New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized
Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretica...
Saved in:
Published in | The New phytologist Vol. 199; no. 4; pp. 981 - 990 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.09.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.12344 |
Cover
Abstract | Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized.
MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies).
MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation.
Key insights include a predicted optimal C–N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. |
---|---|
AbstractList | Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth‐system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized.MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies).MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation.Key insights include a predicted optimal C–N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole‐tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. Summary Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth‐system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C–N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole‐tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C–N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. Allocation of carbon ( C ) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth‐system models. We obtain new theoretical insights into C allocation from the hypothesis ( MaxW ) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen ( N ) balance with a vertically resolved canopy and root system for stands of Norway spruce ( Picea abies ). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C–N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole‐tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. Summary Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C-N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. [PUBLICATION ABSTRACT] Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C-N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems.Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C-N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems. |
Author | Ross E. Mc Murtrie Roderick C. Dewar |
Author_xml | – sequence: 1 givenname: Ross E. surname: McMurtrie fullname: McMurtrie, Ross E. organization: The University of New South Wales – sequence: 2 givenname: Roderick C. surname: Dewar fullname: Dewar, Roderick C. organization: The Australian National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23734960$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKcDC_4AssQGFmn9SmwvUQUUqSosQGJnOclN41ESD7ajIfx6zDxYVDy88L2Wv3Pk63OBziY_AULPKbmkeV1N2_6SMi7EI7SiotKFolyeoRUhTBWVqL6eo4sYN4QQXVbsCTpnXHKhK7JC7g522E3R3fcp5iZ53NhQ-wnbYfCNTS639YJTAIi4C37EqQfcL1ufa3QxH23CdppmO-Cd9y3eBt_OzV6Yr0f73Y3uB7RP0ePODhGeHesafXn39vP1TXH78f2H6ze3RSOUFHlvS8U41cLKinMpOJCOQVtp2xJS1xJA81J2ihOgVrW6VFVTaVoCk1oSwtfo1cE3v-PbDDGZ0cUGhsFO4OdoWMkEU5qw8r8oFVRRoXj-zjV6-QDd-DlMeZBsSDlXhP6booJJVZYHrxdHaq5HaM02uNGGxZxSycDVAWiCjzFAZxqX9lGkYN1gKDG_cjc5d7PPPSteP1CcTP_EHt13boDl76C5-3RzUhQHxSYmH34rJtht-yX5wd-7PCrV2gij84A_AWgUys0 |
CitedBy_id | crossref_primary_10_5194_bg_12_3695_2015 crossref_primary_10_1016_j_ecoinf_2017_09_010 crossref_primary_10_1111_gcb_12783 crossref_primary_10_1186_s13021_015_0032_7 crossref_primary_10_1029_2017MS001169 crossref_primary_10_1111_1365_2745_13967 crossref_primary_10_3402_tellusb_v67_28016 crossref_primary_10_1093_treephys_tpae032 crossref_primary_10_1111_nph_15629 crossref_primary_10_1029_2019MS001609 crossref_primary_10_1186_s13717_023_00440_1 crossref_primary_10_1016_j_soilbio_2023_109144 crossref_primary_10_1111_nph_12697 crossref_primary_10_5194_gmd_8_3593_2015 crossref_primary_10_1111_nph_13007 crossref_primary_10_1111_nph_14459 crossref_primary_10_1111_nph_13547 crossref_primary_10_1111_nph_18421 crossref_primary_10_1088_1748_9326_aa9997 crossref_primary_10_1111_nph_13034 crossref_primary_10_1111_btp_12624 crossref_primary_10_1111_nph_12583 crossref_primary_10_1093_treephys_tpaa002 crossref_primary_10_1111_ele_12690 crossref_primary_10_1016_j_soilbio_2024_109615 crossref_primary_10_1111_nph_70087 crossref_primary_10_1111_nph_14927 crossref_primary_10_1111_gcb_16172 crossref_primary_10_1371_journal_pone_0100275 crossref_primary_10_1002_2013JG002553 crossref_primary_10_1029_2018JG004777 crossref_primary_10_1098_rstb_2017_0311 crossref_primary_10_1186_s13717_023_00477_2 crossref_primary_10_3389_fpls_2022_927435 crossref_primary_10_1029_2021JG006690 crossref_primary_10_1073_pnas_2006715117 crossref_primary_10_1098_rspb_2016_1993 crossref_primary_10_1111_jbi_15094 crossref_primary_10_1111_nph_12847 |
Cites_doi | 10.1016/S0378-1127(01)00586-2 10.1111/j.1469-8137.2012.04123.x 10.1093/treephys/tps023 10.1093/treephys/tps044 10.1046/j.0016-8025.2001.00811.x 10.1063/1.1522164 10.1046/j.1365-2486.2003.00569.x 10.1073/pnas.0509478102 10.1080/07352680902776572 10.1093/treephys/tpr138 10.1111/nph.12235 10.1111/j.1469-8137.2009.03122.x 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 10.1126/science.1094442 10.1002/ece3.266 10.1093/jxb/erj002 10.1093/treephys/tpq068 10.1093/treephys/tpr037 10.1073/pnas.1006463107 10.1098/rstb.2009.0293 10.1007/BF00378977 10.1093/oxfordjournals.aob.a088273 10.1093/oxfordjournals.aob.a088246 10.1007/BF00379710 10.1111/j.1469-8137.2008.02558.x 10.1086/657992 10.1007/s00442-011-2011-3 10.1111/j.1365-2486.2007.01523.x 10.1111/j.1365-2486.2008.01710.x 10.1111/1365-3040.ep11604105 10.1111/j.1365-2486.2010.02240.x 10.2307/2390216 10.1201/9780203909423.ch12 10.1007/BF00329431 10.1890/03-8002 10.1111/j.1469-8137.2011.03940.x 10.1890/04-1724 10.1016/j.ecolmodel.2005.07.004 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 10.1525/bio.2009.59.2.6 10.1111/j.1365-2486.2007.01420.x 10.2307/3546712 10.1111/j.1365-3040.1996.tb00012.x 10.18174/njas.v31i4.16938 10.1071/PP9950593 10.1146/annurev-ecolsys-102209-144647 10.1111/j.1365-3040.1993.tb00855.x 10.1023/A:1010760720215 10.1093/treephys/tps045 10.1890/08-1609.1 10.1111/j.1469-8137.2007.02063.x 10.1111/j.1469-8137.2004.01224.x 10.1046/j.1365-2435.2002.00674.x |
ContentType | Journal Article |
Copyright | 2013 New Phytologist Trust 2013 The Authors. New Phytologist © 2013 New Phytologist Trust 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. Copyright © 2013 New Phytologist Trust |
Copyright_xml | – notice: 2013 New Phytologist Trust – notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust – notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. – notice: Copyright © 2013 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.12344 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 990 |
ExternalDocumentID | 3054719711 23734960 10_1111_nph_12344 NPH12344 newphytologist.199.4.981 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT 31~ AASVR ABEFU ABEML ABGDZ ACQPF ADXHL AGHNM AS~ CAG COF GTFYD HF~ HGD HQ2 HTVGU LPU MVM NEJ RCA WHG XOL YXE ZCG AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION 24P AEUQT AFPWT CGR CUY CVF DOOOF ECM EIF ESX IPNFZ JSODD NPM PKN WRC 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4874-c4d5823194a7633743e0f2ed69ad00bb7ee9357f830e1a8d9586c6915e2797003 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Sep 05 17:27:33 EDT 2025 Fri Sep 05 04:38:57 EDT 2025 Fri Jul 25 10:30:51 EDT 2025 Sun Jul 13 04:15:25 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Thu Apr 24 23:09:30 EDT 2025 Tue Jul 01 03:09:14 EDT 2025 Wed Aug 20 07:25:59 EDT 2025 Thu Jul 03 22:54:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | rooting depth tree carbon allocation optimization model maximum wood production leaf area index canopy photosynthesis root nitrogen uptake gross primary production |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4874-c4d5823194a7633743e0f2ed69ad00bb7ee9357f830e1a8d9586c6915e2797003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.12344 |
PMID | 23734960 |
PQID | 1427855381 |
PQPubID | 2026848 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2524289025 proquest_miscellaneous_1418148381 proquest_journals_2513380181 proquest_journals_1427855381 pubmed_primary_23734960 crossref_citationtrail_10_1111_nph_12344 crossref_primary_10_1111_nph_12344 wiley_primary_10_1111_nph_12344_NPH12344 jstor_primary_newphytologist_199_4_981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130901 September 2013 2013-09-00 2013-Sep |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 9 year: 2013 text: 20130901 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2013 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 1993; 7 2002; 16 1983; 153 2010; 107 1987; 72 2002; 55 2010; 186 1999; 84 2011; 17 1983; 56 2005; 187 2005; 102 2000; 10 2007; 174 2009; 90 1995; 22 2003; 9 2013; 198 2011; 167 2010; 30 2009; 59 2009; 15 2001; 53 2004; 85 2004; 303 1987; 10 1996; 19 2006; 57 2010; 365 2011; 31 2008; 14 2002 1996; 163 2012; 32 2007; 13 2011; 177 2009; 28 2012; 194 2008; 180 2002; 25 2012; 2 1993; 16 2005; 165 1991; 68 2006; 87 2012; 193 2011; 42 2000; 81 1995; 101 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Ågren GI (e_1_2_6_2_1) 1987; 10 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 17 start-page: 1130 year: 2011 end-page: 1139 article-title: Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO ] publication-title: Global Change Biology – volume: 32 start-page: 648 year: 2012 end-page: 666 article-title: Modelling carbon allocation in trees: a search for principles publication-title: Tree Physiology – volume: 53 start-page: 51 year: 2001 end-page: 77 article-title: The distribution of soil nutrients with depth: global patterns and the imprint of plants publication-title: Biogeochemistry – volume: 174 start-page: 811 year: 2007 end-page: 822 article-title: Optimal nitrogen allocation controls tree responses to elevated CO publication-title: New Phytologist – volume: 180 start-page: 114 year: 2008 end-page: 123 article-title: Optimal co‐allocation of carbon and nitrogen in a forest stand at steady state publication-title: New Phytologist – volume: 56 start-page: 341 year: 1983 end-page: 347 article-title: Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program publication-title: Oecologia – volume: 59 start-page: 127 year: 2009 end-page: 139 article-title: Optimal function explains plant responses to global change publication-title: BioScience – volume: 32 start-page: 520 year: 2012 end-page: 534 article-title: Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area publication-title: Tree Physiology – volume: 15 start-page: 132 year: 2009 end-page: 144 article-title: Forest fine‐root production and nitrogen use under elevated CO : contrasting responses in evergreen and deciduous trees explained by a common principle publication-title: Global Change Biology – volume: 102 start-page: 18052 year: 2005 end-page: 18056 article-title: Forest response to elevated CO is conserved across a broad range of productivity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 16 start-page: 727 year: 2002 end-page: 733 article-title: Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation publication-title: Functional Ecology – volume: 68 start-page: 211 year: 1991 end-page: 226 article-title: A transport‐resistance model of forest growth and partitioning publication-title: Annals of Botany – volume: 22 start-page: 593 year: 1995 end-page: 601 article-title: Modelling canopy production. I. Optimal distribution of photosynthetic resources publication-title: Australian Journal of Plant Physiology – volume: 55 start-page: 29 year: 2002 end-page: 34 article-title: Toward a synthesis of the Newtonian and Darwinian worldviews publication-title: Physics Today – volume: 194 start-page: 961 year: 2012 end-page: 971 article-title: Modeling forest stand dynamics from optimal balances of carbon and nitrogen publication-title: New Phytologist – volume: 72 start-page: 520 year: 1987 end-page: 526 article-title: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy publication-title: Oecologia – volume: 7 start-page: 356 year: 1993 end-page: 368 article-title: A root–shoot partitioning model based on carbon–nitrogen–water interactions and Münch phloem flow publication-title: Functional Ecology – volume: 90 start-page: 3352 year: 2009 end-page: 3366 article-title: Increased belowground biomass and soil CO fluxes after a decade of carbon dioxide enrichment in a warm‐temperate forest publication-title: Ecology – volume: 186 start-page: 346 year: 2010 end-page: 357 article-title: Digging deeper: fine‐root responses to rising atmospheric CO concentration in forested ecosystems publication-title: New Phytologist – volume: 25 start-page: 343 year: 2002 end-page: 357 article-title: Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area publication-title: Plant, Cell & Environment – volume: 9 start-page: 161 year: 2003 end-page: 185 article-title: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPG dynamic global vegetation model publication-title: Global Change Biology – volume: 167 start-page: 293 year: 2011 end-page: 303 article-title: Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion? publication-title: Oecologia – volume: 87 start-page: 53 year: 2006 end-page: 63 article-title: Elevated CO stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta‐analysis publication-title: Ecology – volume: 16 start-page: 137 year: 1993 end-page: 147 article-title: Plant growth modelling without integrating mechanisms publication-title: Plant, Cell & Environment – volume: 177 start-page: 153 year: 2011 end-page: 166 article-title: Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual‐based model and quantitative comparisons to data publication-title: American Naturalist – volume: 81 start-page: 275 year: 2000 end-page: 280 article-title: Nutrient concentrations in fine roots publication-title: Ecology – volume: 19 start-page: 1331 year: 1996 end-page: 1348 article-title: Temperate forest responses to carbon dioxide, temperature and nitrogen: a model analysis publication-title: Plant, Cell & Environment – volume: 187 start-page: 449 year: 2005 end-page: 474 article-title: A process‐based model of nitrogen cycling in forest plantations Part II. Simulating growth and nitrogen mineralisation of plantations in south‐western Australia publication-title: Ecological Modelling – volume: 31 start-page: 1007 year: 2011 end-page: 1023 article-title: Leaf‐trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves publication-title: Tree Physiology – volume: 28 start-page: 179 year: 2009 end-page: 197 article-title: Influence of environmental variability on root dynamics in northern forests publication-title: Critical Reviews in Plant Science – volume: 84 start-page: 177 year: 1999 end-page: 192 article-title: Are there general laws in ecology? publication-title: Oikos – volume: 107 start-page: 19368 year: 2010 end-page: 19373 article-title: CO enhancement of forest productivity constrained by limited nitrogen availability publication-title: Proceedings of the National Academy of Sciences, USA – volume: 2 start-page: 1235 year: 2012 end-page: 1250 article-title: Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging publication-title: Ecology and Evolution – volume: 32 start-page: 505 year: 2012 end-page: 509 article-title: Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints publication-title: Tree Physiology – volume: 198 start-page: 656 year: 2013 end-page: 669 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytologist – volume: 153 start-page: 335 year: 1983 end-page: 348 article-title: Functional equilibrium: sense or nonsense? publication-title: Netherlands Journal of Agricultural Science – volume: 163 start-page: 273 year: 1996 end-page: 292 article-title: Parameterisation of 3‐PG for plantation grown publication-title: Forest Ecology and Management – start-page: 205 year: 2002 end-page: 220 – volume: 101 start-page: 504 year: 1995 end-page: 513 article-title: Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C and C mono‐ and dicotyledonous species publication-title: Oecologia – volume: 85 start-page: 591 year: 2004 end-page: 602 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology – volume: 13 start-page: 2089 year: 2007 end-page: 2109 article-title: Carbon allocation in forest ecosystems publication-title: Global Change Biology – volume: 68 start-page: 417 year: 1991 end-page: 425 article-title: A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity publication-title: Annals of Botany – volume: 303 start-page: 790 year: 2004 end-page: 793 article-title: Uses and abuses of mathematics in biology publication-title: Science – volume: 10 start-page: 579 year: 1987 end-page: 586 article-title: Root: shoot ratio as a balance between nitrogen productivity and photosynthesis publication-title: Plant, Cell & Environment – volume: 30 start-page: 1235 year: 2010 end-page: 1252 article-title: A physiological model of softwood cambial growth publication-title: Tree Physiology – volume: 365 start-page: 1429 year: 2010 end-page: 1435 article-title: Maximum entropy production and plant optimization theories publication-title: Philosophical Transactions of the Royal Society B – volume: 14 start-page: 588 year: 2008 end-page: 602 article-title: Fine root dynamics in a loblolly pine forest are influenced by free‐air‐CO ‐enrichment: a six‐year‐minirhizotron study publication-title: Global Change Biology – volume: 32 start-page: 510 year: 2012 end-page: 519 article-title: Co‐optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies publication-title: Tree Physiology – volume: 193 start-page: 409 year: 2012 end-page: 419 article-title: Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species publication-title: New Phytologist – volume: 57 start-page: 355 year: 2006 end-page: 371 article-title: Construction costs, chemical composition and payback time of high‐ and low‐irradiance leaves publication-title: Journal of Experimental Botany – volume: 10 start-page: 470 year: 2000 end-page: 483 article-title: Belowground consequences of vegetation change and their treatment in models publication-title: Ecological Applications – volume: 42 start-page: 181 year: 2011 end-page: 203 article-title: Ecological lessons from free‐air CO enrichment experiments publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 165 start-page: 351 year: 2005 end-page: 372 article-title: What have we learned from 15 years of free‐air CO enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO publication-title: New Phytologist – ident: e_1_2_6_49_1 doi: 10.1016/S0378-1127(01)00586-2 – ident: e_1_2_6_54_1 doi: 10.1111/j.1469-8137.2012.04123.x – ident: e_1_2_6_44_1 doi: 10.1093/treephys/tps023 – ident: e_1_2_6_13_1 doi: 10.1093/treephys/tps044 – ident: e_1_2_6_39_1 doi: 10.1046/j.0016-8025.2001.00811.x – ident: e_1_2_6_22_1 doi: 10.1063/1.1522164 – ident: e_1_2_6_51_1 doi: 10.1046/j.1365-2486.2003.00569.x – ident: e_1_2_6_41_1 doi: 10.1073/pnas.0509478102 – ident: e_1_2_6_6_1 doi: 10.1080/07352680902776572 – ident: e_1_2_6_19_1 doi: 10.1093/treephys/tpr138 – ident: e_1_2_6_31_1 doi: 10.1111/nph.12235 – ident: e_1_2_6_26_1 doi: 10.1111/j.1469-8137.2009.03122.x – ident: e_1_2_6_29_1 doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 – ident: e_1_2_6_36_1 doi: 10.1126/science.1094442 – ident: e_1_2_6_38_1 doi: 10.1002/ece3.266 – ident: e_1_2_6_45_1 doi: 10.1093/jxb/erj002 – ident: e_1_2_6_25_1 doi: 10.1093/treephys/tpq068 – ident: e_1_2_6_37_1 doi: 10.1093/treephys/tpr037 – ident: e_1_2_6_42_1 doi: 10.1073/pnas.1006463107 – ident: e_1_2_6_11_1 doi: 10.1098/rstb.2009.0293 – ident: e_1_2_6_24_1 doi: 10.1007/BF00378977 – ident: e_1_2_6_23_1 doi: 10.1093/oxfordjournals.aob.a088273 – ident: e_1_2_6_52_1 doi: 10.1093/oxfordjournals.aob.a088246 – ident: e_1_2_6_16_1 doi: 10.1007/BF00379710 – ident: e_1_2_6_35_1 doi: 10.1111/j.1469-8137.2008.02558.x – ident: e_1_2_6_14_1 doi: 10.1086/657992 – ident: e_1_2_6_4_1 doi: 10.1007/s00442-011-2011-3 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2486.2007.01523.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-2486.2008.01710.x – volume: 10 start-page: 579 year: 1987 ident: e_1_2_6_2_1 article-title: Root: shoot ratio as a balance between nitrogen productivity and photosynthesis publication-title: Plant, Cell & Environment doi: 10.1111/1365-3040.ep11604105 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2486.2010.02240.x – ident: e_1_2_6_10_1 doi: 10.2307/2390216 – ident: e_1_2_6_47_1 doi: 10.1201/9780203909423.ch12 – ident: e_1_2_6_5_1 doi: 10.1007/BF00329431 – ident: e_1_2_6_50_1 doi: 10.1890/03-8002 – ident: e_1_2_6_15_1 doi: 10.1111/j.1469-8137.2011.03940.x – ident: e_1_2_6_34_1 doi: 10.1890/04-1724 – ident: e_1_2_6_9_1 doi: 10.1016/j.ecolmodel.2005.07.004 – ident: e_1_2_6_21_1 doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 – ident: e_1_2_6_12_1 doi: 10.1525/bio.2009.59.2.6 – ident: e_1_2_6_33_1 doi: 10.1111/j.1365-2486.2007.01420.x – ident: e_1_2_6_32_1 doi: 10.2307/3546712 – ident: e_1_2_6_53_1 doi: 10.1111/j.1365-3040.1996.tb00012.x – ident: e_1_2_6_7_1 doi: 10.18174/njas.v31i4.16938 – ident: e_1_2_6_48_1 doi: 10.1071/PP9950593 – ident: e_1_2_6_43_1 doi: 10.1146/annurev-ecolsys-102209-144647 – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-3040.1993.tb00855.x – ident: e_1_2_6_30_1 doi: 10.1023/A:1010760720215 – ident: e_1_2_6_40_1 doi: 10.1093/treephys/tps045 – ident: e_1_2_6_28_1 doi: 10.1890/08-1609.1 – ident: e_1_2_6_17_1 doi: 10.1111/j.1469-8137.2007.02063.x – ident: e_1_2_6_3_1 doi: 10.1111/j.1469-8137.2004.01224.x – ident: e_1_2_6_18_1 doi: 10.1046/j.1365-2435.2002.00674.x |
SSID | ssj0009562 |
Score | 2.2822042 |
Snippet | Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet,... Summary Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration.... Allocation of carbon ( C ) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet,... Summary Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration.... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 981 |
SubjectTerms | biomass Canopies Canopy canopy photosynthesis Carbon Carbon - metabolism carbon sequestration Equation roots Forest canopy gross primary production gross primary productivity Hypotheses Land use change Leaf area Leaf area index Leaves maximum wood production Model testing Models, Biological Nitrogen Nitrogen - metabolism Optimization optimization model Photosynthesis Picea - growth & development Picea - metabolism Picea abies Pine trees Plant Leaves - metabolism Plant roots Plant Roots - metabolism Plants Primary production root nitrogen uptake root systems Rooting rooting depth Roots Roots of functions Soil depth tree carbon allocation trees Trees - growth & development Trees - metabolism Uptake Vertical profiles Wood Wood - growth & development |
Title | New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized |
URI | https://www.jstor.org/stable/newphytologist.199.4.981 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12344 https://www.ncbi.nlm.nih.gov/pubmed/23734960 https://www.proquest.com/docview/1427855381 https://www.proquest.com/docview/2513380181 https://www.proquest.com/docview/1418148381 https://www.proquest.com/docview/2524289025 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh5NBL2_TpJC1qKaUXL7Zeluipr7D0EEppYA8FI9laYpLYS-yFbn59ZuQHSdmW0ouR0dhY0sxoxjP6hpA3Sy4TDC7GfKlsDNoviQ1LXCysUNIZjmComG1xouan4utCLnbI-_EsTI8PMf1wQ8kI-hoF3Lr2lpDXq7MZqF2BWKApV4ib__k7uwW4q9iIwKyEWgyoQpjFMz15Zy_q0xG3GZp37daw8Rw_ID_HT-7zTc5n687Niuvf0Bz_c0wPyf3BIKUfeg7aJzu-fkT2PjZgNG4ekwqUIK3qFl34FhpdQwt75ZqaYsC-_91H3YZibLuleFaFgkVJzzYrPNnVVi3c2o72yKcU83voqseYxQeh-9L-qi6ra18-IafHX358msdDdYa4ACdHwLWUGEM0woKO4mCJ-GTJfKmMLZPEucx7WOpsqXniU6tLI7UqlEmlZ5nJQJk8Jbt1U_vnhColSlYWWguJCO-ptsZzPJ9Q8FRmiYjIu3Gd8mKALscKGhf56MLAxOVh4iLyeiJd9Xgd24jehsWeKMCDAaYOBYNBuPLUmFzkRqcRORq5IR9kuwVniWVawkaxvZthxRyNOGgReTV1g9BiJMbWvlnjK6BbaP43GibBegpR4Ig86xlx-l7GMwT6T2BiAjv9eaj5ybd5aBz8O-khucdC0Q_MpDsiu93V2r8A06tzL4OM3QBX8ydj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nKejL-Xle9dQoIr50SdMkTcAXv45Vz0XkDvZFStpmuaLXLtcuuPfXO5N-cCeriC-lJdOSJjOTmczkN4Q8X8SSYXAxjBfKhqD9WGg4y0JhhZKZiREMFbMtZmp6LD7O5XyLvBrOwnT4EOOGG0qG19co4LghfUHKq-XJBPSuEFfIVfgwQ9fr3Vd-AXJX8QGDWQk173GFMI9nfPXSatQlJG4yNS9brn7pObhJvg2d7jJOvk9WbTbJz3_Dc_zfv7pFdnqblL7umOg22XLVHXLtTQ124_ouKUEP0rJq0Itv4KataW7PsrqiGLPvdvxotqYY3m4oHlehYFTSk_USD3c1ZQOPtqUd-CnFFB-67GBm8UVoPrU_y9Py3BX3yPHB-6O307Av0BDm4OcIuBYSw4hGWFBTMRgjji24K5SxBWNZljgHs50sdMxcZHVhpFa5MpF0PDEJ6JNdsl3VldsjVClR8CLXWkgEeY-0NS7GIwp5HMmEiYC8HCYqzXv0ciyi8SMdvBgYuNQPXECejaTLDrJjE9ELP9sjBTgxwNe-ZjDIVxoZk4rU6Cgg-wM7pL14N-Av8URLWCs2N3MsmqMRCi0gT8dmkFsMxtjK1Sv8BDQLHf-NhkswoHwgOCD3O04c-8vjBLH-GQyM56c__2o6-zL1Nw_-nfQJuT49-nyYHn6YfXpIbnBfAwQT6_bJdnu2co_AEmuzx17gfgHD1CuC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nKeLL-Xle9dQoIr50adMkTfDJr2X9YDnEg30QStqmXNFry7UL7v31zqQf3Mkq4ktpybS0yczkN53JL4Q8LyIRYHLRjwppfPB-ga9ZkPrccClSHSEZKlZbLOXimH9cidUOeTWuhen5IaYfbmgZzl-jgTd5ccHIq-ZkBm6X8yvkKpeAJBARfWEXGHclGymYJZergVYIy3imWy9NRn094jakeRm4uplnfpN8G9-5Lzj5Plt36Sw7_43O8T8_6hbZGxApfd2r0G2yY6s75NqbGlDj5i4pwQvSsmoxhm_hpKtpZs7SuqKYse__99F0QzG53VJcrEIBUtKTTYNLu9qyhUvT0Z76lGKBD216klm8EZpPzc_ytDy3-T1yPH__9e3CH7Zn8DOIcjgcc4FJRM0NOKkIoIgNCmZzqU0eBGkaWwtjHRcqCmxoVK6FkpnUobAs1jF4k32yW9WVPSBUSp6zPFOKC6R4D5XRNsIFClkUijjgHnk5jlOSDdzluIXGj2SMYaDjEtdxHnk2iTY9Ycc2oRdusCcJCGFAq92OwWBdSah1whOtQo8cjtqQDMbdQrTEYiVgptjezHDLHIVEaB55OjWD1WIqxlS2XuMjoJmr6G8yTAB8cmlgj9zvFXF6XxbFyPQfQMc4dfrzpybLo4U7efDvok_I9aN38-Tzh-Wnh-QGcxuAYFXdIdntztb2EcCwLn3szO0XHd0qMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+carbon+allocation+by+trees+from+the+hypothesis+that+annual+wood+production+is+maximized&rft.jtitle=The+New+phytologist&rft.au=Ross+E.+Mc+Murtrie&rft.au=Roderick+C.+Dewar&rft.date=2013-09-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=199&rft.issue=4&rft.spage=981&rft.epage=990&rft_id=info:doi/10.1111%2Fnph.12344&rft.externalDocID=newphytologist.199.4.981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |