Loss of chloroplast‐localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection

Summary Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a sp...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant pathology Vol. 19; no. 5; pp. 1184 - 1195
Main Authors Akimoto‐Tomiyama, Chiharu, Tanabe, Shigeru, Kajiwara, Hideyuki, Minami, Eiichi, Ochiai, Hirokazu
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62‐ and atpp2c26‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
AbstractList Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine-specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62- and atpp2c26-deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis-related protein, chaperonin-60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two-dimensional isoelectric focusing sodium dodecylsulfate-polyacrylamide gel electrophoresis (2D-IDF-SDS-PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62‐ and atpp2c26‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Summary Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae , the causal agent of bacterial blight. In Arabidopsis thaliana , orthologous PP2C genes ( AtPP2C62 and AtPP2C26 ) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris ( Xcc , causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62 ‐ and atpp2c26 ‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Summary Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62‐ and atpp2c26‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae , the causal agent of bacterial blight. In Arabidopsis thaliana , orthologous PP2C genes ( AtPP2C62 and AtPP2C26 ) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris ( Xcc , causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62 ‐ and atpp2c26 ‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Author Ochiai, Hirokazu
Kajiwara, Hideyuki
Akimoto‐Tomiyama, Chiharu
Tanabe, Shigeru
Minami, Eiichi
AuthorAffiliation 2 Advanced Analysis Center National Agriculture and Food Research Organization Tsukuba Ibaraki 305‐8602, Japan
1 Institute of Agrobiological Sciences, National Agriculture and Food Research Organization Tsukuba Ibaraki 305‐8602, Japan
3 Present address: Sakata Seed Corporation Yokohama Japan
AuthorAffiliation_xml – name: 2 Advanced Analysis Center National Agriculture and Food Research Organization Tsukuba Ibaraki 305‐8602, Japan
– name: 3 Present address: Sakata Seed Corporation Yokohama Japan
– name: 1 Institute of Agrobiological Sciences, National Agriculture and Food Research Organization Tsukuba Ibaraki 305‐8602, Japan
Author_xml – sequence: 1
  givenname: Chiharu
  surname: Akimoto‐Tomiyama
  fullname: Akimoto‐Tomiyama, Chiharu
  email: akimotoc@affrc.go.jp
  organization: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
– sequence: 2
  givenname: Shigeru
  surname: Tanabe
  fullname: Tanabe, Shigeru
  organization: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
– sequence: 3
  givenname: Hideyuki
  surname: Kajiwara
  fullname: Kajiwara, Hideyuki
  organization: National Agriculture and Food Research Organization
– sequence: 4
  givenname: Eiichi
  surname: Minami
  fullname: Minami, Eiichi
  organization: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
– sequence: 5
  givenname: Hirokazu
  surname: Ochiai
  fullname: Ochiai, Hirokazu
  organization: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28815858$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtuFDEQhi0URB6w4ALIEisWM7Hd3X5skKIRL2kQWYDEzvLYbtpRt23snkTDiiNwHM7DSahhQhQW1MZVrs-_q_SfoqOYokfoKSVLCnE-5bykrFP8ATqhDW8XjSDNEeQt5FwwdoxOa70ihArFukfomElJO9nJE_RznWrFqcd2GFNJeTR1_vX9x5isGcM373AuafYh4jykmgczm-oxW1UMVxfFbIJLuYaK5wF4Ew0evXFQJuzjYKL1k4_zXh-UIQnTtI1h3mETHS4eXs57aM9_hv6QphRNxdZM2de5gHC-Xt4vQ-y9nUOKj9HD3ozVP7k9z9Cn168-rt4u1h_evFtdrBe2lYIvGBFcGOt5r5SUrlHGEEms63rpKdtAULsRjRTWt4q21PPWcsIBZcq51jZn6OVBN283k3cW1ilm1LmEyZSdTibofzsxDPpLutacN0IpBgLPbwVK-rqFNfRV2pYIM2tGWNMxKqgC6sWBsgUMKb6_-4ESvTdZg8n6j8nAPrs_0h3511UAzg_ATRj97v9K-v3l5UHyN_5mupk
CitedBy_id crossref_primary_10_1093_jxb_erab211
crossref_primary_10_1111_nph_17076
crossref_primary_10_3390_agriculture13112090
crossref_primary_10_3389_fgene_2019_00561
crossref_primary_10_3390_ijms21175967
crossref_primary_10_1089_vbz_2018_2364
crossref_primary_10_1111_pce_13616
crossref_primary_10_3390_ijms222413464
crossref_primary_10_1007_s00122_018_3230_3
crossref_primary_10_1094_MPMI_02_22_0037_CR
crossref_primary_10_1111_pce_14532
crossref_primary_10_3389_fpls_2019_00750
crossref_primary_10_1038_s41598_019_42731_8
crossref_primary_10_1146_annurev_phyto_020620_115813
crossref_primary_10_1016_j_plaphy_2022_03_013
crossref_primary_10_3390_pathogens9010019
crossref_primary_10_1186_s12864_022_08734_y
Cites_doi 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1186/1471-2164-9-550
10.1093/jxb/eru463
10.1371/journal.pone.0073346
10.1371/journal.pone.0083219
10.1104/pp.112.206466
10.1016/j.cropro.2005.04.013
10.1105/tpc.13.5.1155
10.1111/j.1462-5822.2012.01749.x
10.1371/journal.pone.0132863
10.1074/jbc.M506254200
10.1016/j.chom.2016.04.011
10.1111/tpj.12396
10.1371/journal.pone.0150983
10.1111/j.1364-3703.2005.00287.x
10.1111/j.1364-3703.2010.00642.x
10.1093/jxb/err402
10.1094/MPMI-23-7-0893
10.1111/j.1364-3703.2006.00344.x
10.3389/fpls.2014.00531
10.1007/s00425-004-1272-z
10.1371/journal.pone.0125168
10.1038/nature05286
10.1016/j.tplants.2014.10.002
10.1146/annurev.micro.60.080805.142251
10.1126/science.1171647
10.1038/nplants.2015.74
10.1016/j.jplph.2011.02.012
10.1038/ncomms6430
10.2198/jelectroph.53.19
10.1371/journal.pone.0094386
10.1093/pcp/pcu062
10.1105/tpc.112.100479
10.1094/MPMI-10-14-0314-R
10.1094/MPMI-06-11-0167
10.1016/j.cell.2006.02.008
10.1016/j.mib.2010.12.005
10.1094/MPMI-22-1-0096
10.1111/j.1364-3703.2011.00707.x
10.1038/srep26411
10.1002/jcb.240240206
10.1007/978-3-642-78624-2_2
10.1007/s00299-009-0701-7
10.1007/s10059-013-2337-2
10.1016/j.tplants.2004.03.007
10.1126/science.7973632
10.1128/JVI.77.20.11016-11026.2003
10.1105/tpc.106.049585
10.1186/1471-2229-9-38
10.1111/j.1399-3054.2006.00671.x
10.1111/j.1365-313X.2008.03439.x
10.1016/j.bbabio.2015.01.006
10.1105/tpc.112.095703
10.1146/annurev.arplant.57.032905.105346
10.1016/j.cub.2007.02.028
10.1083/jcb.103.4.1327
10.1016/j.gene.2004.01.008
10.1046/j.1365-313X.2002.01216.x
10.1111/j.1365-313X.2006.02672.x
10.1093/pcp/pcq156
10.1016/j.chom.2015.08.004
10.1094/MPMI-09-14-0288-R
10.3389/fpls.2016.00405
10.1104/pp.109.138677
ContentType Journal Article
Copyright 2017 BSPP AND JOHN WILEY & SONS LTD
2017 BSPP AND JOHN WILEY & SONS LTD.
2018 BSPP AND JOHN WILEY & SONS LTD
Copyright_xml – notice: 2017 BSPP AND JOHN WILEY & SONS LTD
– notice: 2017 BSPP AND JOHN WILEY & SONS LTD.
– notice: 2018 BSPP AND JOHN WILEY & SONS LTD
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
5PM
DOI 10.1111/mpp.12596
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Loss of chloroplast PP2Cs enhances immunity
EISSN 1364-3703
EndPage 1195
ExternalDocumentID 10_1111_mpp_12596
28815858
MPP12596
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Genomics for Agricultural Innovation
  funderid: RTR‐0003
– fundername: the Ministry of Agriculture, Forestry, and Fisheries of Japan
– fundername: Genomics for Agricultural Innovation
  grantid: RTR‐0003
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X2
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABPVW
ACBWZ
ACCFJ
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADZMN
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFPWT
AFRAH
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HVGLF
HYE
HZI
HZ~
IAO
IEP
IGS
IHE
IX1
J0M
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M0K
M7P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ITC
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
5PM
ID FETCH-LOGICAL-c4876-20767ace6f9988d39aa080cd5f8e12bbbb1cb7387ce49141e64c60688d29dd4c3
IEDL.DBID RPM
ISSN 1464-6722
IngestDate Tue Sep 17 21:23:23 EDT 2024
Thu Oct 10 18:35:00 EDT 2024
Thu Sep 26 19:07:58 EDT 2024
Tue Oct 15 08:37:06 EDT 2024
Sat Aug 24 01:09:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Arabidopsis thaliana
type III secretion system, Xanthomonas campestris pv. campestris
chloroplast
protein phosphatase 2C
plant immunity
Language English
License 2017 BSPP AND JOHN WILEY & SONS LTD.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4876-20767ace6f9988d39aa080cd5f8e12bbbb1cb7387ce49141e64c60688d29dd4c3
OpenAccessLink https://bsppjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mpp.12596
PMID 28815858
PQID 2023521719
PQPubID 1006541
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637992
proquest_journals_2023521719
crossref_primary_10_1111_mpp_12596
pubmed_primary_28815858
wiley_primary_10_1111_mpp_12596_MPP12596
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Molecular plant pathology
PublicationTitleAlternate Mol Plant Pathol
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2010; 11
1973; 57
2012; 160
1984; 24
2004; 9
2008; 9
2009; 150
2011; 12
2011; 14
2004; 329
2012; 14
2013; 8
2010; 23
1994; 266
2006; 60
2011; 168
1986; 103
2014; 5
2009; 53
2006; 25
2012; 25
2014; 9
2006; 127
2004; 219
2012; 24
2001; 13
2009; 324
2014; 55
2006; 444
2012; 63
2006; 124
2007; 17
2009; 22
2015; 1
2007; 19
2016; 19
2015; 18
1994; 192
2009; 60
2015; 10
2006; 7
2008; 54
1999; 20
2003; 77
2009; 28
2016; 11
2016; 6
2005; 280
2016; 7
2015; 28
2002; 29
2015; 1847
2006; 46
2013; 35
2015; 20
2015; 66
2009; 9
2005; 6
2014; 77
2010; 51
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
Kauffman H.E. (e_1_2_6_27_1) 1973; 57
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 11
  start-page: 783
  year: 2010
  end-page: 793
  article-title: Effector‐triggered innate immunity contributes resistance to
  publication-title: Mol. Plant Pathol.
– volume: 25
  start-page: 244
  year: 2006
  end-page: 252
  article-title: Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice
  publication-title: Crop Protect.
– volume: 1847
  start-page: 900
  year: 2015
  end-page: 909
  article-title: Photosystem II repair in plant chloroplasts—regulation, assisting proteins and shared components with photosystem II biogenesis
  publication-title: Biochim. Biophys. Acta
– volume: 29
  start-page: 269
  year: 2002
  end-page: 279
  article-title: Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence
  publication-title: Plant J.
– volume: 9
  start-page: 236
  year: 2004
  end-page: 243
  article-title: Plant PP2C phosphatases: emerging functions in stress signaling
  publication-title: Trends Plant Sci.
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  article-title: The plant immune system
  publication-title: Nature
– volume: 54
  start-page: 452
  year: 2008
  end-page: 465
  article-title: Arabidopsis proteins important for modulating defense responses to that secrete HopW1‐1
  publication-title: Plant J.
– volume: 9
  start-page: 38
  year: 2009
  article-title: Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in
  publication-title: BMC Plant Biol.
– volume: 266
  start-page: 793
  year: 1994
  end-page: 795
  article-title: Interaction of a protein phosphatase with an Arabidopsis serine–threonine receptor kinase
  publication-title: Science
– volume: 6
  start-page: 327
  year: 2005
  end-page: 333
  article-title: Optimization of pathogenicity assays to study the – pv. pathosystem
  publication-title: Mol. Plant Pathol.
– volume: 103
  start-page: 1327
  year: 1986
  end-page: 1335
  article-title: Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein
  publication-title: J. Cell Biol.
– volume: 35
  start-page: 402
  year: 2013
  end-page: 409
  article-title: OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL
  publication-title: Mol. Cells
– volume: 19
  start-page: 641
  year: 2016
  end-page: 650
  article-title: Transcriptional regulation of pattern‐triggered immunity in plants
  publication-title: Cell Host Microbe
– volume: 1
  start-page: 15 074
  year: 2015
  article-title: Chloroplasts play a central role in plant defense and are targeted by pathogen effectors
  publication-title: Nat. Plants
– volume: 11
  start-page: e0150983
  year: 2016
  article-title: Impaired chloroplast biogenesis in immutans, an Arabidopsis variegation mutant, modifies developmental programming, cell wall composition and resistance to
  publication-title: PLoS One
– volume: 14
  start-page: 54
  year: 2011
  end-page: 61
  article-title: Activation of plant pattern‐recognition receptors by bacteria
  publication-title: Curr. Opin. Microbiol.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Photosystem II repair and plant immunity: lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3
  publication-title: Front. Plant Sci.
– volume: 17
  start-page: 499
  year: 2007
  end-page: 508
  article-title: A J‐domain virulence effector of remodels host chloroplasts and suppresses defenses
  publication-title: Curr Biol.
– volume: 9
  start-page: 550
  year: 2008
  article-title: Genome‐wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis
  publication-title: BMC Genomics
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors
  publication-title: Annu. Rev. Plant Biol.
– volume: 60
  start-page: 425
  year: 2006
  end-page: 449
  article-title: Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria
  publication-title: Annu. Rev. Microbiol.
– volume: 324
  start-page: 742
  year: 2009
  end-page: 744
  article-title: Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens
  publication-title: Science
– volume: 28
  start-page: 985
  year: 2009
  end-page: 995
  article-title: Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance
  publication-title: Plant Cell Rep.
– volume: 63
  start-page: 1619
  year: 2012
  end-page: 1636
  article-title: Photosynthesis, photorespiration, and light signalling in defence responses
  publication-title: J. Exp. Bot.
– volume: 219
  start-page: 673
  year: 2004
  end-page: 683
  article-title: Light conditions influence specific defense responses in incompatible plant–pathogen interactions: uncoupling systemic resistance from salicylic acid and PR‐1 accumulation
  publication-title: Planta
– volume: 124
  start-page: 803
  year: 2006
  end-page: 814
  article-title: Host–microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
– volume: 25
  start-page: 505
  year: 2012
  end-page: 514
  article-title: XopR, a type III effector secreted by pv. , suppresses microbe‐associated molecular pattern‐triggered immunity in
  publication-title: Mol. Plant–Microbe Interact.
– volume: 28
  start-page: 869
  year: 2015
  end-page: 880
  article-title: The type III effector AvrBs2 in pv. suppresses rice immunity and promotes disease development
  publication-title: Mol. Plant–Microbe Interact.
– volume: 12
  start-page: 731
  year: 2011
  end-page: 745
  article-title: Type III secretion‐dependent host defense elicitation and type III secretion‐independent growth within leaves by pv.
  publication-title: Mol. Plant Pathol.
– volume: 20
  start-page: 3
  year: 2015
  end-page: 11
  article-title: Plant innate immunity—sunny side up?
  publication-title: Trends Plant Sci.
– volume: 10
  start-page: e0125168
  year: 2015
  article-title: ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in
  publication-title: PLoS One
– volume: 23
  start-page: 893
  year: 2010
  end-page: 902
  article-title: Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in pv.
  publication-title: Mol. Plant–Microbe Interact.
– volume: 55
  start-page: 1245
  year: 2014
  end-page: 1254
  article-title: Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes
  publication-title: Plant Cell Physiol.
– volume: 14
  start-page: 669
  year: 2012
  end-page: 681
  article-title: A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses
  publication-title: Cell. Microbiol.
– volume: 51
  start-page: 1821
  year: 2010
  end-page: 1839
  article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport
  publication-title: Plant Cell Physiol.
– volume: 7
  start-page: 303
  year: 2006
  end-page: 324
  article-title: pathovars: model pathogens of a model crop
  publication-title: Mol. Plant Pathol.
– volume: 168
  start-page: 1701
  year: 2011
  end-page: 1704
  article-title: Inoculation with pv. induces thylakoid membrane association of Rubisco activase in
  publication-title: J. Plant Physiol.
– volume: 5
  start-page: 5430
  year: 2014
  article-title: Bacterial effector modulation of host E3 ligase activity suppresses PAMP‐triggered immunity in rice
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2213
  year: 2007
  end-page: 2224
  article-title: The PP2C‐type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in
  publication-title: Plant Cell
– volume: 9
  start-page: e94386
  year: 2014
  article-title: Real time live imaging of phytopathogenic bacteria pv. MAFF106712 in “plant sweet home
  publication-title: PLoS One
– volume: 28
  start-page: 195
  year: 2015
  end-page: 206
  article-title: Mutations in the predicted active site of pv. XopQ differentially affect virulence, suppression of host innate immunity, and induction of the HR in a nonhost plant
  publication-title: Mol. Plant–Microbe Interact.
– volume: 77
  start-page: 310
  year: 2014
  end-page: 321
  article-title: Distinct type‐III effectors use a cleavable transit peptide to target chloroplasts
  publication-title: Plant J.
– volume: 66
  start-page: 2427
  year: 2015
  end-page: 2436
  article-title: Photoprotection of photosystems in fluctuating light intensities
  publication-title: J. Exp. Bot.
– volume: 150
  start-page: 889
  year: 2009
  end-page: 903
  article-title: Large‐scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks
  publication-title: Plant Physiol.
– volume: 160
  start-page: 1896
  year: 2012
  end-page: 1910
  article-title: Steady‐state phosphorylation of light‐harvesting complex II proteins preserves Photosystem I under fluctuating white light
  publication-title: Plant Physiol.
– volume: 24
  start-page: 153
  year: 1984
  end-page: 162
  article-title: ATP‐released large subunits participate in the assembly of RuBP carboxylase
  publication-title: J. Cell Biochem.
– volume: 24
  start-page: 3026
  year: 2012
  end-page: 3039
  article-title: Chloroplasts of are the source and a primary target of a plant‐specific programmed cell death signaling pathway
  publication-title: Plant Cell
– volume: 329
  start-page: 11
  year: 2004
  end-page: 16
  article-title: An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice
  publication-title: Gene
– volume: 192
  start-page: 29
  year: 1994
  end-page: 41
  article-title: Pathogenicity determinants and global regulation of pathogenicity of pv.
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 8
  start-page: e73346
  year: 2013
  article-title: pv. type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice
  publication-title: PLoS One
– volume: 13
  start-page: 1155
  year: 2001
  end-page: 1163
  article-title: Both the extracellular leucine‐rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in
  publication-title: Plant Cell
– volume: 53
  start-page: 19
  year: 2009
  end-page: 26
  article-title: Proteome analysis of silkworm 1. Fat body
  publication-title: J. Electroph.
– volume: 8
  start-page: e83219
  year: 2013
  article-title: Dynamics of defense responses and cell fate change during – interactions
  publication-title: PLoS One
– volume: 6
  start-page: 26 411
  year: 2016
  article-title: The Fd‐GOGAT1 mutant gene lc7 confers resistance to pv. in rice
  publication-title: Sci. Rep.
– volume: 5
  start-page: 531
  year: 2014
  article-title: Light‐dependent expression of flg22‐induced defense genes in
  publication-title: Front. Plant Sci.
– volume: 24
  start-page: 2596
  year: 2012
  end-page: 2609
  article-title: Identification of a photosystem II phosphatase involved in light acclimation in
  publication-title: Plant Cell
– volume: 18
  start-page: 285
  year: 2015
  end-page: 295
  article-title: The decoy substrate of a pathogen effector and a pseudokinase specify pathogen‐induced modified‐self recognition and immunity in plants
  publication-title: Cell Host Microbe
– volume: 10
  start-page: e0132863
  year: 2015
  article-title: PP2C7s”, genes most highly elaborated in photosynthetic organisms, reveal the bacterial origin and stepwise evolution of PPM/PP2C protein phosphatases
  publication-title: PLoS One
– volume: 20
  start-page: 3551
  year: 1999
  end-page: 3567
  article-title: Probability‐based protein identification by searching database using mass spectrometry data
  publication-title: Electrophoresis
– volume: 127
  start-page: 225
  year: 2006
  end-page: 236
  article-title: Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1, and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance
  publication-title: Physiol. Plant
– volume: 57
  start-page: 537
  year: 1973
  end-page: 541
  article-title: An improved technique for evaluating resistance to rice varieties of
  publication-title: Plant Dis. Rep.
– volume: 280
  start-page: 33 660
  year: 2005
  end-page: 33 668
  article-title: The elicitation of plant innate immunity by lipooligosaccharide of
  publication-title: J. Biol. Chem.
– volume: 77
  start-page: 11016
  year: 2003
  end-page: 11026
  article-title: Tomato mosaic virus replication protein suppresses virus‐targeted posttranscriptional gene silencing
  publication-title: J. Virol.
– volume: 22
  start-page: 96
  year: 2009
  end-page: 106
  article-title: Identification of novel Type III secretion effectors in pv.
  publication-title: Mol. Plant–Microbe Interact.
– volume: 46
  start-page: 14
  year: 2006
  end-page: 33
  article-title: Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance
  publication-title: Plant J.
– ident: e_1_2_6_40_1
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– ident: e_1_2_6_64_1
  doi: 10.1186/1471-2164-9-550
– ident: e_1_2_6_4_1
  doi: 10.1093/jxb/eru463
– ident: e_1_2_6_9_1
  doi: 10.1371/journal.pone.0073346
– ident: e_1_2_6_17_1
  doi: 10.1371/journal.pone.0083219
– ident: e_1_2_6_15_1
  doi: 10.1104/pp.112.206466
– ident: e_1_2_6_43_1
  doi: 10.1016/j.cropro.2005.04.013
– ident: e_1_2_6_13_1
  doi: 10.1105/tpc.13.5.1155
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1462-5822.2012.01749.x
– ident: e_1_2_6_28_1
  doi: 10.1371/journal.pone.0132863
– ident: e_1_2_6_53_1
  doi: 10.1074/jbc.M506254200
– ident: e_1_2_6_33_1
  doi: 10.1016/j.chom.2016.04.011
– volume: 57
  start-page: 537
  year: 1973
  ident: e_1_2_6_27_1
  article-title: An improved technique for evaluating resistance to rice varieties of Xanthomonas oryzae
  publication-title: Plant Dis. Rep.
  contributor:
    fullname: Kauffman H.E.
– ident: e_1_2_6_34_1
  doi: 10.1111/tpj.12396
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0150983
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1364-3703.2005.00287.x
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1364-3703.2010.00642.x
– ident: e_1_2_6_26_1
  doi: 10.1093/jxb/err402
– ident: e_1_2_6_55_1
  doi: 10.1094/MPMI-23-7-0893
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1364-3703.2006.00344.x
– ident: e_1_2_6_49_1
  doi: 10.3389/fpls.2014.00531
– ident: e_1_2_6_66_1
  doi: 10.1007/s00425-004-1272-z
– ident: e_1_2_6_54_1
  doi: 10.1371/journal.pone.0125168
– ident: e_1_2_6_24_1
  doi: 10.1038/nature05286
– ident: e_1_2_6_56_1
  doi: 10.1016/j.tplants.2014.10.002
– ident: e_1_2_6_14_1
  doi: 10.1146/annurev.micro.60.080805.142251
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1171647
– ident: e_1_2_6_60_1
  doi: 10.1038/nplants.2015.74
– ident: e_1_2_6_65_1
  doi: 10.1016/j.jplph.2011.02.012
– ident: e_1_2_6_20_1
  doi: 10.1038/ncomms6430
– ident: e_1_2_6_25_1
  doi: 10.2198/jelectroph.53.19
– ident: e_1_2_6_3_1
  doi: 10.1371/journal.pone.0094386
– ident: e_1_2_6_42_1
  doi: 10.1093/pcp/pcu062
– ident: e_1_2_6_29_1
  doi: 10.1105/tpc.112.100479
– ident: e_1_2_6_35_1
  doi: 10.1094/MPMI-10-14-0314-R
– ident: e_1_2_6_2_1
  doi: 10.1094/MPMI-06-11-0167
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cell.2006.02.008
– ident: e_1_2_6_52_1
  doi: 10.1016/j.mib.2010.12.005
– ident: e_1_2_6_12_1
  doi: 10.1094/MPMI-22-1-0096
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1364-3703.2011.00707.x
– ident: e_1_2_6_8_1
  doi: 10.1038/srep26411
– ident: e_1_2_6_38_1
  doi: 10.1002/jcb.240240206
– ident: e_1_2_6_11_1
  doi: 10.1007/978-3-642-78624-2_2
– ident: e_1_2_6_19_1
  doi: 10.1007/s00299-009-0701-7
– ident: e_1_2_6_30_1
  doi: 10.1007/s10059-013-2337-2
– ident: e_1_2_6_50_1
  doi: 10.1016/j.tplants.2004.03.007
– ident: e_1_2_6_57_1
  doi: 10.1126/science.7973632
– ident: e_1_2_6_31_1
  doi: 10.1128/JVI.77.20.11016-11026.2003
– ident: e_1_2_6_51_1
  doi: 10.1105/tpc.106.049585
– ident: e_1_2_6_59_1
  doi: 10.1186/1471-2229-9-38
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1399-3054.2006.00671.x
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-313X.2008.03439.x
– ident: e_1_2_6_21_1
  doi: 10.1016/j.bbabio.2015.01.006
– ident: e_1_2_6_48_1
  doi: 10.1105/tpc.112.095703
– ident: e_1_2_6_5_1
  doi: 10.1146/annurev.arplant.57.032905.105346
– ident: e_1_2_6_23_1
  doi: 10.1016/j.cub.2007.02.028
– ident: e_1_2_6_7_1
  doi: 10.1083/jcb.103.4.1327
– ident: e_1_2_6_45_1
  doi: 10.1016/j.gene.2004.01.008
– ident: e_1_2_6_36_1
  doi: 10.1046/j.1365-313X.2002.01216.x
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-313X.2006.02672.x
– ident: e_1_2_6_62_1
  doi: 10.1093/pcp/pcq156
– ident: e_1_2_6_63_1
  doi: 10.1016/j.chom.2015.08.004
– ident: e_1_2_6_16_1
  doi: 10.1094/MPMI-09-14-0288-R
– ident: e_1_2_6_22_1
  doi: 10.3389/fpls.2016.00405
– ident: e_1_2_6_44_1
  doi: 10.1104/pp.109.138677
SSID ssj0017925
Score 2.3569543
Snippet Summary Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs,...
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1184
SubjectTerms Arabidopsis - enzymology
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Bacterial Secretion Systems
Black rot
Blight
chloroplast
Chloroplasts
Chloroplasts - enzymology
Crosstalk
Disease Resistance
Eukaryotes
Gel electrophoresis
Gene Expression Regulation, Plant
Immune system
Immunity
Infections
Isoelectric focusing
Kinases
Mutants
Mutation - genetics
Nicotiana - metabolism
Original
Oryza
Phosphorylation
Photosynthesis
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Immunity
Protein phosphatase
protein phosphatase 2C
Protein Phosphatase 2C - metabolism
Proteins
Serine
Signal transduction
Sodium
Sodium lauryl sulfate
Subgroups
Substrate Specificity
Substrates
Threonine
Transduction
type III secretion system, Xanthomonas campestris pv. campestris
Xanthomonas campestris
Xanthomonas campestris - growth & development
Xanthomonas campestris - pathogenicity
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFL2ErNJF3w-3aRGli248jD2yJdHVEBJCaUsoDcyiYPRybdLaZuwEklU_oZ_T78mX5Ep-MNNQKPVKtmUh43N1zxXX5wK84VpqqXIb0mSuQooUPRTC8tDGKtepSURufLbFp_T4lL5fJasdeDf-C9PrQ0wbbs4y_HrtDFyqdsPIfzTNDL2zcHLbTkjPEaLPk3QU4swXXMWFgIYpi-NBVchl8UxPbvuiWwTzdp7kJn_1DujoHnwdp97nnZzNzjs101d_qDr-57vdh7sDMSXLHkkPYMdWD-HO8tt6EOewj-D3B3wLUudEFxjl1w0S7-765y_vDssra4gXfSgr0hR12xSyQw9J4oOW4KXlWqrS1E1btqQr_OaKJN8RYHhaE1sVDn1up9KNjyNjo_S_rnSXRFaGrG3rmC52cv1X0mkeoAXJlmiJzN9VH2lJczHbPB0TzarHcHp0-OXgOBwqP4QaA6gUTZelTGqb5hgNcrMQUiKz1SbJuY1ihUekFVtwpi0VEY1sSnXqyueYWBhD9eIJ7FZ1ZZ8ByTn6Y2lyakVCcS3n1szt3BiFTZEwFsDrEQNZ0wt8ZGNghJ8h858hgP0RHdlg423mCs8j-WGRCOBpD5RphJjzCAMxHgDbgtDUwal6b9-pysKreyMFZELEAbz1CPn7pLKPJye-8fzfu76APWR8vM_Y3Ifdbn1uXyKr6tQrbz43-oQnwg
  priority: 102
  providerName: Wiley-Blackwell
Title Loss of chloroplast‐localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12596
https://www.ncbi.nlm.nih.gov/pubmed/28815858
https://www.proquest.com/docview/2023521719
https://pubmed.ncbi.nlm.nih.gov/PMC6637992
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB5t9wQHxD9ZlpWFOHBJ2zhObB-rwmqF6KpCrNRb5NgOibRNoiYgwYlH4HF4Hp6EsZustlpxIYfITizb0owz3zifZwDeCK20ygsbsmSehwwheiilFaGleaFTk8jCeLbFZXpxxT5sks0RJONZGE_a13k1ra-307oqPbey3erZyBObrVdLtJJcSjqbwITH8eiiD78OuPSZVvELwMKUUzqEE3L0nW3bTtGgS5e3iAoRIVQWh_boDsi8y5W8jWG9ETp_CA8G9EgW-1k-giNbP4b7iy-7IYKGfQK_P-IwpCmILtEVb1pEx_2fn7-8zap-WEN8ZIaqJm3ZdG2pejRjhC47go8WO5VXpmm7qiN96XdAFLlGLcBqQ2xdOhVx24muf-wZC5U_X9J_J6o2BF13B0exkWu_US4wAaq56ohWCM9dipCOtN-mt6sjG6x-Clfn7z8vL8IhPUOo0ctJcX3xlCtt0wJdNmFiqRTCT22SQtiI5nhFOuex4NoyGbHIpkynLseNodIYpuNncFw3tX0BpBBoNJUpmJUJww-usGZu58bkWJQJ5wG8HoWUtfsoHNnovaBQMy_UAE5H8WXDQuwylx0eEQqPZADP95K86WFUgQD4gYxvGrjQ24dvUCN9CO5BAwN467Xh35PKVuu1L5z89yAv4R6iNLFnWZ7Ccb_7al8hEurzM5hQtsb7u08U75fr1ZlfC38Bhu4TRQ
link.rule.ids 230,315,733,786,790,891,1382,11589,27955,27956,46085,46327,46509,46751,50847,50956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcgAO_P8ECliIA5esNlkntiUuq0K1wLaqUCvtBUWO7ZAISKJNikRPPAKPw_PwJIydH-1SISFychLHcpRvPN9Yk28AnnMllUwz49NomvoUKbovhOG-CdNMxToSmXbZFkfx4pS-XUWrHXg5_AvT6UOMG27WMtx6bQ3cbkhvWPmXup6gexbxJbiM5h5Zs3z1fhSPQqS5kqu4FFA_ZmHY6wrZPJ7x0W1vdIFiXsyU3GSwzgUd3IAPw-S7zJNPk7M2najzP3Qd__ftbsL1npuSeQemW7Bjyttwbf5x3etzmDvwc4mvQaqMqBwD_apG7t3--v7DecTi3GjidB-KktR51dS5bNFJknC_IXhpvpZpoau6KRrS5m5_RZLPiDE8rYgpcwtAu1lpx8eRsVG4v1fab0SWmqxNY8kudrL9V9LKHqARyYYoieTfFiBpSP11snk65JqVd-H04PXJ_sLviz_4CmOoGK2XxUwqE2cYEHI9E1IiuVU6yrgJwhSPQKVsxpkyVAQ0MDFVsa2go0OhNVWze7BbVqV5ACTj6JKlzqgREcXlnBs9NVOtU2yKiDEPng0gSOpO4yMZYiP8DIn7DB7sDfBIejNvElt7HvkPC4QH9zukjCOEnAcYi3EP2BaGxg5W2Hv7TlnkTuAbWSATIvTghYPI3yeVHB4fu8bDf-_6FK4sTg6XyfLN0btHcBUJIO8SOPdgt12fmcdIstr0ibOl30atK-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIiE4VPyTUsBCHLik2mQd_4jTqrAqUKo9UGlvkWM7JFKbRJuABCcegcfheXgSxs6PdlUhkZOTOE6kmfF844y_AXgltNIqy21Ik1kWUoTooZRWhDbOcs1MInPjsy3O2ekF_bBO1nvwZtwL0_NDTAtuzjL8fO0MvDH5lpFfNc0xemfJbsBNyhA5OFpnupp-IXDpK67iTEBDxuN4oBVyaTzTo7vO6BrCvJ4ouQ1gvQda3oWDATqSRS_re7Bnq_twZ_FlM9Bn2Afw-wxfQ-qc6ALj8LpBaNz9-fnLO6zyhzXE0zKUFWmKum0K1aEPI_FJS_DSYqOy0tRNW7akK_zyhyKXqAJ4WhNbFU4_3FqiGx9HxkbpN5d034mqDMG43WFR7OT6r5VjJUAdVy3RCrG5qw_Skubb8fbpmApWPYSL5bvPJ6fhUJsh1BjiMDQuzrjSluUYrwkzl0oh9tQmyYWN4gyPSGd8Lri2VEY0soxq5grcmFgaQ_X8EexXdWWfAMkFekxlcmplQnG2FdbM7MyYDJsy4TyAl6OQ0qan4EjH0AUlmXpJBnA0ii8drLBNXWl4hCc8kgE87iU5jRALEWGoJALgOzKeOjje7d07VVl4_m0EaVzKOIDXXhv-_VHpp9XKNw7_v-sLuLV6u0zP3p9_fAq3EZ6JPr3yCPa7zVf7DCFQlz33qv4Xf2MKQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+chloroplast%E2%80%90localized+protein+phosphatase+2Cs+in+Arabidopsis+thaliana+leads+to+enhancement+of+plant+immunity+and+resistance+to+Xanthomonas+campestris+pv.+campestris+infection&rft.jtitle=Molecular+plant+pathology&rft.au=Akimoto%E2%80%90Tomiyama%2C+Chiharu&rft.au=Tanabe%2C+Shigeru&rft.au=Kajiwara%2C+Hideyuki&rft.au=Minami%2C+Eiichi&rft.date=2018-05-01&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=19&rft.issue=5&rft.spage=1184&rft.epage=1195&rft_id=info:doi/10.1111%2Fmpp.12596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mpp_12596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon