Automated segmentation technique with self-driven post-processing for histopathological breast cancer images
Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of i...
Saved in:
Published in | CAAI Transactions on Intelligence Technology Vol. 5; no. 4; pp. 294 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
The Institution of Engineering and Technology
01.12.2020
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of interest effectively, the subject expert performs post-processing operations several times on the segmentation results with different input values for different parameters say, area opening, fill holes and selects most appropriate enhanced image required for further analysis. The authors proposed an automated segmentation technique followed by self-driven post-processing operations to detect cancerous cells effectively. The post-processing method itself determines the value of different parameters for different operations based on segmented results obtained. The proposed technique has the following features: (i) technique is context sensitive; (ii) no prior setting of time step, weighted area coefficient parameters is required; (iii) magnification independent; (iv) post-processing operations are self-driven which enhance segmentation results adaptively. The experimental results are compared with four state-of-the-art techniques: fuzzy C-means, spatial fuzzy C-means, spatial neutrosophic distance regularised level set and convolutional neural network-based PangNet. Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively. |
---|---|
AbstractList | Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to segment image, but depends on user input, say window area size, time steps, level set, magnification factor and so on. To extract the region of interest effectively, the subject expert performs post‐processing operations several times on the segmentation results with different input values for different parameters say, area opening, fill holes and selects most appropriate enhanced image required for further analysis. The authors proposed an automated segmentation technique followed by self‐driven post‐processing operations to detect cancerous cells effectively. The post‐processing method itself determines the value of different parameters for different operations based on segmented results obtained. The proposed technique has the following features: (i) technique is context sensitive; (ii) no prior setting of time step, weighted area coefficient parameters is required; (iii) magnification independent; (iv) post‐processing operations are self‐driven which enhance segmentation results adaptively. The experimental results are compared with four state‐of‐the‐art techniques: fuzzy C‐means, spatial fuzzy C‐means, spatial neutrosophic distance regularised level set and convolutional neural network‐based PangNet. Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively. |
Author | Singla, Anshu Kaushal, Chetna |
Author_xml | – sequence: 1 givenname: Chetna surname: Kaushal fullname: Kaushal, Chetna organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 2 givenname: Anshu orcidid: 0000-0002-1054-8753 surname: Singla fullname: Singla, Anshu email: anshu.singla@chitkara.edu.in organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India |
BookMark | eNqFkd1rFDEUxQepYK199XlA8EGYNV87SR7rYu1CQZD1OWSSm9kss5MxyVr635txpCxi8Skh9_zuuTfndXUxhhGq6i1GK4yY_JijzyuCsFwhxPmL6pKwVjSEEnJxdn9VXad0QKjopFxTflkNN6ccjjqDrRP0Rxizzj6MdQazH_2PE9QPPu9LbXCNjf4njPUUUm6mGAyk5Me-diHWe59ymHTehyH03uih7iLolGujRwOx9kfdQ3pTvXR6SHD957yqvt9-3m3umvuvX7abm_vGMMHbxqyBr5mjjDihsQbXiU4KTAUWrdNYGGCddY5axwFZEK2mrSaim-uWrC29qrZLXxv0QU2xuMdHFbRXvx9C7JWO2ZsBlNGUdlZYzChhjHbSMQfScMGJFMW-9Hq39Cobl-9IWR3CKY5lfEWRxJILLGlRrRaViSGlCO7JFSM1B6TmgNQckJoDKgD7CzB--foctR-ex_iCPfgBHv9jojbbHfl0W9LGbSHfL6SHsxV237a7M2Cyrgg__EP4zDy_ACCaxTQ |
CitedBy_id | crossref_primary_10_1186_s12859_025_06066_8 crossref_primary_10_1155_2022_2801227 crossref_primary_10_1007_s11831_021_09648_w crossref_primary_10_1587_transinf_2022DLP0008 crossref_primary_10_1111_exsy_12775 crossref_primary_10_1155_2022_8904768 crossref_primary_10_3390_app142210394 crossref_primary_10_1142_S0218488522400165 crossref_primary_10_3390_bioengineering10111289 crossref_primary_10_1007_s00371_022_02414_4 crossref_primary_10_1002_tee_23493 crossref_primary_10_1007_s42979_024_03590_x crossref_primary_10_1089_big_2021_0268 crossref_primary_10_3390_app13020852 crossref_primary_10_1155_2021_5208940 |
Cites_doi | 10.1117/1.JMI.1.3.034003 10.1002/jemt.22733 10.1016/j.swevo.2018.12.005 10.1038/s41379‐019‐0250‐8 10.1109/TBME.2014.2303852 10.1371/journal.pone.0070221 10.1007/s11760‐016‐0927‐0 10.1007/s11831‐017‐9227‐2 10.1016/j.imu.2016.11.001 10.1016/j.irbm.2019.06.001 10.1007/s10462‐016‐9494‐6 10.1109/TITB.2010.2087030 10.1007/s11220‐019‐0239‐x 10.1007/s12065‐018‐0165‐1 10.1364/BOE.10.002244 10.1109/ICCMC.2019.8819659 10.1109/RBME.2013.2295804 10.4103/jpi.jpi_74_17 10.1109/BIBM.2014.6999158 10.1016/j.sigpro.2015.11.011 10.1109/BIBE.2013.6701556 10.1117/1.JMI.6.1.017501 10.1016/j.asoc.2015.11.035 10.1038/s41598‐019‐38813‐2 10.1201/b22435-4 10.1007/s10278‐019‐00295‐z 10.1016/j.cmpb.2011.12.007 10.1109/TMI.2012.2190089 10.1016/j.compbiomed.2013.08.003 10.1016/j.neucom.2018.09.034 10.5220/0007406601200128 10.1016/j.neucom.2016.08.103 10.1007/978-3-030-04224-0_26 10.1109/ISBI.2017.7950669 10.1117/12.911643 10.1016/j.bspc.2013.04.003 10.1002/sim.7803 10.1016/j.micron.2011.09.016 |
ContentType | Journal Article |
Copyright | 2020 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology 2020. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IDLOA 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1049/trit.2019.0077 |
DatabaseName | IET Digital Library Open Access Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: IDLOA name: IET Digital Library Open Access url: https://digital-library.theiet.org/content/collections sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-2322 |
EndPage | 300 |
ExternalDocumentID | oai_doaj_org_article_ca33bd8d1432443b9f4fe9c787298f8a 10_1049_trit_2019_0077 CIT2BF00116 |
Genre | article |
GroupedDBID | 0R 0SF 24P 6I. AACTN AAFTH AAJGR ABMAC ACGFS ADBBV AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV BFFAM EBS EJD FDB GROUPED_DOAJ IDLOA O9- OCL OK1 RIE RIG RUI SSZ 0R~ 1OC AAEDW AAHHS AAHJG AALRI AAXUO ABQXS ACCFJ ACCMX ACESK ACXQS ADVLN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE AKRWK ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU HCIFZ IAO ITC K7- M41 M43 NCXOZ PIMPY ROL AAYWO AAYXX ACVFH ADCNI ADMLS AEUPX AFPUW AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4876-c5e754f342f8a1aefb8b98138186fa18ce4bdff3df7e0de86a36a28b8186d25d3 |
IEDL.DBID | 24P |
ISSN | 2468-2322 |
IngestDate | Wed Aug 27 01:27:14 EDT 2025 Sat Jul 26 00:21:03 EDT 2025 Tue Jul 01 05:18:43 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Wed Jan 22 16:32:21 EST 2025 Thu Nov 26 04:20:13 EST 2020 Tue Jan 05 21:44:04 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | time steps automated segmentation technique histopathological breast cancer images region of interest extraction self-driven post-processing operations weighted area coefficient parameters magnification factor window area size spatial neutrosophic distance regularised level set image enhancement feature extraction image segmentation fuzzy C-means cancerous cell detection spatial fuzzy C-means post-processing method breast tissue cancer convolutional neural nets convolutional neural network-based PangNet medical image processing |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4876-c5e754f342f8a1aefb8b98138186fa18ce4bdff3df7e0de86a36a28b8186d25d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1054-8753 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftrit.2019.0077 |
PQID | 3091978193 |
PQPubID | 6852857 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1049_trit_2019_0077 crossref_citationtrail_10_1049_trit_2019_0077 wiley_primary_10_1049_trit_2019_0077_CIT2BF00116 proquest_journals_3091978193 doaj_primary_oai_doaj_org_article_ca33bd8d1432443b9f4fe9c787298f8a iet_journals_10_1049_trit_2019_0077 |
ProviderPackageCode | IDLOA RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | CAAI Transactions on Intelligence Technology |
PublicationYear | 2020 |
Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc – name: Wiley |
References | Abdolhoseini, M.; Kluge, M.G.; Walker, F.R. (C15) 2019; 9 Kaushal, C.; Bhat, S.; Koundal, D. (C32) 2019; 40 Kowal, M.; Filipczuk, P.; Obuchowicz, A. (C14) 2013; 43 Bustacara-Medina, C.; Flórez-Valencia, L. (C40) 2019; 20 Veta, M.; Pluim, J.P.; Van Diest, P.J. (C3) 2014; 61 Irshad, H.; Veillard, A.; Roux, L. (C7) 2014; 7 Mittal, H.; Saraswat, M. (C21) 2019; 45 Das, A.; Nair, M.S.; Peter, S.D. (C6) 2020; 33 Veta, M.; Van Diest, P.J.; Kornegoor, R. (C23) 2013; 8 Wang, H.; Roa, A.C.; Basavanhally, A.N. (C13) 2014; 1 Hayakawa, T.; Prasath, V.S.; Kawanaka, H. (C1) 2019; 26 Aswathy, M.A.; Jagannath, M. (C4) 2017; 8 Krishnan, M.M.R.; Venkatraghavan, V.; Acharya, U.R. (C35) 2012; 43 Husham, A.; Hazim Alkawaz, M.; Saba, T. (C26) 2016; 79 Wang, P.; Hu, X.; Li, Y. (C22) 2016; 122 Gubarkova, E.V.; Sovetsky, A.A.; Zaitsev, V.Y. (C28) 2019; 10 Xu, J.; Gong, L.; Wang, G. (C18) 2019; 6 Ali, S.; Madabhushi, A. (C17) 2012; 31 Plissiti, M.E.; Nikou, C.; Charchanti, A. (C20) 2011; 15 Pan, X.; Li, L.; Yang, H. (C33) 2017; 229 Singla, A.; Patra, S. (C37) 2017; 11 Hinojosa, S.; Dhal, K.G.; Elaziz, M.A. (C41) 2018; 321 Cahill, L.C.; Fujimoto, J.G.; Giacomelli, M.G. (C2) 2019; 32 Ishwaran, H.; Lu, M. (C44) 2019; 38 Mouelhi, A.; Sayadi, M.; Fnaiech, F. (C16) 2013; 8 Jothi, J.A.A.; Rajam, V.M.A. (C8) 2017; 48 Vishnoi, S.; Jain, A.K.; Sharma, P.K. (C12) 2019; 12 Sornapudi, S.; Stanley, R.J.; Stoecker, W.V. (C19) 2018; 9 He, L.; Long, L.R.; Antani, S. (C10) 2012; 107 Koundal, D.; Gupta, S.; Singh, S. (C29) 2016; 40 2017; 8 2019; 9 2019; 6 2017; 48 2013; 43 2012; 8315 2019; 32 2019; 10 2019; 12 2018; 321 2019; 38 2016; 122 2020; 33 2011; 15 2013; 8 2014; 61 2012; 107 2012; 31 2016; 79 2014; 1 2017; 229 2018; 9 2019; 40 2019; 20 2017; 11 2019; 45 2019; 26 2019 2018 2016; 40 2017 2014 2013 2014; 7 2012; 43 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_43_2 e_1_2_5_21_2 e_1_2_5_42_2 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_41_2 e_1_2_5_40_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_39_2 e_1_2_5_19_2 Sornapudi S. (e_1_2_5_20_2) 2018; 9 e_1_2_5_30_2 |
References_xml | – volume: 9 start-page: 4551 issue: 1 year: 2019 ident: C15 article-title: Segmentation of heavily clustered nuclei from histopathological images publication-title: Sci. Rep. – volume: 40 start-page: 86 year: 2016 end-page: 97 ident: C29 article-title: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set publication-title: Appl. Soft Comput. – volume: 38 start-page: 558 issue: 4 year: 2019 end-page: 582 ident: C44 article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival publication-title: Stat. Med. – volume: 45 start-page: 15 year: 2019 end-page: 32 ident: C21 article-title: An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering publication-title: Swarm. Evol. Comput. – volume: 6 start-page: 017501 issue: 1 year: 2019 ident: C18 article-title: Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images publication-title: J. Med. Imag. – volume: 229 start-page: 88 year: 2017 end-page: 99 ident: C33 article-title: Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks publication-title: Neurocomputing – volume: 9 start-page: 5 issue: 5 year: 2018 ident: C19 article-title: Deep learning nuclei detection in digitized histology images by superpixels publication-title: J. Pathol. Inform. – volume: 15 start-page: 233 issue: 2 year: 2011 end-page: 241 ident: C20 article-title: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 12 start-page: 1 year: 2019 end-page: 12 ident: C12 article-title: An efficient nuclei segmentation method based on roulette wheel whale optimization and fuzzy clustering publication-title: Evol. Intell. – volume: 8 start-page: 421 issue: 5 year: 2013 end-page: 436 ident: C16 article-title: Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method publication-title: Biomed. Signal Proc. Control – volume: 33 start-page: 1 year: 2020 end-page: 31 ident: C6 article-title: Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review publication-title: J. Digit. Imaging – volume: 1 start-page: 1 issue: 3 year: 2014 end-page: 8 ident: C13 article-title: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features publication-title: J. Med. Imag. – volume: 122 start-page: 1 year: 2016 end-page: 13 ident: C22 article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images publication-title: Signal Process. – volume: 79 start-page: 993 issue: 10 year: 2016 end-page: 997 ident: C26 article-title: Automated nuclei segmentation of malignant using level sets publication-title: Microsc. Res. Tech. – volume: 40 start-page: 211 issue: 4 year: 2019 end-page: 227 ident: C32 article-title: Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images publication-title: IRBM – volume: 8 start-page: 74 year: 2017 end-page: 79 ident: C4 article-title: Detection of breast cancer on digital histopathology images: present status and future possibilities publication-title: Inform. Med. Unlocked – volume: 7 start-page: 97 year: 2014 end-page: 114 ident: C7 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential publication-title: IEEE Rev. Biomed. Eng. – volume: 48 start-page: 31 issue: 1 year: 2017 end-page: 81 ident: C8 article-title: A survey on automated cancer diagnosis from histopathology images publication-title: Artif. Intell. Rev. – volume: 11 start-page: 243 issue: 2 year: 2017 end-page: 250 ident: C37 article-title: A fast automatic optimal threshold selection technique for image segmentation publication-title: Signal. Image. Video. Process. – volume: 107 start-page: 538 issue: 3 year: 2012 end-page: 556 ident: C10 article-title: Histology image analysis for carcinoma detection and grading publication-title: Comput. Methods Programs Biomed. – volume: 43 start-page: 352 issue: 2–3 year: 2012 end-page: 364 ident: C35 article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm publication-title: Micron – volume: 321 start-page: 201 year: 2018 end-page: 215 ident: C41 article-title: Entropy-based imagery segmentation for breast histology using the stochastic fractal search publication-title: Neurocomputing – volume: 26 start-page: 1 year: 2019 ident: C1 article-title: Computational nuclei segmentation methods in digital pathology: a survey publication-title: Arch Comput Meth. Eng. – volume: 8 start-page: 1 issue: 7 year: 2013 end-page: 12 ident: C23 article-title: Automatic nuclei segmentation in h&e stained breast cancer histopathology images publication-title: PloS One – volume: 32 start-page: 1158 issue: 8 year: 2019 end-page: 1167 ident: C2 article-title: Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study publication-title: Mod. Pathol. – volume: 31 start-page: 1448 issue: 7 year: 2012 end-page: 1460 ident: C17 article-title: An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery publication-title: IEEE Trans. Med. Imaging – volume: 61 start-page: 1400 issue: 5 year: 2014 end-page: 1411 ident: C3 article-title: Breast cancer histopathology image analysis: a review publication-title: IEEE Trans. Biomed. Eng. – volume: 43 start-page: 1563 issue: 10 year: 2013 end-page: 1572 ident: C14 article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images publication-title: Comput. Biol. Med. – volume: 10 start-page: 2244 issue: 5 year: 2019 end-page: 2263 ident: C28 article-title: OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes publication-title: Biomed. Opt. Express – volume: 20 start-page: 26 issue: 1 year: 2019 ident: C40 article-title: An automatic stopping criterion for contrast enhancement using multi-scale top-hat transformation publication-title: Sens. Imaging. – volume: 1 start-page: 1 issue: 3 year: 2014 end-page: 8 article-title: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features publication-title: J. Med. Imag. – start-page: 71 year: 2019 end-page: 98 – volume: 43 start-page: 352 issue: 2–3 year: 2012 end-page: 364 article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm publication-title: Micron – volume: 48 start-page: 31 issue: 1 year: 2017 end-page: 81 article-title: A survey on automated cancer diagnosis from histopathology images publication-title: Artif. Intell. Rev. – volume: 7 start-page: 97 year: 2014 end-page: 114 article-title: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and future potential publication-title: IEEE Rev. Biomed. Eng. – volume: 229 start-page: 88 year: 2017 end-page: 99 article-title: Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks publication-title: Neurocomputing – start-page: 218 year: 2014 end-page: 223 article-title: Two‐step segmentation of hematoxylin‐eosin stained histopathological images for prognosis of breast cancer – volume: 9 start-page: 4551 issue: 1 year: 2019 article-title: Segmentation of heavily clustered nuclei from histopathological images publication-title: Sci. Rep. – volume: 321 start-page: 201 year: 2018 end-page: 215 article-title: Entropy‐based imagery segmentation for breast histology using the stochastic fractal search publication-title: Neurocomputing – volume: 33 start-page: 1 year: 2020 end-page: 31 article-title: Computer‐aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review publication-title: J. Digit. Imaging – volume: 12 start-page: 1 year: 2019 end-page: 12 article-title: An efficient nuclei segmentation method based on roulette wheel whale optimization and fuzzy clustering publication-title: Evol. Intell. – volume: 20 start-page: 26 issue: 1 year: 2019 article-title: An automatic stopping criterion for contrast enhancement using multi‐scale top‐hat transformation publication-title: Sens. Imaging. – volume: 31 start-page: 1448 issue: 7 year: 2012 end-page: 1460 article-title: An integrated region‐, boundary‐, shape‐based active contour for multiple object overlap resolution in histological imagery publication-title: IEEE Trans. Med. Imaging – volume: 40 start-page: 86 year: 2016 end-page: 97 article-title: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set publication-title: Appl. Soft Comput. – volume: 107 start-page: 538 issue: 3 year: 2012 end-page: 556 article-title: Histology image analysis for carcinoma detection and grading publication-title: Comput. Methods Programs Biomed. – volume: 15 start-page: 233 issue: 2 year: 2011 end-page: 241 article-title: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 8315 start-page: 831515 year: 2012 article-title: Automated malignancy detection in breast histopathological images – start-page: 1 year: 2013 end-page: 4 article-title: Towards generalized nuclear segmentation in histological images – year: 2019 article-title: Gland segmentation in histopathological images by deep neural network – volume: 8 start-page: 421 issue: 5 year: 2013 end-page: 436 article-title: Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method publication-title: Biomed. Signal Proc. Control – volume: 122 start-page: 1 year: 2016 end-page: 13 article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images publication-title: Signal Process. – start-page: 120 year: 2019 end-page: 128 article-title: Deep analysis of CNN settings for new cancer whole‐slide histological images segmentation: the case of small training sets – volume: 11 start-page: 243 issue: 2 year: 2017 end-page: 250 article-title: A fast automatic optimal threshold selection technique for image segmentation publication-title: Signal. Image. Video. Process. – start-page: 261 year: 2019 end-page: 266 article-title: Comparative analysis of segmentation techniques using histopathological images of breast cancer – volume: 6 start-page: 017501 issue: 1 year: 2019 article-title: Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images publication-title: J. Med. Imag. – volume: 61 start-page: 1400 issue: 5 year: 2014 end-page: 1411 article-title: Breast cancer histopathology image analysis: a review publication-title: IEEE Trans. Biomed. Eng. – start-page: 307 year: 2018 end-page: 317 article-title: Improved nuclear segmentation on histopathology images using a combination of deep learning and active contour model – volume: 10 start-page: 2244 issue: 5 year: 2019 end-page: 2263 article-title: OCT‐elastography‐based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes publication-title: Biomed. Opt. Express – volume: 79 start-page: 993 issue: 10 year: 2016 end-page: 997 article-title: Automated nuclei segmentation of malignant using level sets publication-title: Microsc. Res. Tech. – volume: 32 start-page: 1158 issue: 8 year: 2019 end-page: 1167 article-title: Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study publication-title: Mod. Pathol. – year: 2019 article-title: DA‐RefineNet: A dual input WSI image segmentation algorithm based on attention – volume: 38 start-page: 558 issue: 4 year: 2019 end-page: 582 article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival publication-title: Stat. Med. – volume: 26 start-page: 1 year: 2019 article-title: Computational nuclei segmentation methods in digital pathology: a survey publication-title: Arch Comput Meth. Eng. – volume: 45 start-page: 15 year: 2019 end-page: 32 article-title: An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering publication-title: Swarm. Evol. Comput. – volume: 9 start-page: 5 issue: 5 year: 2018 article-title: Deep learning nuclei detection in digitized histology images by superpixels publication-title: J. Pathol. Inform. – start-page: 933 year: 2017 end-page: 936 article-title: Nuclei segmentation in histopathology images using deep neural networks – volume: 8 start-page: 74 year: 2017 end-page: 79 article-title: Detection of breast cancer on digital histopathology images: present status and future possibilities publication-title: Inform. Med. Unlocked – volume: 8 start-page: 1 issue: 7 year: 2013 end-page: 12 article-title: Automatic nuclei segmentation in h&e stained breast cancer histopathology images publication-title: PloS One – volume: 40 start-page: 211 issue: 4 year: 2019 end-page: 227 article-title: Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images publication-title: IRBM – volume: 43 start-page: 1563 issue: 10 year: 2013 end-page: 1572 article-title: Computer‐aided diagnosis of breast cancer based on fine needle biopsy microscopic images publication-title: Comput. Biol. Med. – ident: e_1_2_5_14_2 doi: 10.1117/1.JMI.1.3.034003 – ident: e_1_2_5_27_2 doi: 10.1002/jemt.22733 – ident: e_1_2_5_39_2 – ident: e_1_2_5_22_2 doi: 10.1016/j.swevo.2018.12.005 – ident: e_1_2_5_3_2 doi: 10.1038/s41379‐019‐0250‐8 – ident: e_1_2_5_4_2 doi: 10.1109/TBME.2014.2303852 – ident: e_1_2_5_24_2 doi: 10.1371/journal.pone.0070221 – ident: e_1_2_5_38_2 doi: 10.1007/s11760‐016‐0927‐0 – ident: e_1_2_5_2_2 doi: 10.1007/s11831‐017‐9227‐2 – ident: e_1_2_5_5_2 doi: 10.1016/j.imu.2016.11.001 – ident: e_1_2_5_33_2 doi: 10.1016/j.irbm.2019.06.001 – ident: e_1_2_5_9_2 doi: 10.1007/s10462‐016‐9494‐6 – ident: e_1_2_5_21_2 doi: 10.1109/TITB.2010.2087030 – ident: e_1_2_5_6_2 – ident: e_1_2_5_41_2 doi: 10.1007/s11220‐019‐0239‐x – ident: e_1_2_5_13_2 doi: 10.1007/s12065‐018‐0165‐1 – ident: e_1_2_5_40_2 – ident: e_1_2_5_43_2 – ident: e_1_2_5_29_2 doi: 10.1364/BOE.10.002244 – ident: e_1_2_5_10_2 doi: 10.1109/ICCMC.2019.8819659 – ident: e_1_2_5_8_2 doi: 10.1109/RBME.2013.2295804 – volume: 9 start-page: 5 issue: 5 year: 2018 ident: e_1_2_5_20_2 article-title: Deep learning nuclei detection in digitized histology images by superpixels publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_74_17 – ident: e_1_2_5_25_2 doi: 10.1109/BIBM.2014.6999158 – ident: e_1_2_5_23_2 doi: 10.1016/j.sigpro.2015.11.011 – ident: e_1_2_5_26_2 doi: 10.1109/BIBE.2013.6701556 – ident: e_1_2_5_37_2 – ident: e_1_2_5_19_2 doi: 10.1117/1.JMI.6.1.017501 – ident: e_1_2_5_31_2 – ident: e_1_2_5_30_2 doi: 10.1016/j.asoc.2015.11.035 – ident: e_1_2_5_16_2 doi: 10.1038/s41598‐019‐38813‐2 – ident: e_1_2_5_12_2 doi: 10.1201/b22435-4 – ident: e_1_2_5_7_2 doi: 10.1007/s10278‐019‐00295‐z – ident: e_1_2_5_11_2 doi: 10.1016/j.cmpb.2011.12.007 – ident: e_1_2_5_18_2 doi: 10.1109/TMI.2012.2190089 – ident: e_1_2_5_15_2 doi: 10.1016/j.compbiomed.2013.08.003 – ident: e_1_2_5_42_2 doi: 10.1016/j.neucom.2018.09.034 – ident: e_1_2_5_32_2 doi: 10.5220/0007406601200128 – ident: e_1_2_5_34_2 doi: 10.1016/j.neucom.2016.08.103 – ident: e_1_2_5_28_2 doi: 10.1007/978-3-030-04224-0_26 – ident: e_1_2_5_44_2 doi: 10.1109/ISBI.2017.7950669 – ident: e_1_2_5_35_2 doi: 10.1117/12.911643 – ident: e_1_2_5_17_2 doi: 10.1016/j.bspc.2013.04.003 – ident: e_1_2_5_45_2 doi: 10.1002/sim.7803 – ident: e_1_2_5_36_2 doi: 10.1016/j.micron.2011.09.016 |
SSID | ssj0001999537 |
Score | 2.2758884 |
Snippet | Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue. Recent reviews state high accuracy to... |
SourceID | doaj proquest crossref wiley iet |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Algorithms Artificial neural networks automated segmentation technique Automation Breast cancer breast tissue cancer cancerous cell detection Clustering convolutional neural nets convolutional neural network-based pangnet Deep learning feature extraction fuzzy C‐means Fuzzy logic Fuzzy sets histopathological breast cancer images Image enhancement Image segmentation magnification factor medical image processing Medical imaging Morphology Neural networks Parameter sensitivity post-processing method region of interest extraction Research Article self-driven post-processing operations spatial fuzzy C‐means spatial neutrosophic distance regularised level set time steps Watersheds weighted area coefficient parameters window area size |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp15KSxu6bdoKWshJJCtptdIxCTVJoTkEB3ITq48pAcc29ub_Z0a7duxDyKVXaWBXoyfNjDR6w9gvCca6OkoByWqhEwRh6waDFQUhYkSSu1IM5u-1ubzVf-6au51SX5QTNtADD4o7iZ1SIdlUE3WcVsGBhuwi4kw6C7a4RmjzdoKpcrqCfk-j2g1Lo3YnRG1PmVxET9m2e1aokPWjbbnP_Z6fueutFnMzec_ejX4iPxv-7wN7k-cf2ezssV-gi5kTX-d_D-OzoTnfErFyOlbFvhmItKJ9jC8X614sh9cAaKU4-qi8cAxTKeLNxscDpab3PBIEVvz-ATeZ9Sd2O_k9vbgUY7kEETHqMCI2uW00KC1RLXWXIdjgbE0m2UBX25h1SAAqQZtPU7amU6aTNlB_kk1Sh-xgvpjnz4yn1jVNyqozGJ6BVKGrwcQ2GGixRYaKiY36fBy5xKmkxcyXO23tPKnbk7o9qbtix1v55cCi8aLkOc3GVorYr0sDYsKPmPCvYaJiP3Eu_bga1y9-6see1PTmavrc65cJKna0QcOzmEK0EVGYUxU7LQh5ZUj-4moqzyflyuvL_xjeV_ZWUtRfkmqO2EG_eszf0DXqw_eyCp4ARNkLyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELYgvXBBIEAsFLAEEierXdtre49tIWoQcECp1JvlZ1UpTaJk-_-Z8e4mRKiC63pWXo9nZ77x4xtCPvGsTFsHznI0ksmYPTN1A8mKyD5ARpJcKQbz46e6vJLfrpvrPaVQvL3BWhlsXHHD1fLU3zzAo9vgh08GHfcFSQDfniBpPZ7RQuJJrR-TI651LSfkaPbl-5BflQUXgEKN0CNx418vHgSmwt8P4QY6P4CefwLYEoGmz8jTATrSs36un5NHafmCLM7uuxWgzhTpNt3cDTeJlnTHzUpxpRXaFpnFDbo2ul5tO7buLwhA4KIAW2mhHcbqxKMvpB5Pq3c0oFVs6O0d-J3tS3I1_Tq_uGRDBQUWIBFRLDRJNzILybNxtUvZG9-aGqO0yq42IUkfcxYx63Qak1FOKMeNx_bImyhekclytUyvCY26bZqYhFOQsWUuvKuzCtqrrOEJ9xVho_psGOjFscrFwpZtbtlaVLdFdVtUd0U-7-TXPbHGg5LnOBs7KSTELg_AKuzwf9nghPDRxBoZBqXwbZY5tQHcEW8NDL4iH2Eu7Wg8D3b14UBq_ms237fadcwVOR6tYS8mAHQhd1grKnJaLOQfQ7IXszk_n5ZdsDf_9WVvyROOmX45SHNMJt3mPr0DONT594Oh_wYcbAio priority: 102 providerName: Institution of Engineering and Technology – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwELZauPRSFbVV09JiqZV6iiC24zgnxCJWUKmoQovEzYr_EBJs0k249xF4Rp6EGa-z2z3QHmOPEmU8nj-PvyHkGwtS1YVleXBK5MIFk6uihGCFB2MhIvFNbAbz81yeXoofV-VVSrj1qaxy1IlRUbvWYo58n4NhQ3ymmh92v3PsGoWnq6mFxkuyDSpYQfC1PTk5_3WxzrKA_1PyakRrFPU-QtxjRRfCVFbVhjWKoP1gY278sOFv_u21RrMzfUNeJ3-RHi0XeIe88PO3pDu6H1pwNb2jvb--S9eH5nQFyEoxvQpzt-Hxz4NboEajXdsP8NQtbwaAxaLgr9KIN4xtiUclSA2WqQ_Uojgs6M0dKJz-HbmcnsyOT_PUOiG3EIHI3Ja-KkXgggXVFI0PRplaFWieZWgKZb0wLgTuQuUPnFey4bJhyuC8Y6Xj78nWvJ37D4S6qi5L53kjIVQLjJumCNJWRoYKRpjJSD6yUNuEK47tLW51PN8WtUaWa2S5RpZn5PuKvlsiajxLOcEVWVEhEnYcaBfXOm0sbRvOjVOuQGhBwU0dRPC1BT3EagU_n5GvsJ467cz-2U_tbVDNLs5m61nduZCR3VEi1mRroczIQZSS__ySPj6bsck0Hn99_PcbP5FXDGP7WDqzS7aGxb3_DA7QYL4kKX8CK8kIDg priority: 102 providerName: ProQuest |
Title | Automated segmentation technique with self-driven post-processing for histopathological breast cancer images |
URI | http://digital-library.theiet.org/content/journals/10.1049/trit.2019.0077 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftrit.2019.0077 https://www.proquest.com/docview/3091978193 https://doaj.org/article/ca33bd8d1432443b9f4fe9c787298f8a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdge-EFgQARGMUSSDxFLLaT2I_ttrKibUyjk_Zm-e80aWujNnvnI_AZ-STcOWm7PkyIl1SJL6li--5-5_h-R8hnFiupCsfy6KXIhY82l0UJwQqP1kFEEkwqBnN6Vh1fiu9X5dWDLP6OH2K94Iaakew1KrixXRUSALUwiMhVj1uzkG-yrp-SXcyvRfZ8Js43qyyAf8pEnMkwxQjgA1sxNwr1dfsRW54pEfiDv7kJ7Rb2fIhgkwsavyDPe-xIh91gvyRPwuwVaYb37RxgZ_B0Ga7v-lSiGV2Ts1JcaoW22_jn12-_QOtGm_myhbOmyxIA70UBu9LEPYwlilcGkVrcst5Sh1NjQW_uwPgsX5PL8dH04DjvyyjkDqKRKndlqEsRuWBRmsKEaKVVskBXXUVTSBeE9TFyH-uw74OsDK8MkxbbPSs9f0N2ZvNZeEuor1VZ-sBNBWFbZNyaIlautlWs4QqzGclXXahdzzGOpS5udfrWLZTGLtfY5Rq7PCNf1vJNx67xqOQIR2QthazY6cJ8ca17JdPOcG699AXSDApuVRQxKAc2iSkJL5-RTzCeutfS5aN_9XFLanoxmW5adeNjRvZWM2IjxgF5IYGY4hnZT7PkH6-kDyZTNhqnT2Hv_v-W9-QZw9g_ba3ZIzvt4j58AIDU2kHSATjK8bcB2R0enp78hN_R0dn5xSAtOsDZ5PDkx_AvjqcSqg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgQARKNQSIE5RG9tJnEOF2sKySx8HlEq9mfhVVWo3YZOq4sZP4Jfwo_glzHiTXfZQOPUYe-TI43n68Q0hb5jPZJEYFnsrRSys17FMUkhWuNcGMhJXhWIwR8fZ-ER8Pk1P18iv4S0MXqscbGIw1LY2uEe-xcGxIT5Twd8332KsGoWnq0MJjblYHLjv15CytTuTD7C-bxkbfSz3x3FfVSA2EJxnsUldngrPBfOySirntdSFTNBzZb5KpHFCW--59bnbtk5mFc8qJjX2W5ZaDuPeIXcF5wVqlBx9Wu7pQLSV8nzAhhTFFgLq4_0xBMXM8xXfF0oEgEc7d91KdPt3jByc3OghedBHp3R3Lk6PyJqbPibN7lVXQ2DrLG3d2WX_WGlKF_CvFDdzoe_C__7x087QftKmbjv4aubvEMA_UoiOaUA3xiLIg8mlGi_Fd9Sg8M3o-SWYt_YJObkVlj4l69N66p4RavMiTa3jVQaJoWdcV4nPTK4zn0ML0xGJBxYq06OYYzGNCxVO00WhkOUKWa6Q5RF5t6Bv5vgdN1Lu4YosqBB3OzTUszPVq7EyFefaSpsgkKHguvDCu8KA1WOFhMlH5DWsp-rtQHvjrzZXqMovk3LZqxrrI7IxSMSSbKkCEdkOUvKfKan9Scn2RuGw7fm_R9wk98bl0aE6nBwfvCD3Ge4qhEs7G2S9m125lxB6dfpVkHdKvt62gv0BBRxEkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgkxAvaAgQGRuzBBJPEYvtJPZjN6jWARNCLZp4sXydJm1t1Gbv_AR-437JznHSdn2YJh5jnySyfS7f8eUzIR9ZrKQqHMujlyIXPtpcFiUkKzxaBxlJMOkymB9n1clEnJ6X5_dO8Xf8EKsJN7SM5K_RwBsfu3xTIEcmctXj1izkm6zrp2QbqfJAr7cHvyd_Jut5FkBAZaLOZHjICAAEW3I3CvV58yMbsSlR-EPEuQztBvq8j2FTEBrukBc9eqSDbrhfkidh-oo0g5t2BsAzeLoIF9f9YaIpXdGzUpxshbqrePv3n5-jf6PNbNHCU9OdE4D4RQG90sQ-jJcUL10itbhpvaUOlWNOL6_B_Sxek8nw6_j4JO8vUsgd5CNV7spQlyJywaI0hQnRSqtkgcG6iqaQLgjrY-Q-1uHQB1kZXhkmLdZ7Vnr-hmxNZ9PwllBfq7L0gZsKErfIuDVFrFxtq1hDCbMZyZddqF3PMo6XXVzptNotlMYu19jlGrs8I59W8k3Hr_Gg5BGOyEoKebFTwWx-oXsz085wbr30BRINCm5VFDEoB16JKQmNz8gHGE_d2-niwV8dbEiNf43G61oNepiRvaVGrMU4YC-kEFM8I4dJSx5pkj4ejdnRMC2G7f7_Kwfk2c8vQ_19dPbtHXnOcCIg7bPZI1vt_CbsA1pq7fveIO4AUHoQeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+technique+with+self%E2%80%90driven+post%E2%80%90processing+for+histopathological+breast+cancer+images&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Kaushal%2C+Chetna&rft.au=Singla%2C+Anshu&rft.date=2020-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=5&rft.issue=4&rft.spage=294&rft.epage=300&rft_id=info:doi/10.1049%2Ftrit.2019.0077&rft.externalDBID=10.1049%252Ftrit.2019.0077&rft.externalDocID=CIT2BF00116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |