On the pH-optimum of activity and stability of proteins

Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular prop...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 78; no. 12; pp. 2699 - 2706
Main Authors Talley, Kemper, Alexov, Emil
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH‐optimum of activity (the pH of maximal activity) is correlated with the pH‐optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH‐optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Proteins 2010. © 2010 Wiley‐Liss, Inc.
AbstractList Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, since only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.
Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH‐optimum of activity (the pH of maximal activity) is correlated with the pH‐optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH‐optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Proteins 2010. © 2010 Wiley‐Liss, Inc.
Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.
Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.
Author Talley, Kemper
Alexov, Emil
Author_xml – sequence: 1
  givenname: Kemper
  surname: Talley
  fullname: Talley, Kemper
  organization: Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634
– sequence: 2
  givenname: Emil
  surname: Alexov
  fullname: Alexov, Emil
  email: ealexov@clemson.edu
  organization: Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20589630$$D View this record in MEDLINE/PubMed
BookMark eNp9kdGL1DAQxoOceHunL_4B0jdB6DlpmqR5EeRw75TFPZYFH4ekTbxo29Qme7r_va17e6iITzPD_L7vg5kzctKH3hLynMIFBSheD2NIF0UhK_GILCgomQNl5QlZQFXJnPGKn5KzGL8AgFBMPCGnBfBKCQYLItd9lm5tNlznYUi-23VZcJmuk7_zaZ_pvsli0sa38zRt5izr-_iUPHa6jfbZfT0n2-W77eV1vlpfvb98u8rrspIit7Q0VnFgjS0bZ6TmpWq0gxpYRRvpjJJcGdMUTmkBjLqpN4ZNpXaMa3ZO3hxsh53pbFPbPo26xWH0nR73GLTHPze9v8XP4Q4LRSkvYDJ4eW8whm87GxN2Pta2bXVvwy6iLCvFaCnERL74Peoh43irCYADUI8hxtE6rH3SyYc52bdIAed34Hwi_PWOSfLqL8nR9Z8wPcDffWv3_yHxZrPeHjX5QeNjsj8eNHr8ikIyyfHTxyuEzVKtNjdL_MB-AtdYrIg
CitedBy_id crossref_primary_10_1016_j_jobcr_2021_10_001
crossref_primary_10_1155_2014_471836
crossref_primary_10_1016_j_jbiotec_2019_11_002
crossref_primary_10_1002_etc_3579
crossref_primary_10_1021_acs_jafc_4c06771
crossref_primary_10_3390_ijms25010049
crossref_primary_10_3390_ijms231810347
crossref_primary_10_1007_s00253_024_13110_9
crossref_primary_10_1038_s41598_023_41012_9
crossref_primary_10_7554_eLife_54707
crossref_primary_10_1007_s00249_021_01510_y
crossref_primary_10_1007_s10930_017_9711_4
crossref_primary_10_1128_spectrum_01782_21
crossref_primary_10_1021_acs_biochem_7b00690
crossref_primary_10_1093_plcell_koae245
crossref_primary_10_1142_S2737416523500230
crossref_primary_10_1002_pro_3834
crossref_primary_10_1142_S2737416520420089
crossref_primary_10_1021_acs_jctc_4c00370
crossref_primary_10_3390_ijms21124360
crossref_primary_10_3390_polym13213823
crossref_primary_10_1016_j_bios_2016_05_054
crossref_primary_10_1002_jcc_26006
crossref_primary_10_1093_database_baad016
crossref_primary_10_3389_fchem_2017_00115
crossref_primary_10_3389_fmolb_2021_777095
crossref_primary_10_3390_app122412673
crossref_primary_10_4014_jmb_2309_09023
crossref_primary_10_1080_08927022_2018_1535178
crossref_primary_10_1038_s41598_023_46720_w
crossref_primary_10_3390_ijms18102130
crossref_primary_10_1007_s12033_019_00187_1
crossref_primary_10_1016_j_tibtech_2024_03_003
crossref_primary_10_1002_prot_23097
crossref_primary_10_1016_j_nanoso_2019_100349
crossref_primary_10_1111_pim_12770
crossref_primary_10_1086_687288
crossref_primary_10_3390_molecules25173861
crossref_primary_10_1007_s12038_012_9201_y
crossref_primary_10_1039_c8pp00133b
crossref_primary_10_1002_ardp_202200558
crossref_primary_10_1007_s13399_022_02418_z
crossref_primary_10_1016_j_ijbiomac_2017_04_061
crossref_primary_10_1053_j_ackd_2022_04_008
crossref_primary_10_1016_j_ijbiomac_2020_09_236
crossref_primary_10_1021_acs_jpcb_1c02424
crossref_primary_10_1113_JP275425
crossref_primary_10_1063_5_0016437
crossref_primary_10_1007_s00439_023_02559_9
crossref_primary_10_1007_s12010_016_2152_2
crossref_primary_10_3390_ijms22158273
crossref_primary_10_1073_pnas_1809098115
crossref_primary_10_1021_acs_jctc_4c01319
crossref_primary_10_1002_marc_201800093
crossref_primary_10_1016_j_jmb_2020_09_005
crossref_primary_10_1038_s41422_020_00431_3
crossref_primary_10_3390_ijms20061264
crossref_primary_10_1038_s41467_022_35237_x
crossref_primary_10_1038_ncomms8970
crossref_primary_10_1113_JP283579
crossref_primary_10_3389_fmolb_2021_775736
crossref_primary_10_3389_frsfm_2023_1201561
crossref_primary_10_1016_j_foodchem_2022_134191
crossref_primary_10_1074_mcp_O114_041616
crossref_primary_10_1111_1541_4337_12951
crossref_primary_10_1016_j_apsoil_2021_104188
crossref_primary_10_4236_jbise_2019_127027
crossref_primary_10_3389_fimmu_2022_789366
crossref_primary_10_1016_j_str_2018_05_002
crossref_primary_10_1080_00194506_2020_1758224
crossref_primary_10_1016_j_imu_2021_100514
crossref_primary_10_1007_s00580_024_03608_z
crossref_primary_10_1016_j_actbio_2018_02_020
crossref_primary_10_1038_s41467_018_05261_x
crossref_primary_10_3389_fmolb_2018_00025
crossref_primary_10_3390_catal12090977
crossref_primary_10_1002_prot_22990
crossref_primary_10_1002_prot_25221
crossref_primary_10_1016_j_pep_2018_08_007
crossref_primary_10_1080_17425247_2019_1568408
crossref_primary_10_1016_j_checat_2021_03_001
crossref_primary_10_1021_acs_analchem_9b05712
crossref_primary_10_1039_C9NA00308H
crossref_primary_10_1038_s41564_019_0537_z
crossref_primary_10_1093_bioinformatics_bty1011
crossref_primary_10_1186_s12284_025_00775_7
crossref_primary_10_1021_jacs_4c16700
crossref_primary_10_1093_cz_zoae045
crossref_primary_10_1017_S0033583513000024
crossref_primary_10_1016_j_jbiotec_2019_08_007
crossref_primary_10_1142_S0219633619500202
crossref_primary_10_1016_j_bbapap_2013_06_001
crossref_primary_10_2174_0929866526666190617092944
crossref_primary_10_1142_S0219633619300015
crossref_primary_10_3390_molecules29071467
crossref_primary_10_3389_fpsyt_2020_532606
crossref_primary_10_1080_07391102_2016_1206837
crossref_primary_10_3390_toxics12050332
crossref_primary_10_1111_jipb_13180
crossref_primary_10_1016_j_colsurfb_2017_05_036
crossref_primary_10_1007_s00253_015_7254_1
crossref_primary_10_1186_s12900_014_0021_1
crossref_primary_10_1007_s00249_020_01432_1
crossref_primary_10_1088_1755_1315_1271_1_012062
crossref_primary_10_1080_10408347_2023_2221731
crossref_primary_10_1002_slct_202001822
crossref_primary_10_1038_s41467_021_27426_x
crossref_primary_10_1002_prot_22931
crossref_primary_10_1128_AEM_02105_20
crossref_primary_10_1186_s41231_021_00090_5
crossref_primary_10_1016_j_ica_2020_120125
crossref_primary_10_1016_j_bios_2019_111979
crossref_primary_10_1016_j_jmb_2013_07_014
crossref_primary_10_1093_jxb_ery406
crossref_primary_10_1016_j_ijbiomac_2018_07_156
crossref_primary_10_1021_acs_jpcb_4c03850
crossref_primary_10_1002_adhm_201900764
crossref_primary_10_3233_JAD_231142
crossref_primary_10_1021_acsami_8b09952
crossref_primary_10_1007_s11095_024_03801_3
crossref_primary_10_1111_jam_15692
crossref_primary_10_1109_LSENS_2019_2921146
crossref_primary_10_1016_j_jhazmat_2020_124340
crossref_primary_10_3390_biom10121597
crossref_primary_10_1016_j_snb_2016_06_098
crossref_primary_10_1080_07391102_2016_1149097
crossref_primary_10_3390_nano13152258
crossref_primary_10_1007_s00203_020_01816_z
crossref_primary_10_1016_j_mehy_2020_110335
crossref_primary_10_1016_j_biomaterials_2023_122191
crossref_primary_10_1021_acsomega_2c06199
crossref_primary_10_1186_s13568_016_0308_7
crossref_primary_10_1002_cctc_201900333
crossref_primary_10_1080_10942912_2016_1205086
crossref_primary_10_1007_s11356_020_11173_5
crossref_primary_10_1016_j_biosystems_2017_05_003
crossref_primary_10_1242_dmm_050074
crossref_primary_10_1016_j_scitotenv_2023_165304
crossref_primary_10_1007_s12010_023_04596_6
crossref_primary_10_3389_fpubh_2020_543322
crossref_primary_10_22207_JPAM_13_4_07
crossref_primary_10_1016_j_sajb_2023_04_040
crossref_primary_10_1007_s12010_015_1977_4
crossref_primary_10_1016_j_foodchem_2021_130454
crossref_primary_10_1080_07391102_2017_1420492
crossref_primary_10_1111_1744_7917_12503
crossref_primary_10_1002_pro_3406
crossref_primary_10_1016_j_jiec_2018_12_020
crossref_primary_10_1007_s12010_013_0103_8
crossref_primary_10_1080_07373937_2021_1903032
crossref_primary_10_1186_s12860_019_0221_4
crossref_primary_10_1080_08927022_2018_1513647
crossref_primary_10_1039_D0CC08135C
crossref_primary_10_3389_fpls_2019_01552
crossref_primary_10_1371_journal_pcbi_1003366
crossref_primary_10_1016_j_jconrel_2019_02_042
crossref_primary_10_1016_j_focha_2024_100638
crossref_primary_10_1080_17501911_2024_2351788
crossref_primary_10_4208_cicp_170911_131011s
crossref_primary_10_1016_j_ejpb_2021_01_008
crossref_primary_10_3934_mbe_2021120
crossref_primary_10_1016_j_ijbiomac_2019_09_121
crossref_primary_10_3389_fmmed_2021_777088
crossref_primary_10_3389_fgene_2022_874397
crossref_primary_10_1002_prot_26386
crossref_primary_10_1007_s10989_017_9669_2
crossref_primary_10_1152_physrev_00023_2012
crossref_primary_10_1021_acs_jcim_0c00725
crossref_primary_10_1371_journal_pone_0302840
crossref_primary_10_1021_acsomega_0c04817
crossref_primary_10_2174_0929866527666201103145246
crossref_primary_10_1142_S2737416520420041
crossref_primary_10_1021_acsami_1c10436
crossref_primary_10_1007_s11032_018_0842_x
crossref_primary_10_1038_s41598_021_85258_7
crossref_primary_10_3390_separations9050128
crossref_primary_10_1016_j_foodres_2018_03_006
crossref_primary_10_1134_S1021443717050132
crossref_primary_10_1039_C6AN02152B
crossref_primary_10_1093_nar_gkab157
crossref_primary_10_1142_S0219633620420043
crossref_primary_10_3389_fmolb_2021_773385
crossref_primary_10_1038_s41598_019_45460_0
crossref_primary_10_1016_j_xphs_2019_05_020
crossref_primary_10_1016_j_ijpharm_2023_122829
crossref_primary_10_1016_j_ijbiomac_2018_04_159
crossref_primary_10_3390_biomimetics5040066
crossref_primary_10_1016_j_dyepig_2021_109310
crossref_primary_10_1039_C7CP06614G
crossref_primary_10_1002_jcc_24053
crossref_primary_10_1039_D0NR09200B
crossref_primary_10_1016_j_ijbiomac_2017_07_173
crossref_primary_10_3390_jof10110797
crossref_primary_10_1016_j_yexcr_2019_111591
crossref_primary_10_1007_s00248_020_01613_7
crossref_primary_10_1021_acsomega_0c03983
crossref_primary_10_1021_acs_jpcb_2c01892
crossref_primary_10_1002_jlcr_3903
crossref_primary_10_1007_s42770_023_01131_x
crossref_primary_10_1016_j_ijbiomac_2023_127969
crossref_primary_10_1063_1_4943878
crossref_primary_10_1002_jps_24393
crossref_primary_10_1016_j_bpc_2021_106611
crossref_primary_10_1080_07391102_2019_1683074
crossref_primary_10_1149_2_0401909jes
crossref_primary_10_1021_acs_analchem_2c02686
crossref_primary_10_1097_ALN_0000000000004712
crossref_primary_10_3923_ajsr_2020_92_110
Cites_doi 10.1002/jps.21539
10.1002/prot.10406
10.1093/bioinformatics/btm115
10.1002/bip.20598
10.1016/S0021-9258(17)32673-X
10.1529/biophysj.106.088682
10.1046/j.1432-1033.2003.03917.x
10.1021/bi00070a025
10.1093/nar/gkm256
10.1016/j.jmb.2005.11.001
10.1016/j.febslet.2007.12.003
10.1021/bi00467a007
10.1016/S0006-3495(97)78236-5
10.1016/S0022-2836(02)00015-3
10.1016/j.jmb.2003.10.044
10.1002/prot.1035
10.1007/s11030-009-9182-4
10.1007/s00726-009-0331-y
10.1093/nar/gkl972
10.1002/pmic.200500534
10.1016/j.jmb.2003.09.001
10.1073/pnas.0805163105
10.1007/s00335-003-2296-6
10.1016/j.jsb.2007.02.007
10.1021/bi027202n
10.1021/bi061273v
10.1016/j.febslet.2004.09.065
10.1074/jbc.M412532200
10.1016/S0022-2836(95)80064-6
10.1021/jm049439i
10.1186/1752-0509-3-28
10.1016/j.jmb.2007.08.016
10.1016/S1570-9639(03)00407-2
10.1074/jbc.M708994200
10.1021/bi800533t
10.1074/jbc.M204161200
10.1006/jmbi.2000.3903
10.1016/S0021-9258(18)53888-6
10.1016/j.jinorgbio.2004.11.003
10.1006/jmbi.1996.0804
10.1021/jo0702903
10.1021/bi060194g
10.1186/1471-2105-9-173
10.1093/nar/gkn820
10.1080/15257770701490803
10.1186/jbiol199
10.1016/S0006-3495(03)70009-5
10.1006/jmbi.2000.3752
10.1093/nar/gkh441
10.1016/j.jmb.2004.10.023
10.3748/wjg.v10.i12.1769
10.1529/biophysj.106.086025
10.1046/j.1365-2443.2003.00676.x
10.1007/s00726-009-0238-7
10.1080/10837450802409412
10.1016/j.compbiolchem.2008.07.011
10.6026/97320630001285
10.1186/1741-7007-7-69
10.1016/j.jmb.2005.02.025
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/prot.22786
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 2706
ExternalDocumentID PMC2911520
20589630
10_1002_prot_22786
PROT22786
ark_67375_WNG_0RF9LRPF_J
Genre article
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM093937
– fundername: NLM NIH HHS
  grantid: R03 LM009748
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4876-e14be9503de4dfb7a549daf0c0381d7fb9759bbd2f9a6031fbbdbb3fbbcf35a3
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Thu Aug 21 14:20:03 EDT 2025
Thu Jul 10 17:56:34 EDT 2025
Mon Jul 21 05:16:14 EDT 2025
Tue Jul 01 00:44:59 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Jan 22 16:56:07 EST 2025
Wed Oct 30 09:50:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4876-e14be9503de4dfb7a549daf0c0381d7fb9759bbd2f9a6031fbbdbb3fbbcf35a3
Notes ArticleID:PROT22786
istex:BD6509C784C0B183AC82426852106B0B237CB0D7
ark:/67375/WNG-0RF9LRPF-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20589630
PQID 748931466
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2911520
proquest_miscellaneous_748931466
pubmed_primary_20589630
crossref_citationtrail_10_1002_prot_22786
crossref_primary_10_1002_prot_22786
wiley_primary_10_1002_prot_22786_PROT22786
istex_primary_ark_67375_WNG_0RF9LRPF_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Cedano J,Aloy P,Perez-Pons J,Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997; 266: 594-600.
Cai YD,Lu L,Chen L,He JF. Predicting subcellular location of proteins using integrated-algorithm method. Mol Divers 2009. Epub ahead of print PMID: 19662505.
Horiguchi M,Arita M,Kaempf-Rotzoll DE,Tsujimoto M,Inoue K,Arai H. pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes. Genes Cells 2003; 8: 789-800.
Luisi DL,Snow CD,Lin JJ,Hendsch ZS,Tidor B,Raleigh DP. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry 2003; 42: 7050-7060.
Kawai C,Prado FM,Nunes GL,Di Mascio P,Carmona-Ribeiro AM,Nantes IL. pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 2005; 280: 34709-34717.
Frenkel YV,Clark AD,Jr,Das K,Wang YH,Lewi PJ,Janssen PA,Arnold E. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 2005; 48: 1974-1983.
Chang A,Scheer M,Grote A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 2009; 37(Database issue): D588-D592.
Garcia-Moreno B. Adaptations of proteins to cellular and subcellular pH. J Biol 2009; 8: 98.
Khan A,Majid A,Choi TS. Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers. Amino Acids 2010; 38: 347-350.
Schreiber G,Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 1995; 248: 478-486.
Cheng G,An F,Zou MJ,Sun J,Hao XH,He YX. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 2004; 10: 1769-1774.
Taylor PD,Attwood TK,Flower DR. Combining algorithms to predict bacterial protein sub-cellular location: parallel versus concurrent implementations. Bioinformation 2006; 1: 285-289.
Seela F,Budow S. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif. Nucleosides Nucleotides Nucleic Acids 2007; 26: 755-759.
Patel MM,Shah TJ,Amin AF,Shah NN. Design, Development and Optimization of a Novel Time and pH-Dependent Colon Targeted Drug Delivery System. Pharm Dev Technol 2009; 14: 62-69.
Sato S,Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318: 571-582.
Schreiber G,Fersht AR. Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993; 32: 5145-5150.
Petkova AT,Buntkowsky G,Dyda F,Leapman RD,Yau WM,Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335: 247-260.
Nair R,Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005; 348: 85-100.
Qiu JD,Luo SH,Huang JH,Sun XY,Liang RP. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids 2010; 38: 1201-1208.
Wood DO,Lee JS. Investigation of pH-dependent DNA-metal ion interactions by surface plasmon resonance. J Inorg Biochem 2005; 99: 566-574.
Emanuelsson O,Nielsen H,Brunak S,Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300: 1005-1016.
Horng JC,Demarest SJ,Raleigh DP. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH. Proteins 2003; 52: 193-202.
Lindman S,Linse S,Mulder FA,Andre I. pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophys J 2007; 92: 257-266.
Srivastava J,Barreiro G,Groscurth S,Gingras AR,Goult BT,Critchley DR,Kelly MJ,Jacobson MP,Barber DL. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci USA 2008; 105: 14436-14441.
Skoulakis S,Goodfellow JM. The pH-dependent stability of wild-type and mutant transthyretin oligomers. Biophys J 2003; 84: 2795-2804.
Yoo SH. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 1994; 269: 12001-12006.
Chou KC. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002; 277: 45765-45769.
Mazzini A,Polverini E,Parisi M,Sorbi RT,Favilla R. Dissociation and unfolding of bovine odorant binding protein at acidic pH. JStruct Biol 2007; 159: 82-91.
Chan P,Warwicker J. Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol 2009; 7: 69.
Luisi DL,Raleigh DP. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. J Mol Biol 2000; 299: 1091-1100.
Stapley BJ,Kelley LA,Sternberg MJ. Predicting the sub-cellular location of proteins from text using support vector machines. Pac Symp Biocomput 2002: 374-385.
Perico N,Purtell J,Dillon TM,Ricci MS. Conformational implications of an inversed pH-dependent antibody aggregation. J Pharm Sci 2009; 98: 3031-3042.
Chen Y,Yu P,Luo J,Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003; 14: 859-865.
Alexov E. Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure. Eur J Biochem 2004; 271: 173-185.
Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43: 246-255.
Kall L,Krogh A,Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Web Server issue): W429-W432.
Kono K,Kimura S,Imanishi Y. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990; 29: 3631-3637.
Shin CJ,Wong S,Davis MJ,Ragan MA. Protein-protein interaction as a predictor of subcellular location. BMC Syst Biol 2009; 3: 28.
Grey MJ,Tang Y,Alexov E,McKnight CJ,Raleigh DP,Palmer AG,III. Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 2006; 355: 1078-1094.
Garcia-Mayoral MF,del Pozo AM,Campos-Olivas R,Gavilanes JG,Santoro J,Rico M,Laurents DV,Bruix M. pH-Dependent conformational stability of the ribotoxin alpha-sarcin and four active site charge substitution variants. Biochemistry 2006; 45: 13705-13718.
Pedersen S,Nesgaard L,Baptista RP,Melo EP,Kristensen SR,Otzen DE. pH-dependent aggregation of cutinase is efficiently suppressed by 1,8-ANS. Biopolymers 2006; 83: 619-629.
Allemand JF,Bensimon D,Jullien L,Bensimon A,Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73: 2064-2070.
Re F,Sesana S,Barbiroli A,Bonomi F,Cazzaniga E,Lonati E,Bulbarelli A,Masserini M. Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett 2008; 582: 215-220.
Nasibov E,Kandemir-Cavas C. Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm. Comput Biol Chem 2008; 32: 448-451.
Shatkay H,Hoglund A,Brady S,Blum T,Donnes P,Kohlbacher O. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 2007; 23: 1410-1417.
Srinivasan R,Jones EM,Liu K,Ghiso J,Marchant RE,Zagorski MG. pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 2003; 333: 1003-1023.
Olson LJ,Hindsgaul O,Dahms NM,Kim JJ. Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2008; 283: 10124-10134.
Horng JC,Cho JH,Raleigh DP. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J Mol Biol 2005; 345: 163-173.
Zhou M,Boekhorst J,Francke C,Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9: 173.
Kundrotas PJ,Alexov E. Electrostatic properties of protein-protein complexes. Biophys J 2006; 91: 1724-1736.
Brady S,Shatkay H. EpiLoc: a (working) text-based system for predicting protein subcellular location. Pac Symp Biocomput 2008: 604-615.
Muga A,Gonzalez-Manas JM,Lakey JH,Pattus F,Surewicz WK. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 1993; 268: 1553-1557.
Chan P,Lovric J,Warwicker J. Subcellular pH and predicted pH-dependent features of proteins. Proteomics 2006; 6: 3494-3501.
Chaves FA,Richards KA,Torelli A,Wedekind J,Sant AJ. Peptide-binding motifs for the I-Ad MHC class II molecule: alternate pH-dependent binding behavior. Biochemistry 2006; 45: 6426-6433.
Fuertes MA,Perez JM,Soto M,Menendez M,Alonso C. Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70. Biochim Biophys Acta 2004; 1699: 45-56.
Seela F,Chittepu P. Oligonucleotides containing 6-aza-2′-deoxyuridine: synthesis, nucleobase protection, pH-dependent duplex stability, and metal-DNA formation. J Org Chem 2007; 72: 4358-4366.
Smedley JG,III,Sharp JS,Kuhn JF,Tomer KB. Pro
2002; 277
2008; 9
2003; 14
2008; 105
2008; 32
2007; 72
2002; 318
2000; 299
2003; 52
2008; 582
2007; 35
2001; 43
2004; 32
2009; 14
2004; 577
2004; 335
2009; 98
1994; 269
2005; 345
1993; 32
2003; 8
2007; 373
1997; 266
2005; 348
1995; 248
2003; 84
2007; 23
2003; 42
2004; 1699
2007; 26
2006; 91
2010; 38
2009
2008
2007; 92
2006; 6
2006; 1
2002
1993; 268
2005; 48
2003; 333
2008; 283
2006; 355
2004; 10
2007; 159
2005; 280
1997; 73
2006; 83
2006; 45
2000; 300
1990; 29
2004; 271
2008; 47
2009; 8
2009; 7
2009; 3
2005; 99
2009; 37
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
Stapley BJ (e_1_2_6_50_2) 2002
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
Brady S (e_1_2_6_49_2) 2008
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_42_2
e_1_2_6_40_2
Fuertes MA (e_1_2_6_9_2) 2004; 1699
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Cai YD,Lu L,Chen L,He JF. Predicting subcellular location of proteins using integrated-algorithm method. Mol Divers 2009. Epub ahead of print PMID: 19662505.
– reference: Schreiber G,Fersht AR. Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993; 32: 5145-5150.
– reference: Pedersen S,Nesgaard L,Baptista RP,Melo EP,Kristensen SR,Otzen DE. pH-dependent aggregation of cutinase is efficiently suppressed by 1,8-ANS. Biopolymers 2006; 83: 619-629.
– reference: Horng JC,Demarest SJ,Raleigh DP. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH. Proteins 2003; 52: 193-202.
– reference: Kono K,Kimura S,Imanishi Y. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990; 29: 3631-3637.
– reference: Srivastava J,Barreiro G,Groscurth S,Gingras AR,Goult BT,Critchley DR,Kelly MJ,Jacobson MP,Barber DL. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci USA 2008; 105: 14436-14441.
– reference: Frenkel YV,Clark AD,Jr,Das K,Wang YH,Lewi PJ,Janssen PA,Arnold E. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 2005; 48: 1974-1983.
– reference: Smedley JG,III,Sharp JS,Kuhn JF,Tomer KB. Probing the pH-dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting. Biochemistry 2008; 47: 10694-10704.
– reference: Barthelmes J,Ebeling C,Chang A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 2007; 35(Database issue): D511-D514.
– reference: Allemand JF,Bensimon D,Jullien L,Bensimon A,Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73: 2064-2070.
– reference: Nasibov E,Kandemir-Cavas C. Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm. Comput Biol Chem 2008; 32: 448-451.
– reference: Garcia-Mayoral MF,del Pozo AM,Campos-Olivas R,Gavilanes JG,Santoro J,Rico M,Laurents DV,Bruix M. pH-Dependent conformational stability of the ribotoxin alpha-sarcin and four active site charge substitution variants. Biochemistry 2006; 45: 13705-13718.
– reference: Luisi DL,Snow CD,Lin JJ,Hendsch ZS,Tidor B,Raleigh DP. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry 2003; 42: 7050-7060.
– reference: Sato S,Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318: 571-582.
– reference: Olson LJ,Hindsgaul O,Dahms NM,Kim JJ. Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2008; 283: 10124-10134.
– reference: Mazzini A,Polverini E,Parisi M,Sorbi RT,Favilla R. Dissociation and unfolding of bovine odorant binding protein at acidic pH. JStruct Biol 2007; 159: 82-91.
– reference: Nair R,Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005; 348: 85-100.
– reference: Stapley BJ,Kelley LA,Sternberg MJ. Predicting the sub-cellular location of proteins from text using support vector machines. Pac Symp Biocomput 2002: 374-385.
– reference: Qiu JD,Luo SH,Huang JH,Sun XY,Liang RP. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids 2010; 38: 1201-1208.
– reference: Fuertes MA,Perez JM,Soto M,Menendez M,Alonso C. Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70. Biochim Biophys Acta 2004; 1699: 45-56.
– reference: Brady S,Shatkay H. EpiLoc: a (working) text-based system for predicting protein subcellular location. Pac Symp Biocomput 2008: 604-615.
– reference: Seela F,Chittepu P. Oligonucleotides containing 6-aza-2′-deoxyuridine: synthesis, nucleobase protection, pH-dependent duplex stability, and metal-DNA formation. J Org Chem 2007; 72: 4358-4366.
– reference: Alexov E. Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure. Eur J Biochem 2004; 271: 173-185.
– reference: Kawai C,Prado FM,Nunes GL,Di Mascio P,Carmona-Ribeiro AM,Nantes IL. pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 2005; 280: 34709-34717.
– reference: Grey MJ,Tang Y,Alexov E,McKnight CJ,Raleigh DP,Palmer AG,III. Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 2006; 355: 1078-1094.
– reference: Khan A,Majid A,Choi TS. Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers. Amino Acids 2010; 38: 347-350.
– reference: Skoulakis S,Goodfellow JM. The pH-dependent stability of wild-type and mutant transthyretin oligomers. Biophys J 2003; 84: 2795-2804.
– reference: Perico N,Purtell J,Dillon TM,Ricci MS. Conformational implications of an inversed pH-dependent antibody aggregation. J Pharm Sci 2009; 98: 3031-3042.
– reference: Seela F,Budow S. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif. Nucleosides Nucleotides Nucleic Acids 2007; 26: 755-759.
– reference: Chan P,Warwicker J. Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol 2009; 7: 69.
– reference: Horiguchi M,Arita M,Kaempf-Rotzoll DE,Tsujimoto M,Inoue K,Arai H. pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes. Genes Cells 2003; 8: 789-800.
– reference: Cedano J,Aloy P,Perez-Pons J,Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997; 266: 594-600.
– reference: Schreiber G,Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 1995; 248: 478-486.
– reference: Patel MM,Shah TJ,Amin AF,Shah NN. Design, Development and Optimization of a Novel Time and pH-Dependent Colon Targeted Drug Delivery System. Pharm Dev Technol 2009; 14: 62-69.
– reference: Garcia-Moreno B. Adaptations of proteins to cellular and subcellular pH. J Biol 2009; 8: 98.
– reference: Imamoto Y,Harigai M,Kataoka M. Direct observation of the pH-dependent equilibrium between L-like and M intermediates of photoactive yellow protein. FEBS Lett 2004; 577: 75-80.
– reference: Yoo SH. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 1994; 269: 12001-12006.
– reference: Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43: 246-255.
– reference: Chang A,Scheer M,Grote A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 2009; 37(Database issue): D588-D592.
– reference: Kundrotas PJ,Alexov E. Electrostatic properties of protein-protein complexes. Biophys J 2006; 91: 1724-1736.
– reference: Petkova AT,Buntkowsky G,Dyda F,Leapman RD,Yau WM,Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335: 247-260.
– reference: Wood DO,Lee JS. Investigation of pH-dependent DNA-metal ion interactions by surface plasmon resonance. J Inorg Biochem 2005; 99: 566-574.
– reference: Nair R,Rost B. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets. Nucleic Acids Res 2004; 32(Web Server issue): W517-W521.
– reference: Chou KC. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002; 277: 45765-45769.
– reference: Kall L,Krogh A,Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Web Server issue): W429-W432.
– reference: Lindman S,Linse S,Mulder FA,Andre I. pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophys J 2007; 92: 257-266.
– reference: Luisi DL,Raleigh DP. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. J Mol Biol 2000; 299: 1091-1100.
– reference: Chen Y,Yu P,Luo J,Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003; 14: 859-865.
– reference: Zhou M,Boekhorst J,Francke C,Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9: 173.
– reference: Hom RA,Vora M,Regner M,Subach OM,Cho W,Verkhusha VV,Stahelin RV,Kutateladze TG. pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers. J Mol Biol 2007; 373: 412-423.
– reference: Re F,Sesana S,Barbiroli A,Bonomi F,Cazzaniga E,Lonati E,Bulbarelli A,Masserini M. Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett 2008; 582: 215-220.
– reference: Muga A,Gonzalez-Manas JM,Lakey JH,Pattus F,Surewicz WK. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 1993; 268: 1553-1557.
– reference: Emanuelsson O,Nielsen H,Brunak S,Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300: 1005-1016.
– reference: Srinivasan R,Jones EM,Liu K,Ghiso J,Marchant RE,Zagorski MG. pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 2003; 333: 1003-1023.
– reference: Horng JC,Cho JH,Raleigh DP. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J Mol Biol 2005; 345: 163-173.
– reference: Chaves FA,Richards KA,Torelli A,Wedekind J,Sant AJ. Peptide-binding motifs for the I-Ad MHC class II molecule: alternate pH-dependent binding behavior. Biochemistry 2006; 45: 6426-6433.
– reference: Cheng G,An F,Zou MJ,Sun J,Hao XH,He YX. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 2004; 10: 1769-1774.
– reference: Shin CJ,Wong S,Davis MJ,Ragan MA. Protein-protein interaction as a predictor of subcellular location. BMC Syst Biol 2009; 3: 28.
– reference: Taylor PD,Attwood TK,Flower DR. Combining algorithms to predict bacterial protein sub-cellular location: parallel versus concurrent implementations. Bioinformation 2006; 1: 285-289.
– reference: Shatkay H,Hoglund A,Brady S,Blum T,Donnes P,Kohlbacher O. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 2007; 23: 1410-1417.
– reference: Chan P,Lovric J,Warwicker J. Subcellular pH and predicted pH-dependent features of proteins. Proteomics 2006; 6: 3494-3501.
– volume: 300
  start-page: 1005
  year: 2000
  end-page: 1016
  article-title: Predicting subcellular localization of proteins based on their N‐terminal amino acid sequence
  publication-title: J Mol Biol
– volume: 92
  start-page: 257
  year: 2007
  end-page: 266
  article-title: pK(a) values for side‐chain carboxyl groups of a PGB1 variant explain salt and pH‐dependent stability
  publication-title: Biophys J
– volume: 47
  start-page: 10694
  year: 2008
  end-page: 10704
  article-title: Probing the pH‐dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting
  publication-title: Biochemistry
– volume: 1699
  start-page: 45
  year: 2004
  end-page: 56
  article-title: Thermodynamic stability of the C‐terminal domain of the human inducible heat shock protein 70
  publication-title: Biochim Biophys Acta
– volume: 8
  start-page: 98
  year: 2009
  article-title: Adaptations of proteins to cellular and subcellular pH
  publication-title: J Biol
– volume: 99
  start-page: 566
  year: 2005
  end-page: 574
  article-title: Investigation of pH‐dependent DNA‐metal ion interactions by surface plasmon resonance
  publication-title: J Inorg Biochem
– volume: 26
  start-page: 755
  year: 2007
  end-page: 759
  article-title: pH‐dependent assembly of DNA‐gold nanoparticles based on the i‐motif
  publication-title: Nucleosides Nucleotides Nucleic Acids
– volume: 98
  start-page: 3031
  year: 2009
  end-page: 3042
  article-title: Conformational implications of an inversed pH‐dependent antibody aggregation
  publication-title: J Pharm Sci
– volume: 271
  start-page: 173
  year: 2004
  end-page: 185
  article-title: Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure
  publication-title: Eur J Biochem
– volume: 42
  start-page: 7050
  year: 2003
  end-page: 7060
  article-title: Surface salt bridges, double‐mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N‐terminus of the N‐terminal domain of the ribosomal protein l9
  publication-title: Biochemistry
– volume: 29
  start-page: 3631
  year: 1990
  end-page: 3637
  article-title: pH‐dependent interaction of amphiphilic polypeptide poly(Lys‐Aib‐Leu‐Aib) with lipid bilayer membrane
  publication-title: Biochemistry
– volume: 3
  start-page: 28
  year: 2009
  article-title: Protein‐protein interaction as a predictor of subcellular location
  publication-title: BMC Syst Biol
– volume: 9
  start-page: 173
  year: 2008
  article-title: LocateP: genome‐scale subcellular‐location predictor for bacterial proteins
  publication-title: BMC Bioinformatics
– volume: 35
  start-page: D511
  issue: Database issue
  year: 2007
  end-page: D514
  article-title: BRENDA, AMENDA and FRENDA: the enzyme information system in 2007
  publication-title: Nucleic Acids Res
– volume: 73
  start-page: 2064
  year: 1997
  end-page: 2070
  article-title: pH‐dependent specific binding and combing of DNA
  publication-title: Biophys J
– year: 2009
  article-title: Predicting subcellular location of proteins using integrated‐algorithm method
  publication-title: Mol Divers
– volume: 283
  start-page: 10124
  year: 2008
  end-page: 10134
  article-title: Structural insights into the mechanism of pH‐dependent ligand binding and release by the cation‐dependent mannose 6‐phosphate receptor
  publication-title: J Biol Chem
– volume: 266
  start-page: 594
  year: 1997
  end-page: 600
  article-title: Relation between amino acid composition and cellular location of proteins
  publication-title: J Mol Biol
– volume: 32
  start-page: W517
  issue: Web Server issue
  year: 2004
  end-page: W521
  article-title: LOCnet and LOCtarget: sub‐cellular localization for structural genomics targets
  publication-title: Nucleic Acids Res
– volume: 355
  start-page: 1078
  year: 2006
  end-page: 1094
  article-title: Characterizing a partially folded intermediate of the villin headpiece domain under non‐denaturing conditions: contribution of His41 to the pH‐dependent stability of the N‐terminal subdomain
  publication-title: J Mol Biol
– volume: 333
  start-page: 1003
  year: 2003
  end-page: 1023
  article-title: pH‐dependent amyloid and protofibril formation by the ABri peptide of familial British dementia
  publication-title: J Mol Biol
– volume: 7
  start-page: 69
  year: 2009
  article-title: Evidence for the adaptation of protein pH‐dependence to subcellular pH
  publication-title: BMC Biol
– volume: 6
  start-page: 3494
  year: 2006
  end-page: 3501
  article-title: Subcellular pH and predicted pH‐dependent features of proteins
  publication-title: Proteomics
– volume: 582
  start-page: 215
  year: 2008
  end-page: 220
  article-title: Prion protein structure is affected by pH‐dependent interaction with membranes: a study in a model system
  publication-title: FEBS Lett
– volume: 48
  start-page: 1974
  year: 2005
  end-page: 1983
  article-title: Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability
  publication-title: J Med Chem
– volume: 72
  start-page: 4358
  year: 2007
  end-page: 4366
  article-title: Oligonucleotides containing 6‐aza‐2′‐deoxyuridine: synthesis, nucleobase protection, pH‐dependent duplex stability, and metal‐DNA formation
  publication-title: J Org Chem
– volume: 373
  start-page: 412
  year: 2007
  end-page: 423
  article-title: pH‐dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2‐containing bilayers
  publication-title: J Mol Biol
– volume: 35
  start-page: W429
  issue: Web Server issue
  year: 2007
  end-page: W432
  article-title: Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 6426
  year: 2006
  end-page: 6433
  article-title: Peptide‐binding motifs for the I‐Ad MHC class II molecule: alternate pH‐dependent binding behavior
  publication-title: Biochemistry
– volume: 37
  start-page: D588
  issue: Database issue
  year: 2009
  end-page: D592
  article-title: BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: 246
  year: 2001
  end-page: 255
  article-title: Prediction of protein cellular attributes using pseudo‐amino acid composition
  publication-title: Proteins
– volume: 299
  start-page: 1091
  year: 2000
  end-page: 1100
  article-title: pH‐dependent interactions and the stability and folding kinetics of the N‐terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding
  publication-title: J Mol Biol
– volume: 14
  start-page: 62
  year: 2009
  end-page: 69
  article-title: Design, Development and Optimization of a Novel Time and pH‐Dependent Colon Targeted Drug Delivery System
  publication-title: Pharm Dev Technol
– volume: 268
  start-page: 1553
  year: 1993
  end-page: 1557
  article-title: pH‐dependent stability and membrane interaction of the pore‐forming domain of colicin A
  publication-title: J Biol Chem
– volume: 8
  start-page: 789
  year: 2003
  end-page: 800
  article-title: pH‐dependent translocation of alpha‐tocopherol transfer protein (alpha‐TTP) between hepatic cytosol and late endosomes
  publication-title: Genes Cells
– start-page: 374
  year: 2002
  end-page: 385
  article-title: Predicting the sub‐cellular location of proteins from text using support vector machines
  publication-title: Pac Symp Biocomput
– volume: 159
  start-page: 82
  year: 2007
  end-page: 91
  article-title: Dissociation and unfolding of bovine odorant binding protein at acidic pH
  publication-title: JStruct Biol
– volume: 84
  start-page: 2795
  year: 2003
  end-page: 2804
  article-title: The pH‐dependent stability of wild‐type and mutant transthyretin oligomers
  publication-title: Biophys J
– volume: 1
  start-page: 285
  year: 2006
  end-page: 289
  article-title: Combining algorithms to predict bacterial protein sub‐cellular location: parallel versus concurrent implementations
  publication-title: Bioinformation
– volume: 52
  start-page: 193
  year: 2003
  end-page: 202
  article-title: pH‐dependent stability of the human alpha‐lactalbumin molten globule state: contrasting roles of the 6 ‐ 120 disulfide and the beta‐subdomain at low and neutral pH
  publication-title: Proteins
– volume: 14
  start-page: 859
  year: 2003
  end-page: 865
  article-title: Secreted protein prediction system combining CJ‐SPHMM, TMHMM, and PSORT
  publication-title: Mamm Genome
– volume: 23
  start-page: 1410
  year: 2007
  end-page: 1417
  article-title: SherLoc: high‐accuracy prediction of protein subcellular localization by integrating text and protein sequence data
  publication-title: Bioinformatics
– volume: 269
  start-page: 12001
  year: 1994
  end-page: 12006
  article-title: pH‐dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260‐kDa protein reactive to inositol 1,4,5‐triphosphate receptor antibody
  publication-title: J Biol Chem
– volume: 38
  start-page: 1201
  year: 2010
  end-page: 1208
  article-title: Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine
  publication-title: Amino Acids
– volume: 318
  start-page: 571
  year: 2002
  end-page: 582
  article-title: pH‐dependent stability and folding kinetics of a protein with an unusual alpha‐beta topology: the C‐terminal domain of the ribosomal protein L9
  publication-title: J Mol Biol
– volume: 248
  start-page: 478
  year: 1995
  end-page: 486
  article-title: Energetics of protein‐protein interactions: analysis of the barnase‐barstar interface by single mutations and double mutant cycles
  publication-title: J Mol Biol
– start-page: 604
  year: 2008
  end-page: 615
  article-title: EpiLoc: a (working) text‐based system for predicting protein subcellular location
  publication-title: Pac Symp Biocomput
– volume: 105
  start-page: 14436
  year: 2008
  end-page: 14441
  article-title: Structural model and functional significance of pH‐dependent talin‐actin binding for focal adhesion remodeling
  publication-title: Proc Natl Acad Sci USA
– volume: 83
  start-page: 619
  year: 2006
  end-page: 629
  article-title: pH‐dependent aggregation of cutinase is efficiently suppressed by 1,8‐ANS
  publication-title: Biopolymers
– volume: 45
  start-page: 13705
  year: 2006
  end-page: 13718
  article-title: pH‐Dependent conformational stability of the ribotoxin alpha‐sarcin and four active site charge substitution variants
  publication-title: Biochemistry
– volume: 10
  start-page: 1769
  year: 2004
  end-page: 1774
  article-title: Time‐ and pH‐dependent colon‐specific drug delivery for orally administered diclofenac sodium and 5‐aminosalicylic acid
  publication-title: World J Gastroenterol
– volume: 577
  start-page: 75
  year: 2004
  end-page: 80
  article-title: Direct observation of the pH‐dependent equilibrium between L‐like and M intermediates of photoactive yellow protein
  publication-title: FEBS Lett
– volume: 280
  start-page: 34709
  year: 2005
  end-page: 34717
  article-title: pH‐Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids
  publication-title: J Biol Chem
– volume: 38
  start-page: 347
  year: 2010
  end-page: 350
  article-title: Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers
  publication-title: Amino Acids
– volume: 277
  start-page: 45765
  year: 2002
  end-page: 45769
  article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location
  publication-title: J Biol Chem
– volume: 335
  start-page: 247
  year: 2004
  end-page: 260
  article-title: Solid state NMR reveals a pH‐dependent antiparallel beta‐sheet registry in fibrils formed by a beta‐amyloid peptide
  publication-title: J Mol Biol
– volume: 348
  start-page: 85
  year: 2005
  end-page: 100
  article-title: Mimicking cellular sorting improves prediction of subcellular localization
  publication-title: J Mol Biol
– volume: 345
  start-page: 163
  year: 2005
  end-page: 173
  article-title: Analysis of the pH‐dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding
  publication-title: J Mol Biol
– volume: 32
  start-page: 448
  year: 2008
  end-page: 451
  article-title: Protein subcellular location prediction using optimally weighted fuzzy k‐NN algorithm
  publication-title: Comput Biol Chem
– volume: 32
  start-page: 5145
  year: 1993
  end-page: 5150
  article-title: Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering
  publication-title: Biochemistry
– volume: 91
  start-page: 1724
  year: 2006
  end-page: 1736
  article-title: Electrostatic properties of protein‐protein complexes
  publication-title: Biophys J
– ident: e_1_2_6_17_2
  doi: 10.1002/jps.21539
– ident: e_1_2_6_13_2
  doi: 10.1002/prot.10406
– ident: e_1_2_6_51_2
  doi: 10.1093/bioinformatics/btm115
– ident: e_1_2_6_18_2
  doi: 10.1002/bip.20598
– ident: e_1_2_6_28_2
  doi: 10.1016/S0021-9258(17)32673-X
– ident: e_1_2_6_11_2
  doi: 10.1529/biophysj.106.088682
– ident: e_1_2_6_62_2
  doi: 10.1046/j.1432-1033.2003.03917.x
– ident: e_1_2_6_21_2
  doi: 10.1021/bi00070a025
– ident: e_1_2_6_56_2
  doi: 10.1093/nar/gkm256
– ident: e_1_2_6_6_2
  doi: 10.1016/j.jmb.2005.11.001
– ident: e_1_2_6_26_2
  doi: 10.1016/j.febslet.2007.12.003
– ident: e_1_2_6_30_2
  doi: 10.1021/bi00467a007
– ident: e_1_2_6_34_2
  doi: 10.1016/S0006-3495(97)78236-5
– ident: e_1_2_6_14_2
  doi: 10.1016/S0022-2836(02)00015-3
– ident: e_1_2_6_19_2
  doi: 10.1016/j.jmb.2003.10.044
– ident: e_1_2_6_45_2
  doi: 10.1002/prot.1035
– ident: e_1_2_6_53_2
  doi: 10.1007/s11030-009-9182-4
– ident: e_1_2_6_54_2
  doi: 10.1007/s00726-009-0331-y
– ident: e_1_2_6_61_2
  doi: 10.1093/nar/gkl972
– ident: e_1_2_6_39_2
  doi: 10.1002/pmic.200500534
– ident: e_1_2_6_20_2
  doi: 10.1016/j.jmb.2003.09.001
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.0805163105
– ident: e_1_2_6_57_2
  doi: 10.1007/s00335-003-2296-6
– ident: e_1_2_6_8_2
  doi: 10.1016/j.jsb.2007.02.007
– ident: e_1_2_6_7_2
  doi: 10.1021/bi027202n
– ident: e_1_2_6_10_2
  doi: 10.1021/bi061273v
– ident: e_1_2_6_5_2
  doi: 10.1016/j.febslet.2004.09.065
– ident: e_1_2_6_27_2
  doi: 10.1074/jbc.M412532200
– ident: e_1_2_6_23_2
  doi: 10.1016/S0022-2836(95)80064-6
– ident: e_1_2_6_37_2
  doi: 10.1021/jm049439i
– start-page: 604
  year: 2008
  ident: e_1_2_6_49_2
  article-title: EpiLoc: a (working) text‐based system for predicting protein subcellular location
  publication-title: Pac Symp Biocomput
– ident: e_1_2_6_41_2
  doi: 10.1186/1752-0509-3-28
– ident: e_1_2_6_22_2
  doi: 10.1016/j.jmb.2007.08.016
– volume: 1699
  start-page: 45
  year: 2004
  ident: e_1_2_6_9_2
  article-title: Thermodynamic stability of the C‐terminal domain of the human inducible heat shock protein 70
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S1570-9639(03)00407-2
– ident: e_1_2_6_24_2
  doi: 10.1074/jbc.M708994200
– ident: e_1_2_6_4_2
  doi: 10.1021/bi800533t
– ident: e_1_2_6_46_2
  doi: 10.1074/jbc.M204161200
– ident: e_1_2_6_44_2
  doi: 10.1006/jmbi.2000.3903
– ident: e_1_2_6_29_2
  doi: 10.1016/S0021-9258(18)53888-6
– ident: e_1_2_6_32_2
  doi: 10.1016/j.jinorgbio.2004.11.003
– ident: e_1_2_6_43_2
  doi: 10.1006/jmbi.1996.0804
– ident: e_1_2_6_33_2
  doi: 10.1021/jo0702903
– ident: e_1_2_6_25_2
  doi: 10.1021/bi060194g
– start-page: 374
  year: 2002
  ident: e_1_2_6_50_2
  article-title: Predicting the sub‐cellular location of proteins from text using support vector machines
  publication-title: Pac Symp Biocomput
– ident: e_1_2_6_58_2
  doi: 10.1186/1471-2105-9-173
– ident: e_1_2_6_60_2
  doi: 10.1093/nar/gkn820
– ident: e_1_2_6_31_2
  doi: 10.1080/15257770701490803
– ident: e_1_2_6_38_2
  doi: 10.1186/jbiol199
– ident: e_1_2_6_16_2
  doi: 10.1016/S0006-3495(03)70009-5
– ident: e_1_2_6_15_2
  doi: 10.1006/jmbi.2000.3752
– ident: e_1_2_6_47_2
  doi: 10.1093/nar/gkh441
– ident: e_1_2_6_12_2
  doi: 10.1016/j.jmb.2004.10.023
– ident: e_1_2_6_35_2
  doi: 10.3748/wjg.v10.i12.1769
– ident: e_1_2_6_40_2
  doi: 10.1529/biophysj.106.086025
– ident: e_1_2_6_2_2
  doi: 10.1046/j.1365-2443.2003.00676.x
– ident: e_1_2_6_59_2
  doi: 10.1007/s00726-009-0238-7
– ident: e_1_2_6_36_2
  doi: 10.1080/10837450802409412
– ident: e_1_2_6_55_2
  doi: 10.1016/j.compbiolchem.2008.07.011
– ident: e_1_2_6_52_2
  doi: 10.6026/97320630001285
– ident: e_1_2_6_42_2
  doi: 10.1186/1741-7007-7-69
– ident: e_1_2_6_48_2
  doi: 10.1016/j.jmb.2005.02.025
SSID ssj0006936
Score 2.450146
Snippet Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2699
SubjectTerms activity
Algorithms
BRENDA database
Databases, Factual
Hydrogen-Ion Concentration
pH-dependent effects
pH-optimum
Protein Stability
Proteins - chemistry
stability
subcellular compartments
Title On the pH-optimum of activity and stability of proteins
URI https://api.istex.fr/ark:/67375/WNG-0RF9LRPF-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.22786
https://www.ncbi.nlm.nih.gov/pubmed/20589630
https://www.proquest.com/docview/748931466
https://pubmed.ncbi.nlm.nih.gov/PMC2911520
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EKfpSrbb27B8CFsHCnuf-ywX6YqXnIVbluFJfSkh2ExS9nHh3UPvUj-Bn9JM4k73d61UR9GU3kNllk8zsTJJffgPwCZ0KzjpSGygjoiAONZoUIQFilcVKcWFCTqeRvx-m7R_x_klyMgNfyrMwBT9EteBGluH_12TgSg-2JqShxGNQp4OcxLdNYC2KiDoT7qhU-PyAhRVhUFxxk4Zbk0envNEcdezvh0LN-4jJfyNZ74pai_CrbESBQDmvj4a6nv35j9_xua1cgpfjGJXtFEr1CmaMW4aVHYfz894122AeNeqX45fhxdeyNL9b5o5bAXHkGEaW7LJ9-_emj3-l3qjH-pbRKQpKVsGUyxnGpR6Ze001ni_izA1eQ7f1rbvbDsZJGoIM5zppYLZjbUTSiHIT51ZzhUOfK9vIaAsy51YLngit89AKRRmtLZa1jvCW2ShR0RuYdX1n3gLTTW048dUZvOgs0c1mup1qYzm2P02yGmyWYyWzMYE55dG4kAX1cijpU6XvrBqsV7KXBW3Hg1IbfsgrEXV1TkA3nsifh3uy0WmJg85xS-7XgJU6IbEnaU9FOdMfDaQn70Fvg-9aLVSkellIGRvTqFEDPqU8lQAxe0_XuLNTz_AdogtKQnzys9eNR5ogjztHXV9ae4rwO1goYBAElnsPs8OrkfmA0dVQf_RWdAeMgCOm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BK1QuLbSUhvJjCVQJpE3T_bHjY6kIoaRpFQXRm2Xv2qIqcaomkSgnHqHP2CdhxptsCFRIcNm1tOPV2p7xjL2fvwF4hU4FVx3cRdrKJEpjgyZFSIBU56nWQtpY0Gnkoy5vf0oPT7PTKTaHzsKU_BDVhhtZRpivycBpQ3p3zhpKRAZ1OsnJ78IypfQOK6renD2Ky5AhsLQjDIsrdtJ4d153wR8tU9d-uy3Y_BMz-WssG5xRa63MuDoKHIaEQTmvT8amnn__jeHxv9v5AFanYSrbL_XqIdyxfh029j0u0QdXbIcF4GjYkV-He29npZWDWfq4DZDHnmFwyS7aNz-uhzgxDSYDNnSMDlJQvgqmfcEwNA3g3Ct6EigjzvzoEfRb7_oH7WiapyHKcbnDI7uXGiuzRlLYtHBGaBz9QrtGTn8hC-GMFJk0poid1JTU2mHZmARvuUsynWzCkh96uwXMNI0VRFln8WLyzDSbfI8b6wS2n2d5DV7PBkvlUw5zSqXxVZXsy7GiT1Whs2rwspK9KJk7bpXaCWNeiejLc8K6iUx97r5XjV5LdnonLXVYAzZTCoU9Sb9VtLfDyUgF_h50OPiux6WOVC-LKWkjTxo1EAvaUwkQuffiE3_2JZB8x-iFshhrvgnK8ZcmqJPecT-UnvyL8AtYafePOqrzoftxG-6XqAjCzj2FpfHlxD7DYGtsngeT-gmbdSfB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTTBeBmwMyl9LoEkgpcvyx6klXsZGKGN0VdWJvSDLTmwxjabV1krbnvYR-Ix8Eu6cJqUwIcFLYsnnKGff-c72-XcAL9Go4KqDW08ZEXpRoFGlKBIgUlmkVCJMkNBt5E8d3j6M9o7iowV4U92FKfEh6g030gw3X5OCj3K7OQMNJRyDJl3k5DdgKeJ-i2R6tzcDj-LCJQgs1Qi94hqcNNictZ0zR0vUs-fX-Zp_hkz-6so6W5TegS8VF2UIyklzMtbN7PI3gMf_ZfMurEydVLZdStU9WDDFKqxtF7hAH1ywDebCRt1-_CrcfFuVlneq5HFrIA4Khq4lG7V_XH0f4rQ0mAzY0DK6RkHZKpgqcoaOqQvNvaAaBxhxXJzdh376rr_T9qZZGrwMFzvcM1uRNiL2w9xEudWJwrHPlfUzOoPME6tFEgut88AKRSmtLZa1DvGV2TBW4TosFsPCPASmW9okBFhn8KGzWLdafItrYxPkn8dZA15VYyWzKYI5JdL4Jkvs5UDSr0rXWQ14UdOOStyOa6k23JDXJOr0hCLdklh-7ryXfi8V-71uKvcawCqZkNiTdKiiCjOcnEmH3oPmBr_1oBSR-mMBpWzkod-AZE54agKC9p6vKY6_OojvAG1QHGDL1042_sKC7PYO-q706F-In8Ot7m4q9z90Pj6G22VIBAXOPYHF8enEPEVPa6yfOYX6CTOvJnk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+pH-optimum+of+activity+and+stability+of+proteins&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Talley%2C+Kemper&rft.au=Alexov%2C+Emil&rft.date=2010-09-01&rft.eissn=1097-0134&rft.volume=78&rft.issue=12&rft.spage=2699&rft_id=info:doi/10.1002%2Fprot.22786&rft_id=info%3Apmid%2F20589630&rft.externalDocID=20589630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon