Evidence for subdivision within the M molecular form of Anopheles gambiae

The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several ch...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 16; no. 3; pp. 639 - 649
Main Authors SLOTMAN, M.A, TRIPET, F, CORNEL, A.J, MENESES, C.R, LEE, Y, REIMER, L.J, THIEMANN, T.C, FONDJO, E, FOFANA, A, TRAORÉ, S.F, LANZARO, G.C
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.02.2007
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
AbstractList The principal vector of malaria in sub‐Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F ST=0.0053+/-0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F ST= 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms. [PUBLICATION ABSTRACT]
AbstractThe principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 plus or minus 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 plus or minus 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
Abstract The principal vector of malaria in sub‐Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low ( F ST  = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation ( F ST  = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F(ST) = 0.0053 +/- 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F(ST) = 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
Author SLOTMAN, M. A.
REIMER, L. J.
CORNEL, A. J.
FOFANA, A.
TRAORÉ, S. F.
MENESES, C. R.
FONDJO, E.
THIEMANN, T. C.
LEE, Y.
LANZARO, G. C.
TRIPET, F.
Author_xml – sequence: 1
  fullname: SLOTMAN, M.A
– sequence: 2
  fullname: TRIPET, F
– sequence: 3
  fullname: CORNEL, A.J
– sequence: 4
  fullname: MENESES, C.R
– sequence: 5
  fullname: LEE, Y
– sequence: 6
  fullname: REIMER, L.J
– sequence: 7
  fullname: THIEMANN, T.C
– sequence: 8
  fullname: FONDJO, E
– sequence: 9
  fullname: FOFANA, A
– sequence: 10
  fullname: TRAORÉ, S.F
– sequence: 11
  fullname: LANZARO, G.C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17257119$$D View this record in MEDLINE/PubMed
BookMark eNqNkM1u1DAURi3Uik4LrwAWC3ZJ_ZPYyYJFNZ2Wqh1AgkJ3luPcdDwk8WBP2unb45BRkVjhjS35fJ_uPcfooHc9IIQpSWk8p-uUcpEnrMzuUkaISAmnkqW7F2j2_HGAZqQULKGk4EfoOIQ1IZSzPH-JjiKcS0rLGbpaPNgaegO4cR6Hoartgw3W9fjRble2x9sV4CXuXAtmaLUfsQ67Bp_1brOCFgK-111lNbxCh41uA7ze3yfo9mLxbf4xufl8eTU_u0lMVkiWCAaGCm6qEnIDpmI6o7qGOJrOhaRccpZVXGRSC1mWBakEqw2pSpLlWgMBfoLeT70b734NELaqs8FA2-oe3BAUI5kkUogIvvsHXLvB93E2xSgRBS_ZCBUTZLwLwUOjNt522j8pStToWq3VqFSNStXoWv1xrXYx-mbfP1Qd1H-De7kR-DABj7aFp_8uVsvFfHzFfDLlbdjC7jmv_U8lJJe5-vHpUp1fXGffvyyv1V3k3058o53S994GdfuVRbOEyCxuLPlvNWCmQw
CitedBy_id crossref_primary_10_1111_j_1365_294X_2010_04532_x
crossref_primary_10_1186_1475_2875_9_160
crossref_primary_10_1111_j_1365_294X_2011_05339_x
crossref_primary_10_1371_journal_pone_0104622
crossref_primary_10_1603_ME09173
crossref_primary_10_1111_j_1365_294X_2012_05724_x
crossref_primary_10_1093_molbev_msq070
crossref_primary_10_1534_genetics_112_148718
crossref_primary_10_1186_1472_6785_13_1
crossref_primary_10_1665_034_019_0211
crossref_primary_10_1111_eva_12056
crossref_primary_10_1603_0022_2585_2008_45_1057_HLOHBM_2_0_CO_2
crossref_primary_10_1146_annurev_ecolsys_102710_145028
crossref_primary_10_1093_gbe_evs095
crossref_primary_10_1186_1475_2875_6_137
crossref_primary_10_1186_1475_2875_8_75
crossref_primary_10_1093_gbe_evv203
crossref_primary_10_1073_pnas_1013648108
crossref_primary_10_1016_j_trstmh_2008_11_018
crossref_primary_10_1186_1475_2875_9_360
crossref_primary_10_1111_j_1365_2915_2011_00977_x
crossref_primary_10_1111_j_1365_294X_2007_03395_x
crossref_primary_10_1371_journal_pone_0039453
crossref_primary_10_1111_eva_12486
crossref_primary_10_1371_journal_pone_0001243
crossref_primary_10_1111_eva_12242
crossref_primary_10_1126_science_1193036
crossref_primary_10_1038_nature24995
crossref_primary_10_1111_mec_12866
crossref_primary_10_1186_1475_2875_13_340
crossref_primary_10_1371_journal_pone_0145308
crossref_primary_10_1371_journal_pgen_1003097
crossref_primary_10_1371_journal_pone_0030849
crossref_primary_10_1534_genetics_111_137794
crossref_primary_10_1186_1475_2875_7_74
crossref_primary_10_1186_1475_2875_10_215
crossref_primary_10_1186_1475_2875_12_225
crossref_primary_10_1186_1475_2875_7_120
crossref_primary_10_1186_1475_2875_7_163
crossref_primary_10_1186_1471_2156_11_81
crossref_primary_10_1093_jmedent_47_3_355
crossref_primary_10_1126_science_1258524
crossref_primary_10_1016_j_meegid_2008_06_003
crossref_primary_10_1093_jmedent_45_6_1057
crossref_primary_10_1111_eva_12075
crossref_primary_10_1111_mec_12733
crossref_primary_10_1603_0022_2585_2008_45_260_RBKMAR_2_0_CO_2
crossref_primary_10_1186_s13071_017_2014_y
crossref_primary_10_1186_1756_3305_5_259
crossref_primary_10_1534_g3_115_021436
crossref_primary_10_1186_s12936_014_0522_1
crossref_primary_10_1371_journal_pone_0001249
crossref_primary_10_1093_jmedent_45_2_260
crossref_primary_10_1371_journal_pone_0001968
Cites_doi 10.1093/genetics/144.4.2001
10.1016/0035-9203(79)90036-1
10.1046/j.0962-1075.2001.00306.x
10.1111/j.1365-294X.2006.03067.x
10.1073/pnas.0501847102
10.1046/j.0269-283x.2001.00298.x
10.1046/j.1365-2583.1997.00189.x
10.1016/0305-1978(93)90012-G
10.1111/j.1365-294X.2004.02396.x
10.1073/pnas.0508161102
10.1046/j.1365-2583.2001.00235.x
10.1038/hdy.1996.124
10.1126/science.1078170
10.1603/0022-2585(2005)042[0998:SAPOTA]2.0.CO;2
10.1534/genetics.104.035303
10.1073/pnas.95.24.14260
10.1371/journal.pbio.0030285
10.1093/jhered/esg024
10.1016/j.ibmb.2005.02.006
10.1046/j.1365-2915.2002.00393.x
10.1603/0022-2585-39.1.70
10.1093/genetics/131.2.479
10.1046/j.0962-1083.2001.01301.x
10.1080/11250008509440343
10.1007/978-94-009-1535-0_28
10.1093/genetics/143.2.941
ContentType Journal Article
Copyright 2006 The AuthorsJournal compilation © 2006 Blackwell Publishing Ltd
Copyright_xml – notice: 2006 The AuthorsJournal compilation © 2006 Blackwell Publishing Ltd
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
DOI 10.1111/j.1365-294X.2006.03172.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitleList
Entomology Abstracts
Entomology Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 649
ExternalDocumentID 1205215751
10_1111_j_1365_294X_2006_03172_x
17257119
MEC3172
ark_67375_WNG_DFK4VPMK_X
US201300741067
Genre article
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GrantInformation_xml – fundername: FIC NIH HHS
  grantid: D43 TW007390
– fundername: NIAID NIH HHS
  grantid: AI51633
– fundername: NIAID NIH HHS
  grantid: AI40308
– fundername: FIC NIH HHS
  grantid: K01 TW008778
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
ID FETCH-LOGICAL-c4872-62ec163cb9e5cecb2a41ade013a567137324b3647a679980b62dc0b9045aae0e3
IEDL.DBID DR2
ISSN 0962-1083
IngestDate Fri Aug 16 08:14:17 EDT 2024
Thu Oct 10 15:39:27 EDT 2024
Thu Sep 26 18:13:45 EDT 2024
Sat Nov 02 12:19:09 EDT 2024
Sat Aug 24 01:15:54 EDT 2024
Wed Oct 30 09:53:12 EDT 2024
Wed Dec 27 19:06:21 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4872-62ec163cb9e5cecb2a41ade013a567137324b3647a679980b62dc0b9045aae0e3
Notes http://dx.doi.org/10.1111/j.1365-294X.2006.03172.x
ArticleID:MEC3172
ark:/67375/WNG-DFK4VPMK-X
istex:BB4910FA8CC75AA61729D209494CCE9BFF3479E1
Present address: Center for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17257119
PQID 210683926
PQPubID 31465
PageCount 11
ParticipantIDs proquest_miscellaneous_20470766
proquest_journals_210683926
crossref_primary_10_1111_j_1365_294X_2006_03172_x
pubmed_primary_17257119
wiley_primary_10_1111_j_1365_294X_2006_03172_x_MEC3172
istex_primary_ark_67375_WNG_DFK4VPMK_X
fao_agris_US201300741067
PublicationCentury 2000
PublicationDate February 2007
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: February 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Wondji C, Simard F, Fontenille D (2002) Evidence for genetic differentiation between molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Molecular Biology, 11, 11-19.
Excoffier L, Laval G, Schneider S (2005) arlequin (version 3.0): an integrated software for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Lehmann T, Hawley WA, Kamau L et al. (1996) Genetic differentiation of Anopheles gambiae populations from east and west Africa: comparison of microsatellite and allozyme loci. Heredity, 77, 192-200.
Stump AD, Fitzpatrick MC, Lobo NF et al. (2005b) Centromere-proximal differentiation and speciation in Anopheles gambiae. Proceedings of the National Academy of Sciences, USA, 102, 15930-15935.
Davidson G (1964) The five mating types of the Anopheles gambiae complex. Rivista di Malariologia, 13, 167-183.
Tripet F, Touré YT, Taylor CE, Norris DE, Dolo G, Lanzaro GC (2001) DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Molecular Ecology, 10, 1725-1732.
Wondji C, Simard F, Petrarca V et al. (2005) Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s. Journal of Medical Entomology, 42, 998-1005.
Zheng LB, Benedict MO, Cornel AJ, Collins FH, Kafatos FC (1996) An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics, 136, 941-952.
Ayala FA, Coluzzi M (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences, USA, 102, 6535-6542.
Di Deco MA, Petrarca V, Villani F, Coluzzi M (1980) Polimorfismo cromosomico da inversioni paracentrichi ed eccesso degli eterocariotipi in ceppi di Anopheles allevati in laboratorio. Parassitologia, 22, 304-306.
Swofford DL (1999) paup*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
Della Torre A, Fanello C, Akogbeto M (2001) Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Molecular Biology, 10, 9-18.
Turner TL, Hahn MW, Nuzhdin SV (2005) Genomic islands of speciation in Anopheles gambiae. PLoS, 3, 1572-1578.
Excoffier L, Smouse P, Quatro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
Della Torre A, Constantini C, Besansky NJ et al. (2002) Speciation within Anopheles gambiae - the glass is half full. Science, 298, 115-117.
Della Torre A, Tu Z, Petrarca V (2005) On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochemistry and Molecular Biology, 35, 755-769.
Touré YT, Petrarca V, Traoré S et al. (1998) The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia, 40, 477-511.
Lanzaro GC, Touré YT, Carnahan J et al. (1998) Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proceedings of the National Academy of Sciences, USA, 95, 14260-14265.
Post RJ, Flook PK, Millest AL (1993) Methods for the preservation of insects for DNA studies. Biochemical Systematics and Ecology, 2, 85-92.
Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001-2014.
Lehmann T, Licht M, Elissa N et al. (2003) Population structure of Anopheles gambiae in Africa. Journal of Heredity, 94, 133-147.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Fanello C, Santolamazza F, Della Torre A (2002) Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical and Veterinary Entomology, 16, 461-464.
Coluzzi M, Sabatini A, Petrarca V, Di Deco MA (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Transactions of the Royal Society of Tropical Medicine and Hygiene, 73, 483-497.
Hunt RH (1973) A cytological technique for the study of Anopheles gambiae complex. Parassitologia, 15, 137-139.
Favia G, Della Torre A, Bagayoko M et al. (1997) Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Molecular Biology, 6, 377-383.
Coluzzi M, Petrarca V, Di Deco MA (1985) Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Bollettino di Zoologia, 52, 45-63.
Stump AD, Schoener JA, Constantini C, Sagnon N'F, Besansky NJ (2005a) Sex-linked differentiation between incipient species of Anopheles gambiae. Genetics, 169, 1509-1519.
Bayoh MN, Thomas CJ, Lindsay SW (2001) Mapping distributions of chromosomal forms of Anopheles gambiae in West Africa using climate data. Medical and Veterinary Entomology, 15, 267-274.
Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE (2002) Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani village. Mali Journal of Medical Entomology, 39, 70-77.
2002; 16
2002; 39
1973; 15
1980; 22
2002; 298
2002; 11
1997
2005; 42
1996; 144
2000; 155
1997; 6
2003; 94
1998; 40
1993; 2
1979; 73
1996; 77
1999
2001
1992; 131
2005; 102
2001; 15
2005; 1
1982
1985; 52
2005a; 169
2005b; 102
2005; 3
1964; 13
1998; 95
1996; 136
2005; 35
2001; 10
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Hunt RH (e_1_2_6_16_1) 1973; 15
Coluzzi M (e_1_2_6_4_1) 1982
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
Swofford DL (e_1_2_6_25_1) 1999
Touré YT (e_1_2_6_30_1) 1998; 40
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Davidson G (e_1_2_6_8_1) 1964; 13
e_1_2_6_21_1
e_1_2_6_20_1
Wondji C (e_1_2_6_34_1) 2005; 42
Di Deco MA (e_1_2_6_9_1) 1980; 22
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
Zheng LB (e_1_2_6_35_1) 1996; 136
References_xml – volume: 102
  start-page: 15930
  year: 2005b
  end-page: 15935
  article-title: Centromere‐proximal differentiation and speciation in
  publication-title: Proceedings of the National Academy of Sciences, USA
– start-page: 113
  year: 1982
  end-page: 115
– volume: 13
  start-page: 167
  year: 1964
  end-page: 183
  article-title: The five mating types of the complex
  publication-title: Rivista di Malariologia
– volume: 39
  start-page: 70
  year: 2002
  end-page: 77
  article-title: Spatial and habitat distribution of (Diptera: Culicidae) in Banambani village
  publication-title: Mali Journal of Medical Entomology
– volume: 298
  start-page: 115
  year: 2002
  end-page: 117
  article-title: Speciation within  the glass is half full
  publication-title: Science
– volume: 10
  start-page: 1725
  year: 2001
  end-page: 1732
  article-title: DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of
  publication-title: Molecular Ecology
– year: 2001
– volume: 169
  start-page: 1509
  year: 2005a
  end-page: 1519
  article-title: Sex‐linked differentiation between incipient species of
  publication-title: Genetics
– volume: 10
  start-page: 9
  year: 2001
  end-page: 18
  article-title: Molecular evidence of incipient speciation within s.s. in West Africa
  publication-title: Insect Molecular Biology
– volume: 102
  start-page: 6535
  year: 2005
  end-page: 6542
  article-title: Chromosome speciation: humans, , and mosquitoes
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 2
  start-page: 85
  year: 1993
  end-page: 92
  article-title: Methods for the preservation of insects for DNA studies
  publication-title: Biochemical Systematics and Ecology
– volume: 15
  start-page: 267
  year: 2001
  end-page: 274
  article-title: Mapping distributions of chromosomal forms of in West Africa using climate data
  publication-title: Medical and Veterinary Entomology
– volume: 131
  start-page: 479
  year: 1992
  end-page: 491
  article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data
  publication-title: Genetics
– volume: 77
  start-page: 192
  year: 1996
  end-page: 200
  article-title: Genetic differentiation of populations from east and west Africa: comparison of microsatellite and allozyme loci
  publication-title: Heredity
– volume: 52
  start-page: 45
  year: 1985
  end-page: 63
  article-title: Chromosomal inversion intergradation and incipient speciation in
  publication-title: Bollettino di Zoologia
– volume: 144
  start-page: 2001
  year: 1996
  end-page: 2014
  article-title: Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data
  publication-title: Genetics
– start-page: 329
  year: 1997
  end-page: 336
– volume: 15
  start-page: 137
  year: 1973
  end-page: 139
  article-title: A cytological technique for the study of complex
  publication-title: Parassitologia
– volume: 1
  start-page: 47
  year: 2005
  end-page: 50
  article-title: arlequin (version 3.0): an integrated software for population genetics data analysis
  publication-title: Evolutionary Bioinformatics Online
– volume: 3
  start-page: 1572
  year: 2005
  end-page: 1578
  article-title: Genomic islands of speciation in
  publication-title: PLoS
– volume: 6
  start-page: 377
  year: 1997
  end-page: 383
  article-title: Molecular identification of sympatric chromosomal forms of and further evidence of their reproductive isolation
  publication-title: Insect Molecular Biology
– volume: 16
  start-page: 461
  year: 2002
  end-page: 464
  article-title: Simultaneous identification of species and molecular forms of the complex by PCR‐RFLP
  publication-title: Medical and Veterinary Entomology
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 35
  start-page: 755
  year: 2005
  end-page: 769
  article-title: On the distribution and genetic differentiation of s.s. molecular forms
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 73
  start-page: 483
  year: 1979
  end-page: 497
  article-title: Chromosomal differentiation and adaptation to human environments in the complex
  publication-title: Transactions of the Royal Society of Tropical Medicine and Hygiene
– volume: 22
  start-page: 304
  year: 1980
  end-page: 306
  article-title: Polimorfismo cromosomico da inversioni paracentrichi ed eccesso degli eterocariotipi in ceppi di allevati in laboratorio
  publication-title: Parassitologia
– volume: 94
  start-page: 133
  year: 2003
  end-page: 147
  article-title: Population structure of in Africa
  publication-title: Journal of Heredity
– volume: 95
  start-page: 14260
  year: 1998
  end-page: 14265
  article-title: Complexities in the genetic structure of populations in West Africa as revealed by microsatellite DNA analysis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 42
  start-page: 998
  year: 2005
  end-page: 1005
  article-title: Species and populations of the complex in Cameroon with special emphasis on chromosomal and molecular forms of s.s
  publication-title: Journal of Medical Entomology
– volume: 136
  start-page: 941
  year: 1996
  end-page: 952
  article-title: An integrated genetic map of the African human malaria vector mosquito,
  publication-title: Genetics
– volume: 40
  start-page: 477
  year: 1998
  end-page: 511
  article-title: The distribution and inversion polymorphism of chromosomally recognized taxa of the complex in Mali, West Africa
  publication-title: Parassitologia
– volume: 11
  start-page: 11
  year: 2002
  end-page: 19
  article-title: Evidence for genetic differentiation between molecular forms M and S within the Forest chromosomal form of in an area of sympatry
  publication-title: Insect Molecular Biology
– year: 1999
– ident: e_1_2_6_7_1
  doi: 10.1093/genetics/144.4.2001
– ident: e_1_2_6_5_1
  doi: 10.1016/0035-9203(79)90036-1
– volume: 40
  start-page: 477
  year: 1998
  ident: e_1_2_6_30_1
  article-title: The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa
  publication-title: Parassitologia
  contributor:
    fullname: Touré YT
– ident: e_1_2_6_33_1
  doi: 10.1046/j.0962-1075.2001.00306.x
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-294X.2006.03067.x
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0501847102
– ident: e_1_2_6_3_1
  doi: 10.1046/j.0269-283x.2001.00298.x
– volume-title: paup*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0b10.
  year: 1999
  ident: e_1_2_6_25_1
  contributor:
    fullname: Swofford DL
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1365-2583.1997.00189.x
– ident: e_1_2_6_20_1
  doi: 10.1016/0305-1978(93)90012-G
– volume: 13
  start-page: 167
  year: 1964
  ident: e_1_2_6_8_1
  article-title: The five mating types of the Anopheles gambiae complex
  publication-title: Rivista di Malariologia
  contributor:
    fullname: Davidson G
– volume: 22
  start-page: 304
  year: 1980
  ident: e_1_2_6_9_1
  article-title: Polimorfismo cromosomico da inversioni paracentrichi ed eccesso degli eterocariotipi in ceppi di Anopheles allevati in laboratorio
  publication-title: Parassitologia
  contributor:
    fullname: Di Deco MA
– ident: e_1_2_6_22_1
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0508161102
– ident: e_1_2_6_27_1
  doi: 10.1046/j.1365-2583.2001.00235.x
– ident: e_1_2_6_18_1
  doi: 10.1038/hdy.1996.124
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1078170
– volume: 42
  start-page: 998
  year: 2005
  ident: e_1_2_6_34_1
  article-title: Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s
  publication-title: Journal of Medical Entomology
  doi: 10.1603/0022-2585(2005)042[0998:SAPOTA]2.0.CO;2
  contributor:
    fullname: Wondji C
– ident: e_1_2_6_23_1
  doi: 10.1534/genetics.104.035303
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.95.24.14260
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pbio.0030285
– volume: 15
  start-page: 137
  year: 1973
  ident: e_1_2_6_16_1
  article-title: A cytological technique for the study of Anopheles gambiae complex
  publication-title: Parassitologia
  contributor:
    fullname: Hunt RH
– ident: e_1_2_6_19_1
  doi: 10.1093/jhered/esg024
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ibmb.2005.02.006
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-2915.2002.00393.x
– ident: e_1_2_6_10_1
  doi: 10.1603/0022-2585-39.1.70
– ident: e_1_2_6_15_1
– ident: e_1_2_6_11_1
  doi: 10.1093/genetics/131.2.479
– ident: e_1_2_6_31_1
  doi: 10.1046/j.0962-1083.2001.01301.x
– ident: e_1_2_6_6_1
  doi: 10.1080/11250008509440343
– ident: e_1_2_6_26_1
  doi: 10.1007/978-94-009-1535-0_28
– start-page: 113
  volume-title: Mechanisms of Speciation
  year: 1982
  ident: e_1_2_6_4_1
  contributor:
    fullname: Coluzzi M
– volume: 136
  start-page: 941
  year: 1996
  ident: e_1_2_6_35_1
  article-title: An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae
  publication-title: Genetics
  doi: 10.1093/genetics/143.2.941
  contributor:
    fullname: Zheng LB
SSID ssj0013255
Score 2.1507607
Snippet The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal...
The principal vector of malaria in sub‐Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal...
Abstract The principal vector of malaria in sub‐Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several...
AbstractThe principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 639
SubjectTerms Alleles
Animal populations
Animals
Anopheles - classification
Anopheles - genetics
Anopheles gambiae
Cameroon
chromosomal form
Chromosome Inversion
Chromosomes
Chromosomes - genetics
Ecosystem
Female
Genetic diversity
Genetic Speciation
Habitats
incipient speciation
inversions
isolation
Linkage Disequilibrium
Mali
Molecular biology
molecular form
Mosquitoes
Phylogeny
Title Evidence for subdivision within the M molecular form of Anopheles gambiae
URI https://api.istex.fr/ark:/67375/WNG-DFK4VPMK-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2006.03172.x
https://www.ncbi.nlm.nih.gov/pubmed/17257119
https://www.proquest.com/docview/210683926
https://search.proquest.com/docview/20470766
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED5tSJP2so3BRmAwP6C9pUocxyaPCFrYUNHE6NY3y3YdhLqmiLYS7NfvzkkKnXiYpr1ZimPZ5zvfd77zHcC-E85yVAsxcouJUeP72JSyRInnJpGl8FnIpdc_l6cD8WWYD5v4J3oLU-eHWF64kWSE85oE3NjZqpCHCK1CDBufAqpC3iE8mWaKoruOL_gjh0IogIqAneM8DrLVoJ4nB1rRVM9LM0X8SqS_ewqMrmLboJx6r2HcLquOSRl3FnPbcb_-yPj4f9b9Bl41GJYd1ky3Ds989RZe1FUt77HVDZmw7zfgc1uzlCE0ZrOFpcdfdD3H6Pr3umKIPlmfTdoSvdRtwqYlO6wo3cFPP2NXZmKvjd-EQa97eXQaN7UbYocmEI8l9w6hnrOFz51HfjAiNSOPG2FyiYaxQiBnKXe9kQotvsRKPnKJLRBhGuMTn72DtWpa-S1gTqmDMssFdhZCFSNDzs2cIzOVo8RyFUHa7pO-qVN06EemDRJLE7Go4KbUgVj6LoIt3FBtrvAk1YNvnPy3BK5Qd0fwKezycixzO6boN5XrH-cn-rh3Jr5_7Z_pYQQ7LRvoRvBnGi1oSZhTRvBx-RUlltwwpvLTBXZJhEqUxB7va955mLXCAzRNiwhk4IC_Xo7ud4-otf2vP-7AS07vOiiSU32Atfntwu8i2prbvSBHvwFkSRVv
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEIIXvmFhwPyAeEuVOo69PE5bS0eXCsEKfbNs15mmrSlaW2njr-fOScqK9oAQb5biWP648_3uw3cA751wlqNYiJFaTIwS38emlCVyPDeJLIVPQy69YiQHY_Fpkk2ackD0FqbOD7E2uBFnhPuaGJwM0ptcHkK0cjFpnAooC3kHAeU95P6U6jgcfuE3XAqhBCpCdo4z2Us3w3puHWlDVt0tzRwRLG3-1W1wdBPdBvHUfwwX7cLqqJTzzmppO-7nHzkf_9PKn8CjBsay_ZrunsIdXz2D-3Vhy2ts9UIy7OvncNSWLWWIjtliZen9F1noGFmAzyqGAJQVbNZW6aVuMzYv2X5FGQ8u_IKdmpk9M_4FjPu9k4NB3JRviB1qQTyW3DtEe87mPnMeScKIrpl6PAmTSdSNFWI5S-nrjVSo9CVW8qlLbI4g0xif-PQlbFXzym8Dc0rtlWkmsLMQKp8a8m9mHOmpnCaWqwi67UHpH3WWDn1Du8HN0rRZVHNT6rBZ-iqCbTxRbU7xMtXjr5xcuISvUHxH8CEc83osc3lOAXAq099HH_Vhfyi-fS6GehLBTksHuuH9hUYlWhLslBHsrr8i05InxlR-vsIuiVCJktjjVU08v2et8A7tdvMIZCCBv16OLnoH1Hr9rz_uwoPBSXGsj49Gwx14WNuwKWznDWwtL1f-LYKvpX0XmOoXyH8ZgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEGgvfG8LY8wPiLdUqevYy-O0tWyUVhNQ6JtlO840labT2kobfz13TlLWaQ8I8WYpjuWPO9_vPnwH8N4JZzmKhRipxcQo8X1sClkgx3OTyEL4TsilNxjKk5H4NE7HdfwTvYWp8kOsDG7EGeG-Jga_zIt1Jg8RWpkY1z4FFIW8hXjykZAIhAkgfeG3PAqhAioido4TOeisR_XcO9KaqHpYmBkCWNr76_vQ6Dq4DdKp9wwmzbqqoJRJa7mwLffrTsrH_7Pw5_C0BrHssKK6F_DAly_hcVXW8gZb3ZAK--YVnDZFSxliYzZfWnr9RfY5Rvbfi5Ih_GQDNm1q9FK3KZsV7LCkfAc__Zydm6m9MP41jHrdb0cncV28IXaoA_FYcu8Q6zmb-dR5JAgj2ib3eBAmlagZK0RylpLXG6lQ5Uus5LlLbIYQ0xif-M4WbJSz0u8Ac0odFJ1UYGchVJYb8m6mHKmpyBPLVQTt5pz0ZZWjQ9_SbXCzNG0WVdyUOmyWvo5gBw9Um3O8SvXoKycHLqErFN4RfAinvBrLXE0o_E2l-sfwoz7u9cX3s0FfjyPYbchA15w_16hCSwKdMoL91VdkWfLDmNLPltglESpREntsV7TzZ9YKb9B2O4tABgr46-XoQfeIWm_-9cd9eHJ23NOfT4f9XdisDNgUs_MWNhZXS7-HyGth3wWW-g1JXBgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+subdivision+within+the+M+molecular+form+of+Anopheles+gambiae&rft.jtitle=Molecular+ecology&rft.au=Slotman%2C+M+A&rft.au=Tripet%2C+F&rft.au=Cornel%2C+A+J&rft.au=Meneses%2C+C+R&rft.date=2007-02-01&rft.issn=0962-1083&rft.volume=16&rft.issue=3&rft.spage=639&rft_id=info:doi/10.1111%2Fj.1365-294X.2006.03172.x&rft_id=info%3Apmid%2F17257119&rft.externalDocID=17257119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon