Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all lea...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 40; no. 9; pp. 1900 - 1915
Main Authors Kiani‐Pouya, Ali, Roessner, Ute, Jayasinghe, Nirupama S., Lutz, Adrian, Rupasinghe, Thusitha, Bazihizina, Nadia, Bohm, Jennifer, Alharbi, Sulaiman, Hedrich, Rainer, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non‐brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control‐grown plants but did have a pronounced effect on salt‐grown plants, resulting in a salt‐sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma‐aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations. Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments; however, no direct evidence was provided until now. In this work, we show that the gentle removal of EBC results in a salt‐sensitive phenotype and attribute this phenomenon to a key role of EBC as a salt dump and a storage space for several metabolites known to modulate plant ionic relations.
AbstractList Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non‐brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control‐grown plants but did have a pronounced effect on salt‐grown plants, resulting in a salt‐sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma‐aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations. Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments; however, no direct evidence was provided until now. In this work, we show that the gentle removal of EBC results in a salt‐sensitive phenotype and attribute this phenomenon to a key role of EBC as a salt dump and a storage space for several metabolites known to modulate plant ionic relations.
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations. Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments; however, no direct evidence was provided until now. In this work, we show that the gentle removal of EBC results in a salt-sensitive phenotype and attribute this phenomenon to a key role of EBC as a salt dump and a storage space for several metabolites known to modulate plant ionic relations.
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non‐brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control‐grown plants but did have a pronounced effect on salt‐grown plants, resulting in a salt‐sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma‐aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K⁺ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non‐brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control‐grown plants but did have a pronounced effect on salt‐grown plants, resulting in a salt‐sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma‐aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K + retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations. Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments; however, no direct evidence was provided until now. In this work, we show that the gentle removal of EBC results in a salt‐sensitive phenotype and attribute this phenomenon to a key role of EBC as a salt dump and a storage space for several metabolites known to modulate plant ionic relations.
Author Jayasinghe, Nirupama S.
Kiani‐Pouya, Ali
Rupasinghe, Thusitha
Bazihizina, Nadia
Shabala, Sergey
Lutz, Adrian
Hedrich, Rainer
Alharbi, Sulaiman
Bohm, Jennifer
Roessner, Ute
Author_xml – sequence: 1
  givenname: Ali
  surname: Kiani‐Pouya
  fullname: Kiani‐Pouya, Ali
  organization: University of Tasmania
– sequence: 2
  givenname: Ute
  surname: Roessner
  fullname: Roessner, Ute
  organization: The University of Melbourne
– sequence: 3
  givenname: Nirupama S.
  surname: Jayasinghe
  fullname: Jayasinghe, Nirupama S.
  organization: The University of Melbourne
– sequence: 4
  givenname: Adrian
  surname: Lutz
  fullname: Lutz, Adrian
  organization: The University of Melbourne
– sequence: 5
  givenname: Thusitha
  surname: Rupasinghe
  fullname: Rupasinghe, Thusitha
  organization: The University of Melbourne
– sequence: 6
  givenname: Nadia
  surname: Bazihizina
  fullname: Bazihizina, Nadia
  organization: University of Florence
– sequence: 7
  givenname: Jennifer
  surname: Bohm
  fullname: Bohm, Jennifer
  organization: Würzburg University
– sequence: 8
  givenname: Sulaiman
  surname: Alharbi
  fullname: Alharbi, Sulaiman
  organization: King Saud University
– sequence: 9
  givenname: Rainer
  surname: Hedrich
  fullname: Hedrich, Rainer
  email: hedrich@botanik.uni‐wuerzburg.de
  organization: Würzburg University
– sequence: 10
  givenname: Sergey
  orcidid: 0000-0003-2345-8981
  surname: Shabala
  fullname: Shabala, Sergey
  email: sergey.shabala@utas.edu.au
  organization: University of Tasmania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28558173$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFvFCEUAGBiauy2evAPGBIv9jAtDDDAsdms1qSJHvQ8YeBtloaFKTCx---lbvXQROUCj3zvJe-9M3QSUwSE3lJySdu5mi1c0l5r8QKtKBtExwgnJ2hFKCedlJqeorNS7ghpH1K_Qqe9EkJRyVYINrN3kPcm4CkY157YQggF2xS3LSgm-OjrAZeaoRRcU4BsogXsI647wDsT0rw7VMD3i4_JYBMdvq7ZzwEecJnBeiiv0cutCQXePN3n6PvHzbf1TXf75dPn9fVtZ7mSotO2J446MwkGVLBe8UEL4ybRbw2bNCfWSGoBOBCmCNfKMcvATG4YJkXkwM7Rh2PdOaf7BUod97489mMipKWMfRuB4ExS9V9KNeE9J4qTRt8_o3dpybE10lSv1UClkE29e1LLtAc3ztnvTT6Mv2fdwMUR2JxKybD9QygZH_c4tj2Ov_bY7NUza3011adYs_HhXxk_fIDD30uPX9ebY8ZPYm6tow
CitedBy_id crossref_primary_10_1016_j_cub_2018_08_004
crossref_primary_10_1016_j_plaphy_2021_12_009
crossref_primary_10_1016_j_plaphy_2023_108276
crossref_primary_10_1111_nph_18873
crossref_primary_10_1007_s44154_024_00189_3
crossref_primary_10_1071_FP21153
crossref_primary_10_3390_plants12132464
crossref_primary_10_3389_fpls_2021_700267
crossref_primary_10_3389_fpls_2022_973419
crossref_primary_10_3390_ijms25052964
crossref_primary_10_1007_s10811_023_03180_z
crossref_primary_10_1371_journal_pone_0236813
crossref_primary_10_3390_horticulturae7060132
crossref_primary_10_1016_j_indcrop_2019_111857
crossref_primary_10_1016_j_cub_2023_09_063
crossref_primary_10_1016_j_ecoenv_2018_12_046
crossref_primary_10_3390_crops3010008
crossref_primary_10_1007_s11104_024_06770_z
crossref_primary_10_3389_fpls_2023_1137211
crossref_primary_10_3390_plants13152117
crossref_primary_10_1111_ppl_13351
crossref_primary_10_1186_s12870_024_04911_1
crossref_primary_10_3389_fpls_2022_1002561
crossref_primary_10_1007_s10265_021_01285_5
crossref_primary_10_1016_j_envexpbot_2019_103885
crossref_primary_10_1016_j_plaphy_2018_01_014
crossref_primary_10_7717_peerj_11509
crossref_primary_10_1007_s00709_023_01922_x
crossref_primary_10_1016_j_molp_2021_12_003
crossref_primary_10_3390_horticulturae10111148
crossref_primary_10_1007_s00425_020_03395_1
crossref_primary_10_1111_nph_18420
crossref_primary_10_1271_kagakutoseibutsu_61_458
crossref_primary_10_1007_s11104_018_3770_y
crossref_primary_10_1146_annurev_arplant_050718_100005
crossref_primary_10_1007_s00299_023_03067_w
crossref_primary_10_3390_agronomy12102496
crossref_primary_10_1093_dnares_dsaa022
crossref_primary_10_1093_treephys_tpac042
crossref_primary_10_3390_plants11192447
crossref_primary_10_1007_s00344_023_10912_5
crossref_primary_10_1016_j_plaphy_2020_02_018
crossref_primary_10_1016_j_plaphy_2020_07_036
crossref_primary_10_3390_agronomy13092434
crossref_primary_10_3390_agronomy8080130
crossref_primary_10_1186_s12870_019_1827_6
crossref_primary_10_1016_j_jhazmat_2025_137226
crossref_primary_10_1016_j_envexpbot_2020_104229
crossref_primary_10_1016_j_plaphy_2017_12_032
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_1111_pce_13391
crossref_primary_10_1016_j_envexpbot_2020_104300
crossref_primary_10_1016_j_plantsci_2024_112171
crossref_primary_10_1080_15324982_2023_2169846
crossref_primary_10_1016_j_envexpbot_2023_105455
crossref_primary_10_1016_j_plaphy_2024_108770
crossref_primary_10_1093_jxb_erab388
crossref_primary_10_1111_nph_19345
crossref_primary_10_3390_plants13131840
crossref_primary_10_1080_13416979_2019_1637995
crossref_primary_10_1007_s42452_024_05713_8
crossref_primary_10_3390_plants12173071
crossref_primary_10_1016_j_plaphy_2020_11_024
crossref_primary_10_3389_fpls_2022_989946
crossref_primary_10_3390_agronomy9120843
crossref_primary_10_3390_biom13040607
crossref_primary_10_1007_s40415_023_00968_8
crossref_primary_10_3390_antiox12051060
crossref_primary_10_1038_s41598_024_84326_y
crossref_primary_10_3389_fpls_2021_643499
crossref_primary_10_3390_cimb45070374
crossref_primary_10_3390_ijms19113668
crossref_primary_10_1111_ppl_70114
crossref_primary_10_3390_stresses3010003
crossref_primary_10_1093_jxb_eraa285
crossref_primary_10_3390_ijms221910733
crossref_primary_10_5511_plantbiotechnology_24_0807a
crossref_primary_10_1002_ldr_2819
crossref_primary_10_1093_pcp_pcz205
crossref_primary_10_1016_j_plaphy_2020_11_012
crossref_primary_10_1071_FP24178
crossref_primary_10_1111_nph_18205
crossref_primary_10_3390_plants7040106
crossref_primary_10_1016_j_envexpbot_2024_105924
crossref_primary_10_1038_s42003_020_01249_w
crossref_primary_10_3390_agronomy14071596
crossref_primary_10_1016_j_stress_2022_100061
crossref_primary_10_1080_07352689_2023_2285536
crossref_primary_10_1007_s11104_022_05769_8
crossref_primary_10_3389_fpls_2022_918594
crossref_primary_10_1111_ppl_13425
crossref_primary_10_3390_ijms21165768
crossref_primary_10_1007_s11738_019_2989_4
crossref_primary_10_1111_ppl_13663
crossref_primary_10_1111_pce_14181
Cites_doi 10.1080/07352689.2010.524517
10.1093/jxb/erv465
10.3109/09637486.2010.523416
10.1111/j.1469-8137.2007.02128.x
10.3390/ijms14059267
10.1093/jxb/erq257
10.1111/ppl.12165
10.1071/FP02045
10.1093/aob/mcu173
10.1111/j.1469-8137.2008.02531.x
10.1002/9781118864463.ch02
10.1242/jcs.064352
10.1016/j.envexpbot.2012.07.004
10.1111/j.1574-6976.2006.00019.x
10.1111/pce.12339
10.1111/j.1365-3040.2005.01328.x
10.1074/jbc.M115.692574
10.1016/S0031-9422(99)00151-X
10.1111/j.1365-313X.2005.02587.x
10.1093/jxb/ert204
10.1093/pcp/pci205
10.1016/j.tplants.2009.11.009
10.1111/j.1399-3054.2007.00993.x
10.2307/3870060
10.1093/jxb/erm284
10.1016/j.plantsci.2010.05.001
10.1007/BF01871935
10.1093/jxb/ern297
10.1186/1471-2105-7-109
10.1016/j.tplants.2014.09.001
10.1093/jxb/erp243
10.1021/ac201610x
10.1016/j.tplants.2015.11.011
10.1104/pp.110.166181
10.1046/j.1365-3040.2003.01033.x
10.1104/pp.010752
10.1016/j.jchromb.2015.07.002
10.1104/pp.119.1.165
10.1007/s11104-009-9999-8
10.1007/BF00386121
10.1093/aob/mcu267
10.1071/FP06269
10.1111/nph.13414
10.1093/jxb/34.7.795
10.1093/aob/mct205
10.1016/j.envexpbot.2014.05.006
10.1016/j.jplph.2014.01.009
10.1111/pce.12180
10.1016/j.jplph.2013.01.014
10.1016/j.jplph.2014.12.009
10.1104/pp.113.216572
10.1007/BF00388965
10.1007/s10142-006-0039-y
10.1111/nph.13519
10.3389/fpls.2015.00537
10.1038/srep17221
10.1111/pbi.12402
10.1016/S0735-2689(99)00388-3
10.3389/fpls.2015.00052
10.1016/S0031-9422(03)00445-X
10.1007/978-1-4020-5578-2_12
10.1104/pp.16.01347
10.1081/FRI-120018883
10.1002/pmic.201200152
10.1016/j.febslet.2014.09.003
10.1038/ncomms8879
10.1016/j.tplants.2011.03.007
10.1071/FP12389
10.1093/aob/mcu217
10.1016/0031-9422(89)80182-7
10.1046/j.1469-8137.1998.00111.x
10.1093/jxb/erm057
10.1093/jxb/ers377
10.1071/FP09051
10.3389/fpls.2015.00071
10.1016/j.jplph.2014.01.015
10.3389/fpls.2015.00435
10.1146/annurev.arplant.47.1.159
10.1242/jcs.00201
10.1046/j.1365-3040.2002.00895.x
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.12995
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Calcium & Calcified Tissue Abstracts
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1915
ExternalDocumentID 28558173
10_1111_pce_12995
PCE12995
Genre article
Journal Article
GrantInformation_xml – fundername: ARC Discovery
  funderid: DP150101663
– fundername: Australian Research Council
– fundername: Marie Curie Fellowship
  funderid: 700001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4875-9c20d1dab53e153284695adb52fa3b940ca71cee4e0380498d3c3eabd66b80763
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:29:09 EDT 2025
Fri Jul 11 05:10:55 EDT 2025
Fri Jul 25 10:20:20 EDT 2025
Wed Feb 19 02:40:56 EST 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 04:28:39 EDT 2025
Wed Jan 22 16:23:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords halophyte
epidermal bladder cells
sodium sequestration
metabolic profile
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4875-9c20d1dab53e153284695adb52fa3b940ca71cee4e0380498d3c3eabd66b80763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2345-8981
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.12995
PMID 28558173
PQID 1929861757
PQPubID 37957
PageCount 16
ParticipantIDs proquest_miscellaneous_2000543718
proquest_miscellaneous_1904240840
proquest_journals_1929861757
pubmed_primary_28558173
crossref_primary_10_1111_pce_12995
crossref_citationtrail_10_1111_pce_12995
wiley_primary_10_1111_pce_12995_PCE12995
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 30
2010; 15
2003; 116
2016b; 172
2013a; 14
2011; 62
2013; 64
2011; 57
2003; 19
2014; 171
2014a; 19
2011; 16
1973; 109
2005; 28
2012; 12
2007; 34
2016a; 67
2011; 155
2015; 290
1989; 107
2010; 29
2013b; 162
1999; 18
2007; 175
2015; 176
2013; 112
2007; 7
1999; 52
2015; 6
2015; 5
2010; 326
2009; 60
2013; 40
2010; 123
2011; 83
2006; 7
2007
2013; 92
2015; 208
2015; 207
2014; 151
1998; 138
1992; 33
2011; 6
2005; 44
2016; 14
2007; 58
2005; 46
1989; 28
1995; 7
2001; 127
1983; 34
2014; 107
2009; 36
2002; 25
2016; 6
2002; 29
2015; 115
2014b; 37
2010; 179
2016; 21
2014; 37
2003; 26
2015
2008; 179
1996; 47
2013; 170
1975; 126
2008; 132
2003; 64
2014; 588
2015; 1000
1999; 119
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
Adams P. (e_1_2_6_3_1) 1992; 33
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
Shabala S.N. (e_1_2_6_61_1) 2011; 57
Yuan Z. (e_1_2_6_82_1) 2016; 6
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 58
  start-page: 1957
  year: 2007
  end-page: 1967
  article-title: Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder‐cell‐less mutant of the common ice plant
  publication-title: Journal of Experimental Botany
– volume: 171
  start-page: 696
  year: 2014
  end-page: 707
  article-title: Mechanisms and physiological roles of K efflux from root cells
  publication-title: Journal of Plant Physiology
– volume: 5
  year: 2015
  article-title: Local false discovery rate estimation using feature reliability in LC/MS metabolomics data
  publication-title: Scientific Reports
– volume: 115
  start-page: 419
  year: 2015
  end-page: 431
  article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
  publication-title: Annals of Botany
– start-page: 285
  year: 2007
  end-page: 315
– volume: 29
  start-page: 329
  year: 2010
  end-page: 359
  article-title: Halophyte improvement for a salinized world
  publication-title: Critical Reviews in Plant Sciences
– volume: 162
  start-page: 940
  year: 2013b
  end-page: 952
  article-title: Reduced tonoplast fast‐activating and slow‐activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa
  publication-title: Plant Physiology
– volume: 207
  start-page: 627
  year: 2015
  end-page: 644
  article-title: Cell type‐specific responses to salinity – the epidermal bladder cell transcriptome of
  publication-title: New Phytologist
– volume: 176
  start-page: 101
  year: 2015
  end-page: 107
  article-title: Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of under high salinity
  publication-title: Journal of Plant Physiology
– volume: 26
  start-page: 1083
  year: 2003
  end-page: 1096
  article-title: Modification of the intracellular sugar content alters the incidence of freeze‐induced membrane lesions of protoplasts isolated from leaves
  publication-title: Plant, Cell and Environment
– volume: 19
  start-page: 167
  year: 2003
  end-page: 177
  article-title: The worldwide potential for quinoa ( Willd.)
  publication-title: Food Reviews International
– volume: 19
  start-page: 687
  year: 2014a
  end-page: 691
  article-title: Salt bladders: do they matter?
  publication-title: Trends in Plant Science
– volume: 64
  start-page: 1025
  year: 2013
  end-page: 1038
  article-title: Towards understanding vacuolar antioxidant mechanisms: a role for fructans?
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 7879
  year: 2015
  article-title: GABA signalling modulates plant growth by directly regulating the activity of plant‐specific anion transporters
  publication-title: Nature Communications
– volume: 28
  start-page: 1057
  year: 1989
  end-page: 1060
  article-title: Hydroxyl radical scavenging activity of compatible solutes
  publication-title: Phytochemistry
– volume: 36
  start-page: 1110
  year: 2009
  end-page: 1119
  article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions
  publication-title: Functional Plant Biology
– volume: 14
  start-page: 9267
  year: 2013a
  end-page: 9285
  article-title: Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species,
  publication-title: International Journal of Molecular Sciences
– volume: 116
  start-page: 81
  year: 2003
  end-page: 88
  article-title: Free oxygen radicals regulate plasma membrane Ca2 ‐and K ‐permeable channels in plant root cells
  publication-title: Journal of Cell Science
– volume: 138
  start-page: 171
  year: 1998
  end-page: 190
  article-title: Growth and development of (Aizoaceae)
  publication-title: New Phytologist
– volume: 170
  start-page: 906
  year: 2013
  end-page: 914
  article-title: Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na loading and stomatal density
  publication-title: Journal of Plant Physiology
– volume: 172
  start-page: 2445
  year: 2016b
  end-page: 2458
  article-title: Cell‐type‐specific H ‐ATPase activity in root tissues enables K retention and mediates acclimation of barley ( ) to salinity stress
  publication-title: Plant Physiology
– volume: 58
  start-page: 4245
  year: 2007
  end-page: 4255
  article-title: Compatible solute accumulation and stress‐mitigating effects in barley genotypes contrasting in their salt tolerance
  publication-title: Journal of Experimental Botany
– volume: 37
  start-page: 2216
  year: 2014b
  end-page: 2233
  article-title: Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding
  publication-title: Plant, Cell and Environment
– volume: 7
  start-page: 1099
  year: 1995
  end-page: 1111
  article-title: Adaptations to environmental stresses
  publication-title: The Plant Cell
– volume: 37
  start-page: 589
  year: 2014
  end-page: 600
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K ‐permeable channels to ROS: physiological traits that differentiate salinity tolerance between pea and barley
  publication-title: Plant, Cell and Environment
– volume: 119
  start-page: 165
  year: 1999
  end-page: 172
  article-title: Myo‐inositol‐dependent sodium uptake in ice plant
  publication-title: Plant Physiology
– volume: 6
  year: 2016
  article-title: Specialized microbiome of a halophyte and its role in helping non‐host plants to withstand salinity
  publication-title: Scientific Reports
– volume: 12
  start-page: 2862
  year: 2012
  end-page: 2865
  article-title: Protein profiling of epidermal bladder cells from the halophyte
  publication-title: Proteomics
– volume: 15
  start-page: 89
  year: 2010
  end-page: 97
  article-title: Proline: a multifunctional amino acid
  publication-title: Trends in Plant Science
– volume: 83
  start-page: 7523
  year: 2011
  end-page: 7530
  article-title: Comprehensive profiling and quantitation of amine group containing metabolites
  publication-title: Analytical Chemistry
– volume: 123
  start-page: 1468
  year: 2010
  end-page: 1479
  article-title: Arabidopsis root K ‐efflux conductance activated by hydroxyl radicals: single‐channel properties, genetic basis and involvement in stress‐induced cell death
  publication-title: Journal of Cell Science
– volume: 6
  year: 2015
  article-title: Single cell‐type comparative metabolomics of epidermal bladder cells from the halophyte
  publication-title: Frontiers in Plant Science
– volume: 47
  start-page: 159
  year: 1996
  end-page: 184
  article-title: Physiology of ion transport across the tonoplast of higher plants
  publication-title: Annual Review of Plant Biology
– volume: 28
  start-page: 772
  year: 2005
  end-page: 787
  article-title: Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes
  publication-title: Plant, Cell and Environment
– volume: 1000
  start-page: 1
  year: 2015
  end-page: 13
  article-title: Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity
  publication-title: Journal of Chromatography B
– volume: 29
  start-page: 1017
  year: 2002
  end-page: 1024
  article-title: Na /H exchange in the halophyte is associated with cellular sites of Na storage
  publication-title: Functional Plant Biology
– volume: 16
  start-page: 300
  year: 2011
  end-page: 309
  article-title: ROS signaling: the new wave?
  publication-title: Trends in Plant Science
– volume: 25
  start-page: 1145
  year: 2002
  end-page: 1154
  article-title: Spectral dependence of flavonol and betacyanin accumulation in under enhanced ultraviolet radiation
  publication-title: Plant, Cell and Environment
– volume: 6
  start-page: 52
  year: 2015
  article-title: Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding
  publication-title: Frontiers in Plant Science
– volume: 151
  start-page: 257
  year: 2014
  end-page: 279
  article-title: Regulation of potassium transport in plants under hostile conditions:Implications for abiotic and biotic stress tolerance
  publication-title: Physiol Plant
– volume: 62
  start-page: 185
  year: 2011
  end-page: 193
  article-title: Ionic and osmotic relations in quinoa ( Willd.) plants grown at various salinity levels
  publication-title: Journal of Experimental Botany
– volume: 115
  start-page: 529
  year: 2015
  end-page: 540
  article-title: The development of halophyte‐based agriculture: past and present
  publication-title: Annals of Botany
– volume: 109
  start-page: 135
  year: 1973
  end-page: 145
  article-title: Studies on NaCl‐induced crassulacean acid metabolism in
  publication-title: Planta
– volume: 46
  start-page: 1924
  year: 2005
  end-page: 1933
  article-title: Exogenously supplied compatible solutes rapidly ameliorate NaCl‐induced potassium efflux from barley roots
  publication-title: Plant and Cell Physiology
– volume: 44
  start-page: 826
  year: 2005
  end-page: 839
  article-title: Salinity stress adaptation competence in the extremophile in comparison with its relative
  publication-title: The Plant Journal
– volume: 33
  start-page: 1215
  year: 1992
  end-page: 1223
  article-title: Distinct cellular and organismic responses to salt stress
  publication-title: Plant and Cell Physiology
– volume: 6
  start-page: 537
  year: 2015
  article-title: Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes
  publication-title: Frontiers in Plant Science
– volume: 208
  start-page: 668
  year: 2015
  end-page: 673
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytologist
– volume: 52
  start-page: 583
  year: 1999
  end-page: 592
  article-title: Light‐induced betacyanin and flavonol accumulation in bladder cells of
  publication-title: Phytochemistry
– year: 2015
  article-title: Linking salinity stress tolerance tissue-specific Na sequestration in wheat roots
  publication-title: Frontiersin Plant Science 6
– start-page: 13
  year: 2015
  end-page: 26
– volume: 67
  start-page: 1015
  year: 2016a
  end-page: 1031
  article-title: On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils
  publication-title: Journal of Experimental Botany
– volume: 92
  start-page: 43
  year: 2013
  end-page: 54
  article-title: Salt tolerance mechanisms in quinoa ( Willd.)
  publication-title: Environmental and Experimental Botany
– volume: 171
  start-page: 670
  year: 2014
  end-page: 687
  article-title: Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment
  publication-title: J Plant Physiol
– volume: 115
  start-page: 327
  year: 2015
  end-page: 331
  article-title: Plant salt tolerance: adaptations in halophytes
  publication-title: Annals of Botany
– volume: 18
  start-page: 227
  year: 1999
  end-page: 255
  article-title: Salt tolerance and crop potential of halophytes
  publication-title: Critical Reviews in Plant Sciences
– volume: 64
  start-page: 4663
  year: 2013
  end-page: 4680
  article-title: A force of nature: molecular mechanisms of mechanoperception in plants
  publication-title: Journal of Experimental Botany
– volume: 290
  start-page: 30901
  year: 2015
  end-page: 30909
  article-title: Transmembrane topologies of Ca ‐permeable mechanosensitive channels MCA1 and MCA2 in
  publication-title: Journal of Biological Chemistry
– volume: 179
  start-page: 168
  year: 2010
  end-page: 182
  article-title: Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view
  publication-title: Plant Science
– volume: 40
  start-page: 832
  year: 2013
  end-page: 847
  article-title: Reactive oxygen species regulation and antioxidant defence in halophytes
  publication-title: Functional Plant Biology
– volume: 107
  start-page: 203
  year: 1989
  end-page: 212
  article-title: Water relations of individual leaf cells of plants grown at low and high salinity
  publication-title: The Journal of Membrane Biology
– volume: 60
  start-page: 4089
  year: 2009
  end-page: 4103
  article-title: Metabolic responses to salt stress of barley ( L.) cultivars, Sahara and Clipper, which differ in salinity tolerance
  publication-title: Journal of Experimental Botany
– volume: 57
  start-page: 51
  year: 2011
  end-page: 187
  article-title: Ion transport in halophytes
  publication-title: Advances in Botanical Research
– volume: 34
  start-page: 353
  year: 2007
  end-page: 359
  article-title: Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte
  publication-title: Functional Plant Biology
– volume: 7
  start-page: 111
  year: 2007
  end-page: 134
  article-title: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles
  publication-title: Functional and Integrative Genomics
– volume: 132
  start-page: 209
  year: 2008
  end-page: 219
  article-title: Plant metabolomics reveals conserved and divergent metabolic responses to salinity
  publication-title: Physiologia Plantarum
– volume: 60
  start-page: 9
  year: 2009
  end-page: 18
  article-title: Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?
  publication-title: Journal of Experimental Botany
– volume: 107
  start-page: 71
  year: 2014
  end-page: 83
  article-title: Halophyte agriculture: success stories
  publication-title: Environmental and Experimental Botany
– volume: 126
  start-page: 229
  year: 1975
  end-page: 246
  article-title: Water relations of the epidermal bladder cells of the halophytic species : direct measurements of hydrostatic pressure and hydraulic conductivity
  publication-title: Planta
– volume: 14
  start-page: 592
  year: 2016
  end-page: 602
  article-title: A myo‐inositol‐1‐phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato
  publication-title: Plant Biotechnology Journal
– volume: 34
  start-page: 795
  year: 1983
  end-page: 810
  article-title: Ionic relations of garden orache, L.: growth and ion distribution at moderate salinity and the function of bladder hairs
  publication-title: Journal of Experimental Botany
– volume: 112
  start-page: 1209
  year: 2013
  end-page: 1221
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Annals of Botany
– volume: 588
  start-page: 3918
  year: 2014
  end-page: 3923
  article-title: Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte : Implications for salinity stress responses
  publication-title: FEBS Letters
– volume: 326
  start-page: 213
  year: 2010
  end-page: 224
  article-title: The role of cotyledon metabolism in the establishment of quinoa ( ) seedlings growing under salinity
  publication-title: Plant and Soil
– volume: 30
  start-page: 472
  year: 2006
  end-page: 486
  article-title: Non‐invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment
  publication-title: FEMS Microbiology Reviews
– volume: 175
  start-page: 387
  year: 2007
  end-page: 404
  article-title: Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development
  publication-title: New Phytologist
– volume: 64
  start-page: 941
  year: 2003
  end-page: 948
  article-title: Effect of salt stress on the metabolism of ethanolamine and choline in leaves of the betaine‐producing mangrove species
  publication-title: Phytochemistry
– volume: 155
  start-page: 93
  year: 2011
  end-page: 100
  article-title: Understanding oxidative stress and antioxidant functions to enhance photosynthesis
  publication-title: Plant Physiology
– volume: 6
  start-page: 207
  year: 2011
  end-page: 214
  article-title: The food additives inulin and stevioside counteract oxidative stress
  publication-title: International Journal of Food Sciences and Nutrition
– volume: 21
  start-page: 295
  year: 2016
  end-page: 301
  article-title: Linking metabolism to membrane signaling: the GABA–malate connection
  publication-title: Trends in Plant Science
– volume: 7
  start-page: 109
  year: 2006
  article-title: VANTED: a system for advanced data analysis and visualization in the context of biological networks
  publication-title: BMC Bioinformatics
– volume: 127
  start-page: 1354
  year: 2001
  end-page: 1360
  article-title: Learning from the Arabidopsis experience. The next gene search paradigm
  publication-title: Plant Physiology
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– ident: e_1_2_6_56_1
  doi: 10.1080/07352689.2010.524517
– ident: e_1_2_6_68_1
  doi: 10.1093/jxb/erv465
– ident: e_1_2_6_71_1
  doi: 10.3109/09637486.2010.523416
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1469-8137.2007.02128.x
– ident: e_1_2_6_13_1
  doi: 10.3390/ijms14059267
– ident: e_1_2_6_36_1
  doi: 10.1093/jxb/erq257
– ident: e_1_2_6_66_1
  doi: 10.1111/ppl.12165
– ident: e_1_2_6_9_1
  doi: 10.1071/FP02045
– ident: e_1_2_6_77_1
  doi: 10.1093/aob/mcu173
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_6_37_1
  doi: 10.1002/9781118864463.ch02
– ident: e_1_2_6_26_1
  doi: 10.1242/jcs.064352
– ident: e_1_2_6_5_1
  doi: 10.1016/j.envexpbot.2012.07.004
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1574-6976.2006.00019.x
– ident: e_1_2_6_65_1
  doi: 10.1111/pce.12339
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-3040.2005.01328.x
– ident: e_1_2_6_43_1
  doi: 10.1074/jbc.M115.692574
– ident: e_1_2_6_78_1
  doi: 10.1016/S0031-9422(99)00151-X
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-313X.2005.02587.x
– ident: e_1_2_6_46_1
  doi: 10.1093/jxb/ert204
– ident: e_1_2_6_22_1
  doi: 10.1093/pcp/pci205
– ident: e_1_2_6_73_1
  doi: 10.1016/j.tplants.2009.11.009
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1399-3054.2007.00993.x
– ident: e_1_2_6_12_1
  doi: 10.2307/3870060
– ident: e_1_2_6_18_1
  doi: 10.1093/jxb/erm284
– ident: e_1_2_6_20_1
  doi: 10.1016/j.plantsci.2010.05.001
– ident: e_1_2_6_58_1
  doi: 10.1007/BF01871935
– ident: e_1_2_6_76_1
  doi: 10.1093/jxb/ern297
– ident: e_1_2_6_42_1
  doi: 10.1186/1471-2105-7-109
– ident: e_1_2_6_64_1
  doi: 10.1016/j.tplants.2014.09.001
– ident: e_1_2_6_79_1
  doi: 10.1093/jxb/erp243
– ident: e_1_2_6_16_1
  doi: 10.1021/ac201610x
– ident: e_1_2_6_33_1
  doi: 10.1016/j.tplants.2015.11.011
– ident: e_1_2_6_32_1
  doi: 10.1104/pp.110.166181
– ident: e_1_2_6_75_1
  doi: 10.1046/j.1365-3040.2003.01033.x
– ident: e_1_2_6_17_1
  doi: 10.1104/pp.010752
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jchromb.2015.07.002
– ident: e_1_2_6_49_1
  doi: 10.1104/pp.119.1.165
– ident: e_1_2_6_57_1
  doi: 10.1007/s11104-009-9999-8
– ident: e_1_2_6_80_1
  doi: 10.1007/BF00386121
– ident: e_1_2_6_30_1
  doi: 10.1093/aob/mcu267
– ident: e_1_2_6_41_1
  doi: 10.1071/FP06269
– ident: e_1_2_6_50_1
  doi: 10.1111/nph.13414
– volume: 6
  year: 2016
  ident: e_1_2_6_82_1
  article-title: Specialized microbiome of a halophyte and its role in helping non‐host plants to withstand salinity
  publication-title: Scientific Reports
– volume: 57
  start-page: 51
  year: 2011
  ident: e_1_2_6_61_1
  article-title: Ion transport in halophytes
  publication-title: Advances in Botanical Research
– ident: e_1_2_6_40_1
  doi: 10.1093/jxb/34.7.795
– ident: e_1_2_6_62_1
  doi: 10.1093/aob/mct205
– ident: e_1_2_6_52_1
  doi: 10.1016/j.envexpbot.2014.05.006
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jplph.2014.01.009
– ident: e_1_2_6_15_1
  doi: 10.1111/pce.12180
– ident: e_1_2_6_63_1
  doi: 10.1016/j.jplph.2013.01.014
– ident: e_1_2_6_74_1
  doi: 10.1016/j.jplph.2014.12.009
– ident: e_1_2_6_14_1
  doi: 10.1104/pp.113.216572
– ident: e_1_2_6_70_1
  doi: 10.1007/BF00388965
– ident: e_1_2_6_21_1
  doi: 10.1007/s10142-006-0039-y
– ident: e_1_2_6_48_1
  doi: 10.1111/nph.13519
– ident: e_1_2_6_44_1
  doi: 10.3389/fpls.2015.00537
– ident: e_1_2_6_19_1
  doi: 10.1038/srep17221
– ident: e_1_2_6_83_1
  doi: 10.1111/pbi.12402
– ident: e_1_2_6_34_1
  doi: 10.1016/S0735-2689(99)00388-3
– ident: e_1_2_6_47_1
  doi: 10.3389/fpls.2015.00052
– ident: e_1_2_6_72_1
  doi: 10.1016/S0031-9422(03)00445-X
– ident: e_1_2_6_84_1
  doi: 10.1007/978-1-4020-5578-2_12
– ident: e_1_2_6_67_1
  doi: 10.1104/pp.16.01347
– ident: e_1_2_6_39_1
  doi: 10.1081/FRI-120018883
– ident: e_1_2_6_10_1
  doi: 10.1002/pmic.201200152
– ident: e_1_2_6_54_1
  doi: 10.1016/j.febslet.2014.09.003
– ident: e_1_2_6_55_1
  doi: 10.1038/ncomms8879
– ident: e_1_2_6_45_1
  doi: 10.1016/j.tplants.2011.03.007
– ident: e_1_2_6_51_1
  doi: 10.1071/FP12389
– ident: e_1_2_6_31_1
  doi: 10.1093/aob/mcu217
– ident: e_1_2_6_69_1
  doi: 10.1016/0031-9422(89)80182-7
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1469-8137.1998.00111.x
– ident: e_1_2_6_6_1
  doi: 10.1093/jxb/erm057
– ident: e_1_2_6_53_1
  doi: 10.1093/jxb/ers377
– ident: e_1_2_6_23_1
  doi: 10.1071/FP09051
– ident: e_1_2_6_81_1
  doi: 10.3389/fpls.2015.00071
– volume: 33
  start-page: 1215
  year: 1992
  ident: e_1_2_6_3_1
  article-title: Distinct cellular and organismic responses to salt stress
  publication-title: Plant and Cell Physiology
– ident: e_1_2_6_27_1
  doi: 10.1016/j.jplph.2014.01.015
– ident: e_1_2_6_11_1
  doi: 10.3389/fpls.2015.00435
– ident: e_1_2_6_8_1
  doi: 10.1146/annurev.arplant.47.1.159
– ident: e_1_2_6_25_1
  doi: 10.1242/jcs.00201
– ident: e_1_2_6_38_1
  doi: 10.1046/j.1365-3040.2002.00895.x
SSID ssj0001479
Score 2.5452921
Snippet Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1900
SubjectTerms Atriplex
Atriplex - drug effects
Atriplex - physiology
Bladder
Brushes
Cell Membrane - drug effects
Cell Membrane - metabolism
cell membranes
Chenopodium quinoa
Chenopodium quinoa - drug effects
Chenopodium quinoa - physiology
electrophysiology
epidermal bladder cells
gamma-aminobutyric acid
gamma-Aminobutyric Acid - pharmacology
Gas Chromatography-Mass Spectrometry
halophyte
Halophytes
Inositol
inositols
Ion transport
Ion Transport - drug effects
Leaves
Membranes
Mesophyll
Mesophyll Cells - drug effects
Mesophyll Cells - metabolism
metabolic profile
Metabolism
Metabolites
Metabolome
petioles
Phenotype
Physiology
Plant Epidermis - cytology
Plant Epidermis - drug effects
Plant Leaves - physiology
Plants (botany)
potassium
Proline
Quinoa
Saline environments
Salinity
Salinity effects
Salt
salt stress
Salt tolerance
Salt-Tolerance - drug effects
Salt-Tolerance - physiology
Salt-Tolerant Plants - drug effects
Salt-Tolerant Plants - physiology
Sodium
sodium sequestration
stress tolerance
Stress, Physiological - drug effects
Sucrose
Sucrose - pharmacology
Sugar
Urinary bladder
Wounds
γ-Aminobutyric acid
Title Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.12995
https://www.ncbi.nlm.nih.gov/pubmed/28558173
https://www.proquest.com/docview/1929861757
https://www.proquest.com/docview/1904240840
https://www.proquest.com/docview/2000543718
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KqeCLrdXq1VO24oMvOfKxm03w6SxXig9SSgv3IITdzYaWhuS8y0Gvf70zmw-teiC-BTKB_ZqZ32xmfgPwQfAil6GwXpibwuNxxD0VG-pHrERKgBsfKNvia3x-zb_MxXwHPvW1MC0_xHDhRprh7DUpuNKrX5R8YewEnVVKBeaUq0WA6PIndVTAW549Sl-UMg06ViHK4hm-fOyL_gCYj_Gqczhn-_CtH2qbZ3I3WTd6Yh5-Y3H8z7kcwLMOiLJpe3Kew46tDuFJ25pycwh7n2uEjZsXYGfUQxbNd8l0SWZqyeiyf8WMqxVkK0W1lc2GtVUnrKlLS806LLutGKJLdqPKGveysez7-raqFVNVzqbNkm747xlVemKw_hKuz2ZXp-de15vBMxTieKkJ_TzIlRaRRaOJTi5Ohcq1CAsV6ZT7RskAHTC3fpRgFJLkkYms0nkc68RHo3YEu1Vd2dfAAiVlEaKPLHzNVcJTvxBSopwuJOdFPIKP_S5lpiMup_4ZZdYHMLh8mVu-EbwfRBctW8ffhMb9Vmedwq4yBLppgmhOyBGcDK9R1WhJVWXrNcnQf2IfQ-LtMqEDwRHOZgSv2mM0jCRMhEgCGeGE3GHYPsTs4nTmHo7_XfQNPA0Jcrj8tzHsNsu1fYuAqdHvnGb8AH_gEAo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILjwJloYBBIHHJKnHsODlwKO1WW1oqhFqpt2Anjlg1SsomK1h-E3-F_8RMXlCgEpceuFnKKPJjHt_Y8wB4LkWWKi6tw9Mkc0TgC0cHCfUj1jIiwI0DirY4CKZH4s2xPF6Bb30uTFsfYrhwI8lo9DUJOF1I_yLlp4kdo7WK-pDKPbv8jA5b9Wp3G0_3Bec7k8OtqdP1FHASguZOlHA39VJtpG9R2FE5B5HUqZE8076JhJto5aHhENb1Q0TPYeonvtUmDQITos_v438vwWXqIE6V-rff_yxW5Ym2sh8FTCoVeV0dI4obGqZ61vr9AWnPIuTGxO3chO_95rSRLSfjRW3Gydff6kb-L7t3C250WJtttsJxG1ZssQZX2-6byzW48rpEZLy8A3ZCbXLRQuXM5KSJ54zeMyqWNOmQrNKUPlovWZtYw-oyt9SPxLJZwRBAs486L5Fda8s-LWZFqZkuUrZZz-kR4wujZNaZre7C0YUs9h6sFmVh7wPztFIZRxiQuUboUERuJpVCOpMpIbJgBC97toiTrjY7tQjJ495Hw-OKm-MawbOB9LQtSPI3oo2et-JOJ1UxYvkoRMAq1QieDp9Rm9CW6sKWC6Khp3AXvf7zaXiD831czQjWW74dZsJDKUNP-bighvvOn2L8bmvSDB78O-kTuDY9fLsf7-8e7D2E65wQVhPutwGr9XxhHyE-rM3jRiwZfLhoTv4B8TZtxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREXlrINFDAIJC4ZJY4dJwcOpTOjlqKqQlTqLdiJI0ZEyTDJCIa_xF_hR_FeNihQiUsP3CzlyfLylu_FbwF4JkWWKi6tw9Mkc0TgC0cHCfUj1jIiwI0DirY4DPaOxesTebIB3_pcmLY-xPDDjSSj0dck4Is0-0XIF4kdo7GK-ojKA7v-jP5a9XJ_gpf7nPPZ9N3untO1FHASQuZOlHA39VJtpG9R1lE3B5HUqZE8076JhJto5aHdENb1QwTPYeonvtUmDQITosvv47wX4KII3Ij6REze_qxV5Ym2sB_FSyoVeV0ZIwobGpZ62vj9gWhPA-TGws2uw_f-bNrAlo_jVW3Gydffykb-J4d3A651SJvttKJxEzZssQWX296b6y249KpEXLy-BXZKTXLRPuXM5KSHl4xeMyqWNMmQrNKUPFqvWZtWw-oyt9SNxLJ5wRA-sw86L5FZa8s-reZFqZkuUrZTL-kJ4wujVNa5rW7D8bls9g5sFmVh7wHztFIZRxCQuUboUERuJpVCOpMpIbJgBC96roiTrjI7NQjJ495Dw-uKm-sawdOBdNGWI_kb0XbPWnGnkaoYkXwUIlyVagRPhs-oS-hIdWHLFdHQQ7iLPv_ZNLxB-T7uZgR3W7YdVsJDKUNP-bihhvnOXmJ8tDttBvf_nfQxXDmazOI3-4cHD-AqJ3jVxPptw2a9XNmHCA5r86gRSgbvz5uRfwAi6Gx0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+bladder+cells+confer+salinity+stress+tolerance+in+the+halophyte+quinoa+and+Atriplex+species&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Kiani%E2%80%90Pouya%2C+Ali&rft.au=Roessner%2C+Ute&rft.au=Jayasinghe%2C+Nirupama+S&rft.au=Lutz%2C+Adrian&rft.date=2017-09-01&rft.issn=0140-7791&rft.volume=40&rft.issue=9+p.1900-1915&rft.spage=1900&rft.epage=1915&rft_id=info:doi/10.1111%2Fpce.12995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon