Automated segmentation technique with self-driven post-processing for histopathological breast cancer images

Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of i...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 5; no. 4; pp. 294 - 300
Main Authors Kaushal, Chetna, Singla, Anshu
Format Journal Article
LanguageEnglish
Published Beijing The Institution of Engineering and Technology 01.12.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of interest effectively, the subject expert performs post-processing operations several times on the segmentation results with different input values for different parameters say, area opening, fill holes and selects most appropriate enhanced image required for further analysis. The authors proposed an automated segmentation technique followed by self-driven post-processing operations to detect cancerous cells effectively. The post-processing method itself determines the value of different parameters for different operations based on segmented results obtained. The proposed technique has the following features: (i) technique is context sensitive; (ii) no prior setting of time step, weighted area coefficient parameters is required; (iii) magnification independent; (iv) post-processing operations are self-driven which enhance segmentation results adaptively. The experimental results are compared with four state-of-the-art techniques: fuzzy C-means, spatial fuzzy C-means, spatial neutrosophic distance regularised level set and convolutional neural network-based PangNet. Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively.
AbstractList Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of interest effectively, the subject expert performs post‐processing operations several times on the segmentation results with different input values for different parameters say, area opening, fill holes and selects most appropriate enhanced image required for further analysis. The authors proposed an automated segmentation technique followed by self‐driven post‐processing operations to detect cancerous cells effectively. The post‐processing method itself determines the value of different parameters for different operations based on segmented results obtained. The proposed technique has the following features: (i) technique is context sensitive; (ii) no prior setting of time step, weighted area coefficient parameters is required; (iii) magnification independent; (iv) post‐processing operations are self‐driven which enhance segmentation results adaptively. The experimental results are compared with four state‐of‐the‐art techniques: fuzzy C‐means, spatial fuzzy C‐means, spatial neutrosophic distance regularised level set and convolutional neural network‐based PangNet. Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively.
Author Singla, Anshu
Kaushal, Chetna
Author_xml – sequence: 1
  givenname: Chetna
  surname: Kaushal
  fullname: Kaushal, Chetna
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 2
  givenname: Anshu
  orcidid: 0000-0002-1054-8753
  surname: Singla
  fullname: Singla, Anshu
  email: anshu.singla@chitkara.edu.in
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
BookMark eNqFkd1rFDEUxQepYK199XlA8EGYNV87SR7rYu1CQZD1OWSSm9kss5MxyVr635txpCxi8Skh9_zuuTfndXUxhhGq6i1GK4yY_JijzyuCsFwhxPmL6pKwVjSEEnJxdn9VXad0QKjopFxTflkNN6ccjjqDrRP0Rxizzj6MdQazH_2PE9QPPu9LbXCNjf4njPUUUm6mGAyk5Me-diHWe59ymHTehyH03uih7iLolGujRwOx9kfdQ3pTvXR6SHD957yqvt9-3m3umvuvX7abm_vGMMHbxqyBr5mjjDihsQbXiU4KTAUWrdNYGGCddY5axwFZEK2mrSaim-uWrC29qrZLXxv0QU2xuMdHFbRXvx9C7JWO2ZsBlNGUdlZYzChhjHbSMQfScMGJFMW-9Hq39Cobl-9IWR3CKY5lfEWRxJILLGlRrRaViSGlCO7JFSM1B6TmgNQckJoDKgD7CzB--foctR-ex_iCPfgBHv9jojbbHfl0W9LGbSHfL6SHsxV237a7M2Cyrgg__EP4zDy_ACCaxTQ
CitedBy_id crossref_primary_10_1186_s12859_025_06066_8
crossref_primary_10_1155_2022_2801227
crossref_primary_10_1007_s11831_021_09648_w
crossref_primary_10_1587_transinf_2022DLP0008
crossref_primary_10_1111_exsy_12775
crossref_primary_10_1155_2022_8904768
crossref_primary_10_3390_app142210394
crossref_primary_10_1142_S0218488522400165
crossref_primary_10_3390_bioengineering10111289
crossref_primary_10_1007_s00371_022_02414_4
crossref_primary_10_1002_tee_23493
crossref_primary_10_1007_s42979_024_03590_x
crossref_primary_10_1089_big_2021_0268
crossref_primary_10_3390_app13020852
crossref_primary_10_1155_2021_5208940
Cites_doi 10.1117/1.JMI.1.3.034003
10.1002/jemt.22733
10.1016/j.swevo.2018.12.005
10.1038/s41379‐019‐0250‐8
10.1109/TBME.2014.2303852
10.1371/journal.pone.0070221
10.1007/s11760‐016‐0927‐0
10.1007/s11831‐017‐9227‐2
10.1016/j.imu.2016.11.001
10.1016/j.irbm.2019.06.001
10.1007/s10462‐016‐9494‐6
10.1109/TITB.2010.2087030
10.1007/s11220‐019‐0239‐x
10.1007/s12065‐018‐0165‐1
10.1364/BOE.10.002244
10.1109/ICCMC.2019.8819659
10.1109/RBME.2013.2295804
10.4103/jpi.jpi_74_17
10.1109/BIBM.2014.6999158
10.1016/j.sigpro.2015.11.011
10.1109/BIBE.2013.6701556
10.1117/1.JMI.6.1.017501
10.1016/j.asoc.2015.11.035
10.1038/s41598‐019‐38813‐2
10.1201/b22435-4
10.1007/s10278‐019‐00295‐z
10.1016/j.cmpb.2011.12.007
10.1109/TMI.2012.2190089
10.1016/j.compbiomed.2013.08.003
10.1016/j.neucom.2018.09.034
10.5220/0007406601200128
10.1016/j.neucom.2016.08.103
10.1007/978-3-030-04224-0_26
10.1109/ISBI.2017.7950669
10.1117/12.911643
10.1016/j.bspc.2013.04.003
10.1002/sim.7803
10.1016/j.micron.2011.09.016
ContentType Journal Article
Copyright 2020 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology
2020. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IDLOA
24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/trit.2019.0077
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library Open Access
  url: https://digital-library.theiet.org/content/collections
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 300
ExternalDocumentID oai_doaj_org_article_ca33bd8d1432443b9f4fe9c787298f8a
10_1049_trit_2019_0077
CIT2BF00116
Genre article
GroupedDBID 0R
0SF
24P
6I.
AACTN
AAFTH
AAJGR
ABMAC
ACGFS
ADBBV
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
BFFAM
EBS
EJD
FDB
GROUPED_DOAJ
IDLOA
O9-
OCL
OK1
RIE
RIG
RUI
SSZ
0R~
1OC
AAEDW
AAHHS
AAHJG
AALRI
AAXUO
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADVLN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
AKRWK
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
ITC
K7-
M41
M43
NCXOZ
PIMPY
ROL
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4876-c5e754f342f8a1aefb8b98138186fa18ce4bdff3df7e0de86a36a28b8186d25d3
IEDL.DBID 24P
ISSN 2468-2322
IngestDate Wed Aug 27 01:27:14 EDT 2025
Sat Jul 26 00:21:03 EDT 2025
Tue Jul 01 05:18:43 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Wed Jan 22 16:32:21 EST 2025
Thu Nov 26 04:20:13 EST 2020
Tue Jan 05 21:44:04 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords time steps
automated segmentation technique
histopathological breast cancer images
region of interest extraction
self-driven post-processing operations
weighted area coefficient parameters
magnification factor
window area size
spatial neutrosophic distance regularised level set
image enhancement
feature extraction
image segmentation
fuzzy C-means
cancerous cell detection
spatial fuzzy C-means
post-processing method
breast tissue
cancer
convolutional neural nets
convolutional neural network-based PangNet
medical image processing
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4876-c5e754f342f8a1aefb8b98138186fa18ce4bdff3df7e0de86a36a28b8186d25d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1054-8753
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftrit.2019.0077
PQID 3091978193
PQPubID 6852857
PageCount 7
ParticipantIDs crossref_primary_10_1049_trit_2019_0077
crossref_citationtrail_10_1049_trit_2019_0077
wiley_primary_10_1049_trit_2019_0077_CIT2BF00116
proquest_journals_3091978193
doaj_primary_oai_doaj_org_article_ca33bd8d1432443b9f4fe9c787298f8a
iet_journals_10_1049_trit_2019_0077
ProviderPackageCode IDLOA
RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2020
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
– name: Wiley
References Abdolhoseini, M.; Kluge, M.G.; Walker, F.R. (C15) 2019; 9
Kaushal, C.; Bhat, S.; Koundal, D. (C32) 2019; 40
Kowal, M.; Filipczuk, P.; Obuchowicz, A. (C14) 2013; 43
Bustacara-Medina, C.; Flórez-Valencia, L. (C40) 2019; 20
Veta, M.; Pluim, J.P.; Van Diest, P.J. (C3) 2014; 61
Irshad, H.; Veillard, A.; Roux, L. (C7) 2014; 7
Mittal, H.; Saraswat, M. (C21) 2019; 45
Das, A.; Nair, M.S.; Peter, S.D. (C6) 2020; 33
Veta, M.; Van Diest, P.J.; Kornegoor, R. (C23) 2013; 8
Wang, H.; Roa, A.C.; Basavanhally, A.N. (C13) 2014; 1
Hayakawa, T.; Prasath, V.S.; Kawanaka, H. (C1) 2019; 26
Aswathy, M.A.; Jagannath, M. (C4) 2017; 8
Krishnan, M.M.R.; Venkatraghavan, V.; Acharya, U.R. (C35) 2012; 43
Husham, A.; Hazim Alkawaz, M.; Saba, T. (C26) 2016; 79
Wang, P.; Hu, X.; Li, Y. (C22) 2016; 122
Gubarkova, E.V.; Sovetsky, A.A.; Zaitsev, V.Y. (C28) 2019; 10
Xu, J.; Gong, L.; Wang, G. (C18) 2019; 6
Ali, S.; Madabhushi, A. (C17) 2012; 31
Plissiti, M.E.; Nikou, C.; Charchanti, A. (C20) 2011; 15
Pan, X.; Li, L.; Yang, H. (C33) 2017; 229
Singla, A.; Patra, S. (C37) 2017; 11
Hinojosa, S.; Dhal, K.G.; Elaziz, M.A. (C41) 2018; 321
Cahill, L.C.; Fujimoto, J.G.; Giacomelli, M.G. (C2) 2019; 32
Ishwaran, H.; Lu, M. (C44) 2019; 38
Mouelhi, A.; Sayadi, M.; Fnaiech, F. (C16) 2013; 8
Jothi, J.A.A.; Rajam, V.M.A. (C8) 2017; 48
Vishnoi, S.; Jain, A.K.; Sharma, P.K. (C12) 2019; 12
Sornapudi, S.; Stanley, R.J.; Stoecker, W.V. (C19) 2018; 9
He, L.; Long, L.R.; Antani, S. (C10) 2012; 107
Koundal, D.; Gupta, S.; Singh, S. (C29) 2016; 40
2017; 8
2019; 9
2019; 6
2017; 48
2013; 43
2012; 8315
2019; 32
2019; 10
2019; 12
2018; 321
2019; 38
2016; 122
2020; 33
2011; 15
2013; 8
2014; 61
2012; 107
2012; 31
2016; 79
2014; 1
2017; 229
2018; 9
2019; 40
2019; 20
2017; 11
2019; 45
2019; 26
2019
2018
2016; 40
2017
2014
2013
2014; 7
2012; 43
e_1_2_5_26_2
e_1_2_5_27_2
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_45_2
e_1_2_5_23_2
e_1_2_5_44_2
e_1_2_5_43_2
e_1_2_5_21_2
e_1_2_5_42_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_41_2
e_1_2_5_40_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_39_2
e_1_2_5_19_2
Sornapudi S. (e_1_2_5_20_2) 2018; 9
e_1_2_5_30_2
References_xml – volume: 9
  start-page: 4551
  issue: 1
  year: 2019
  ident: C15
  article-title: Segmentation of heavily clustered nuclei from histopathological images
  publication-title: Sci. Rep.
– volume: 40
  start-page: 86
  year: 2016
  end-page: 97
  ident: C29
  article-title: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 558
  issue: 4
  year: 2019
  end-page: 582
  ident: C44
  article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival
  publication-title: Stat. Med.
– volume: 45
  start-page: 15
  year: 2019
  end-page: 32
  ident: C21
  article-title: An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering
  publication-title: Swarm. Evol. Comput.
– volume: 6
  start-page: 017501
  issue: 1
  year: 2019
  ident: C18
  article-title: Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images
  publication-title: J. Med. Imag.
– volume: 229
  start-page: 88
  year: 2017
  end-page: 99
  ident: C33
  article-title: Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks
  publication-title: Neurocomputing
– volume: 9
  start-page: 5
  issue: 5
  year: 2018
  ident: C19
  article-title: Deep learning nuclei detection in digitized histology images by superpixels
  publication-title: J. Pathol. Inform.
– volume: 15
  start-page: 233
  issue: 2
  year: 2011
  end-page: 241
  ident: C20
  article-title: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 12
  ident: C12
  article-title: An efficient nuclei segmentation method based on roulette wheel whale optimization and fuzzy clustering
  publication-title: Evol. Intell.
– volume: 8
  start-page: 421
  issue: 5
  year: 2013
  end-page: 436
  ident: C16
  article-title: Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method
  publication-title: Biomed. Signal Proc. Control
– volume: 33
  start-page: 1
  year: 2020
  end-page: 31
  ident: C6
  article-title: Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review
  publication-title: J. Digit. Imaging
– volume: 1
  start-page: 1
  issue: 3
  year: 2014
  end-page: 8
  ident: C13
  article-title: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
  publication-title: J. Med. Imag.
– volume: 122
  start-page: 1
  year: 2016
  end-page: 13
  ident: C22
  article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images
  publication-title: Signal Process.
– volume: 79
  start-page: 993
  issue: 10
  year: 2016
  end-page: 997
  ident: C26
  article-title: Automated nuclei segmentation of malignant using level sets
  publication-title: Microsc. Res. Tech.
– volume: 40
  start-page: 211
  issue: 4
  year: 2019
  end-page: 227
  ident: C32
  article-title: Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images
  publication-title: IRBM
– volume: 8
  start-page: 74
  year: 2017
  end-page: 79
  ident: C4
  article-title: Detection of breast cancer on digital histopathology images: present status and future possibilities
  publication-title: Inform. Med. Unlocked
– volume: 7
  start-page: 97
  year: 2014
  end-page: 114
  ident: C7
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 48
  start-page: 31
  issue: 1
  year: 2017
  end-page: 81
  ident: C8
  article-title: A survey on automated cancer diagnosis from histopathology images
  publication-title: Artif. Intell. Rev.
– volume: 11
  start-page: 243
  issue: 2
  year: 2017
  end-page: 250
  ident: C37
  article-title: A fast automatic optimal threshold selection technique for image segmentation
  publication-title: Signal. Image. Video. Process.
– volume: 107
  start-page: 538
  issue: 3
  year: 2012
  end-page: 556
  ident: C10
  article-title: Histology image analysis for carcinoma detection and grading
  publication-title: Comput. Methods Programs Biomed.
– volume: 43
  start-page: 352
  issue: 2–3
  year: 2012
  end-page: 364
  ident: C35
  article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm
  publication-title: Micron
– volume: 321
  start-page: 201
  year: 2018
  end-page: 215
  ident: C41
  article-title: Entropy-based imagery segmentation for breast histology using the stochastic fractal search
  publication-title: Neurocomputing
– volume: 26
  start-page: 1
  year: 2019
  ident: C1
  article-title: Computational nuclei segmentation methods in digital pathology: a survey
  publication-title: Arch Comput Meth. Eng.
– volume: 8
  start-page: 1
  issue: 7
  year: 2013
  end-page: 12
  ident: C23
  article-title: Automatic nuclei segmentation in h&e stained breast cancer histopathology images
  publication-title: PloS One
– volume: 32
  start-page: 1158
  issue: 8
  year: 2019
  end-page: 1167
  ident: C2
  article-title: Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study
  publication-title: Mod. Pathol.
– volume: 31
  start-page: 1448
  issue: 7
  year: 2012
  end-page: 1460
  ident: C17
  article-title: An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery
  publication-title: IEEE Trans. Med. Imaging
– volume: 61
  start-page: 1400
  issue: 5
  year: 2014
  end-page: 1411
  ident: C3
  article-title: Breast cancer histopathology image analysis: a review
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 43
  start-page: 1563
  issue: 10
  year: 2013
  end-page: 1572
  ident: C14
  article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 2244
  issue: 5
  year: 2019
  end-page: 2263
  ident: C28
  article-title: OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes
  publication-title: Biomed. Opt. Express
– volume: 20
  start-page: 26
  issue: 1
  year: 2019
  ident: C40
  article-title: An automatic stopping criterion for contrast enhancement using multi-scale top-hat transformation
  publication-title: Sens. Imaging.
– volume: 1
  start-page: 1
  issue: 3
  year: 2014
  end-page: 8
  article-title: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
  publication-title: J. Med. Imag.
– start-page: 71
  year: 2019
  end-page: 98
– volume: 43
  start-page: 352
  issue: 2–3
  year: 2012
  end-page: 364
  article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm
  publication-title: Micron
– volume: 48
  start-page: 31
  issue: 1
  year: 2017
  end-page: 81
  article-title: A survey on automated cancer diagnosis from histopathology images
  publication-title: Artif. Intell. Rev.
– volume: 7
  start-page: 97
  year: 2014
  end-page: 114
  article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 229
  start-page: 88
  year: 2017
  end-page: 99
  article-title: Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks
  publication-title: Neurocomputing
– start-page: 218
  year: 2014
  end-page: 223
  article-title: Two‐step segmentation of hematoxylin‐eosin stained histopathological images for prognosis of breast cancer
– volume: 9
  start-page: 4551
  issue: 1
  year: 2019
  article-title: Segmentation of heavily clustered nuclei from histopathological images
  publication-title: Sci. Rep.
– volume: 321
  start-page: 201
  year: 2018
  end-page: 215
  article-title: Entropy‐based imagery segmentation for breast histology using the stochastic fractal search
  publication-title: Neurocomputing
– volume: 33
  start-page: 1
  year: 2020
  end-page: 31
  article-title: Computer‐aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review
  publication-title: J. Digit. Imaging
– volume: 12
  start-page: 1
  year: 2019
  end-page: 12
  article-title: An efficient nuclei segmentation method based on roulette wheel whale optimization and fuzzy clustering
  publication-title: Evol. Intell.
– volume: 20
  start-page: 26
  issue: 1
  year: 2019
  article-title: An automatic stopping criterion for contrast enhancement using multi‐scale top‐hat transformation
  publication-title: Sens. Imaging.
– volume: 31
  start-page: 1448
  issue: 7
  year: 2012
  end-page: 1460
  article-title: An integrated region‐, boundary‐, shape‐based active contour for multiple object overlap resolution in histological imagery
  publication-title: IEEE Trans. Med. Imaging
– volume: 40
  start-page: 86
  year: 2016
  end-page: 97
  article-title: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set
  publication-title: Appl. Soft Comput.
– volume: 107
  start-page: 538
  issue: 3
  year: 2012
  end-page: 556
  article-title: Histology image analysis for carcinoma detection and grading
  publication-title: Comput. Methods Programs Biomed.
– volume: 15
  start-page: 233
  issue: 2
  year: 2011
  end-page: 241
  article-title: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 8315
  start-page: 831515
  year: 2012
  article-title: Automated malignancy detection in breast histopathological images
– start-page: 1
  year: 2013
  end-page: 4
  article-title: Towards generalized nuclear segmentation in histological images
– year: 2019
  article-title: Gland segmentation in histopathological images by deep neural network
– volume: 8
  start-page: 421
  issue: 5
  year: 2013
  end-page: 436
  article-title: Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method
  publication-title: Biomed. Signal Proc. Control
– volume: 122
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images
  publication-title: Signal Process.
– start-page: 120
  year: 2019
  end-page: 128
  article-title: Deep analysis of CNN settings for new cancer whole‐slide histological images segmentation: the case of small training sets
– volume: 11
  start-page: 243
  issue: 2
  year: 2017
  end-page: 250
  article-title: A fast automatic optimal threshold selection technique for image segmentation
  publication-title: Signal. Image. Video. Process.
– start-page: 261
  year: 2019
  end-page: 266
  article-title: Comparative analysis of segmentation techniques using histopathological images of breast cancer
– volume: 6
  start-page: 017501
  issue: 1
  year: 2019
  article-title: Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images
  publication-title: J. Med. Imag.
– volume: 61
  start-page: 1400
  issue: 5
  year: 2014
  end-page: 1411
  article-title: Breast cancer histopathology image analysis: a review
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 307
  year: 2018
  end-page: 317
  article-title: Improved nuclear segmentation on histopathology images using a combination of deep learning and active contour model
– volume: 10
  start-page: 2244
  issue: 5
  year: 2019
  end-page: 2263
  article-title: OCT‐elastography‐based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes
  publication-title: Biomed. Opt. Express
– volume: 79
  start-page: 993
  issue: 10
  year: 2016
  end-page: 997
  article-title: Automated nuclei segmentation of malignant using level sets
  publication-title: Microsc. Res. Tech.
– volume: 32
  start-page: 1158
  issue: 8
  year: 2019
  end-page: 1167
  article-title: Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study
  publication-title: Mod. Pathol.
– year: 2019
  article-title: DA‐RefineNet: A dual input WSI image segmentation algorithm based on attention
– volume: 38
  start-page: 558
  issue: 4
  year: 2019
  end-page: 582
  article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival
  publication-title: Stat. Med.
– volume: 26
  start-page: 1
  year: 2019
  article-title: Computational nuclei segmentation methods in digital pathology: a survey
  publication-title: Arch Comput Meth. Eng.
– volume: 45
  start-page: 15
  year: 2019
  end-page: 32
  article-title: An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering
  publication-title: Swarm. Evol. Comput.
– volume: 9
  start-page: 5
  issue: 5
  year: 2018
  article-title: Deep learning nuclei detection in digitized histology images by superpixels
  publication-title: J. Pathol. Inform.
– start-page: 933
  year: 2017
  end-page: 936
  article-title: Nuclei segmentation in histopathology images using deep neural networks
– volume: 8
  start-page: 74
  year: 2017
  end-page: 79
  article-title: Detection of breast cancer on digital histopathology images: present status and future possibilities
  publication-title: Inform. Med. Unlocked
– volume: 8
  start-page: 1
  issue: 7
  year: 2013
  end-page: 12
  article-title: Automatic nuclei segmentation in h&e stained breast cancer histopathology images
  publication-title: PloS One
– volume: 40
  start-page: 211
  issue: 4
  year: 2019
  end-page: 227
  article-title: Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images
  publication-title: IRBM
– volume: 43
  start-page: 1563
  issue: 10
  year: 2013
  end-page: 1572
  article-title: Computer‐aided diagnosis of breast cancer based on fine needle biopsy microscopic images
  publication-title: Comput. Biol. Med.
– ident: e_1_2_5_14_2
  doi: 10.1117/1.JMI.1.3.034003
– ident: e_1_2_5_27_2
  doi: 10.1002/jemt.22733
– ident: e_1_2_5_39_2
– ident: e_1_2_5_22_2
  doi: 10.1016/j.swevo.2018.12.005
– ident: e_1_2_5_3_2
  doi: 10.1038/s41379‐019‐0250‐8
– ident: e_1_2_5_4_2
  doi: 10.1109/TBME.2014.2303852
– ident: e_1_2_5_24_2
  doi: 10.1371/journal.pone.0070221
– ident: e_1_2_5_38_2
  doi: 10.1007/s11760‐016‐0927‐0
– ident: e_1_2_5_2_2
  doi: 10.1007/s11831‐017‐9227‐2
– ident: e_1_2_5_5_2
  doi: 10.1016/j.imu.2016.11.001
– ident: e_1_2_5_33_2
  doi: 10.1016/j.irbm.2019.06.001
– ident: e_1_2_5_9_2
  doi: 10.1007/s10462‐016‐9494‐6
– ident: e_1_2_5_21_2
  doi: 10.1109/TITB.2010.2087030
– ident: e_1_2_5_6_2
– ident: e_1_2_5_41_2
  doi: 10.1007/s11220‐019‐0239‐x
– ident: e_1_2_5_13_2
  doi: 10.1007/s12065‐018‐0165‐1
– ident: e_1_2_5_40_2
– ident: e_1_2_5_43_2
– ident: e_1_2_5_29_2
  doi: 10.1364/BOE.10.002244
– ident: e_1_2_5_10_2
  doi: 10.1109/ICCMC.2019.8819659
– ident: e_1_2_5_8_2
  doi: 10.1109/RBME.2013.2295804
– volume: 9
  start-page: 5
  issue: 5
  year: 2018
  ident: e_1_2_5_20_2
  article-title: Deep learning nuclei detection in digitized histology images by superpixels
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_74_17
– ident: e_1_2_5_25_2
  doi: 10.1109/BIBM.2014.6999158
– ident: e_1_2_5_23_2
  doi: 10.1016/j.sigpro.2015.11.011
– ident: e_1_2_5_26_2
  doi: 10.1109/BIBE.2013.6701556
– ident: e_1_2_5_37_2
– ident: e_1_2_5_19_2
  doi: 10.1117/1.JMI.6.1.017501
– ident: e_1_2_5_31_2
– ident: e_1_2_5_30_2
  doi: 10.1016/j.asoc.2015.11.035
– ident: e_1_2_5_16_2
  doi: 10.1038/s41598‐019‐38813‐2
– ident: e_1_2_5_12_2
  doi: 10.1201/b22435-4
– ident: e_1_2_5_7_2
  doi: 10.1007/s10278‐019‐00295‐z
– ident: e_1_2_5_11_2
  doi: 10.1016/j.cmpb.2011.12.007
– ident: e_1_2_5_18_2
  doi: 10.1109/TMI.2012.2190089
– ident: e_1_2_5_15_2
  doi: 10.1016/j.compbiomed.2013.08.003
– ident: e_1_2_5_42_2
  doi: 10.1016/j.neucom.2018.09.034
– ident: e_1_2_5_32_2
  doi: 10.5220/0007406601200128
– ident: e_1_2_5_34_2
  doi: 10.1016/j.neucom.2016.08.103
– ident: e_1_2_5_28_2
  doi: 10.1007/978-3-030-04224-0_26
– ident: e_1_2_5_44_2
  doi: 10.1109/ISBI.2017.7950669
– ident: e_1_2_5_35_2
  doi: 10.1117/12.911643
– ident: e_1_2_5_17_2
  doi: 10.1016/j.bspc.2013.04.003
– ident: e_1_2_5_45_2
  doi: 10.1002/sim.7803
– ident: e_1_2_5_36_2
  doi: 10.1016/j.micron.2011.09.016
SSID ssj0001999537
Score 2.2758884
Snippet Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to...
SourceID doaj
proquest
crossref
wiley
iet
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Algorithms
Artificial neural networks
automated segmentation technique
Automation
Breast cancer
breast tissue
cancer
cancerous cell detection
Clustering
convolutional neural nets
convolutional neural network-based pangnet
Deep learning
feature extraction
fuzzy C‐means
Fuzzy logic
Fuzzy sets
histopathological breast cancer images
Image enhancement
Image segmentation
magnification factor
medical image processing
Medical imaging
Morphology
Neural networks
Parameter sensitivity
post-processing method
region of interest extraction
Research Article
self-driven post-processing operations
spatial fuzzy C‐means
spatial neutrosophic distance regularised level set
time steps
Watersheds
weighted area coefficient parameters
window area size
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp15KSxu6bdoKWshJJCtptdIxCTVJoTkEB3ITq48pAcc29ub_Z0a7duxDyKVXaWBXoyfNjDR6w9gvCca6OkoByWqhEwRh6waDFQUhYkSSu1IM5u-1ubzVf-6au51SX5QTNtADD4o7iZ1SIdlUE3WcVsGBhuwi4kw6C7a4RmjzdoKpcrqCfk-j2g1Lo3YnRG1PmVxET9m2e1aokPWjbbnP_Z6fueutFnMzec_ejX4iPxv-7wN7k-cf2ezssV-gi5kTX-d_D-OzoTnfErFyOlbFvhmItKJ9jC8X614sh9cAaKU4-qi8cAxTKeLNxscDpab3PBIEVvz-ATeZ9Sd2O_k9vbgUY7kEETHqMCI2uW00KC1RLXWXIdjgbE0m2UBX25h1SAAqQZtPU7amU6aTNlB_kk1Sh-xgvpjnz4yn1jVNyqozGJ6BVKGrwcQ2GGixRYaKiY36fBy5xKmkxcyXO23tPKnbk7o9qbtix1v55cCi8aLkOc3GVorYr0sDYsKPmPCvYaJiP3Eu_bga1y9-6see1PTmavrc65cJKna0QcOzmEK0EVGYUxU7LQh5ZUj-4moqzyflyuvL_xjeV_ZWUtRfkmqO2EG_eszf0DXqw_eyCp4ARNkLyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELYgvXBBIEAsFLAEEierXdtre49tIWoQcECp1JvlZ1UpTaJk-_-Z8e4mRKiC63pWXo9nZ77x4xtCPvGsTFsHznI0ksmYPTN1A8mKyD5ARpJcKQbz46e6vJLfrpvrPaVQvL3BWhlsXHHD1fLU3zzAo9vgh08GHfcFSQDfniBpPZ7RQuJJrR-TI651LSfkaPbl-5BflQUXgEKN0CNx418vHgSmwt8P4QY6P4CefwLYEoGmz8jTATrSs36un5NHafmCLM7uuxWgzhTpNt3cDTeJlnTHzUpxpRXaFpnFDbo2ul5tO7buLwhA4KIAW2mhHcbqxKMvpB5Pq3c0oFVs6O0d-J3tS3I1_Tq_uGRDBQUWIBFRLDRJNzILybNxtUvZG9-aGqO0yq42IUkfcxYx63Qak1FOKMeNx_bImyhekclytUyvCY26bZqYhFOQsWUuvKuzCtqrrOEJ9xVho_psGOjFscrFwpZtbtlaVLdFdVtUd0U-7-TXPbHGg5LnOBs7KSTELg_AKuzwf9nghPDRxBoZBqXwbZY5tQHcEW8NDL4iH2Eu7Wg8D3b14UBq_ms237fadcwVOR6tYS8mAHQhd1grKnJaLOQfQ7IXszk_n5ZdsDf_9WVvyROOmX45SHNMJt3mPr0DONT594Oh_wYcbAio
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwELZauPRSFbVV09JiqZV6iiC24zgnxCJWUKmoQovEzYr_EBJs0k249xF4Rp6EGa-z2z3QHmOPEmU8nj-PvyHkGwtS1YVleXBK5MIFk6uihGCFB2MhIvFNbAbz81yeXoofV-VVSrj1qaxy1IlRUbvWYo58n4NhQ3ymmh92v3PsGoWnq6mFxkuyDSpYQfC1PTk5_3WxzrKA_1PyakRrFPU-QtxjRRfCVFbVhjWKoP1gY278sOFv_u21RrMzfUNeJ3-RHi0XeIe88PO3pDu6H1pwNb2jvb--S9eH5nQFyEoxvQpzt-Hxz4NboEajXdsP8NQtbwaAxaLgr9KIN4xtiUclSA2WqQ_Uojgs6M0dKJz-HbmcnsyOT_PUOiG3EIHI3Ja-KkXgggXVFI0PRplaFWieZWgKZb0wLgTuQuUPnFey4bJhyuC8Y6Xj78nWvJ37D4S6qi5L53kjIVQLjJumCNJWRoYKRpjJSD6yUNuEK47tLW51PN8WtUaWa2S5RpZn5PuKvlsiajxLOcEVWVEhEnYcaBfXOm0sbRvOjVOuQGhBwU0dRPC1BT3EagU_n5GvsJ467cz-2U_tbVDNLs5m61nduZCR3VEi1mRroczIQZSS__ySPj6bsck0Hn99_PcbP5FXDGP7WDqzS7aGxb3_DA7QYL4kKX8CK8kIDg
  priority: 102
  providerName: ProQuest
Title Automated segmentation technique with self-driven post-processing for histopathological breast cancer images
URI http://digital-library.theiet.org/content/journals/10.1049/trit.2019.0077
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftrit.2019.0077
https://www.proquest.com/docview/3091978193
https://doaj.org/article/ca33bd8d1432443b9f4fe9c787298f8a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdge-EFgQARGMUSSDxFLLaT2I_ttrKibUyjk_Zm-e80aWujNnvnI_AZ-STcOWm7PkyIl1SJL6li--5-5_h-R8hnFiupCsfy6KXIhY82l0UJwQqP1kFEEkwqBnN6Vh1fiu9X5dWDLP6OH2K94Iaakew1KrixXRUSALUwiMhVj1uzkG-yrp-SXcyvRfZ8Js43qyyAf8pEnMkwxQjgA1sxNwr1dfsRW54pEfiDv7kJ7Rb2fIhgkwsavyDPe-xIh91gvyRPwuwVaYb37RxgZ_B0Ga7v-lSiGV2Ts1JcaoW22_jn12-_QOtGm_myhbOmyxIA70UBu9LEPYwlilcGkVrcst5Sh1NjQW_uwPgsX5PL8dH04DjvyyjkDqKRKndlqEsRuWBRmsKEaKVVskBXXUVTSBeE9TFyH-uw74OsDK8MkxbbPSs9f0N2ZvNZeEuor1VZ-sBNBWFbZNyaIlautlWs4QqzGclXXahdzzGOpS5udfrWLZTGLtfY5Rq7PCNf1vJNx67xqOQIR2QthazY6cJ8ca17JdPOcG699AXSDApuVRQxKAc2iSkJL5-RTzCeutfS5aN_9XFLanoxmW5adeNjRvZWM2IjxgF5IYGY4hnZT7PkH6-kDyZTNhqnT2Hv_v-W9-QZw9g_ba3ZIzvt4j58AIDU2kHSATjK8bcB2R0enp78hN_R0dn5xSAtOsDZ5PDkx_AvjqcSqg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgQARKNQSIE5RG9tJnEOF2sKySx8HlEq9mfhVVWo3YZOq4sZP4Jfwo_glzHiTXfZQOPUYe-TI43n68Q0hb5jPZJEYFnsrRSys17FMUkhWuNcGMhJXhWIwR8fZ-ER8Pk1P18iv4S0MXqscbGIw1LY2uEe-xcGxIT5Twd8332KsGoWnq0MJjblYHLjv15CytTuTD7C-bxkbfSz3x3FfVSA2EJxnsUldngrPBfOySirntdSFTNBzZb5KpHFCW--59bnbtk5mFc8qJjX2W5ZaDuPeIXcF5wVqlBx9Wu7pQLSV8nzAhhTFFgLq4_0xBMXM8xXfF0oEgEc7d91KdPt3jByc3OghedBHp3R3Lk6PyJqbPibN7lVXQ2DrLG3d2WX_WGlKF_CvFDdzoe_C__7x087QftKmbjv4aubvEMA_UoiOaUA3xiLIg8mlGi_Fd9Sg8M3o-SWYt_YJObkVlj4l69N66p4RavMiTa3jVQaJoWdcV4nPTK4zn0ML0xGJBxYq06OYYzGNCxVO00WhkOUKWa6Q5RF5t6Bv5vgdN1Lu4YosqBB3OzTUszPVq7EyFefaSpsgkKHguvDCu8KA1WOFhMlH5DWsp-rtQHvjrzZXqMovk3LZqxrrI7IxSMSSbKkCEdkOUvKfKan9Scn2RuGw7fm_R9wk98bl0aE6nBwfvCD3Ge4qhEs7G2S9m125lxB6dfpVkHdKvt62gv0BBRxEkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgkxAvaAgQGRuzBBJPEYvtJPZjN6jWARNCLZp4sXydJm1t1Gbv_AR-437JznHSdn2YJh5jnySyfS7f8eUzIR9ZrKQqHMujlyIXPtpcFiUkKzxaBxlJMOkymB9n1clEnJ6X5_dO8Xf8EKsJN7SM5K_RwBsfu3xTIEcmctXj1izkm6zrp2QbqfJAr7cHvyd_Jut5FkBAZaLOZHjICAAEW3I3CvV58yMbsSlR-EPEuQztBvq8j2FTEBrukBc9eqSDbrhfkidh-oo0g5t2BsAzeLoIF9f9YaIpXdGzUpxshbqrePv3n5-jf6PNbNHCU9OdE4D4RQG90sQ-jJcUL10itbhpvaUOlWNOL6_B_Sxek8nw6_j4JO8vUsgd5CNV7spQlyJywaI0hQnRSqtkgcG6iqaQLgjrY-Q-1uHQB1kZXhkmLdZ7Vnr-hmxNZ9PwllBfq7L0gZsKErfIuDVFrFxtq1hDCbMZyZddqF3PMo6XXVzptNotlMYu19jlGrs8I59W8k3Hr_Gg5BGOyEoKebFTwWx-oXsz085wbr30BRINCm5VFDEoB16JKQmNz8gHGE_d2-niwV8dbEiNf43G61oNepiRvaVGrMU4YC-kEFM8I4dJSx5pkj4ejdnRMC2G7f7_Kwfk2c8vQ_19dPbtHXnOcCIg7bPZI1vt_CbsA1pq7fveIO4AUHoQeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+technique+with+self%E2%80%90driven+post%E2%80%90processing+for+histopathological+breast+cancer+images&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Kaushal%2C+Chetna&rft.au=Singla%2C+Anshu&rft.date=2020-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=5&rft.issue=4&rft.spage=294&rft.epage=300&rft_id=info:doi/10.1049%2Ftrit.2019.0077&rft.externalDBID=10.1049%252Ftrit.2019.0077&rft.externalDocID=CIT2BF00116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon