Three-mode analysis of multimode covariance matrices
Multimode covariance matrices, such as multitrait‐multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three‐mode component analysis and three‐mode factor analysis applied to such covariance matrices....
Saved in:
Published in | British journal of mathematical & statistical psychology Vol. 56; no. 2; pp. 305 - 335 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.11.2003
British Psychological Society |
Subjects | |
Online Access | Get full text |
ISSN | 0007-1102 2044-8317 |
DOI | 10.1348/000711003770480066 |
Cover
Loading…
Abstract | Multimode covariance matrices, such as multitrait‐multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three‐mode component analysis and three‐mode factor analysis applied to such covariance matrices. The differences and similarities between the non‐stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three‐mode factor analysis and its associated degrees of freedom for the three‐mode component models. Furthermore, within the present context a case is made for interpreting the core array as second‐order components. |
---|---|
AbstractList | Multimode covariance matrices, such as multitrait-multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three-mode component analysis and three-mode factor analysis applied to such covariance matrices. The differences and similarities between the non-stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three-mode factor analysis and its associated degrees of freedom for the three-mode component models. Furthermore, within the present context a case is made for interpreting the core array as second-order components. References: 27 references open in new window Articles that cite this article? Multimode covariance matrices, such as multitrait‐multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three‐mode component analysis and three‐mode factor analysis applied to such covariance matrices. The differences and similarities between the non‐stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three‐mode factor analysis and its associated degrees of freedom for the three‐mode component models. Furthermore, within the present context a case is made for interpreting the core array as second‐order components. Multimode covariance matrices, such as multitrait-multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three-mode component analysis and three-mode factor analysis applied to such covariance matrices. The differences and similarities between the non-stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three-mode factor analysis and its associated degrees of freedom for the three-mode component models. Furthermore, within the present context a case is made for interpreting the core array as second-order components. [PUBLICATION ABSTRACT] Multimode covariance matrices, such as multitrait-multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three-mode component analysis and three-mode factor analysis applied to such covariance matrices. The differences and similarities between the non-stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three-mode factor analysis and its associated degrees of freedom for the three-mode component models. Furthermore, within the present context a case is made for interpreting the core array as second-order components.Multimode covariance matrices, such as multitrait-multimethod matrices, contain the covariances of subject scores on variables for different occasions or conditions. This paper presents a comparison of three-mode component analysis and three-mode factor analysis applied to such covariance matrices. The differences and similarities between the non-stochastic and stochastic approaches are demonstrated by two examples, one of which has a longitudinal design. The empirical comparison is facilitated by deriving, as a heuristic device, a statistic based on the maximum likelihood function for three-mode factor analysis and its associated degrees of freedom for the three-mode component models. Furthermore, within the present context a case is made for interpreting the core array as second-order components. |
Author | Kroonenberg, Pieter M. Oort, Frans J. |
Author_xml | – sequence: 1 givenname: Pieter M. surname: Kroonenberg fullname: Kroonenberg, Pieter M. email: kroonenb@fsw.leidenuniv.nl organization: Department of Education, Leiden University, Leiden, The Netherlands – sequence: 2 givenname: Frans J. surname: Oort fullname: Oort, Frans J. organization: Department of Medical Psychology, AMC, University of Amsterdam, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14633338$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1PFEEQhjsGAgvyBzyYjQdvI13TX7VHJbpI-DC6Bm6dnt6a2Dgzjd0zyv57ZlnkgIlal0oqz_MmVbXHtrrYEWMvgL8BIfGQc24AOBfGcImca_2MTUouZYECzBabrIFiJMpdtpfzNedQKq532C5ILcbCCZOLb4moaOOSpq5zzSqHPI31tB2aPtxPffzpUnCdp2nr-hQ85edsu3ZNpoOHvs--fni_ODouTi_mH4_enhZeotGFMIRUlpXgNUfhEfxMSFIzrFEu68r4elkb4Z0qnVQkRKVQA818BQBokIt99nqTe5Pij4Fyb9uQPTWN6ygO2RoQiIDqn2AJoJU0a_DVE_A6Dmnce81oqXCGMEIvH6Chamlpb1JoXVrZ31cbAdwAPsWcE9XWh971IXZ9cqGxwO36QfbPB41q-UR9TP-bZDbSr9DQ6j8M--7sy6dx59EsNmbIPd0-mi59t9oIo-zl-dyKkzks5vqzvRJ3TcytCA |
CODEN | BJMSAK |
CitedBy_id | crossref_primary_10_1007_s11336_013_9359_8 crossref_primary_10_1007_s00357_008_9005_9 crossref_primary_10_1016_j_chemolab_2010_08_001 crossref_primary_10_1080_00273171_2010_498286 crossref_primary_10_1214_20_STS814 crossref_primary_10_1348_000711008X369474 crossref_primary_10_1348_000711005X64817 crossref_primary_10_1002_cem_3235 crossref_primary_10_1007_s11336_003_1067_3 crossref_primary_10_2139_ssrn_2041734 crossref_primary_10_1080_00273171_2018_1520072 crossref_primary_10_3758_s13428_012_0238_5 crossref_primary_10_1146_annurev_psych_60_110707_163612 crossref_primary_10_1007_s11336_020_09715_4 crossref_primary_10_1007_s41237_024_00242_5 crossref_primary_10_1348_000712609X413809 |
ContentType | Journal Article |
Copyright | 2003 The British Psychological Society Copyright British Psychological Society Nov 2003 |
Copyright_xml | – notice: 2003 The British Psychological Society – notice: Copyright British Psychological Society Nov 2003 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88G 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. L6V M0S M1P M2M M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U S0X 7TK 7X8 |
DOI | 10.1348/000711003770480066 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic SIRS Editorial Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Materials Science & Engineering Collection ProQuest Central (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Psychology Mathematics |
EISSN | 2044-8317 |
EndPage | 335 |
ExternalDocumentID | 522508511 14633338 10_1348_000711003770480066 BMSP116 ark_67375_WNG_3JG1TG6R_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3V. 4.4 50Y 50Z 52M 52O 52S 52T 52U 52V 52W 53G 5GY 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 930 A01 A04 AABNI AAESR AAHHS AAONW AAOUF AASGY AAXRX AAZKR ABCUV ABDBF ABIVO ABJCF ABJNI ABQWH ABSOO ABTAH ABUWG ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACHQT ACIWK ACKIV ACMXC ACPOU ACXQS ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKFF AFKRA AFPWT AFZJQ AHBTC AI. AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ASTYK AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BSCLL BVXVI C45 CAG CCPQU COF CS3 D-6 D-7 D-C D-D DCZOG DPXWK DRFUL DRMAN DRSSH DU5 DWQXO EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPS EST ESX F00 F01 F5P FEDTE FUBAC FYUFA G-S G.N G50 GNK GNM GNUQQ GODZA GUQSH HAOEW HCIFZ HGLYW HMCUK HVGLF HZ~ H~9 K6V K7- KBYEO L6V L7B LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES M1P M2M M2O M2P M2Q M7S MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MXFUL MXMAN MXSSH MY~ N04 N06 NF~ NIF O66 O9- OHT OVD P2P P2W P2Y P2Z P4B P4C P62 PADUT PALCI PQQKQ PROAC PSQYO PSYQQ PTHSS Q.N Q2X QB0 R.K RIWAO RJQFR ROL RX1 S0X SAMSI SUPJJ SV3 TEORI TN5 TUS UB1 UKHRP UPT VH1 W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WSUWO WXSBR XG1 ZY4 ZZTAW ~A~ ~IA ~WP AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AIDQK AIDYY ALVPJ PHGZM PHGZT PJZUB PPXIY PQGLB AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ 7XB 8FK JQ2 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7TK 7X8 |
ID | FETCH-LOGICAL-c4876-37e8e22b30f083c81c934e598f84dfb7cfdf73ca52a45e33b5861e9cb11187803 |
IEDL.DBID | BENPR |
ISSN | 0007-1102 |
IngestDate | Thu Sep 04 19:32:30 EDT 2025 Thu Sep 04 18:08:26 EDT 2025 Fri Jul 25 19:26:25 EDT 2025 Wed Feb 19 01:52:02 EST 2025 Tue Jul 01 03:30:13 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Wed Aug 20 07:25:12 EDT 2025 Wed Oct 30 09:44:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4876-37e8e22b30f083c81c934e598f84dfb7cfdf73ca52a45e33b5861e9cb11187803 |
Notes | ark:/67375/WNG-3JG1TG6R-X ArticleID:BMSP116 istex:1B930E45DE971807D9AD5A31C0DC3923FEF22577 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1348/000711003770480066 |
PMID | 14633338 |
PQID | 216458981 |
PQPubID | 36005 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_71388185 proquest_miscellaneous_21165475 proquest_journals_216458981 pubmed_primary_14633338 crossref_citationtrail_10_1348_000711003770480066 crossref_primary_10_1348_000711003770480066 wiley_primary_10_1348_000711003770480066_BMSP116 istex_primary_ark_67375_WNG_3JG1TG6R_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-11 November 2003 2003-11-00 2003-Nov 20031101 |
PublicationDateYYYYMMDD | 2003-11-01 |
PublicationDate_xml | – month: 11 year: 2003 text: 2003-11 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Leicester |
PublicationTitle | British journal of mathematical & statistical psychology |
PublicationTitleAlternate | Br J Math Stat Psychol |
PublicationYear | 2003 |
Publisher | Blackwell Publishing Ltd British Psychological Society |
Publisher_xml | – name: Blackwell Publishing Ltd – name: British Psychological Society |
SSID | ssj0012506 |
Score | 1.694281 |
Snippet | Multimode covariance matrices, such as multitrait‐multimethod matrices, contain the covariances of subject scores on variables for different occasions or... Multimode covariance matrices, such as multitrait-multimethod matrices, contain the covariances of subject scores on variables for different occasions or... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 305 |
SubjectTerms | Analysis of Variance Humans Mathematical Computing Mathematical models Matrix Models, Statistical Psychological Tests - statistics & numerical data Psychology, Experimental - statistics & numerical data Psychometrics - statistics & numerical data Reproducibility of Results Software Statistical analysis Stochastic models Variance analysis |
Title | Three-mode analysis of multimode covariance matrices |
URI | https://api.istex.fr/ark:/67375/WNG-3JG1TG6R-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1348%2F000711003770480066 https://www.ncbi.nlm.nih.gov/pubmed/14633338 https://www.proquest.com/docview/216458981 https://www.proquest.com/docview/21165475 https://www.proquest.com/docview/71388185 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7R3Us5ICivUFhyQFxQ1MSP2DlVXdrdqtKuqrIVe7Mcx74UNqXbIvj3HTveVKhQkUOkJI6SeCYz39jjbwA-CMad05xlFbE8Q6Ugmc5lnVGDypLXVckDXdNsXh6fs5MlX8bcnHVMq9zYxGCom9b4MfI9griey0oW-5c_Ml80yk-uxgoaWzBECyz5AIbjo_npWT-NgP697PCvyNDPkbhqhjK5F5xr4elXhF9WnQeaxDvPNPSd_OtvsPNPFBvc0OQpPIn4MT3oBP4MHtnVDjye9eSr6x3Y7o3abzzwaLIjY34ObIGSs5mvfpPqyEaSti4NWYXhrGl_YvDsNSH9Hsj77foFnE-OFp-Ps1g2ITMYfZRoMqy0hNQ0d4ivjCxMRZnllXSSNa4WxjVOUKM50YxbSmsuy8JWpi586XGZ05cwWLUr-xpSjvGVdLmtRM0ZI41uUHZEamoxsNKNSaDYdJkykVPcl7b4psJEGZPqfjcn8Km_57Jj1Hiw9ccgib6pvrrwuWiCq6_zqaIn02IxLc_UMoHdjahU_A3XqleaBN73V_H_8ZMiemXbG9_Er-cS_N8tMIyXHtYk8KrTgLvXZiXFTSaQB5X4j-9R49mXU3zkmwdfdxe2u6RBP9TzFgbXVzf2HYKf63oEW2IpcC8n0xEMD8aH48koqv0tnb77ag |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q7YFyqKBsoUBzAC4oauIlcQ4VYutMlxkhmIq5uY7jXGgnpdOF_ij-I-85S4WAiktzS-Ikjv3Z73tevgfwIhOyqowUUc6cjBAULDKxKiJuESxxkafSyzWNxulwX-xM5XQBfnZ7YWhZZdcn-o66rC2NkW8w5PVS5Sp5c_w9oqBRNLnaRdBoULHrLi_QY5tvbn_A6n3J2NbHyfth1AYViCxy8xQblFOOsYLHFbIPqxKbc-FkriolyqrIbFVWGbdGMiOk47yQKk1cbouEAnOrmON7b8ES2t2YpPqzae_fIVXwoTzJ7EZoVVm7R4cLteFNeUJiLxlt4o69KOOVHVyiKv3xN5L7O2f2Rm_rLqy0bDV828DrHiy42SrcGfVSr_NVWO670Es8Ie7aSD_fBzFBnLiIYu2EptU-Cesq9GsY_VVbn6OrTrgLj3yoADd_APs3Up4PYXFWz9xjCCV6c6qKXZ4VUghWmhKRwpThDt04U9oAkq7ItG0VzCmQxqH203JC6T-LOYDX_TPHjX7Htalf-Zrok5qTb7TyLZP663ig-c4gmQzSz3oawFpXVbpt9HPdQzSA9f4utlaagjEzV59REto9lsl_p8gSrohEBfCoQcBVtkXK8VABxB4S__E_-t3oyyf85JNrs7sOt4eT0Z7e2x7vrsFys1yRBpmewuLpyZl7hrTrtHjuwR7CwU23rl_UqTLJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXQmVA4LyCgWaA3BB0SZ-xM4BIUq72we7WpWt2JubOPaFdlO6LdCfxr9j7DwqBFRcmluSSeLYnz2fPeMZgJeCcWtzzqKMGB4hKEiUx7KIqEawxEWWch-uaTxJdw7Z3pzPV-BnuxfGuVW2Y6IfqMtKuzXyAUFez2Umk4FtvCKmW8N3p18jl0DKGVrbbBo1QvbN5XecvS3f7m5hU78iZLg9-7ATNQkGIo08PcXOZaQhpKCxRSaiZaIzygzPpJWstIXQtrSC6pyTnHFDacFlmphMF4lL0i1jiu-9BX2BSlH2oL-5PZkedCYM5BZpzb1FhDqWNDt2KJMDr9gTF_pFuC3dsQ_ReKUV-66Bf_yN8v7OoL0KHN6Duw13Dd_XYLsPK2axBnfGXeDX5RqsdgPqJZ44JlsHgn4AbIaoMZHLvBPmTSSUsLKh92j0V3X1DSfuDoXhiU8cYJYP4fBGavQR9BbVwjyBkOPcTtrYZKLgjJEyLxE3RObU4KQuL3UASVtlSjfxzF1ajWPljXRMqj-rOYA33TOndTSPa6Vf-5boRPOzL84PTnD1eTJSdG-UzEbpgZoHsN42lWqGgKXqABvARncX-64zyOQLU104EbeXTPB_S4iESkepAnhcI-Cq2CyleMgAYg-J__gftTn-NMVPPr22uBtwG3uW-rg72V-H1dp30a04PYPe-dmFeY4c7Lx40aA9hKOb7mC_ACh7OG0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-mode+analysis+of+multimode+covariance+matrices&rft.jtitle=British+journal+of+mathematical+%26+statistical+psychology&rft.au=Kroonenberg%2C+Pieter+M&rft.au=Oort%2C+Frans+J&rft.date=2003-11-01&rft.issn=0007-1102&rft.volume=56&rft.issue=Pt+2&rft.spage=305&rft_id=info:doi/10.1348%2F000711003770480066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1102&client=summon |