Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline

Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of k...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 55; no. 8; pp. 2138 - 2149
Main Authors Yang, Bo-lun, Zhou, Xiao-Wei, Yang, Xiao-Hui, Chen, Chun, Wang, Long-Yan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2009
Wiley
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of kinetics in catalyst particles, meso-scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas-solid flow, and the macro-scale of product distribution over riser reactor have been established using multi-scale modeling method and integrated by the multi-domain strategy. The proposed model was solved with the software of EQUATRAN-G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi-scale model was capable of predicting heterogeneous structures of multi-phase flow, reactor temperature profile, and product distribution of SRFCCG process. © 2009 American Institute of Chemical Engineers AIChE J, 2009
AbstractList Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of kinetics in catalyst particles, meso-scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas-solid flow, and the macro-scale of product distribution over riser reactor have been established using multi-scale modeling method and integrated by the multi-domain strategy. The proposed model was solved with the software of EQUATRAN-G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi-scale model was capable of predicting heterogeneous structures of multi-phase flow, reactor temperature profile, and product distribution of SRFCCG process. [PUBLICATION ABSTRACT]
Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of kinetics in catalyst particles, meso-scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas-solid flow, and the macro-scale of product distribution over riser reactor have been established using multi-scale modeling method and integrated by the multi-domain strategy. The proposed model was solved with the software of EQUATRAN-G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi-scale model was capable of predicting heterogeneous structures of multi-phase flow, reactor temperature profile, and product distribution of SRFCCG process. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of kinetics in catalyst particles, meso-scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas-solid flow, and the macro-scale of product distribution over riser reactor have been established using multi-scale modeling method and integrated by the multi-domain strategy. The proposed model was solved with the software of EQUATRAN-G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi-scale model was capable of predicting heterogeneous structures of multi-phase flow, reactor temperature profile, and product distribution of SRFCCG process.
Abstract Multi‐scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro‐scale of kinetics in catalyst particles, meso‐scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas–solid flow, and the macro‐scale of product distribution over riser reactor have been established using multi‐scale modeling method and integrated by the multi‐domain strategy. The proposed model was solved with the software of EQUATRAN‐G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi‐scale model was capable of predicting heterogeneous structures of multi‐phase flow, reactor temperature profile, and product distribution of SRFCCG process. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Author Chen, Chun
Wang, Long-Yan
Yang, Bo-lun
Zhou, Xiao-Wei
Yang, Xiao-Hui
Author_xml – sequence: 1
  fullname: Yang, Bo-lun
– sequence: 2
  fullname: Zhou, Xiao-Wei
– sequence: 3
  fullname: Yang, Xiao-Hui
– sequence: 4
  fullname: Chen, Chun
– sequence: 5
  fullname: Wang, Long-Yan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21727438$$DView record in Pascal Francis
BookMark eNqF0U1PFTEUBuCGQOIFXPALbEw0cTHQz2m7xBtFEDVGCMumt9NeC6XFdiZ6_72FQRYmxlVzmue8ac_ZBdspJwfAAUaHGCFyZII9xFgovgUWmDPRcYX4NlgghHDXLvAzsFvrdauIkGQBvn6a4hi6ak10sI7TsIE5wfF7K5zNaTBlA4szdgw5VZg99HEKA7RmNHEzBgttMfYmpDVcm5pjSG4f7HgTq3v-eO6By_fvLpYfuvMvJ6fL4_POMil4pwZGOZW95UPP7GrlpUfOEa6oc7203K_sYFaD6ClmnijGGBaycTNQLIVHdA-8nnPvSv4xuTrq21Cti9Ekl6eqKSecMKz-D5lSTCjR4Mu_4HWeSmqf0LgRxLHsG3ozI1tyrcV5fVfCbRuTxkjfr0C3FeiHFTT76jHQ3A_YF5NsqE8NBAsiGJXNHc3uZ4hu8-9AfXy6_JPczR2hju7XU4cpN7oXVHB99flEMyE_Ikre6rPmX8zem6zNurRXXH4jCFOEe97T9obfs1mttw
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_cherd_2016_04_017
crossref_primary_10_1016_j_cej_2020_125210
crossref_primary_10_1002_cem_1317
crossref_primary_10_1016_j_ces_2014_02_030
crossref_primary_10_1021_ie401784q
crossref_primary_10_1021_ef200316r
crossref_primary_10_1016_j_powtec_2017_10_015
crossref_primary_10_1002_amp2_10118
crossref_primary_10_1016_j_cej_2015_09_073
crossref_primary_10_1016_j_jiec_2015_04_001
crossref_primary_10_1002_aic_16561
crossref_primary_10_1016_j_cej_2013_03_046
crossref_primary_10_1007_s11814_015_0265_x
Cites_doi 10.1016/S0009-2509(03)00116-7
10.1007/978-1-4684-1045-7_57
10.1016/j.cej.2005.02.024
10.1016/j.ces.2004.02.010
10.1016/j.cep.2006.05.011
10.1016/j.fuproc.2008.02.007
10.1021/ie0204538
10.1002/aic.10469
10.1021/ie800023x
10.1016/j.fuel.2007.01.007
10.1016/0021-9517(75)90158-X
10.1016/S0009-2509(99)00274-2
10.1002/aic.690450517
10.1021/ie061420l
10.1016/j.ces.2004.01.025
10.1021/ie0306877
10.1016/j.catcom.2006.01.016
10.1002/aic.690390610
ContentType Journal Article
Copyright Copyright © 2009 American Institute of Chemical Engineers (AIChE)
2009 INIST-CNRS
Copyright American Institute of Chemical Engineers Aug 2009
Copyright_xml – notice: Copyright © 2009 American Institute of Chemical Engineers (AIChE)
– notice: 2009 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Aug 2009
DBID FBQ
BSCLL
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.11795
DatabaseName AGRIS
Istex
Pascal-Francis
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts

Technology Research Database
Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Chemistry
EISSN 1547-5905
EndPage 2149
ExternalDocumentID 1780610221
10_1002_aic_11795
21727438
AIC11795
ark_67375_WNG_478K032B_J
US201301656338
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 20776117
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  funderid: 20070698037
– fundername: National Basic Research Program of China
  funderid: 973 Program, 2009CB219906
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDEX
ABDMP
ABEML
ABHUG
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AHBTC
BSCLL
AITYG
HGLYW
OIG
08R
AAPBV
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4875-9d435386c5d64cbbf8f0ee2593ee68c5fbcdabd76314f2944417886cad3187f03
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Aug 16 23:50:28 EDT 2024
Fri Aug 16 00:48:24 EDT 2024
Fri Sep 13 08:30:02 EDT 2024
Fri Aug 23 00:47:39 EDT 2024
Sun Oct 29 17:10:44 EDT 2023
Sat Aug 24 01:03:34 EDT 2024
Wed Jan 17 05:06:20 EST 2024
Wed Dec 27 18:52:25 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Temperature distribution
Two phase flow
multi-scale
Prediction
olefin
Dense phase
Dilute phase
Fluid catalytic cracking
fluid catalytic cracking gasoline
eight-lump model
Modeling
Mass transfer
Gas solid flow
Momentum transfer
secondary reactions
Software
Kinetics
Reactor
Riser
Catalyst
Heat transfer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4875-9d435386c5d64cbbf8f0ee2593ee68c5fbcdabd76314f2944417886cad3187f03
Notes http://dx.doi.org/10.1002/aic.11795
National Natural Science Foundation of China - No. 20776117
ark:/67375/WNG-478K032B-J
ArticleID:AIC11795
istex:DC7E426BD3E753FA08BB196F6681B2A4C29AC803
Specialized Research Fund for the Doctoral Program of Higher Education of China - No. 20070698037
National Basic Research Program of China - No. 973 Program, 2009CB219906
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 199405186
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_35252419
proquest_miscellaneous_34994797
proquest_journals_199405186
crossref_primary_10_1002_aic_11795
pascalfrancis_primary_21727438
wiley_primary_10_1002_aic_11795_AIC11795
istex_primary_ark_67375_WNG_478K032B_J
fao_agris_US201301656338
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: American Institute of Chemical Engineers
References Wang LY,Yang BL,Wang ZW,Yang XH. Secondary reactions of catalytically cracked gasoline. J Chem Ind Eng. 2005; 56: 841-846.
Xu BL,Fan YN,Zhang Y,Tsubaki N. Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis. AIChE J. 2005; 51: 2068-2076.
Wang G,Xu CM,Gao JS. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production. Fuel Proc Technol. 2008; 89: 864-873.
You HJ,Xu CM,Gao Js,Liu ZC,Yan PX. Nine lumped kinetic models of FCC gasoline under the aromatization reaction conditions. Catal Commun. 2006; 7: 554-558.
Wang LY,Yang BL,Wang ZW. Lumps and kinetics for the secondary reactions in catalytically cracked gasoline. Chem Eng J. 2005; 109: 1-9.
Gao JS,Xu CM,Lin SX,Yang GH,Guo YC. Advanced model for turbulent gas-solid flow and reaction in fcc riser reactors. AIChE J. 1999; 45: 1095-1113.
Li JH,Kwauk M. Particle-Fluid Two-Phase Flow-The Energy-Minimization Multi-Scale Method. Beijing: Metallurgical Industry Press, 1994.
Theologos KN,Markatos NC. Advanced modeling of fluid catalytic cracking riser-type reactors. AIChE J. 2004; 39: 1007-1017.
John TM,Wojciechowski BW. On identifying the primary and secondary products of the catalytic cracking of neutral distillates. J Catal. 1975; 37: 240-250.
Ingram GD,Cameron IT,Hangos KM. Classification and analysis of integrating frameworks in multiscale modelling. Chem Eng Sci. 2004; 59: 2171-2187.
Moustafa TM,Froment GF. Kinetic modeling of coke formation and deactivation in the catalytic cracking of vacuum gas oil. Ind Eng Chem Res. 2003; 42: 14-25.
Cheng CL,Li JH,Zhang ZD,Yuan J. Fluid dynamic model of concurrent-up gas-solid two-phase flow. J Chem Ind Eng. 2001; 52: 684-689.
Li CY,Yang CH,Shan HH. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil. Ind Eng Chem Res. 2007; 46: 4914-4920.
Halder PK,Basu P. Mass transfer from a coarse particle to a fast bed of fine solids. AICHE Symp Ser. 1988; 84: 58-64.
Berry TA,McKeen TR,Pugsley TS,Dalai AK. Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit. Ind Eng Chem Res. 2004; 43: 5571-5581.
Wang LY,Yang BL,Wang GL,Tang HT,Li ZB,Wei JL. New FCC process minimizes gasoline olefin, increase propylene. Oil Gas J. 2003; 10: 52-58.
Chen C,Yang BL,Yuan J,Wang ZW,Wang LY. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization. Fuel. 2007; 86: 2325-2332.
Yang BL,Zhou XW,Chen C,Yuan J,Wang LY. Molecule simulation for the secondary reactions of fluid catalytic cracking gasoline by the method of structure oriented lumping combined with Monte Carlo. Ind Eng Chem Res. 2008; 47: 4648-4657.
Li JH,Zhang JY,Ge W,Liu XH. Multi-scale methodology for complex systems. Chem Eng Sci. 2004; 59: 1687-1700.
Aiouache F,Goto S. Reactive distillation-pervaporation hybrid column for tert-amyl alcohol etherification with ethanol. Chem Eng Sci. 2003; 58: 2465-2477.
Wang ZW,Yang BL,Chen C,Yuan J,Wang LY. Modeling and optimization for the secondary reaction of FCC gasoline based on the fuzzy neural network and genetic algorithm. Chem Eng Proc. 2007; 46: 175-180.
Ye XD,Jiao WZ,Liu YY. Chinese refinery uses new catalyst to meet olefin regulations. Oil Gas J. 2000; 30: 66-69.
Li JH,Cheng CL,Zhang ZD,Yuan J,Nemet A,Fett FN. The EMMS model-its application, development and updated concepts. Chem Eng Sci. 1999; 54: 5409-5425.
2004; 43
2004; 39
2004; 59
2000; 30
2006; 7
1998
2008; 47
2005; 51
1999; 45
2003; 58
1975; 37
2008; 89
2005; 109
1999; 54
1994
1988; 84
1980
2007; 86
2007; 46
2003; 42
2003; 10
2005; 56
2001; 52
e_1_2_7_5_2
Wang LY (e_1_2_7_8_2) 2003; 10
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
Li JH (e_1_2_7_16_2) 1994
e_1_2_7_14_2
e_1_2_7_13_2
Ye XD (e_1_2_7_7_2) 2000; 30
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
Cheng CL (e_1_2_7_19_2) 2001; 52
Wang LY (e_1_2_7_9_2) 2005; 56
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
Halder PK (e_1_2_7_20_2) 1988; 84
References_xml – volume: 109
  start-page: 1
  year: 2005
  end-page: 9
  article-title: Lumps and kinetics for the secondary reactions in catalytically cracked gasoline
  publication-title: Chem Eng J
– volume: 46
  start-page: 4914
  year: 2007
  end-page: 4920
  article-title: Maximizing propylene yield by two‐stage riser catalytic cracking of heavy oil
  publication-title: Ind Eng Chem Res.
– volume: 89
  start-page: 864
  year: 2008
  end-page: 873
  article-title: Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production
  publication-title: Fuel Proc Technol.
– volume: 58
  start-page: 2465
  year: 2003
  end-page: 2477
  article-title: Reactive distillation‐pervaporation hybrid column for tert‐amyl alcohol etherification with ethanol
  publication-title: Chem Eng Sci.
– volume: 43
  start-page: 5571
  year: 2004
  end-page: 5581
  article-title: Two‐dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit
  publication-title: Ind Eng Chem Res.
– volume: 37
  start-page: 240
  year: 1975
  end-page: 250
  article-title: On identifying the primary and secondary products of the catalytic cracking of neutral distillates
  publication-title: J Catal
– volume: 54
  start-page: 5409
  year: 1999
  end-page: 5425
  article-title: The EMMS model‐its application, development and updated concepts
  publication-title: Chem Eng Sci.
– volume: 51
  start-page: 2068
  year: 2005
  end-page: 2076
  article-title: Pore diffusion simulation model of bimodal catalyst for Fischer‐Tropsch synthesis
  publication-title: AIChE J
– volume: 39
  start-page: 1007
  year: 2004
  end-page: 1017
  article-title: Advanced modeling of fluid catalytic cracking riser‐type reactors
  publication-title: AIChE J
– year: 1994
– year: 1998
– volume: 10
  start-page: 52
  year: 2003
  end-page: 58
  article-title: New FCC process minimizes gasoline olefin, increase propylene
  publication-title: Oil Gas J
– volume: 59
  start-page: 2171
  year: 2004
  end-page: 2187
  article-title: Classification and analysis of integrating frameworks in multiscale modelling
  publication-title: Chem Eng Sci.
– volume: 7
  start-page: 554
  year: 2006
  end-page: 558
  article-title: Nine lumped kinetic models of FCC gasoline under the aromatization reaction conditions
  publication-title: Catal Commun.
– volume: 56
  start-page: 841
  year: 2005
  end-page: 846
  article-title: Secondary reactions of catalytically cracked gasoline
  publication-title: J Chem Ind Eng.
– volume: 30
  start-page: 66
  year: 2000
  end-page: 69
  article-title: Chinese refinery uses new catalyst to meet olefin regulations
  publication-title: Oil Gas J
– volume: 59
  start-page: 1687
  year: 2004
  end-page: 1700
  article-title: Multi‐scale methodology for complex systems
  publication-title: Chem Eng Sci.
– volume: 46
  start-page: 175
  year: 2007
  end-page: 180
  article-title: Modeling and optimization for the secondary reaction of FCC gasoline based on the fuzzy neural network and genetic algorithm
  publication-title: Chem Eng Proc.
– volume: 45
  start-page: 1095
  year: 1999
  end-page: 1113
  article-title: Advanced model for turbulent gas–solid flow and reaction in fcc riser reactors
  publication-title: AIChE J
– volume: 52
  start-page: 684
  year: 2001
  end-page: 689
  article-title: Fluid dynamic model of concurrent‐up gas–solid two‐phase flow
  publication-title: J Chem Ind Eng.
– volume: 86
  start-page: 2325
  year: 2007
  end-page: 2332
  article-title: Establishment and solution of eight‐lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization
  publication-title: Fuel
– start-page: 537
  year: 1980
  end-page: 544
– volume: 47
  start-page: 4648
  year: 2008
  end-page: 4657
  article-title: Molecule simulation for the secondary reactions of fluid catalytic cracking gasoline by the method of structure oriented lumping combined with Monte Carlo
  publication-title: Ind Eng Chem Res.
– volume: 84
  start-page: 58
  year: 1988
  end-page: 64
  article-title: Mass transfer from a coarse particle to a fast bed of fine solids
  publication-title: AICHE Symp Ser.
– volume: 42
  start-page: 14
  year: 2003
  end-page: 25
  article-title: Kinetic modeling of coke formation and deactivation in the catalytic cracking of vacuum gas oil
  publication-title: Ind Eng Chem Res.
– ident: e_1_2_7_22_2
  doi: 10.1016/S0009-2509(03)00116-7
– ident: e_1_2_7_18_2
  doi: 10.1007/978-1-4684-1045-7_57
– volume: 84
  start-page: 58
  year: 1988
  ident: e_1_2_7_20_2
  article-title: Mass transfer from a coarse particle to a fast bed of fine solids
  publication-title: AICHE Symp Ser.
  contributor:
    fullname: Halder PK
– ident: e_1_2_7_11_2
  doi: 10.1016/j.cej.2005.02.024
– volume: 56
  start-page: 841
  year: 2005
  ident: e_1_2_7_9_2
  article-title: Secondary reactions of catalytically cracked gasoline
  publication-title: J Chem Ind Eng.
  contributor:
    fullname: Wang LY
– ident: e_1_2_7_17_2
  doi: 10.1016/j.ces.2004.02.010
– ident: e_1_2_7_24_2
  doi: 10.1016/j.cep.2006.05.011
– ident: e_1_2_7_6_2
– ident: e_1_2_7_4_2
  doi: 10.1016/j.fuproc.2008.02.007
– ident: e_1_2_7_21_2
  doi: 10.1021/ie0204538
– volume-title: Particle–Fluid Two‐Phase Flow—The Energy‐Minimization Multi‐Scale Method
  year: 1994
  ident: e_1_2_7_16_2
  contributor:
    fullname: Li JH
– ident: e_1_2_7_23_2
  doi: 10.1002/aic.10469
– ident: e_1_2_7_10_2
  doi: 10.1021/ie800023x
– ident: e_1_2_7_25_2
  doi: 10.1016/j.fuel.2007.01.007
– ident: e_1_2_7_2_2
  doi: 10.1016/0021-9517(75)90158-X
– ident: e_1_2_7_14_2
  doi: 10.1016/S0009-2509(99)00274-2
– ident: e_1_2_7_12_2
  doi: 10.1002/aic.690450517
– ident: e_1_2_7_3_2
  doi: 10.1021/ie061420l
– volume: 30
  start-page: 66
  year: 2000
  ident: e_1_2_7_7_2
  article-title: Chinese refinery uses new catalyst to meet olefin regulations
  publication-title: Oil Gas J
  contributor:
    fullname: Ye XD
– ident: e_1_2_7_15_2
  doi: 10.1016/j.ces.2004.01.025
– volume: 52
  start-page: 684
  year: 2001
  ident: e_1_2_7_19_2
  article-title: Fluid dynamic model of concurrent‐up gas–solid two‐phase flow
  publication-title: J Chem Ind Eng.
  contributor:
    fullname: Cheng CL
– volume: 10
  start-page: 52
  year: 2003
  ident: e_1_2_7_8_2
  article-title: New FCC process minimizes gasoline olefin, increase propylene
  publication-title: Oil Gas J
  contributor:
    fullname: Wang LY
– ident: e_1_2_7_26_2
  doi: 10.1021/ie0306877
– ident: e_1_2_7_5_2
  doi: 10.1016/j.catcom.2006.01.016
– ident: e_1_2_7_13_2
  doi: 10.1002/aic.690390610
SSID ssj0012782
Score 2.0522115
Snippet Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the...
Multi‐scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the...
Abstract Multi‐scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal...
SourceID proquest
crossref
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2138
SubjectTerms Applied sciences
Catalysis
Catalytic cracking
Catalytic reactions
Chemical engineering
Chemical reactions
Chemical reactors
Chemistry
eight-lump model
Exact sciences and technology
fluid catalytic cracking gasoline
Gasoline
General and physical chemistry
Heat and mass transfer. Packings, plates
Hydrodynamics of contact apparatus
multi-scale
olefin
Reaction kinetics
Reactors
secondary reactions
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline
URI https://api.istex.fr/ark:/67375/WNG-478K032B-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.11795
https://www.proquest.com/docview/199405186/abstract/
https://search.proquest.com/docview/34994797
https://search.proquest.com/docview/35252419
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VnuDAGzUUioUQ4pI2mzhOLE6lopQieqCs6AHJ8rOqWiVosysBJ34Cv5FfwoyzCV0kEOIWyY_4NeNvbM83AE9EYTJMsakPxqdcoCjKwpapFwa3K1tkbkLeyG-PxMGUH56UJ2vwfPCF6fkhxgM3koyor0nAtel2fpGG6jNLN46SHMyJSI8A0buROmqSV3XPFI7mMsKEycAqlOU7Y8mVvehK0C0iVBrcz_RCUnc4SKGPbrECPy-D2LgL7d-Aj0P7-8cn59uLudm2X3-jdvzPDt6E60t0ynb75XQL1nxzG65d4iy8A8fRZffHt-_UcM8iPS1rG4ZAknVkXTv8I0MoGh0mOtYGFi4WZ47Fg6IvWDGzM23phJ6d6o5iBvm7MN1_-X7vIF1GZkgtGTipdIiyilrY0glujQl1yLxHS6rwXtS2DMY6bRzqrgkPueQU56zG7NqhCqlCVtyD9aZt_AYwNCczLUuuhUVolmXGBsdtyLV00lWhTuDxMEfqU0_AoXqq5VzhCKk4Qgls4OwpfYqKUU2Pc7qOJVohtL8TeBqndCysZ-f0mK0q1YejV4pX9ZusyF-owwS2VuZ8LEAhvBBnYU2bwyJQS0HvFFEro16rRQKPxlSUULp20Y1vF50q0Kjklaz-kqPMS0RSMoFncUH8uaNq9_Ve_Lj_71k34Wp_BUavFh_A-ny28A8RSc3NVhSZn-z_GHI
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAceFdNC62FEOKSNpvEeUhcSkXZvvZAu6IXZPlZVUVJtdmVgBM_gd_IL2HG2YQuEghxixTbiR8z_sae-QbgRZaoCN_o0DplwzRDUSwTzUObKdyudBKZAUUjn4yy4Tg9POfnS_C6i4Vp-SH6AzeSDK-vScDpQHrnF2uovNR05VjyZbiF4s69QfW-J48axHnRcoWjwYxAYdDxCkXxTl91YTdadrJGjErD-5l8JGWDw-Ta_BYLAPQmjPX70P59-Nj1oHU_udqeTdW2_vobueP_dvEB3JsDVLbbrqiHsGSrR3D3Bm3hYzj1Ubs_vn2nP7fMM9SyumKIJVlDBrbBTzJEoz5momG1Y-7T7NIwf1b0BRtmeiI1HdKzC9lQ2iD7BMb7b8_2huE8OUOoycYJS4NAKykyzU2WaqVc4SJr0ZhKrM0KzZ3SRiqD6muQurhMKdVZgcWlQS2SuyhZhZWqruwaMLQoI1nyVGYa0VkUKe1Mql0sS1Oa3BUBPO8mSVy3HByiZVuOBY6Q8CMUwBpOn5AXqBvF-DSmG1liFkITPICXfk77ynJyRf5sORcfRu9EmhdHURK_EYcBbC5Mel-Bsngh1MKWNrpVIOay3ghiV0bVVmQBbPVvUUjp5kVWtp41IkG7Ms3L_C8leMwRTJUBvPIr4s8dFbsHe_5h_d-LbsHt4dnJsTg-GB1twJ32RoycGJ_CynQys88QWE3Vppefn3ZcHJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD60FUQf6p2m1XYQEV_SZpPJJMGn2rr2ootYF_sgDJO5lFJJymYX1Cd_gr_RX-I5k03sCor4FsjMJDPnMt-Zy3cAnoikjPCNDq0rbcgFmmKR6DS0osTpSieRGdBt5DcjcTDmR6fp6RI87-7CtPwQ_YIbWYb312Tgl8bt_CINVeeadhyLdBmucZHEpNL773ruqEGc5S1VOMbLiBMGHa1QFO_0VRcmo2WnaoSoNLqf6YikanCUXJveYgF_XkWxfhoa3oKPXQfa0ycX27Npua2__sbt-J89vA2rc3jKdlt9ugNLtroLN6-QFt6DE39n98e37_Tjlnl-WlZXDJEkayi8NvhFhljU35hoWO2Y-zQ7N8yvFH3BhpmeKE1L9OxMNZQ0yN6H8fDl-72DcJ6aIdQU4YSFQZiV5EKnRnBdli53kbUYSiXWilynrtRGlQad14C7uOCU6CzH4sqgD8lclDyAlaqu7BowjCcjVaRcCY3YLIpK7QzXLlaFKUzm8gAedzKSly0Dh2y5lmOJIyT9CAWwhtKT6gw9oxyfxLQfS7xCGIAH8NSLtK-sJhd0mi1L5YfRK8mz_DhK4hfyKIDNBZn3FSiHFwItbGmjUwI5t_RGErcyOrZcBLDVv0UTpX0XVdl61sgEo0qeFdlfSqRxilCqCOCZV4g_d1TuHu75h_V_L7oF19_uD-Xrw9HxBtxot8PoBONDWJlOZvYRoqppuemt5ycNTxtD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90scale+study+on+the+secondary+reactions+of+fluid+catalytic+cracking+gasoline&rft.jtitle=AIChE+journal&rft.au=Yang%2C+Bo%E2%80%90lun&rft.au=Zhou%2C+Xiao%E2%80%90Wei&rft.au=Yang%2C+Xiao%E2%80%90Hui&rft.au=Chen%2C+Chun&rft.date=2009-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=55&rft.issue=8&rft.spage=2138&rft.epage=2149&rft_id=info:doi/10.1002%2Faic.11795&rft.externalDBID=10.1002%252Faic.11795&rft.externalDocID=AIC11795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon