Evidence for subdivision within the M molecular form of Anopheles gambiae
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several ch...
Saved in:
Published in | Molecular ecology Vol. 16; no. 3; pp. 639 - 649 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.02.2007
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms. |
---|---|
Bibliography: | http://dx.doi.org/10.1111/j.1365-294X.2006.03172.x ArticleID:MEC3172 ark:/67375/WNG-DFK4VPMK-X istex:BB4910FA8CC75AA61729D209494CCE9BFF3479E1 Present address: Center for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0962-1083 1365-294X |
DOI: | 10.1111/j.1365-294X.2006.03172.x |