Cold sensing in grapevine—Which signals are upstream of the microtubular “thermometer”

Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold‐induced microtu...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 40; no. 11; pp. 2844 - 2857
Main Authors Wang, Lixin, Nick, Peter
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2017
Subjects
NAD
Online AccessGet full text

Cover

Loading…
Abstract Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold‐induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time‐course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G‐protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals. Cold stress limits the agricultural use of many plants in temperate climate, including the cash crop grapevine. One of the early responses to cold stress is the elimination of microtubules. This microtubule response has been shown to be required to activate efficient adaptation to cold. In the current work, we dissect the early events of cold signalling upstream of microtubules using a transgenic grapevine cell line expressing a fluorescent tubulin marker. We find that calcium influx, membrane rigidification, and activation of NAD(P)H oxidase contribute to signalling, and that a G protein in concert with phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, cold‐induced activation of the jasmonate pathway is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception, and early transduction of cold signals. These insights can be used in the future to design strategies targeted on improved cold tolerance, either by molecular‐assisted breeding, or, alternatively to genetic changes, by chemical manipulation of early signalling events in order to improve cold tolerance of cultivars which are otherwise cold‐sensitive in temperate climates.
AbstractList Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold‐induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time‐course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G‐protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals. Cold stress limits the agricultural use of many plants in temperate climate, including the cash crop grapevine. One of the early responses to cold stress is the elimination of microtubules. This microtubule response has been shown to be required to activate efficient adaptation to cold. In the current work, we dissect the early events of cold signalling upstream of microtubules using a transgenic grapevine cell line expressing a fluorescent tubulin marker. We find that calcium influx, membrane rigidification, and activation of NAD(P)H oxidase contribute to signalling, and that a G protein in concert with phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, cold‐induced activation of the jasmonate pathway is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception, and early transduction of cold signals. These insights can be used in the future to design strategies targeted on improved cold tolerance, either by molecular‐assisted breeding, or, alternatively to genetic changes, by chemical manipulation of early signalling events in order to improve cold tolerance of cultivars which are otherwise cold‐sensitive in temperate climates.
Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold‐induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time‐course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G‐protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals.
Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold-induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time-course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G-protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals.
Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold-induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time-course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G-protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals. Cold stress limits the agricultural use of many plants in temperate climate, including the cash crop grapevine. One of the early responses to cold stress is the elimination of microtubules. This microtubule response has been shown to be required to activate efficient adaptation to cold. In the current work, we dissect the early events of cold signalling upstream of microtubules using a transgenic grapevine cell line expressing a fluorescent tubulin marker. We find that calcium influx, membrane rigidification, and activation of NAD(P)H oxidase contribute to signalling, and that a G protein in concert with phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, cold-induced activation of the jasmonate pathway is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception, and early transduction of cold signals. These insights can be used in the future to design strategies targeted on improved cold tolerance, either by molecular-assisted breeding, or, alternatively to genetic changes, by chemical manipulation of early signalling events in order to improve cold tolerance of cultivars which are otherwise cold-sensitive in temperate climates.
Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold‐induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time‐course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G‐protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals. Cold stress limits the agricultural use of many plants in temperate climate, including the cash crop grapevine. One of the early responses to cold stress is the elimination of microtubules. This microtubule response has been shown to be required to activate efficient adaptation to cold. In the current work, we dissect the early events of cold signalling upstream of microtubules using a transgenic grapevine cell line expressing a fluorescent tubulin marker. We find that calcium influx, membrane rigidification, and activation of NAD(P)H oxidase contribute to signalling, and that a G protein in concert with phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, cold‐induced activation of the jasmonate pathway is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane‐cytoskeleton interphase that assembles the susception, perception, and early transduction of cold signals. These insights can be used in the future to design strategies targeted on improved cold tolerance, either by molecular‐assisted breeding, or, alternatively to genetic changes, by chemical manipulation of early signalling events in order to improve cold tolerance of cultivars which are otherwise cold‐sensitive in temperate climates.
Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold-induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time-course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G-protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals.Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to be sensed and processed swiftly, a process that is linked with a transient elimination of microtubules. Here, we address cold-induced microtubules elimination in a grapevine cell line stably expressing a green fluorescent protein fusion of Arabidopsis TuB6, which allows to follow their response in vivo and to quantify this response by quantitative image analysis. We use time-course studies with several specific pharmacological inhibitors and activators to dissect the signalling events acting upstream of microtubules elimination. We find that microtubules disappear within 30 min after the onset of cold stress. We provide evidence for roles of calcium influx, membrane rigidification, and activation of NAD(P)H oxidase as factors in signal susception and amplification. We further conclude that a G-protein in concert with a phospholipase D convey the signal towards microtubules, whereas calmodulin seems to be not involved. Moreover, activation of jasmonate pathway in response to cold is required for an efficient microtubule response. We summarize our findings in a working model on a complex signalling hub at the membrane-cytoskeleton interphase that assembles the susception, perception and early transduction of cold signals.
Author Wang, Lixin
Nick, Peter
Author_xml – sequence: 1
  givenname: Lixin
  orcidid: 0000-0001-7023-2219
  surname: Wang
  fullname: Wang, Lixin
  email: lixinwang34@gmail.com
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Peter
  surname: Nick
  fullname: Nick, Peter
  organization: Karlsruhe Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28898434$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFBS-ALLGBRVr_JXaWaFR-pEplUcQGyXKcmxlXiR3sBNTdPARLeLl5Ejyd6aai4m6udPWdc6VzTtCRDx4QeknJGc1zPlo4o5xU1RO0oLwqC04EOUILQgUppKzpMTpJ6YaQfJD1M3TMlKqV4GKBvi1D3-IEPjm_ws7jVTQj_HAetptfX9fOrnFyK2_6hE0EPI9pimAGHDo8rQEPzsYwzc3cm4i3m9_5FocwwARxu_nzHD3tshJeHPYp-vL-4nr5sbi8-vBp-e6ysELJqjCyBEkaxplVrWyZLGvFraxq0SjagmpLWSpatkCNYQZs1zSC14xR01Wkagg_RW_2vmMM32dIkx5cstD3xkOYk2aEEVUTUvL_orTmKr8XUmT09QP0JsxxF0WmSiooo2r3-9WBmpsBWj1GN5h4q-8jzsD5HshJpRSh09ZNZnLBT9G4XlOidyXqXKK-KzEr3j5Q3Jv-iz24_3Q93D4O6s_Li73iL8rkrMk
CitedBy_id crossref_primary_10_3390_biom13040627
crossref_primary_10_1111_nph_16034
crossref_primary_10_3390_ijms231911417
crossref_primary_10_1016_j_scienta_2021_110183
crossref_primary_10_1093_plphys_kiad310
crossref_primary_10_1186_s12864_020_6601_5
crossref_primary_10_1007_s40626_023_00292_2
crossref_primary_10_1016_j_plantsci_2018_11_008
crossref_primary_10_1016_j_plantsci_2020_110589
crossref_primary_10_1039_D0NP00030B
crossref_primary_10_3390_plants9010090
crossref_primary_10_1007_s00299_018_2347_9
crossref_primary_10_1016_j_scienta_2021_110686
crossref_primary_10_1093_jxb_erz419
crossref_primary_10_1093_plphys_kiad092
crossref_primary_10_1508_cytologia_84_53
crossref_primary_10_1038_s41438_021_00703_y
crossref_primary_10_1093_jxb_eraa152
crossref_primary_10_1016_j_plantsci_2021_111155
crossref_primary_10_1186_s12870_019_1953_1
crossref_primary_10_1134_S1021443724606086
crossref_primary_10_1111_pce_14450
crossref_primary_10_1111_pce_14670
crossref_primary_10_3390_plants13192715
crossref_primary_10_1111_pce_15381
crossref_primary_10_1093_plphys_kiae327
crossref_primary_10_1111_njb_02314
crossref_primary_10_1016_j_jia_2023_04_039
crossref_primary_10_1016_j_plantsci_2022_111527
crossref_primary_10_1093_jxb_erae263
crossref_primary_10_3389_fpls_2018_01469
crossref_primary_10_1111_pce_14468
crossref_primary_10_1016_j_envexpbot_2022_105190
crossref_primary_10_3389_fmicb_2022_800762
crossref_primary_10_3390_plants13172532
crossref_primary_10_1016_j_plantsci_2019_110178
crossref_primary_10_5010_JPB_2017_44_4_388
crossref_primary_10_1111_tpj_16470
Cites_doi 10.2307/3870162
10.1093/pcp/pcf028
10.1111/j.0031-9317.2005.00582.x
10.1093/jxb/err079
10.1104/pp.104.042663
10.1093/pcp/pcg097
10.1007/s00709-013-0591-y
10.1104/pp.104.052456
10.1042/BJ20080625
10.1111/tpj.12102
10.1093/pcp/pcm149
10.1105/TPC.010114
10.1016/S0143-4160(97)90025-7
10.1104/pp.103.035956
10.1093/oxfordjournals.pcp.a076057
10.1007/BF00194063
10.1073/pnas.88.20.8925
10.1006/bbrc.1998.9729
10.1111/j.1365-3040.1996.tb00387.x
10.1016/S0006-3495(79)85170-X
10.1007/7089_2007_145
10.1016/0014-5793(96)00844-7
10.1104/pp.97.1.182
10.1104/pp.006080
10.1093/jxb/err426
10.1016/j.envexpbot.2007.10.023
10.1002/prot.22739
10.1007/s00344-012-9314-4
10.1111/j.1438-8677.2009.00299.x
10.1074/jbc.274.19.13485
10.1016/0014-5793(85)80004-1
10.1104/pp.45.4.386
10.1104/pp.103.2.543
10.1146/annurev.arplant.47.1.541
10.1046/j.1365-313X.1993.04020307.x
10.1093/pcp/pci230
10.1104/pp.71.4.747
10.1007/978-0-387-39975-1_11
10.1016/j.jplph.2010.11.008
10.1046/j.1365-313x.2000.00845.x
10.1093/pcp/pce135
10.1126/science.1083529
10.1016/S0955-0674(99)80010-6
10.1111/j.1469-8137.2007.02292.x
10.1104/pp.104.053843
10.1016/S0955-0674(99)00056-3
10.1104/pp.117.4.1301
10.1046/j.1365-313x.2000.00787.x
10.1105/tpc.12.11.2237
10.1146/annurev.pp.46.060195.000523
10.1046/j.1365-313x.2001.01052.x
10.1007/s00709-005-0139-x
10.1104/pp.109.140996
10.1074/jbc.M005699200
10.1073/pnas.1221294110
10.1016/0092-8674(95)90407-7
10.1111/j.1365-3040.2012.02573.x
10.1007/s11738-009-0451-8
10.1104/pp.93.1.77
10.1007/s00442-009-1459-x
10.1111/j.1399-3054.1995.tb06859.x
10.1016/j.ceb.2009.11.008
10.1016/j.jplph.2014.10.023
10.1111/j.1399-3054.2006.00622.x
10.1016/S0065-2296(08)60043-9
10.1104/pp.112.3.1079
10.1111/j.1469-8137.2008.02682.x
10.1016/j.tplants.2011.03.007
10.1038/346769a0
10.1038/352524a0
10.1016/0167-4838(92)90044-E
10.1007/s004250050212
10.1038/29087
10.1016/j.bbamem.2013.04.027
10.1104/pp.105.068809
10.1002/bies.20307
10.1007/BF01322649
10.1016/j.febslet.2006.06.083
10.1016/j.jplph.2011.12.013
10.1016/S1360-1385(01)01918-5
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.13066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE
Calcium & Calcified Tissue Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 2857
ExternalDocumentID 28898434
10_1111_pce_13066
PCE13066
Genre article
Journal Article
GrantInformation_xml – fundername: BACCHUS Interreg project IV Oberrhein/Rhin supérieur
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4876-a75e70b232c8d7d275983c7694b81de8d575815de1aa2aecfbb439221af606b03
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:34:39 EDT 2025
Thu Jul 10 20:03:29 EDT 2025
Fri Jul 25 10:48:17 EDT 2025
Wed Feb 19 02:43:04 EST 2025
Tue Jul 01 04:28:39 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 17:10:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords cold stress
calcium
microtubules
grapevine (Vitis rupestris)
signalling
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4876-a75e70b232c8d7d275983c7694b81de8d575815de1aa2aecfbb439221af606b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7023-2219
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13066
PMID 28898434
PQID 1951412180
PQPubID 37957
PageCount 14
ParticipantIDs proquest_miscellaneous_2020890053
proquest_miscellaneous_1938598474
proquest_journals_1951412180
pubmed_primary_28898434
crossref_citationtrail_10_1111_pce_13066
crossref_primary_10_1111_pce_13066
wiley_primary_10_1111_pce_13066_PCE13066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
1991; 352
1990; 346
1991; 97
2005; 137
2005; 138
2011; 62
2005; 139
2009; 151
1998; 117
2012; 169
1985; 23
2011; 16
2005; 27
2014; 251
1993; 4
2001; 42
1998; 394
1979; 28
2004; 134
2010; 22
1991; 185
2011; 168
1989; 31
2004; 135
2000; 12
1991; 88
2002; 43
2015; 176
1999; 11
2013; 110
2008; 63
2006; 126
2001; 13
1996; 8
2003; 44
2012; 63
1990; 93
2010; 78
2010; 32
1995; 93
1985; 191
1996; 19
1997; 22
2009; 181
2000; 23
2002; 130
1988; 15
1992; 1160
2015; 10
1980; 21
2008
1983; 71
2010; 162
2000; 275
2001; 27
1993; 103
1998; 253
1995; 7
1997; 203
2013; 36
1995; 80
2013; 32
2001; 6
1995; 46
2007; 594
2006; 47
2013; 75
1970; 45
1999; 274
1996; 393
2006; 580
2008; 413
1996; 47
2008; 177
1990; 157
2003; 300
1996; 112
2006; 227
2013; 1828
2007; 48
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_70_1
e_1_2_6_30_1
Munnik T. (e_1_2_6_48_1) 1995; 7
e_1_2_6_72_1
Marme D. (e_1_2_6_42_1) 1985; 23
Jian L. (e_1_2_6_32_1) 1989; 31
e_1_2_6_19_1
e_1_2_6_13_1
Knight H. (e_1_2_6_34_1) 1996; 8
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
Chang X. L. (e_1_2_6_11_1) 2015; 10
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
Monroy A. F. (e_1_2_6_46_1) 1995; 7
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
References_xml – volume: 275
  start-page: 37038
  year: 2000
  end-page: 37047
  article-title: Cold adaptation of microtubule assembly and dynamics‐structural interpretation of primary sequence changes present in the alpha‐ and beta‐tubulins of antarctic fishes
  publication-title: The Journal of Biological Chemistry
– volume: 15
  start-page: 1
  year: 1988
  end-page: 41
  article-title: Perception of gravity by plants
  publication-title: Advances in Botanical Research
– volume: 227
  start-page: 185
  year: 2006
  end-page: 196
  article-title: Intranuclear accumulation of plant tubulin in response to low temperature
  publication-title: Protoplasma
– volume: 134
  start-page: 1100
  year: 2004
  end-page: 1112
  article-title: Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock‐induced programmed cell death in tobacco bright‐yellow 2 cells
  publication-title: Plant Physiology
– volume: 32
  start-page: 419
  year: 2010
  end-page: 431
  article-title: What happens in plant molecular responses to cold stress?
  publication-title: Acta Physiologiae Plantarum
– volume: 21
  start-page: 829
  year: 1980
  end-page: 837
  article-title: Chilling injury in cotton ( ‐L)‐effects of anti‐microtubular drugs
  publication-title: Plant and Cell Physiology
– volume: 47
  start-page: 141
  year: 2006
  end-page: 153
  article-title: Functional analysis of rice DREB1/CBF‐type transcription factors involved in cold‐responsive gene expression in transgenic rice
  publication-title: Plant Cell Physiology
– volume: 185
  start-page: 215
  year: 1991
  end-page: 219
  article-title: Lipid‐peroxidation and superoxide‐dismutase activity in relation to photoinhibition induced by chilling in moderate light
  publication-title: Planta
– volume: 13
  start-page: 2143
  year: 2001
  end-page: 2158
  article-title: A 90‐kD phospholipase D from tobacco binds to microtubules and the plasma membrane
  publication-title: The Plant Cell
– volume: 10
  year: 2015
  article-title: Actin as deathly switch? How Auxin can suppress cell‐death related defence
  publication-title: PloS One
– volume: 112
  start-page: 1079
  year: 1996
  end-page: 1087
  article-title: Evidence for opposing effects of calmodulin on cortical microtubules
  publication-title: Plant Physiology
– volume: 346
  start-page: 769
  year: 1990
  end-page: 771
  article-title: Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure
  publication-title: Nature
– volume: 137
  start-page: 939
  year: 2005
  end-page: 948
  article-title: Auxin‐dependent cell division and cell elongation. 1‐Naphthaleneacetic acid and 2,4‐dichlorophenoxyacetic acid activate different pathways
  publication-title: Plant Physiology
– volume: 169
  start-page: 567
  year: 2012
  end-page: 576
  article-title: Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra
  publication-title: Journal of Plant Physiology
– volume: 7
  start-page: 321
  year: 1995
  end-page: 331
  article-title: Low‐temperature signal transduction: Induction of cold acclimation‐specific genes of alfalfa by calcium at 25 degrees C
  publication-title: The Plant Cell
– volume: 31
  start-page: 737
  year: 1989
  end-page: 741
  article-title: Studies on microtubule cold stability in relation to plant cold hardiness
  publication-title: Acta Botanica Sinica
– volume: 135
  start-page: 1471
  year: 2004
  end-page: 1479
  article-title: Oxidative stress‐induced calcium signaling in
  publication-title: Plant Physiology
– volume: 27
  start-page: 1
  year: 2001
  end-page: 12
  article-title: Cold‐activation of promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca influx
  publication-title: Plant Journal
– volume: 1828
  start-page: 2111
  year: 2013
  end-page: 2120
  article-title: The plant cytoskeleton controls regulatory volume increase
  publication-title: Biochimica et Biophysica Acta
– volume: 157
  start-page: 165
  year: 1990
  end-page: 171
  article-title: Effects of abscisic‐acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea
  publication-title: Protoplasma
– volume: 139
  start-page: 566
  year: 2005
  end-page: 573
  article-title: Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses
  publication-title: Plant Physiology
– volume: 62
  start-page: 2349
  year: 2011
  end-page: 2361
  article-title: Molecular, cellular, and physiological responses to phosphatidic acid formation in plants
  publication-title: Journal of Experimental Botany
– volume: 97
  start-page: 182
  year: 1991
  end-page: 187
  article-title: Effect of microtubule stabilization on the freezing tolerance of mesophyll‐cells of spinach
  publication-title: Plant Physiology
– volume: 103
  start-page: 543
  year: 1993
  end-page: 551
  article-title: Calcium levels affect the ability to lmmunolocalize calmodulin to cortical microtubule
  publication-title: Plant Physiology
– volume: 93
  start-page: 563
  year: 1995
  end-page: 571
  article-title: Effect of cold‐exposure on cortical microtubules of rye (Secale‐Cereale) as observed by immunocytochemistry
  publication-title: Physiologia Plantarum
– volume: 181
  start-page: 275
  year: 2009
  end-page: 294
  article-title: Shaping the calcium signature
  publication-title: New Phytologist
– volume: 594
  start-page: 114
  year: 2007
  end-page: 131
  article-title: Membrane‐regulated stress response: A theoretical and practical approach
  publication-title: Advances in Experimental Medicine and Biology
– volume: 43
  start-page: 207
  year: 2002
  end-page: 216
  article-title: Aluminum‐induced rapid changes in the microtubular cytoskeleton of tobacco cell lines
  publication-title: Plant and Cell Physiology
– volume: 151
  start-page: 755
  year: 2009
  end-page: 767
  article-title: Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in
  publication-title: Plant Physiology
– volume: 4
  start-page: 307
  year: 1993
  end-page: 316
  article-title: Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state
  publication-title: Plant Journal
– volume: 45
  start-page: 386
  year: 1970
  end-page: 389
  article-title: Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury
  publication-title: Plant Physiology
– volume: 63
  start-page: 59
  year: 2008
  end-page: 70
  article-title: Cold acclimation of pedunculate oak ( L.) at its northernmost distribution range
  publication-title: Environmental and Experimental Botany
– volume: 27
  start-page: 1048
  year: 2005
  end-page: 1059
  article-title: The molecular biology of the low‐temperature response in plants
  publication-title: BioEssays
– volume: 12
  start-page: 52
  year: 2000
  end-page: 56
  article-title: Microtubule dynamics and tubulin interacting proteins
  publication-title: Current Opinion in Cell Biology
– volume: 12
  start-page: 395
  year: 2010
  end-page: 405
  article-title: Cold stress and acclimation‐what is important for metabolic adjustment?
  publication-title: Plant Biology
– volume: 126
  start-page: 45
  year: 2006
  end-page: 51
  article-title: Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction
  publication-title: Physiologia Plantarum
– volume: 8
  start-page: 489
  year: 1996
  end-page: 503
  article-title: Cold calcium signaling in involves two cellular pools and a change in calcium signature after acclimation
  publication-title: The Plant Cell
– volume: 253
  start-page: 295
  year: 1998
  end-page: 299
  article-title: Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production
  publication-title: Biochemical and Biophysical Research Communications
– volume: 36
  start-page: 288
  year: 2013
  end-page: 299
  article-title: Hydrogen peroxide and nitric oxide mediated cold‐ and dehydration‐induced myo‐inositol phosphate synthase that confers multiple resistances to abiotic stresses
  publication-title: Plant, Cell and Environment
– volume: 88
  start-page: 8925
  year: 1991
  end-page: 8929
  article-title: A blue‐light‐activated GTP‐binding protein in the plasma membranes of etiolated peas
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 19
  start-page: 539
  year: 1996
  end-page: 548
  article-title: Proteolytic analysis of polymerized maize tubulin: Regulation of microtubule stability to low temperature and Ca by the carboxyl terminus of beta‐tubulin
  publication-title: Plant, Cell and Environment
– volume: 191
  start-page: 181
  year: 1985
  end-page: 118
  article-title: Fluoroaluminates activate transducin‐GDP by mimicking the γ‐phosphate of GTP in its binding site
  publication-title: FEBS Letters
– volume: 1160
  start-page: 113
  year: 1992
  end-page: 119
  article-title: Ca ‐calmodulin regulated effectors of microtubule stability in neuronal tissues
  publication-title: Biochimica et Biophysica Acta
– volume: 23
  start-page: 319
  year: 2000
  end-page: 327
  article-title: Over‐expression of a single Ca ‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants
  publication-title: Plant Journal
– volume: 176
  start-page: 118
  year: 2015
  end-page: 128
  article-title: Tubulin marker line of grapevine suspension cells as a tool to follow early stress responses
  publication-title: Journal of Plant Physiology
– volume: 394
  start-page: 585
  year: 1998
  end-page: 588
  article-title: Nitric oxide functions as a signal in plant disease resistance
  publication-title: Nature
– volume: 12
  start-page: 2237
  year: 2000
  end-page: 2246
  article-title: Involvement of phospholipase D in wound‐induced accumulation of jasmonic acid in
  publication-title: The Plant Cell
– volume: 126
  start-page: 90
  year: 2006
  end-page: 96
  article-title: Profiling lipid changes in plant response to low temperatures
  publication-title: Physiologia Plantarum
– volume: 75
  start-page: 309
  year: 2013
  end-page: 323
  article-title: Microtubules, signalling and abiotic stress
  publication-title: Plant Journal
– volume: 22
  start-page: 104
  year: 2010
  end-page: 111
  article-title: From signaling pathways to microtubule dynamics: The key players
  publication-title: Current Opinion in Cell Biology
– volume: 393
  start-page: 13
  year: 1996
  end-page: 18
  article-title: Activation of plasma membrane voltage‐dependent calcium‐permeable channels by disruption of microtubules in carrot cells
  publication-title: FEBS Letters
– volume: 117
  start-page: 1301
  year: 1998
  end-page: 1305
  article-title: The superoxide synthases of rose cells comparison of assays
  publication-title: Plant Physiology
– volume: 251
  start-page: 881
  year: 2014
  end-page: 898
  article-title: Salt adaptation requires efficient fine‐tuning of Jasmonate signaling
  publication-title: Protoplasma
– volume: 47
  start-page: 541
  year: 1996
  end-page: 568
  article-title: Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids
  publication-title: Annual Review of Plant Physiology
– volume: 168
  start-page: 967
  year: 2011
  end-page: 975
  article-title: Low‐temperature‐induced transcription factors in grapevine enhance cold tolerance in transgenic plants
  publication-title: Journal of Plant Physiology
– volume: 46
  start-page: 95
  year: 1995
  end-page: 122
  article-title: Calcium regulation in plant‐cells and its role in signaling
  publication-title: Annual Review of Plant Biology
– volume: 7
  start-page: 2197
  year: 1995
  end-page: 2210
  article-title: G protein activation stimulates phospholipase D signaling in plants
  publication-title: The Plant Cell
– volume: 274
  start-page: 13485
  year: 1999
  end-page: 13490
  article-title: G protein alpha subunits activate tubulin GTPase and modulate microtubule polymerization dynamics
  publication-title: The Journal of Biological Chemistry
– volume: 63
  start-page: 2127
  year: 2012
  end-page: 2139
  article-title: The jasmonate pathway mediates salt tolerance in grapevines
  publication-title: Journal of Experimental Botany
– volume: 413
  start-page: 217
  year: 2008
  end-page: 226
  article-title: MAPKs: A complex signalling network involved in multiple biological processes
  publication-title: Biochemical Journal
– volume: 78
  start-page: 2265
  year: 2010
  end-page: 2282
  article-title: Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin
  publication-title: Proteins
– volume: 177
  start-page: 301
  year: 2008
  end-page: 318
  article-title: Jasmonate signalling network in : Crucial regulatory nodes and new physiological scenarios
  publication-title: New Phytologist
– start-page: 175
  year: 2008
  end-page: 203
– volume: 32
  start-page: 483
  year: 2013
  end-page: 490
  article-title: Protein kinase LTRPK1 influences cold adaptation and microtubule stability in rice
  publication-title: Journal of Plant Growth Regulation
– volume: 80
  start-page: 249
  year: 1995
  end-page: 257
  article-title: Heterotrimeric G‐proteins—organizers of transmembrane signals
  publication-title: Cell
– volume: 130
  start-page: 999
  year: 2002
  end-page: 1007
  article-title: Activation of phospholipases C and D is an early response to a coldexposure in suspension cells
  publication-title: Plant Physiology
– volume: 44
  start-page: 676
  year: 2003
  end-page: 686
  article-title: Is microtubule disassembly a trigger for cold acclimation?
  publication-title: Plant Cell Physiology
– volume: 162
  start-page: 393
  year: 2010
  end-page: 404
  article-title: Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects
  publication-title: Oecologia
– volume: 110
  start-page: 8744
  year: 2013
  end-page: 8749
  article-title: Calcium‐dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 28
  start-page: 185
  year: 1979
  end-page: 196
  article-title: Effect of benzyl alcohol on lipid bilayers‐comparison of bilayer systems
  publication-title: Biophysical Journal
– volume: 16
  start-page: 300
  year: 2011
  end-page: 309
  article-title: ROS signaling: The new wave?
  publication-title: Trends in Plant Science
– volume: 48
  start-page: 1764
  year: 2007
  end-page: 1774
  article-title: Phospholipase D signaling regulates microtubule organization in the fucoid alga
  publication-title: Plant and Cell Physiology
– volume: 23
  start-page: 785
  year: 2000
  end-page: 794
  article-title: Early steps in cold sensing by plant cells: Role of actin cytoskeleton and membrane fluidity
  publication-title: Plant Journal
– volume: 6
  start-page: 227
  year: 2001
  end-page: 233
  article-title: Phosphatidic acid: An emerging plant lipid second messenger
  publication-title: Trends in Plant Science
– volume: 203
  start-page: 442
  year: 1997
  end-page: 447
  article-title: The induction of kin genes in cold‐acclimating . Evidence of a role for calcium
  publication-title: Planta
– volume: 11
  start-page: 81
  year: 1999
  end-page: 94
  article-title: Microtubules and signal transduction
  publication-title: Current Opinion in Cell Biology
– volume: 138
  start-page: 654
  year: 2005
  end-page: 662
  article-title: Two microtubule‐associated proteins of the arabidopsis MAP65 family function differently on microtubules
  publication-title: Plant Physiology
– volume: 42
  start-page: 999
  year: 2001
  end-page: 1005
  article-title: Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid
  publication-title: Plant and Cell Physiology
– volume: 22
  start-page: 413
  year: 1997
  end-page: 420
  article-title: Organization of cytoskeleton controls the changes in cytosolic calcium of cold‐shocked protoplasts
  publication-title: Cell Calcium
– volume: 93
  start-page: 77
  year: 1990
  end-page: 82
  article-title: Relationship between freezing tolerance of root‐tip cells and cold stability of microtubules in rye ( L. cv Puma)
  publication-title: Plant Physiology
– volume: 352
  start-page: 524
  year: 1991
  end-page: 526
  article-title: Transgenic plant aequorin reports the effects of touch and cold‐shock and elicitors on cytoplasmic calcium
  publication-title: Nature
– volume: 300
  start-page: 1715
  year: 2003
  end-page: 1718
  article-title: Sustained microtubule treadmilling in cortical arrays
  publication-title: Science
– volume: 23
  start-page: 945
  year: 1985
  end-page: 953
  article-title: The role of calcium in the cellular‐regulation of plant‐metabolism
  publication-title: Physiologie Végétale
– volume: 71
  start-page: 747
  year: 1983
  end-page: 748
  article-title: Quantitation of chill‐induced release of a tubulin‐like factor and its prevention by abscisic acid in L
  publication-title: Plant Physiology
– volume: 580
  start-page: 4218
  year: 2006
  end-page: 4223
  article-title: Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in cells
  publication-title: FEBS Letters
– volume: 7
  start-page: 2197
  year: 1995
  ident: e_1_2_6_48_1
  article-title: G protein activation stimulates phospholipase D signaling in plants
  publication-title: The Plant Cell
  doi: 10.2307/3870162
– ident: e_1_2_6_68_1
  doi: 10.1093/pcp/pcf028
– ident: e_1_2_6_71_1
  doi: 10.1111/j.0031-9317.2005.00582.x
– ident: e_1_2_6_75_1
  doi: 10.1093/jxb/err079
– ident: e_1_2_6_58_1
  doi: 10.1104/pp.104.042663
– ident: e_1_2_6_2_1
  doi: 10.1093/pcp/pcg097
– ident: e_1_2_6_29_1
  doi: 10.1007/s00709-013-0591-y
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.104.052456
– ident: e_1_2_6_12_1
  doi: 10.1042/BJ20080625
– ident: e_1_2_6_52_1
  doi: 10.1111/tpj.12102
– ident: e_1_2_6_55_1
  doi: 10.1093/pcp/pcm149
– ident: e_1_2_6_22_1
  doi: 10.1105/TPC.010114
– ident: e_1_2_6_43_1
  doi: 10.1016/S0143-4160(97)90025-7
– ident: e_1_2_6_77_1
  doi: 10.1104/pp.103.035956
– ident: e_1_2_6_60_1
  doi: 10.1093/oxfordjournals.pcp.a076057
– ident: e_1_2_6_27_1
  doi: 10.1007/BF00194063
– ident: e_1_2_6_85_1
  doi: 10.1073/pnas.88.20.8925
– ident: e_1_2_6_37_1
  doi: 10.1006/bbrc.1998.9729
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-3040.1996.tb00387.x
– ident: e_1_2_6_16_1
  doi: 10.1016/S0006-3495(79)85170-X
– ident: e_1_2_6_51_1
  doi: 10.1007/7089_2007_145
– ident: e_1_2_6_76_1
  doi: 10.1016/0014-5793(96)00844-7
– ident: e_1_2_6_4_1
  doi: 10.1104/pp.97.1.182
– ident: e_1_2_6_63_1
  doi: 10.1104/pp.006080
– ident: e_1_2_6_28_1
  doi: 10.1093/jxb/err426
– ident: e_1_2_6_59_1
  doi: 10.1016/j.envexpbot.2007.10.023
– ident: e_1_2_6_18_1
  doi: 10.1002/prot.22739
– ident: e_1_2_6_39_1
  doi: 10.1007/s00344-012-9314-4
– volume: 10
  year: 2015
  ident: e_1_2_6_11_1
  article-title: Actin as deathly switch? How Auxin can suppress cell‐death related defence
  publication-title: PloS One
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1438-8677.2009.00299.x
– ident: e_1_2_6_62_1
  doi: 10.1074/jbc.274.19.13485
– ident: e_1_2_6_5_1
  doi: 10.1016/0014-5793(85)80004-1
– ident: e_1_2_6_40_1
  doi: 10.1104/pp.45.4.386
– ident: e_1_2_6_20_1
  doi: 10.1104/pp.103.2.543
– ident: e_1_2_6_53_1
  doi: 10.1146/annurev.arplant.47.1.541
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-313X.1993.04020307.x
– ident: e_1_2_6_30_1
  doi: 10.1093/pcp/pci230
– ident: e_1_2_6_61_1
  doi: 10.1104/pp.71.4.747
– ident: e_1_2_6_79_1
  doi: 10.1007/978-0-387-39975-1_11
– ident: e_1_2_6_73_1
  doi: 10.1016/j.jplph.2010.11.008
– volume: 7
  start-page: 321
  year: 1995
  ident: e_1_2_6_46_1
  article-title: Low‐temperature signal transduction: Induction of cold acclimation‐specific genes of alfalfa by calcium at 25 degrees C
  publication-title: The Plant Cell
– ident: e_1_2_6_54_1
  doi: 10.1046/j.1365-313x.2000.00845.x
– volume: 23
  start-page: 945
  year: 1985
  ident: e_1_2_6_42_1
  article-title: The role of calcium in the cellular‐regulation of plant‐metabolism
  publication-title: Physiologie Végétale
– ident: e_1_2_6_82_1
  doi: 10.1093/pcp/pce135
– ident: e_1_2_6_70_1
  doi: 10.1126/science.1083529
– ident: e_1_2_6_25_1
  doi: 10.1016/S0955-0674(99)80010-6
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1469-8137.2007.02292.x
– ident: e_1_2_6_10_1
  doi: 10.1104/pp.104.053843
– ident: e_1_2_6_80_1
  doi: 10.1016/S0955-0674(99)00056-3
– ident: e_1_2_6_49_1
  doi: 10.1104/pp.117.4.1301
– ident: e_1_2_6_64_1
  doi: 10.1046/j.1365-313x.2000.00787.x
– ident: e_1_2_6_81_1
  doi: 10.1105/tpc.12.11.2237
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev.pp.46.060195.000523
– ident: e_1_2_6_66_1
  doi: 10.1046/j.1365-313x.2001.01052.x
– ident: e_1_2_6_67_1
  doi: 10.1007/s00709-005-0139-x
– ident: e_1_2_6_86_1
  doi: 10.1104/pp.109.140996
– ident: e_1_2_6_14_1
  doi: 10.1074/jbc.M005699200
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.1221294110
– ident: e_1_2_6_50_1
  doi: 10.1016/0092-8674(95)90407-7
– ident: e_1_2_6_74_1
  doi: 10.1111/j.1365-3040.2012.02573.x
– ident: e_1_2_6_26_1
  doi: 10.1007/s11738-009-0451-8
– ident: e_1_2_6_33_1
  doi: 10.1104/pp.93.1.77
– ident: e_1_2_6_8_1
  doi: 10.1007/s00442-009-1459-x
– ident: e_1_2_6_56_1
  doi: 10.1111/j.1399-3054.1995.tb06859.x
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ceb.2009.11.008
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jplph.2014.10.023
– ident: e_1_2_6_84_1
  doi: 10.1111/j.1399-3054.2006.00622.x
– ident: e_1_2_6_6_1
  doi: 10.1016/S0065-2296(08)60043-9
– ident: e_1_2_6_21_1
  doi: 10.1104/pp.112.3.1079
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1469-8137.2008.02682.x
– ident: e_1_2_6_45_1
  doi: 10.1016/j.tplants.2011.03.007
– ident: e_1_2_6_23_1
  doi: 10.1038/346769a0
– ident: e_1_2_6_35_1
  doi: 10.1038/352524a0
– ident: e_1_2_6_57_1
  doi: 10.1016/0167-4838(92)90044-E
– ident: e_1_2_6_72_1
  doi: 10.1007/s004250050212
– ident: e_1_2_6_13_1
  doi: 10.1038/29087
– ident: e_1_2_6_38_1
  doi: 10.1016/j.bbamem.2013.04.027
– ident: e_1_2_6_83_1
  doi: 10.1104/pp.105.068809
– volume: 8
  start-page: 489
  year: 1996
  ident: e_1_2_6_34_1
  article-title: Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation
  publication-title: The Plant Cell
– ident: e_1_2_6_69_1
  doi: 10.1002/bies.20307
– ident: e_1_2_6_65_1
  doi: 10.1007/BF01322649
– ident: e_1_2_6_78_1
  doi: 10.1016/j.febslet.2006.06.083
– volume: 31
  start-page: 737
  year: 1989
  ident: e_1_2_6_32_1
  article-title: Studies on microtubule cold stability in relation to plant cold hardiness
  publication-title: Acta Botanica Sinica
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jplph.2011.12.013
– ident: e_1_2_6_47_1
  doi: 10.1016/S1360-1385(01)01918-5
SSID ssj0001479
Score 2.422055
Snippet Plants can acquire freezing tolerance in response to cold but non‐freezing temperatures. To efficiently activate this cold acclimation, low temperature has to...
Plants can acquire freezing tolerance in response to cold but non-freezing temperatures. To efficiently activate this cold acclimation, low temperature has to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2844
SubjectTerms Acclimation
Acclimatization
Activation
Aluminum Compounds - pharmacology
Arabidopsis
Benzyl Alcohol - pharmacology
Biphenyl Compounds - pharmacology
Calcimycin - pharmacology
Calcium
Calcium - metabolism
Calcium influx
Calcium-binding protein
Calmodulin
Cash crops
Cell Membrane - drug effects
Cell Membrane - metabolism
Climate
Cold
Cold acclimation
cold stress
Cold Temperature
Cold tolerance
Cultivars
Cyclopentanes - pharmacology
Cytoplasm - metabolism
Cytoskeleton
Dimethyl Sulfoxide - pharmacology
Egtazic Acid - pharmacology
Fluorescence
Fluorides - pharmacology
Freezing
Fusion protein
G-proteins
Gadolinium - pharmacology
grapevine (Vitis rupestris)
Green fluorescent protein
Image analysis
Image processing
Interphase
Ionophores - pharmacology
Jasmonic acid
Low temperature
Membranes
Microtubules
Microtubules - drug effects
Microtubules - metabolism
NAD
NAD(P)H oxidase
NAD(P)H oxidase (H2O2-forming)
NADPH Oxidases - metabolism
Nitroprusside - pharmacology
Onium Compounds - pharmacology
Oxidase
Oxylipins - pharmacology
Perception
Pertussis Toxin - pharmacology
Pharmacology
Phospholipase
Phospholipase D
Phospholipase D - metabolism
phospholipases
Plant breeding
Polymerization
Proteins
Pyrazoles - pharmacology
Signal transduction
Signal Transduction - drug effects
Signaling
signalling
Stress, Physiological - drug effects
Stresses
temperature
thermometers
Tubulin
Upstream
Vitis
Vitis - drug effects
Vitis - physiology
Title Cold sensing in grapevine—Which signals are upstream of the microtubular “thermometer”
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13066
https://www.ncbi.nlm.nih.gov/pubmed/28898434
https://www.proquest.com/docview/1951412180
https://www.proquest.com/docview/1938598474
https://www.proquest.com/docview/2020890053
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VFUhceJTX0oIM4tBLqrXjxIk4wapVhQRCiIoeKkW2M2krusmquzm0p_0RHOHP7S9hJi8oUAlxi5SxZMcz9mfnm28AXiLtCxjz1Rvh-UA7mwcuyW1grEaMijC0mpOT372P9w_028PocA1e9bkwrT7EcOHGkdGs1xzg1s1_CfKZRy5lHLPcNnO1GBB9_CkdJXWrs8f0RWNS2akKMYtnaHl1L_oDYF7Fq82Gs3cHjvqutjyTLzv1wu34y99UHP9zLHfhdgdExevWc-7BGpYbcLMtTXmxATfeVAQbL-7D0aQ6y8Wcee7lsTgtBUtc025a4mr59fPJqT8RzAEhLxb2HEU94-wTOxVVIQhbiikT_ha1Y7arWC2_Md6cVlMm4ayW3x_Awd7up8l-0JVkCDydbOLAmgjN2BEM80lucmWiNAm9iVPtCPhikhP6S2SUo7RWWfSFc4R4lJK2oJOSG4cPYb2sSnwMwkfKeSSfUJaOiGSZFkU0DrWLCXFIlCPY7icn851eOZfNOMv6cwt9taz5aiN4MZjOWpGOvxlt9TOcdXE6zyQBTC0J5oxH8Hx4TRHGv01siVXNNmFCw9RGX2-juNZpyivaCB613jP0RCUJtQ6p9XbjA9d3Mfsw2W0envy76SbcUow0mvTILVhfnNf4lHDSwj1rAuIHINwQGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAoILlPJaaKmLOPSSau04cSJxgVWrpS9VqBU9gCLbcWhFN1m1m0M57Y_gCH9ufwkzedEClRC3SBlLdjzj-cb5ZgbglUO_4EK6ekM870mjU89EqfaUls4Fme9rScnJu3vh8FBuHQVHc_C6zYWp60N0F25kGdV5TQZOF9KXrHxsHfUyDsMbcJM6elcB1ftfxaO4rCvtEYFRqZg3dYWIx9MNveqN_oCYVxFr5XI278OndrI10-TLejkx6_brb3Uc_3c1C3CvwaLsTa08D2DO5Ytwu-5OebEIt94WiBwvHsLHQXGasnOiuuef2UnOqMo1OtTczabfPhyf2GNGNBBUZKbPHCvHlICiR6zIGMJLNiLO36Q0RHhls-l3gpyjYkQ8nNn0xyM43Nw4GAy9piuDZzG4CT2tAqf6BpGYjVKVChXEkW9VGEuD2NdFKQLAiAep41oL7WxmDIIeIbjOMFgyff8xzOdF7p4Cs4Ew1qFaCI1RIkrGWRb0fWlCBB3c8R6stbuT2KZkOXXOOE3a0AW_WlJ9tR687ETHdZ2OvwkttVucNKZ6nnDEmJIj0un3YLV7jUZGf0507oqSZPwIlymVvF5GULvTmA61Hjyp1aebiYgiHO3j6LVKCa6fYrI_2Kgenv276ArcGR7s7iQ77_a2n8NdQcCjypZcgvnJWemWETZNzIvKOn4CCikUMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFhAXHuW1tAWDOPSSKnGc2BEn2HZVXlWFqOihUmQ7Dq3oJqt2cyin_REc4c_tL-lMXlCgEuIWKWPJjmc83zjfzAA8d-gXXExXb4jnPWF05hmVaU9q4VyUh6EWlJz8fife3hNv9qP9BXjR5cI09SH6CzeyjPq8JgOfZPkvRj6xjloZx_EVWBKxr0ilNz_8rB0ViKbQHvEXpUyCtqwQ0Xj6oRed0R8I8yJgrT3O6BYcdHNtiCZfNqqp2bBffyvj-J-LuQ03WyTKXjaqcwcWXLEM15relGfLcPVVibjx7C4cDMvjjJ0S0b34zI4KRjWu0Z0Wbj779unwyB4yIoGgGjN94lg1ofQTPWZlzhBcsjEx_qaVIborm8--E-Acl2Ni4cxnP-7B3mjr43Dba3syeBZDm9jTMnLSN4jDrMpkxmWUqNDKOBEGka9TGcI_FUSZC7Tm2tncGIQ8nAc6x1DJ-OF9WCzKwj0EZiNurEOl4BpjRJRM8jzyQ2FihByBCwaw3m1OatuC5dQ34zjtAhf8amn91QbwrBedNFU6_ia02u1w2hrqaRogwhQB4hx_AE_712hi9N9EF66sSCZUuEwhxeUynJqdJnSkDeBBoz39TLhSODrE0eu1Dlw-xXR3uFU_PPp30SdwfXdzlL57vfN2BW5wQh11quQqLE5PKreGmGlqHte2cQ7i-xLr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cold+sensing+in+grapevine-Which+signals+are+upstream+of+the+microtubular+%22thermometer%22&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Wang%2C+Lixin&rft.au=Nick%2C+Peter&rft.date=2017-11-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=40&rft.issue=11&rft.spage=2844&rft_id=info:doi/10.1111%2Fpce.13066&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon