hzFXFM8RFK-8j41ERJvtKJjY1zApOT33-Q8xNxuEyXO-TFmAvT80NMB25oGWG9RgPXpvnByNsNmDmgZcwkx1gtBESLiToqyXhPHQUIPQKvyQZWIYzimVpe9kW_AMzLeDU4nIPr5NPY1T7O5Hy_a82-vfiJxfE_x3KDXBuAKH3Za85NsuOqW-TKqxrA4tfb5BuoDwUPV1q6dh1evtOLcrNxW9qicxuXGto_10M_Nub03VHOqa5WFCAlPQOFxtD2-ktZNVD9drGUoTIUFbbr6cEdRVYjisl2FGxgPaSFUsxt24ZPDcH0tPbQeL44pZ0pP3dlW1Z0XZ6BE27ukJODN8ev59HwsENkYX-EpJS5NWluhbJxomOdWcu0Z5kzsUgM09LDsiJTL0XsuZGWc2SBy7wyhgnNVvwu2a3qyt0nVInc8NTwxMpYOM609dIqI1yWKK8TPyPPx19c2IH1HB_fWBfj7gfmvghzPyNPJ9FNT_XxO6G9UU-Kwdqbgkl8GIID9p2RJ1M12ClevujK1R3KwFZUJYCH_iIDQIGlePc1I_d6HZx6wlMB4F0JGFDQpD93sTg-OgyFB_8u-pBcZZjXEY6X9shuu-3cI0BbrXkczOo7NSUoCg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61Cvri_bJaNYoPvkyZSTKXgC8q1m1ta1m2sBTKkGSTMrjMrLszoP1N_kjPyVyw3hDfAjkZksw5OV8u5zuEvFAyVCHnMuAY4iOkcoF2sQ6ibK4iE2prBQYnHxwm42OxN4tnG-RVHwvT8kMMB25oGX69RgPHA-kfrLxegp0DXE4vkcuY0dtvqCYDeVSU8pY8CjB6AH6TdbxC-I5naHrRG_0CMS8iVu9ydm6Q076z7UuTT9tNrbfN-U88jv87mpvkeodF6etWeW6RDVveJlfeVIAXv94h30CDKDi5wtCFbfD-nZ4Xy6Vd0Rr9W7_a0DZjD_241ie7RxmnqpxTQJX0DHQaX7dXX4pyDdXvJ7PEV_qixHYtQ7ilSGxEMd6OghksushQiuFtK_-p7j09rRw0Hk9OaKOLz01RFyVdFGfgh9d3yfHOu-nbcdDldggMbJGQlzIzOs6MkCaMVKhSY5hyLLU6FJFmKnGwsiSxS0TouE4M50gElzqpNROKzfk9sllWpX1AqBSZ5rHmkUlCYTlTxiVGamHTSDoVuRF52f_j3HTE55h_Y5H3GyCY-9zP_Yg8H0SXLdvH74S2ekXJO4Nf5yzB3BAc4O-IPBuqwVTx_kWVtmpQBnajMgJI9BcZwAosxuuvEbnfKuHQEx4LwO9SwIC8Kv25i_n0aM8XHv676FNydTw92M_3dw8_PCLXGIZ5-NOmLbJZrxr7GMBXrZ94G_sOklYsJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYhLedOFAgZx4JIqsZ2HxQkoy7ZAWa1aaVVVimyvXUWskrCbSNDfxI9kJi9RXkLcLHkc2c6M57M985mQZ0r6yudcehxTfIRUztMu1F6QLFRgfG2twOTkD4fR5FgczMP5BnnR58K0_BDDgRtaRrNeo4GXC_eDkVclmDmg5fgSuSwiP0GV3psN3FFBzFvuKIDoHrhN1tEKYRjP0PSiM_oFYV4ErI3HGV8np31f20CTT7t1pXfN-U80jv85mBtkq0Oi9GWrOjfJhs1vkSuvCkCLX2-Tb6A_FFxcZujS1nj7Ts-zsrQrWqF369ca2r7XQz-u9cn-NOFU5QsKmJKegUZjbHvxJcvXUP12No-ayqYosV3LD24p0hpRzLajYATLLi-UYnLbqvlUF01PCweNJ7MTWuvsc51VWU6X2Rl44fUdcjx-c_R64nUvO3gGNkjISpkYHSZGSOMHylexMUw5Flvti0AzFTlYV6LQRcJ3XEeGc6SBi53UmgnFFvwu2cyL3G4TKkWieah5YCJfWM6UcZGRWtg4kE4FbkSe9784NR3tOb6-sUz77Q_MfdrM_Yg8HUTLluvjd0I7vZ6knbmvUxbhyxAcwO-IPBmqwVDx9kXltqhRBvaiMgBA9BcZQAosxMuvEbnX6uDQEx4KQO9SwIAaTfpzF9Oj6UFTuP_voo_J1eneOH2_f_juAbnGMMejOWraIZvVqrYPAXlV-lFjYd8BEgMq3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+basic+leucine+zipper+transcription+factor+OsbZIP83+and+the+glutaredoxins+OsGRX6+and+OsGRX9+facilitate+rice+iron+utilization+under+the+control+of+OsHRZ+ubiquitin+ligases&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Kobayashi%2C+Takanori&rft.au=Shinkawa%2C+Haruka&rft.au=Nagano%2C+Atsushi+J&rft.au=Nishizawa%2C+Naoko+K&rft.date=2022-06-01&rft.issn=0960-7412&rft.volume=110&rft.issue=6+p.1731-1750&rft.spage=1731&rft.epage=1750&rft_id=info:doi/10.1111%2Ftpj.15767&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |