On the pH-optimum of activity and stability of proteins
Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular prop...
Saved in:
Published in | Proteins, structure, function, and bioinformatics Vol. 78; no. 12; pp. 2699 - 2706 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH‐optimum of activity (the pH of maximal activity) is correlated with the pH‐optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH‐optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Proteins 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, since only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH‐optimum of activity (the pH of maximal activity) is correlated with the pH‐optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH‐optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Proteins 2010. © 2010 Wiley‐Liss, Inc. Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature. |
Author | Talley, Kemper Alexov, Emil |
Author_xml | – sequence: 1 givenname: Kemper surname: Talley fullname: Talley, Kemper organization: Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634 – sequence: 2 givenname: Emil surname: Alexov fullname: Alexov, Emil email: ealexov@clemson.edu organization: Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20589630$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kdGL1DAQxoOceHunL_4B0jdB6DlpmqR5EeRw75TFPZYFH4ekTbxo29Qme7r_va17e6iITzPD_L7vg5kzctKH3hLynMIFBSheD2NIF0UhK_GILCgomQNl5QlZQFXJnPGKn5KzGL8AgFBMPCGnBfBKCQYLItd9lm5tNlznYUi-23VZcJmuk7_zaZ_pvsli0sa38zRt5izr-_iUPHa6jfbZfT0n2-W77eV1vlpfvb98u8rrspIit7Q0VnFgjS0bZ6TmpWq0gxpYRRvpjJJcGdMUTmkBjLqpN4ZNpXaMa3ZO3hxsh53pbFPbPo26xWH0nR73GLTHPze9v8XP4Q4LRSkvYDJ4eW8whm87GxN2Pta2bXVvwy6iLCvFaCnERL74Peoh43irCYADUI8hxtE6rH3SyYc52bdIAed34Hwi_PWOSfLqL8nR9Z8wPcDffWv3_yHxZrPeHjX5QeNjsj8eNHr8ikIyyfHTxyuEzVKtNjdL_MB-AtdYrIg |
CitedBy_id | crossref_primary_10_1016_j_jobcr_2021_10_001 crossref_primary_10_1155_2014_471836 crossref_primary_10_1016_j_jbiotec_2019_11_002 crossref_primary_10_1002_etc_3579 crossref_primary_10_1021_acs_jafc_4c06771 crossref_primary_10_3390_ijms25010049 crossref_primary_10_3390_ijms231810347 crossref_primary_10_1007_s00253_024_13110_9 crossref_primary_10_1038_s41598_023_41012_9 crossref_primary_10_7554_eLife_54707 crossref_primary_10_1007_s00249_021_01510_y crossref_primary_10_1007_s10930_017_9711_4 crossref_primary_10_1128_spectrum_01782_21 crossref_primary_10_1021_acs_biochem_7b00690 crossref_primary_10_1093_plcell_koae245 crossref_primary_10_1142_S2737416523500230 crossref_primary_10_1002_pro_3834 crossref_primary_10_1142_S2737416520420089 crossref_primary_10_1021_acs_jctc_4c00370 crossref_primary_10_3390_ijms21124360 crossref_primary_10_3390_polym13213823 crossref_primary_10_1016_j_bios_2016_05_054 crossref_primary_10_1002_jcc_26006 crossref_primary_10_1093_database_baad016 crossref_primary_10_3389_fchem_2017_00115 crossref_primary_10_3389_fmolb_2021_777095 crossref_primary_10_3390_app122412673 crossref_primary_10_4014_jmb_2309_09023 crossref_primary_10_1080_08927022_2018_1535178 crossref_primary_10_1038_s41598_023_46720_w crossref_primary_10_3390_ijms18102130 crossref_primary_10_1007_s12033_019_00187_1 crossref_primary_10_1016_j_tibtech_2024_03_003 crossref_primary_10_1002_prot_23097 crossref_primary_10_1016_j_nanoso_2019_100349 crossref_primary_10_1111_pim_12770 crossref_primary_10_1086_687288 crossref_primary_10_3390_molecules25173861 crossref_primary_10_1007_s12038_012_9201_y crossref_primary_10_1039_c8pp00133b crossref_primary_10_1002_ardp_202200558 crossref_primary_10_1007_s13399_022_02418_z crossref_primary_10_1016_j_ijbiomac_2017_04_061 crossref_primary_10_1053_j_ackd_2022_04_008 crossref_primary_10_1016_j_ijbiomac_2020_09_236 crossref_primary_10_1021_acs_jpcb_1c02424 crossref_primary_10_1113_JP275425 crossref_primary_10_1063_5_0016437 crossref_primary_10_1007_s00439_023_02559_9 crossref_primary_10_1007_s12010_016_2152_2 crossref_primary_10_3390_ijms22158273 crossref_primary_10_1073_pnas_1809098115 crossref_primary_10_1021_acs_jctc_4c01319 crossref_primary_10_1002_marc_201800093 crossref_primary_10_1016_j_jmb_2020_09_005 crossref_primary_10_1038_s41422_020_00431_3 crossref_primary_10_3390_ijms20061264 crossref_primary_10_1038_s41467_022_35237_x crossref_primary_10_1038_ncomms8970 crossref_primary_10_1113_JP283579 crossref_primary_10_3389_fmolb_2021_775736 crossref_primary_10_3389_frsfm_2023_1201561 crossref_primary_10_1016_j_foodchem_2022_134191 crossref_primary_10_1074_mcp_O114_041616 crossref_primary_10_1111_1541_4337_12951 crossref_primary_10_1016_j_apsoil_2021_104188 crossref_primary_10_4236_jbise_2019_127027 crossref_primary_10_3389_fimmu_2022_789366 crossref_primary_10_1016_j_str_2018_05_002 crossref_primary_10_1080_00194506_2020_1758224 crossref_primary_10_1016_j_imu_2021_100514 crossref_primary_10_1007_s00580_024_03608_z crossref_primary_10_1016_j_actbio_2018_02_020 crossref_primary_10_1038_s41467_018_05261_x crossref_primary_10_3389_fmolb_2018_00025 crossref_primary_10_3390_catal12090977 crossref_primary_10_1002_prot_22990 crossref_primary_10_1002_prot_25221 crossref_primary_10_1016_j_pep_2018_08_007 crossref_primary_10_1080_17425247_2019_1568408 crossref_primary_10_1016_j_checat_2021_03_001 crossref_primary_10_1021_acs_analchem_9b05712 crossref_primary_10_1039_C9NA00308H crossref_primary_10_1038_s41564_019_0537_z crossref_primary_10_1093_bioinformatics_bty1011 crossref_primary_10_1186_s12284_025_00775_7 crossref_primary_10_1021_jacs_4c16700 crossref_primary_10_1093_cz_zoae045 crossref_primary_10_1017_S0033583513000024 crossref_primary_10_1016_j_jbiotec_2019_08_007 crossref_primary_10_1142_S0219633619500202 crossref_primary_10_1016_j_bbapap_2013_06_001 crossref_primary_10_2174_0929866526666190617092944 crossref_primary_10_1142_S0219633619300015 crossref_primary_10_3390_molecules29071467 crossref_primary_10_3389_fpsyt_2020_532606 crossref_primary_10_1080_07391102_2016_1206837 crossref_primary_10_3390_toxics12050332 crossref_primary_10_1111_jipb_13180 crossref_primary_10_1016_j_colsurfb_2017_05_036 crossref_primary_10_1007_s00253_015_7254_1 crossref_primary_10_1186_s12900_014_0021_1 crossref_primary_10_1007_s00249_020_01432_1 crossref_primary_10_1088_1755_1315_1271_1_012062 crossref_primary_10_1080_10408347_2023_2221731 crossref_primary_10_1002_slct_202001822 crossref_primary_10_1038_s41467_021_27426_x crossref_primary_10_1002_prot_22931 crossref_primary_10_1128_AEM_02105_20 crossref_primary_10_1186_s41231_021_00090_5 crossref_primary_10_1016_j_ica_2020_120125 crossref_primary_10_1016_j_bios_2019_111979 crossref_primary_10_1016_j_jmb_2013_07_014 crossref_primary_10_1093_jxb_ery406 crossref_primary_10_1016_j_ijbiomac_2018_07_156 crossref_primary_10_1021_acs_jpcb_4c03850 crossref_primary_10_1002_adhm_201900764 crossref_primary_10_3233_JAD_231142 crossref_primary_10_1021_acsami_8b09952 crossref_primary_10_1007_s11095_024_03801_3 crossref_primary_10_1111_jam_15692 crossref_primary_10_1109_LSENS_2019_2921146 crossref_primary_10_1016_j_jhazmat_2020_124340 crossref_primary_10_3390_biom10121597 crossref_primary_10_1016_j_snb_2016_06_098 crossref_primary_10_1080_07391102_2016_1149097 crossref_primary_10_3390_nano13152258 crossref_primary_10_1007_s00203_020_01816_z crossref_primary_10_1016_j_mehy_2020_110335 crossref_primary_10_1016_j_biomaterials_2023_122191 crossref_primary_10_1021_acsomega_2c06199 crossref_primary_10_1186_s13568_016_0308_7 crossref_primary_10_1002_cctc_201900333 crossref_primary_10_1080_10942912_2016_1205086 crossref_primary_10_1007_s11356_020_11173_5 crossref_primary_10_1016_j_biosystems_2017_05_003 crossref_primary_10_1242_dmm_050074 crossref_primary_10_1016_j_scitotenv_2023_165304 crossref_primary_10_1007_s12010_023_04596_6 crossref_primary_10_3389_fpubh_2020_543322 crossref_primary_10_22207_JPAM_13_4_07 crossref_primary_10_1016_j_sajb_2023_04_040 crossref_primary_10_1007_s12010_015_1977_4 crossref_primary_10_1016_j_foodchem_2021_130454 crossref_primary_10_1080_07391102_2017_1420492 crossref_primary_10_1111_1744_7917_12503 crossref_primary_10_1002_pro_3406 crossref_primary_10_1016_j_jiec_2018_12_020 crossref_primary_10_1007_s12010_013_0103_8 crossref_primary_10_1080_07373937_2021_1903032 crossref_primary_10_1186_s12860_019_0221_4 crossref_primary_10_1080_08927022_2018_1513647 crossref_primary_10_1039_D0CC08135C crossref_primary_10_3389_fpls_2019_01552 crossref_primary_10_1371_journal_pcbi_1003366 crossref_primary_10_1016_j_jconrel_2019_02_042 crossref_primary_10_1016_j_focha_2024_100638 crossref_primary_10_1080_17501911_2024_2351788 crossref_primary_10_4208_cicp_170911_131011s crossref_primary_10_1016_j_ejpb_2021_01_008 crossref_primary_10_3934_mbe_2021120 crossref_primary_10_1016_j_ijbiomac_2019_09_121 crossref_primary_10_3389_fmmed_2021_777088 crossref_primary_10_3389_fgene_2022_874397 crossref_primary_10_1002_prot_26386 crossref_primary_10_1007_s10989_017_9669_2 crossref_primary_10_1152_physrev_00023_2012 crossref_primary_10_1021_acs_jcim_0c00725 crossref_primary_10_1371_journal_pone_0302840 crossref_primary_10_1021_acsomega_0c04817 crossref_primary_10_2174_0929866527666201103145246 crossref_primary_10_1142_S2737416520420041 crossref_primary_10_1021_acsami_1c10436 crossref_primary_10_1007_s11032_018_0842_x crossref_primary_10_1038_s41598_021_85258_7 crossref_primary_10_3390_separations9050128 crossref_primary_10_1016_j_foodres_2018_03_006 crossref_primary_10_1134_S1021443717050132 crossref_primary_10_1039_C6AN02152B crossref_primary_10_1093_nar_gkab157 crossref_primary_10_1142_S0219633620420043 crossref_primary_10_3389_fmolb_2021_773385 crossref_primary_10_1038_s41598_019_45460_0 crossref_primary_10_1016_j_xphs_2019_05_020 crossref_primary_10_1016_j_ijpharm_2023_122829 crossref_primary_10_1016_j_ijbiomac_2018_04_159 crossref_primary_10_3390_biomimetics5040066 crossref_primary_10_1016_j_dyepig_2021_109310 crossref_primary_10_1039_C7CP06614G crossref_primary_10_1002_jcc_24053 crossref_primary_10_1039_D0NR09200B crossref_primary_10_1016_j_ijbiomac_2017_07_173 crossref_primary_10_3390_jof10110797 crossref_primary_10_1016_j_yexcr_2019_111591 crossref_primary_10_1007_s00248_020_01613_7 crossref_primary_10_1021_acsomega_0c03983 crossref_primary_10_1021_acs_jpcb_2c01892 crossref_primary_10_1002_jlcr_3903 crossref_primary_10_1007_s42770_023_01131_x crossref_primary_10_1016_j_ijbiomac_2023_127969 crossref_primary_10_1063_1_4943878 crossref_primary_10_1002_jps_24393 crossref_primary_10_1016_j_bpc_2021_106611 crossref_primary_10_1080_07391102_2019_1683074 crossref_primary_10_1149_2_0401909jes crossref_primary_10_1021_acs_analchem_2c02686 crossref_primary_10_1097_ALN_0000000000004712 crossref_primary_10_3923_ajsr_2020_92_110 |
Cites_doi | 10.1002/jps.21539 10.1002/prot.10406 10.1093/bioinformatics/btm115 10.1002/bip.20598 10.1016/S0021-9258(17)32673-X 10.1529/biophysj.106.088682 10.1046/j.1432-1033.2003.03917.x 10.1021/bi00070a025 10.1093/nar/gkm256 10.1016/j.jmb.2005.11.001 10.1016/j.febslet.2007.12.003 10.1021/bi00467a007 10.1016/S0006-3495(97)78236-5 10.1016/S0022-2836(02)00015-3 10.1016/j.jmb.2003.10.044 10.1002/prot.1035 10.1007/s11030-009-9182-4 10.1007/s00726-009-0331-y 10.1093/nar/gkl972 10.1002/pmic.200500534 10.1016/j.jmb.2003.09.001 10.1073/pnas.0805163105 10.1007/s00335-003-2296-6 10.1016/j.jsb.2007.02.007 10.1021/bi027202n 10.1021/bi061273v 10.1016/j.febslet.2004.09.065 10.1074/jbc.M412532200 10.1016/S0022-2836(95)80064-6 10.1021/jm049439i 10.1186/1752-0509-3-28 10.1016/j.jmb.2007.08.016 10.1016/S1570-9639(03)00407-2 10.1074/jbc.M708994200 10.1021/bi800533t 10.1074/jbc.M204161200 10.1006/jmbi.2000.3903 10.1016/S0021-9258(18)53888-6 10.1016/j.jinorgbio.2004.11.003 10.1006/jmbi.1996.0804 10.1021/jo0702903 10.1021/bi060194g 10.1186/1471-2105-9-173 10.1093/nar/gkn820 10.1080/15257770701490803 10.1186/jbiol199 10.1016/S0006-3495(03)70009-5 10.1006/jmbi.2000.3752 10.1093/nar/gkh441 10.1016/j.jmb.2004.10.023 10.3748/wjg.v10.i12.1769 10.1529/biophysj.106.086025 10.1046/j.1365-2443.2003.00676.x 10.1007/s00726-009-0238-7 10.1080/10837450802409412 10.1016/j.compbiolchem.2008.07.011 10.6026/97320630001285 10.1186/1741-7007-7-69 10.1016/j.jmb.2005.02.025 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/prot.22786 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 2706 |
ExternalDocumentID | PMC2911520 20589630 10_1002_prot_22786 PROT22786 ark_67375_WNG_0RF9LRPF_J |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM093937 – fundername: NLM NIH HHS grantid: R03 LM009748 |
GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4876-e14be9503de4dfb7a549daf0c0381d7fb9759bbd2f9a6031fbbdbb3fbbcf35a3 |
IEDL.DBID | DR2 |
ISSN | 0887-3585 1097-0134 |
IngestDate | Thu Aug 21 14:20:03 EDT 2025 Thu Jul 10 17:56:34 EDT 2025 Mon Jul 21 05:16:14 EDT 2025 Tue Jul 01 00:44:59 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Jan 22 16:56:07 EST 2025 Wed Oct 30 09:50:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4876-e14be9503de4dfb7a549daf0c0381d7fb9759bbd2f9a6031fbbdbb3fbbcf35a3 |
Notes | ArticleID:PROT22786 istex:BD6509C784C0B183AC82426852106B0B237CB0D7 ark:/67375/WNG-0RF9LRPF-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20589630 |
PQID | 748931466 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2911520 proquest_miscellaneous_748931466 pubmed_primary_20589630 crossref_citationtrail_10_1002_prot_22786 crossref_primary_10_1002_prot_22786 wiley_primary_10_1002_prot_22786_PROT22786 istex_primary_ark_67375_WNG_0RF9LRPF_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Cedano J,Aloy P,Perez-Pons J,Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997; 266: 594-600. Cai YD,Lu L,Chen L,He JF. Predicting subcellular location of proteins using integrated-algorithm method. Mol Divers 2009. Epub ahead of print PMID: 19662505. Horiguchi M,Arita M,Kaempf-Rotzoll DE,Tsujimoto M,Inoue K,Arai H. pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes. Genes Cells 2003; 8: 789-800. Luisi DL,Snow CD,Lin JJ,Hendsch ZS,Tidor B,Raleigh DP. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry 2003; 42: 7050-7060. Kawai C,Prado FM,Nunes GL,Di Mascio P,Carmona-Ribeiro AM,Nantes IL. pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 2005; 280: 34709-34717. Frenkel YV,Clark AD,Jr,Das K,Wang YH,Lewi PJ,Janssen PA,Arnold E. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 2005; 48: 1974-1983. Chang A,Scheer M,Grote A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 2009; 37(Database issue): D588-D592. Garcia-Moreno B. Adaptations of proteins to cellular and subcellular pH. J Biol 2009; 8: 98. Khan A,Majid A,Choi TS. Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers. Amino Acids 2010; 38: 347-350. Schreiber G,Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 1995; 248: 478-486. Cheng G,An F,Zou MJ,Sun J,Hao XH,He YX. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 2004; 10: 1769-1774. Taylor PD,Attwood TK,Flower DR. Combining algorithms to predict bacterial protein sub-cellular location: parallel versus concurrent implementations. Bioinformation 2006; 1: 285-289. Seela F,Budow S. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif. Nucleosides Nucleotides Nucleic Acids 2007; 26: 755-759. Patel MM,Shah TJ,Amin AF,Shah NN. Design, Development and Optimization of a Novel Time and pH-Dependent Colon Targeted Drug Delivery System. Pharm Dev Technol 2009; 14: 62-69. Sato S,Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318: 571-582. Schreiber G,Fersht AR. Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993; 32: 5145-5150. Petkova AT,Buntkowsky G,Dyda F,Leapman RD,Yau WM,Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335: 247-260. Nair R,Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005; 348: 85-100. Qiu JD,Luo SH,Huang JH,Sun XY,Liang RP. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids 2010; 38: 1201-1208. Wood DO,Lee JS. Investigation of pH-dependent DNA-metal ion interactions by surface plasmon resonance. J Inorg Biochem 2005; 99: 566-574. Emanuelsson O,Nielsen H,Brunak S,Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300: 1005-1016. Horng JC,Demarest SJ,Raleigh DP. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH. Proteins 2003; 52: 193-202. Lindman S,Linse S,Mulder FA,Andre I. pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophys J 2007; 92: 257-266. Srivastava J,Barreiro G,Groscurth S,Gingras AR,Goult BT,Critchley DR,Kelly MJ,Jacobson MP,Barber DL. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci USA 2008; 105: 14436-14441. Skoulakis S,Goodfellow JM. The pH-dependent stability of wild-type and mutant transthyretin oligomers. Biophys J 2003; 84: 2795-2804. Yoo SH. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 1994; 269: 12001-12006. Chou KC. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002; 277: 45765-45769. Mazzini A,Polverini E,Parisi M,Sorbi RT,Favilla R. Dissociation and unfolding of bovine odorant binding protein at acidic pH. JStruct Biol 2007; 159: 82-91. Chan P,Warwicker J. Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol 2009; 7: 69. Luisi DL,Raleigh DP. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. J Mol Biol 2000; 299: 1091-1100. Stapley BJ,Kelley LA,Sternberg MJ. Predicting the sub-cellular location of proteins from text using support vector machines. Pac Symp Biocomput 2002: 374-385. Perico N,Purtell J,Dillon TM,Ricci MS. Conformational implications of an inversed pH-dependent antibody aggregation. J Pharm Sci 2009; 98: 3031-3042. Chen Y,Yu P,Luo J,Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003; 14: 859-865. Alexov E. Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure. Eur J Biochem 2004; 271: 173-185. Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43: 246-255. Kall L,Krogh A,Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Web Server issue): W429-W432. Kono K,Kimura S,Imanishi Y. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990; 29: 3631-3637. Shin CJ,Wong S,Davis MJ,Ragan MA. Protein-protein interaction as a predictor of subcellular location. BMC Syst Biol 2009; 3: 28. Grey MJ,Tang Y,Alexov E,McKnight CJ,Raleigh DP,Palmer AG,III. Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 2006; 355: 1078-1094. Garcia-Mayoral MF,del Pozo AM,Campos-Olivas R,Gavilanes JG,Santoro J,Rico M,Laurents DV,Bruix M. pH-Dependent conformational stability of the ribotoxin alpha-sarcin and four active site charge substitution variants. Biochemistry 2006; 45: 13705-13718. Pedersen S,Nesgaard L,Baptista RP,Melo EP,Kristensen SR,Otzen DE. pH-dependent aggregation of cutinase is efficiently suppressed by 1,8-ANS. Biopolymers 2006; 83: 619-629. Allemand JF,Bensimon D,Jullien L,Bensimon A,Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73: 2064-2070. Re F,Sesana S,Barbiroli A,Bonomi F,Cazzaniga E,Lonati E,Bulbarelli A,Masserini M. Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett 2008; 582: 215-220. Nasibov E,Kandemir-Cavas C. Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm. Comput Biol Chem 2008; 32: 448-451. Shatkay H,Hoglund A,Brady S,Blum T,Donnes P,Kohlbacher O. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 2007; 23: 1410-1417. Srinivasan R,Jones EM,Liu K,Ghiso J,Marchant RE,Zagorski MG. pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 2003; 333: 1003-1023. Olson LJ,Hindsgaul O,Dahms NM,Kim JJ. Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2008; 283: 10124-10134. Horng JC,Cho JH,Raleigh DP. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J Mol Biol 2005; 345: 163-173. Zhou M,Boekhorst J,Francke C,Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9: 173. Kundrotas PJ,Alexov E. Electrostatic properties of protein-protein complexes. Biophys J 2006; 91: 1724-1736. Brady S,Shatkay H. EpiLoc: a (working) text-based system for predicting protein subcellular location. Pac Symp Biocomput 2008: 604-615. Muga A,Gonzalez-Manas JM,Lakey JH,Pattus F,Surewicz WK. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 1993; 268: 1553-1557. Chan P,Lovric J,Warwicker J. Subcellular pH and predicted pH-dependent features of proteins. Proteomics 2006; 6: 3494-3501. Chaves FA,Richards KA,Torelli A,Wedekind J,Sant AJ. Peptide-binding motifs for the I-Ad MHC class II molecule: alternate pH-dependent binding behavior. Biochemistry 2006; 45: 6426-6433. Fuertes MA,Perez JM,Soto M,Menendez M,Alonso C. Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70. Biochim Biophys Acta 2004; 1699: 45-56. Seela F,Chittepu P. Oligonucleotides containing 6-aza-2′-deoxyuridine: synthesis, nucleobase protection, pH-dependent duplex stability, and metal-DNA formation. J Org Chem 2007; 72: 4358-4366. Smedley JG,III,Sharp JS,Kuhn JF,Tomer KB. Pro 2002; 277 2008; 9 2003; 14 2008; 105 2008; 32 2007; 72 2002; 318 2000; 299 2003; 52 2008; 582 2007; 35 2001; 43 2004; 32 2009; 14 2004; 577 2004; 335 2009; 98 1994; 269 2005; 345 1993; 32 2003; 8 2007; 373 1997; 266 2005; 348 1995; 248 2003; 84 2007; 23 2003; 42 2004; 1699 2007; 26 2006; 91 2010; 38 2009 2008 2007; 92 2006; 6 2006; 1 2002 1993; 268 2005; 48 2003; 333 2008; 283 2006; 355 2004; 10 2007; 159 2005; 280 1997; 73 2006; 83 2006; 45 2000; 300 1990; 29 2004; 271 2008; 47 2009; 8 2009; 7 2009; 3 2005; 99 2009; 37 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 Stapley BJ (e_1_2_6_50_2) 2002 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 Brady S (e_1_2_6_49_2) 2008 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_42_2 e_1_2_6_40_2 Fuertes MA (e_1_2_6_9_2) 2004; 1699 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Cai YD,Lu L,Chen L,He JF. Predicting subcellular location of proteins using integrated-algorithm method. Mol Divers 2009. Epub ahead of print PMID: 19662505. – reference: Schreiber G,Fersht AR. Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993; 32: 5145-5150. – reference: Pedersen S,Nesgaard L,Baptista RP,Melo EP,Kristensen SR,Otzen DE. pH-dependent aggregation of cutinase is efficiently suppressed by 1,8-ANS. Biopolymers 2006; 83: 619-629. – reference: Horng JC,Demarest SJ,Raleigh DP. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH. Proteins 2003; 52: 193-202. – reference: Kono K,Kimura S,Imanishi Y. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990; 29: 3631-3637. – reference: Srivastava J,Barreiro G,Groscurth S,Gingras AR,Goult BT,Critchley DR,Kelly MJ,Jacobson MP,Barber DL. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci USA 2008; 105: 14436-14441. – reference: Frenkel YV,Clark AD,Jr,Das K,Wang YH,Lewi PJ,Janssen PA,Arnold E. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 2005; 48: 1974-1983. – reference: Smedley JG,III,Sharp JS,Kuhn JF,Tomer KB. Probing the pH-dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting. Biochemistry 2008; 47: 10694-10704. – reference: Barthelmes J,Ebeling C,Chang A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 2007; 35(Database issue): D511-D514. – reference: Allemand JF,Bensimon D,Jullien L,Bensimon A,Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73: 2064-2070. – reference: Nasibov E,Kandemir-Cavas C. Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm. Comput Biol Chem 2008; 32: 448-451. – reference: Garcia-Mayoral MF,del Pozo AM,Campos-Olivas R,Gavilanes JG,Santoro J,Rico M,Laurents DV,Bruix M. pH-Dependent conformational stability of the ribotoxin alpha-sarcin and four active site charge substitution variants. Biochemistry 2006; 45: 13705-13718. – reference: Luisi DL,Snow CD,Lin JJ,Hendsch ZS,Tidor B,Raleigh DP. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry 2003; 42: 7050-7060. – reference: Sato S,Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318: 571-582. – reference: Olson LJ,Hindsgaul O,Dahms NM,Kim JJ. Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2008; 283: 10124-10134. – reference: Mazzini A,Polverini E,Parisi M,Sorbi RT,Favilla R. Dissociation and unfolding of bovine odorant binding protein at acidic pH. JStruct Biol 2007; 159: 82-91. – reference: Nair R,Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005; 348: 85-100. – reference: Stapley BJ,Kelley LA,Sternberg MJ. Predicting the sub-cellular location of proteins from text using support vector machines. Pac Symp Biocomput 2002: 374-385. – reference: Qiu JD,Luo SH,Huang JH,Sun XY,Liang RP. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids 2010; 38: 1201-1208. – reference: Fuertes MA,Perez JM,Soto M,Menendez M,Alonso C. Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70. Biochim Biophys Acta 2004; 1699: 45-56. – reference: Brady S,Shatkay H. EpiLoc: a (working) text-based system for predicting protein subcellular location. Pac Symp Biocomput 2008: 604-615. – reference: Seela F,Chittepu P. Oligonucleotides containing 6-aza-2′-deoxyuridine: synthesis, nucleobase protection, pH-dependent duplex stability, and metal-DNA formation. J Org Chem 2007; 72: 4358-4366. – reference: Alexov E. Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure. Eur J Biochem 2004; 271: 173-185. – reference: Kawai C,Prado FM,Nunes GL,Di Mascio P,Carmona-Ribeiro AM,Nantes IL. pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 2005; 280: 34709-34717. – reference: Grey MJ,Tang Y,Alexov E,McKnight CJ,Raleigh DP,Palmer AG,III. Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 2006; 355: 1078-1094. – reference: Khan A,Majid A,Choi TS. Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers. Amino Acids 2010; 38: 347-350. – reference: Skoulakis S,Goodfellow JM. The pH-dependent stability of wild-type and mutant transthyretin oligomers. Biophys J 2003; 84: 2795-2804. – reference: Perico N,Purtell J,Dillon TM,Ricci MS. Conformational implications of an inversed pH-dependent antibody aggregation. J Pharm Sci 2009; 98: 3031-3042. – reference: Seela F,Budow S. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif. Nucleosides Nucleotides Nucleic Acids 2007; 26: 755-759. – reference: Chan P,Warwicker J. Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol 2009; 7: 69. – reference: Horiguchi M,Arita M,Kaempf-Rotzoll DE,Tsujimoto M,Inoue K,Arai H. pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes. Genes Cells 2003; 8: 789-800. – reference: Cedano J,Aloy P,Perez-Pons J,Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997; 266: 594-600. – reference: Schreiber G,Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 1995; 248: 478-486. – reference: Patel MM,Shah TJ,Amin AF,Shah NN. Design, Development and Optimization of a Novel Time and pH-Dependent Colon Targeted Drug Delivery System. Pharm Dev Technol 2009; 14: 62-69. – reference: Garcia-Moreno B. Adaptations of proteins to cellular and subcellular pH. J Biol 2009; 8: 98. – reference: Imamoto Y,Harigai M,Kataoka M. Direct observation of the pH-dependent equilibrium between L-like and M intermediates of photoactive yellow protein. FEBS Lett 2004; 577: 75-80. – reference: Yoo SH. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 1994; 269: 12001-12006. – reference: Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43: 246-255. – reference: Chang A,Scheer M,Grote A,Schomburg I,Schomburg D. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 2009; 37(Database issue): D588-D592. – reference: Kundrotas PJ,Alexov E. Electrostatic properties of protein-protein complexes. Biophys J 2006; 91: 1724-1736. – reference: Petkova AT,Buntkowsky G,Dyda F,Leapman RD,Yau WM,Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335: 247-260. – reference: Wood DO,Lee JS. Investigation of pH-dependent DNA-metal ion interactions by surface plasmon resonance. J Inorg Biochem 2005; 99: 566-574. – reference: Nair R,Rost B. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets. Nucleic Acids Res 2004; 32(Web Server issue): W517-W521. – reference: Chou KC. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002; 277: 45765-45769. – reference: Kall L,Krogh A,Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Web Server issue): W429-W432. – reference: Lindman S,Linse S,Mulder FA,Andre I. pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophys J 2007; 92: 257-266. – reference: Luisi DL,Raleigh DP. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. J Mol Biol 2000; 299: 1091-1100. – reference: Chen Y,Yu P,Luo J,Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003; 14: 859-865. – reference: Zhou M,Boekhorst J,Francke C,Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9: 173. – reference: Hom RA,Vora M,Regner M,Subach OM,Cho W,Verkhusha VV,Stahelin RV,Kutateladze TG. pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers. J Mol Biol 2007; 373: 412-423. – reference: Re F,Sesana S,Barbiroli A,Bonomi F,Cazzaniga E,Lonati E,Bulbarelli A,Masserini M. Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett 2008; 582: 215-220. – reference: Muga A,Gonzalez-Manas JM,Lakey JH,Pattus F,Surewicz WK. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 1993; 268: 1553-1557. – reference: Emanuelsson O,Nielsen H,Brunak S,Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300: 1005-1016. – reference: Srinivasan R,Jones EM,Liu K,Ghiso J,Marchant RE,Zagorski MG. pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 2003; 333: 1003-1023. – reference: Horng JC,Cho JH,Raleigh DP. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J Mol Biol 2005; 345: 163-173. – reference: Chaves FA,Richards KA,Torelli A,Wedekind J,Sant AJ. Peptide-binding motifs for the I-Ad MHC class II molecule: alternate pH-dependent binding behavior. Biochemistry 2006; 45: 6426-6433. – reference: Cheng G,An F,Zou MJ,Sun J,Hao XH,He YX. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 2004; 10: 1769-1774. – reference: Shin CJ,Wong S,Davis MJ,Ragan MA. Protein-protein interaction as a predictor of subcellular location. BMC Syst Biol 2009; 3: 28. – reference: Taylor PD,Attwood TK,Flower DR. Combining algorithms to predict bacterial protein sub-cellular location: parallel versus concurrent implementations. Bioinformation 2006; 1: 285-289. – reference: Shatkay H,Hoglund A,Brady S,Blum T,Donnes P,Kohlbacher O. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 2007; 23: 1410-1417. – reference: Chan P,Lovric J,Warwicker J. Subcellular pH and predicted pH-dependent features of proteins. Proteomics 2006; 6: 3494-3501. – volume: 300 start-page: 1005 year: 2000 end-page: 1016 article-title: Predicting subcellular localization of proteins based on their N‐terminal amino acid sequence publication-title: J Mol Biol – volume: 92 start-page: 257 year: 2007 end-page: 266 article-title: pK(a) values for side‐chain carboxyl groups of a PGB1 variant explain salt and pH‐dependent stability publication-title: Biophys J – volume: 47 start-page: 10694 year: 2008 end-page: 10704 article-title: Probing the pH‐dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting publication-title: Biochemistry – volume: 1699 start-page: 45 year: 2004 end-page: 56 article-title: Thermodynamic stability of the C‐terminal domain of the human inducible heat shock protein 70 publication-title: Biochim Biophys Acta – volume: 8 start-page: 98 year: 2009 article-title: Adaptations of proteins to cellular and subcellular pH publication-title: J Biol – volume: 99 start-page: 566 year: 2005 end-page: 574 article-title: Investigation of pH‐dependent DNA‐metal ion interactions by surface plasmon resonance publication-title: J Inorg Biochem – volume: 26 start-page: 755 year: 2007 end-page: 759 article-title: pH‐dependent assembly of DNA‐gold nanoparticles based on the i‐motif publication-title: Nucleosides Nucleotides Nucleic Acids – volume: 98 start-page: 3031 year: 2009 end-page: 3042 article-title: Conformational implications of an inversed pH‐dependent antibody aggregation publication-title: J Pharm Sci – volume: 271 start-page: 173 year: 2004 end-page: 185 article-title: Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure publication-title: Eur J Biochem – volume: 42 start-page: 7050 year: 2003 end-page: 7060 article-title: Surface salt bridges, double‐mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N‐terminus of the N‐terminal domain of the ribosomal protein l9 publication-title: Biochemistry – volume: 29 start-page: 3631 year: 1990 end-page: 3637 article-title: pH‐dependent interaction of amphiphilic polypeptide poly(Lys‐Aib‐Leu‐Aib) with lipid bilayer membrane publication-title: Biochemistry – volume: 3 start-page: 28 year: 2009 article-title: Protein‐protein interaction as a predictor of subcellular location publication-title: BMC Syst Biol – volume: 9 start-page: 173 year: 2008 article-title: LocateP: genome‐scale subcellular‐location predictor for bacterial proteins publication-title: BMC Bioinformatics – volume: 35 start-page: D511 issue: Database issue year: 2007 end-page: D514 article-title: BRENDA, AMENDA and FRENDA: the enzyme information system in 2007 publication-title: Nucleic Acids Res – volume: 73 start-page: 2064 year: 1997 end-page: 2070 article-title: pH‐dependent specific binding and combing of DNA publication-title: Biophys J – year: 2009 article-title: Predicting subcellular location of proteins using integrated‐algorithm method publication-title: Mol Divers – volume: 283 start-page: 10124 year: 2008 end-page: 10134 article-title: Structural insights into the mechanism of pH‐dependent ligand binding and release by the cation‐dependent mannose 6‐phosphate receptor publication-title: J Biol Chem – volume: 266 start-page: 594 year: 1997 end-page: 600 article-title: Relation between amino acid composition and cellular location of proteins publication-title: J Mol Biol – volume: 32 start-page: W517 issue: Web Server issue year: 2004 end-page: W521 article-title: LOCnet and LOCtarget: sub‐cellular localization for structural genomics targets publication-title: Nucleic Acids Res – volume: 355 start-page: 1078 year: 2006 end-page: 1094 article-title: Characterizing a partially folded intermediate of the villin headpiece domain under non‐denaturing conditions: contribution of His41 to the pH‐dependent stability of the N‐terminal subdomain publication-title: J Mol Biol – volume: 333 start-page: 1003 year: 2003 end-page: 1023 article-title: pH‐dependent amyloid and protofibril formation by the ABri peptide of familial British dementia publication-title: J Mol Biol – volume: 7 start-page: 69 year: 2009 article-title: Evidence for the adaptation of protein pH‐dependence to subcellular pH publication-title: BMC Biol – volume: 6 start-page: 3494 year: 2006 end-page: 3501 article-title: Subcellular pH and predicted pH‐dependent features of proteins publication-title: Proteomics – volume: 582 start-page: 215 year: 2008 end-page: 220 article-title: Prion protein structure is affected by pH‐dependent interaction with membranes: a study in a model system publication-title: FEBS Lett – volume: 48 start-page: 1974 year: 2005 end-page: 1983 article-title: Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability publication-title: J Med Chem – volume: 72 start-page: 4358 year: 2007 end-page: 4366 article-title: Oligonucleotides containing 6‐aza‐2′‐deoxyuridine: synthesis, nucleobase protection, pH‐dependent duplex stability, and metal‐DNA formation publication-title: J Org Chem – volume: 373 start-page: 412 year: 2007 end-page: 423 article-title: pH‐dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2‐containing bilayers publication-title: J Mol Biol – volume: 35 start-page: W429 issue: Web Server issue year: 2007 end-page: W432 article-title: Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server publication-title: Nucleic Acids Res – volume: 45 start-page: 6426 year: 2006 end-page: 6433 article-title: Peptide‐binding motifs for the I‐Ad MHC class II molecule: alternate pH‐dependent binding behavior publication-title: Biochemistry – volume: 37 start-page: D588 issue: Database issue year: 2009 end-page: D592 article-title: BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 publication-title: Nucleic Acids Res – volume: 43 start-page: 246 year: 2001 end-page: 255 article-title: Prediction of protein cellular attributes using pseudo‐amino acid composition publication-title: Proteins – volume: 299 start-page: 1091 year: 2000 end-page: 1100 article-title: pH‐dependent interactions and the stability and folding kinetics of the N‐terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding publication-title: J Mol Biol – volume: 14 start-page: 62 year: 2009 end-page: 69 article-title: Design, Development and Optimization of a Novel Time and pH‐Dependent Colon Targeted Drug Delivery System publication-title: Pharm Dev Technol – volume: 268 start-page: 1553 year: 1993 end-page: 1557 article-title: pH‐dependent stability and membrane interaction of the pore‐forming domain of colicin A publication-title: J Biol Chem – volume: 8 start-page: 789 year: 2003 end-page: 800 article-title: pH‐dependent translocation of alpha‐tocopherol transfer protein (alpha‐TTP) between hepatic cytosol and late endosomes publication-title: Genes Cells – start-page: 374 year: 2002 end-page: 385 article-title: Predicting the sub‐cellular location of proteins from text using support vector machines publication-title: Pac Symp Biocomput – volume: 159 start-page: 82 year: 2007 end-page: 91 article-title: Dissociation and unfolding of bovine odorant binding protein at acidic pH publication-title: JStruct Biol – volume: 84 start-page: 2795 year: 2003 end-page: 2804 article-title: The pH‐dependent stability of wild‐type and mutant transthyretin oligomers publication-title: Biophys J – volume: 1 start-page: 285 year: 2006 end-page: 289 article-title: Combining algorithms to predict bacterial protein sub‐cellular location: parallel versus concurrent implementations publication-title: Bioinformation – volume: 52 start-page: 193 year: 2003 end-page: 202 article-title: pH‐dependent stability of the human alpha‐lactalbumin molten globule state: contrasting roles of the 6 ‐ 120 disulfide and the beta‐subdomain at low and neutral pH publication-title: Proteins – volume: 14 start-page: 859 year: 2003 end-page: 865 article-title: Secreted protein prediction system combining CJ‐SPHMM, TMHMM, and PSORT publication-title: Mamm Genome – volume: 23 start-page: 1410 year: 2007 end-page: 1417 article-title: SherLoc: high‐accuracy prediction of protein subcellular localization by integrating text and protein sequence data publication-title: Bioinformatics – volume: 269 start-page: 12001 year: 1994 end-page: 12006 article-title: pH‐dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260‐kDa protein reactive to inositol 1,4,5‐triphosphate receptor antibody publication-title: J Biol Chem – volume: 38 start-page: 1201 year: 2010 end-page: 1208 article-title: Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine publication-title: Amino Acids – volume: 318 start-page: 571 year: 2002 end-page: 582 article-title: pH‐dependent stability and folding kinetics of a protein with an unusual alpha‐beta topology: the C‐terminal domain of the ribosomal protein L9 publication-title: J Mol Biol – volume: 248 start-page: 478 year: 1995 end-page: 486 article-title: Energetics of protein‐protein interactions: analysis of the barnase‐barstar interface by single mutations and double mutant cycles publication-title: J Mol Biol – start-page: 604 year: 2008 end-page: 615 article-title: EpiLoc: a (working) text‐based system for predicting protein subcellular location publication-title: Pac Symp Biocomput – volume: 105 start-page: 14436 year: 2008 end-page: 14441 article-title: Structural model and functional significance of pH‐dependent talin‐actin binding for focal adhesion remodeling publication-title: Proc Natl Acad Sci USA – volume: 83 start-page: 619 year: 2006 end-page: 629 article-title: pH‐dependent aggregation of cutinase is efficiently suppressed by 1,8‐ANS publication-title: Biopolymers – volume: 45 start-page: 13705 year: 2006 end-page: 13718 article-title: pH‐Dependent conformational stability of the ribotoxin alpha‐sarcin and four active site charge substitution variants publication-title: Biochemistry – volume: 10 start-page: 1769 year: 2004 end-page: 1774 article-title: Time‐ and pH‐dependent colon‐specific drug delivery for orally administered diclofenac sodium and 5‐aminosalicylic acid publication-title: World J Gastroenterol – volume: 577 start-page: 75 year: 2004 end-page: 80 article-title: Direct observation of the pH‐dependent equilibrium between L‐like and M intermediates of photoactive yellow protein publication-title: FEBS Lett – volume: 280 start-page: 34709 year: 2005 end-page: 34717 article-title: pH‐Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids publication-title: J Biol Chem – volume: 38 start-page: 347 year: 2010 end-page: 350 article-title: Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers publication-title: Amino Acids – volume: 277 start-page: 45765 year: 2002 end-page: 45769 article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location publication-title: J Biol Chem – volume: 335 start-page: 247 year: 2004 end-page: 260 article-title: Solid state NMR reveals a pH‐dependent antiparallel beta‐sheet registry in fibrils formed by a beta‐amyloid peptide publication-title: J Mol Biol – volume: 348 start-page: 85 year: 2005 end-page: 100 article-title: Mimicking cellular sorting improves prediction of subcellular localization publication-title: J Mol Biol – volume: 345 start-page: 163 year: 2005 end-page: 173 article-title: Analysis of the pH‐dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding publication-title: J Mol Biol – volume: 32 start-page: 448 year: 2008 end-page: 451 article-title: Protein subcellular location prediction using optimally weighted fuzzy k‐NN algorithm publication-title: Comput Biol Chem – volume: 32 start-page: 5145 year: 1993 end-page: 5150 article-title: Interaction of barnase with its popypeptide inhibitor barstar studied by protein engineering publication-title: Biochemistry – volume: 91 start-page: 1724 year: 2006 end-page: 1736 article-title: Electrostatic properties of protein‐protein complexes publication-title: Biophys J – ident: e_1_2_6_17_2 doi: 10.1002/jps.21539 – ident: e_1_2_6_13_2 doi: 10.1002/prot.10406 – ident: e_1_2_6_51_2 doi: 10.1093/bioinformatics/btm115 – ident: e_1_2_6_18_2 doi: 10.1002/bip.20598 – ident: e_1_2_6_28_2 doi: 10.1016/S0021-9258(17)32673-X – ident: e_1_2_6_11_2 doi: 10.1529/biophysj.106.088682 – ident: e_1_2_6_62_2 doi: 10.1046/j.1432-1033.2003.03917.x – ident: e_1_2_6_21_2 doi: 10.1021/bi00070a025 – ident: e_1_2_6_56_2 doi: 10.1093/nar/gkm256 – ident: e_1_2_6_6_2 doi: 10.1016/j.jmb.2005.11.001 – ident: e_1_2_6_26_2 doi: 10.1016/j.febslet.2007.12.003 – ident: e_1_2_6_30_2 doi: 10.1021/bi00467a007 – ident: e_1_2_6_34_2 doi: 10.1016/S0006-3495(97)78236-5 – ident: e_1_2_6_14_2 doi: 10.1016/S0022-2836(02)00015-3 – ident: e_1_2_6_19_2 doi: 10.1016/j.jmb.2003.10.044 – ident: e_1_2_6_45_2 doi: 10.1002/prot.1035 – ident: e_1_2_6_53_2 doi: 10.1007/s11030-009-9182-4 – ident: e_1_2_6_54_2 doi: 10.1007/s00726-009-0331-y – ident: e_1_2_6_61_2 doi: 10.1093/nar/gkl972 – ident: e_1_2_6_39_2 doi: 10.1002/pmic.200500534 – ident: e_1_2_6_20_2 doi: 10.1016/j.jmb.2003.09.001 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.0805163105 – ident: e_1_2_6_57_2 doi: 10.1007/s00335-003-2296-6 – ident: e_1_2_6_8_2 doi: 10.1016/j.jsb.2007.02.007 – ident: e_1_2_6_7_2 doi: 10.1021/bi027202n – ident: e_1_2_6_10_2 doi: 10.1021/bi061273v – ident: e_1_2_6_5_2 doi: 10.1016/j.febslet.2004.09.065 – ident: e_1_2_6_27_2 doi: 10.1074/jbc.M412532200 – ident: e_1_2_6_23_2 doi: 10.1016/S0022-2836(95)80064-6 – ident: e_1_2_6_37_2 doi: 10.1021/jm049439i – start-page: 604 year: 2008 ident: e_1_2_6_49_2 article-title: EpiLoc: a (working) text‐based system for predicting protein subcellular location publication-title: Pac Symp Biocomput – ident: e_1_2_6_41_2 doi: 10.1186/1752-0509-3-28 – ident: e_1_2_6_22_2 doi: 10.1016/j.jmb.2007.08.016 – volume: 1699 start-page: 45 year: 2004 ident: e_1_2_6_9_2 article-title: Thermodynamic stability of the C‐terminal domain of the human inducible heat shock protein 70 publication-title: Biochim Biophys Acta doi: 10.1016/S1570-9639(03)00407-2 – ident: e_1_2_6_24_2 doi: 10.1074/jbc.M708994200 – ident: e_1_2_6_4_2 doi: 10.1021/bi800533t – ident: e_1_2_6_46_2 doi: 10.1074/jbc.M204161200 – ident: e_1_2_6_44_2 doi: 10.1006/jmbi.2000.3903 – ident: e_1_2_6_29_2 doi: 10.1016/S0021-9258(18)53888-6 – ident: e_1_2_6_32_2 doi: 10.1016/j.jinorgbio.2004.11.003 – ident: e_1_2_6_43_2 doi: 10.1006/jmbi.1996.0804 – ident: e_1_2_6_33_2 doi: 10.1021/jo0702903 – ident: e_1_2_6_25_2 doi: 10.1021/bi060194g – start-page: 374 year: 2002 ident: e_1_2_6_50_2 article-title: Predicting the sub‐cellular location of proteins from text using support vector machines publication-title: Pac Symp Biocomput – ident: e_1_2_6_58_2 doi: 10.1186/1471-2105-9-173 – ident: e_1_2_6_60_2 doi: 10.1093/nar/gkn820 – ident: e_1_2_6_31_2 doi: 10.1080/15257770701490803 – ident: e_1_2_6_38_2 doi: 10.1186/jbiol199 – ident: e_1_2_6_16_2 doi: 10.1016/S0006-3495(03)70009-5 – ident: e_1_2_6_15_2 doi: 10.1006/jmbi.2000.3752 – ident: e_1_2_6_47_2 doi: 10.1093/nar/gkh441 – ident: e_1_2_6_12_2 doi: 10.1016/j.jmb.2004.10.023 – ident: e_1_2_6_35_2 doi: 10.3748/wjg.v10.i12.1769 – ident: e_1_2_6_40_2 doi: 10.1529/biophysj.106.086025 – ident: e_1_2_6_2_2 doi: 10.1046/j.1365-2443.2003.00676.x – ident: e_1_2_6_59_2 doi: 10.1007/s00726-009-0238-7 – ident: e_1_2_6_36_2 doi: 10.1080/10837450802409412 – ident: e_1_2_6_55_2 doi: 10.1016/j.compbiolchem.2008.07.011 – ident: e_1_2_6_52_2 doi: 10.6026/97320630001285 – ident: e_1_2_6_42_2 doi: 10.1186/1741-7007-7-69 – ident: e_1_2_6_48_2 doi: 10.1016/j.jmb.2005.02.025 |
SSID | ssj0006936 |
Score | 2.450146 |
Snippet | Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2699 |
SubjectTerms | activity Algorithms BRENDA database Databases, Factual Hydrogen-Ion Concentration pH-dependent effects pH-optimum Protein Stability Proteins - chemistry stability subcellular compartments |
Title | On the pH-optimum of activity and stability of proteins |
URI | https://api.istex.fr/ark:/67375/WNG-0RF9LRPF-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.22786 https://www.ncbi.nlm.nih.gov/pubmed/20589630 https://www.proquest.com/docview/748931466 https://pubmed.ncbi.nlm.nih.gov/PMC2911520 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EKfpSrbb27B8CFsHCnuf-ywX6YqXnIVbluFJfSkh2ExS9nHh3UPvUj-Bn9JM4k73d61UR9GU3kNllk8zsTJJffgPwCZ0KzjpSGygjoiAONZoUIQFilcVKcWFCTqeRvx-m7R_x_klyMgNfyrMwBT9EteBGluH_12TgSg-2JqShxGNQp4OcxLdNYC2KiDoT7qhU-PyAhRVhUFxxk4Zbk0envNEcdezvh0LN-4jJfyNZ74pai_CrbESBQDmvj4a6nv35j9_xua1cgpfjGJXtFEr1CmaMW4aVHYfz894122AeNeqX45fhxdeyNL9b5o5bAXHkGEaW7LJ9-_emj3-l3qjH-pbRKQpKVsGUyxnGpR6Ze001ni_izA1eQ7f1rbvbDsZJGoIM5zppYLZjbUTSiHIT51ZzhUOfK9vIaAsy51YLngit89AKRRmtLZa1jvCW2ShR0RuYdX1n3gLTTW048dUZvOgs0c1mup1qYzm2P02yGmyWYyWzMYE55dG4kAX1cijpU6XvrBqsV7KXBW3Hg1IbfsgrEXV1TkA3nsifh3uy0WmJg85xS-7XgJU6IbEnaU9FOdMfDaQn70Fvg-9aLVSkellIGRvTqFEDPqU8lQAxe0_XuLNTz_AdogtKQnzys9eNR5ogjztHXV9ae4rwO1goYBAElnsPs8OrkfmA0dVQf_RWdAeMgCOm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BK1QuLbSUhvJjCVQJpE3T_bHjY6kIoaRpFQXRm2Xv2qIqcaomkSgnHqHP2CdhxptsCFRIcNm1tOPV2p7xjL2fvwF4hU4FVx3cRdrKJEpjgyZFSIBU56nWQtpY0Gnkoy5vf0oPT7PTKTaHzsKU_BDVhhtZRpivycBpQ3p3zhpKRAZ1OsnJ78IypfQOK6renD2Ky5AhsLQjDIsrdtJ4d153wR8tU9d-uy3Y_BMz-WssG5xRa63MuDoKHIaEQTmvT8amnn__jeHxv9v5AFanYSrbL_XqIdyxfh029j0u0QdXbIcF4GjYkV-He29npZWDWfq4DZDHnmFwyS7aNz-uhzgxDSYDNnSMDlJQvgqmfcEwNA3g3Ct6EigjzvzoEfRb7_oH7WiapyHKcbnDI7uXGiuzRlLYtHBGaBz9QrtGTn8hC-GMFJk0poid1JTU2mHZmARvuUsynWzCkh96uwXMNI0VRFln8WLyzDSbfI8b6wS2n2d5DV7PBkvlUw5zSqXxVZXsy7GiT1Whs2rwspK9KJk7bpXaCWNeiejLc8K6iUx97r5XjV5LdnonLXVYAzZTCoU9Sb9VtLfDyUgF_h50OPiux6WOVC-LKWkjTxo1EAvaUwkQuffiE3_2JZB8x-iFshhrvgnK8ZcmqJPecT-UnvyL8AtYafePOqrzoftxG-6XqAjCzj2FpfHlxD7DYGtsngeT-gmbdSfB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTTBeBmwMyl9LoEkgpcvyx6klXsZGKGN0VdWJvSDLTmwxjabV1krbnvYR-Ix8Eu6cJqUwIcFLYsnnKGff-c72-XcAL9Go4KqDW08ZEXpRoFGlKBIgUlmkVCJMkNBt5E8d3j6M9o7iowV4U92FKfEh6g030gw3X5OCj3K7OQMNJRyDJl3k5DdgKeJ-i2R6tzcDj-LCJQgs1Qi94hqcNNictZ0zR0vUs-fX-Zp_hkz-6so6W5TegS8VF2UIyklzMtbN7PI3gMf_ZfMurEydVLZdStU9WDDFKqxtF7hAH1ywDebCRt1-_CrcfFuVlneq5HFrIA4Khq4lG7V_XH0f4rQ0mAzY0DK6RkHZKpgqcoaOqQvNvaAaBxhxXJzdh376rr_T9qZZGrwMFzvcM1uRNiL2w9xEudWJwrHPlfUzOoPME6tFEgut88AKRSmtLZa1DvGV2TBW4TosFsPCPASmW9okBFhn8KGzWLdafItrYxPkn8dZA15VYyWzKYI5JdL4Jkvs5UDSr0rXWQ14UdOOStyOa6k23JDXJOr0hCLdklh-7ryXfi8V-71uKvcawCqZkNiTdKiiCjOcnEmH3oPmBr_1oBSR-mMBpWzkod-AZE54agKC9p6vKY6_OojvAG1QHGDL1042_sKC7PYO-q706F-In8Ot7m4q9z90Pj6G22VIBAXOPYHF8enEPEVPa6yfOYX6CTOvJnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+pH-optimum+of+activity+and+stability+of+proteins&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Talley%2C+Kemper&rft.au=Alexov%2C+Emil&rft.date=2010-09-01&rft.eissn=1097-0134&rft.volume=78&rft.issue=12&rft.spage=2699&rft_id=info:doi/10.1002%2Fprot.22786&rft_id=info%3Apmid%2F20589630&rft.externalDocID=20589630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |