A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization
Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil...
Saved in:
Published in | The New phytologist Vol. 238; no. 2; pp. 859 - 873 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood.
We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions.
The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity.
The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.
See also the Commentary on this article by Johnson & Marín, 238: 461–463. |
---|---|
AbstractList | The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on-site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co-enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on-site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co-enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. See also the Commentary on this article by Johnson & Marín, 238: 461–463. The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. See also the Commentary on this article by Johnson & Marín, 238 : 461–463. |
Author | Zhang, Lin George, Timothy S. Wang, Letian Feng, Gu |
Author_xml | – sequence: 1 givenname: Letian orcidid: 0000-0002-7191-1376 surname: Wang fullname: Wang, Letian organization: China Agricultural University – sequence: 2 givenname: Lin orcidid: 0000-0002-1663-5620 surname: Zhang fullname: Zhang, Lin organization: China Agricultural University – sequence: 3 givenname: Timothy S. orcidid: 0000-0003-3231-2159 surname: George fullname: George, Timothy S. organization: The James Hutton Institute – sequence: 4 givenname: Gu orcidid: 0000-0002-1052-5009 surname: Feng fullname: Feng, Gu email: fenggu@cau.edu.cn organization: China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36444521$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvqwT9gSLzoYVpgGGCOTWOtSaMeNPFGGOabHZoZGGEmZr33f8vsbi-NRi4QeN6H5HvP0IkPHhB6TckFzevST_0FVYKzZ2hDuagLRUt5gjaEMFUILn6corOU7gkhdSXYC3RaCs55xegGPVxhGyLg0dkYGhdGwM7juQfc76Y-pKmH_Bo6bGKzJLsMJuJxlyOxd7_NgLvFbx3uTVpPdnbB58vktt51zhpv97oQt8Y7iw_CEJeU__MQzZAda-Ylet6ZIcGr436Ovt98-HZ9W9x9-fjp-uqusFxJVlQlp1aStqZ121KgXPGmNhZaaGldWSkqAkaAIrYE0fISQLKOKCFqpZqu6cpz9O7gnWL4uUCa9eiShWEwHsKSNFOU1lLIkv8flZyJSnDCMvr2CXoflpgHsVJKUlrJaqXeHKmlGaHVU3SjiTv92EUGLg9AbiKlCJ22bt6PZ47GDZoSvbatc9t633ZOvH-SeJT-jT3af7kBdv8G9eevt4fEHyduuzQ |
CitedBy_id | crossref_primary_10_1111_nph_19321 crossref_primary_10_1016_j_jenvman_2024_122940 crossref_primary_10_3389_fmicb_2023_1284648 crossref_primary_10_1155_2024_9977517 crossref_primary_10_1186_s40168_024_01811_2 crossref_primary_10_1016_j_pedsph_2023_09_007 crossref_primary_10_3390_agronomy14010041 crossref_primary_10_1007_s11104_024_06801_9 crossref_primary_10_1016_j_rhisph_2023_100754 crossref_primary_10_1007_s00572_023_01132_6 crossref_primary_10_1007_s00572_023_01134_4 crossref_primary_10_1111_nph_19605 crossref_primary_10_1021_acs_jafc_4c07428 crossref_primary_10_1016_j_apsoil_2023_105172 crossref_primary_10_1186_s40168_023_01726_4 crossref_primary_10_1007_s41742_024_00610_9 crossref_primary_10_1111_nph_20266 crossref_primary_10_1016_j_jes_2024_02_029 crossref_primary_10_1016_j_pedsph_2024_02_002 crossref_primary_10_1016_j_jes_2025_02_009 crossref_primary_10_1111_nph_19396 crossref_primary_10_1080_03650340_2023_2205135 crossref_primary_10_1007_s11104_024_06649_z crossref_primary_10_1016_j_soilbio_2025_109797 crossref_primary_10_1007_s00572_025_01186_8 crossref_primary_10_1016_j_envres_2024_120262 crossref_primary_10_1111_nph_19541 crossref_primary_10_1128_msystems_01352_23 crossref_primary_10_1038_s41559_023_02298_0 crossref_primary_10_1146_annurev_micro_041522_105143 crossref_primary_10_1016_j_jhazmat_2025_137598 crossref_primary_10_1128_msystems_00886_23 crossref_primary_10_1016_j_soilbio_2024_109647 crossref_primary_10_1128_aem_00753_24 crossref_primary_10_1186_s40793_024_00614_0 crossref_primary_10_1038_s41579_024_01073_7 crossref_primary_10_1016_j_mib_2023_102357 crossref_primary_10_1093_ismejo_wraf023 crossref_primary_10_1111_nph_18933 crossref_primary_10_3390_plants13060912 crossref_primary_10_1016_j_agee_2025_109505 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_3390_agriculture14122361 crossref_primary_10_1007_s11104_024_06929_8 crossref_primary_10_3389_fmicb_2024_1504444 crossref_primary_10_3390_jof10030226 crossref_primary_10_1111_nph_19493 crossref_primary_10_3390_horticulturae10121326 crossref_primary_10_1007_s00374_024_01849_2 crossref_primary_10_1093_evolut_qpad234 crossref_primary_10_1111_nph_18803 crossref_primary_10_1007_s00572_023_01107_7 crossref_primary_10_3389_fsufs_2023_1124688 |
Cites_doi | 10.1111/nph.13895 10.3389/fmicb.2018.00169 10.1103/PhysRevE.70.066111 10.1016/j.femsre.2004.11.005 10.1126/science.295.5562.2051 10.1038/s41396-021-01112-8 10.1038/s41396-021-00920-2 10.1111/nph.15472 10.1016/0038-0717(69)90012-1 10.1093/femsre/fuy008 10.1093/bioinformatics/btp616 10.1038/nature16192 10.1016/j.funeco.2014.09.011 10.1111/1462-2920.12081 10.1186/s40168-017-0389-9 10.1111/j.1747-0765.2007.00210.x 10.1111/1462-2920.13438 10.1007/s00374-022-01626-z 10.1111/j.1654-1103.2003.tb02228.x 10.1016/j.cell.2018.10.020 10.1038/nrmicro2832 10.1111/nph.15570 10.1111/1462-2920.14289 10.1073/pnas.2104429118 10.1016/j.mib.2017.06.006 10.1073/pnas.1800918115 10.1111/nph.13838 10.1038/s41579-020-0402-3 10.1016/j.tree.2003.10.013 10.1038/s41477-018-0139-4 10.1038/ismej.2015.91 10.1128/mSystems.00929-20 10.1126/science.1224304 10.1111/nph.15036 10.1016/j.mib.2019.09.008 10.1073/pnas.1005874107 10.1007/s00572-019-00896-0 10.1111/nph.15119 10.1111/j.1600-0706.2010.18334.x 10.1111/nph.13086 10.1111/j.1462-2920.2011.02585.x 10.1111/nph.13312 10.1038/nbt.2676 10.1046/j.1365-2486.1999.00230.x 10.1073/pnas.1313452110 10.1038/ismej.2010.5 10.1080/00103629109368432 10.1016/j.soilbio.2020.107724 10.1126/science.1208473 10.1038/s41579-018-0024-1 10.1038/s41396-018-0171-4 10.1126/science.aan0081 10.1016/j.tim.2016.11.003 10.1126/science.aam9970 10.1093/jxb/erv561 10.1111/j.1462-2920.2007.01474.x 10.1016/j.tplants.2021.10.008 10.1073/pnas.1019315108 10.1007/s00374-014-0989-5 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. Copyright © 2023 New Phytologist Trust |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: Copyright © 2023 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.18642 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 873 |
ExternalDocumentID | 36444521 10_1111_nph_18642 NPH18642 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32272807; U1703232 – fundername: National Key R&D Program of China funderid: 2017YFD0200200 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGDZ ABSQW ADXHL AEFGJ AEYWJ AGHNM AGUYK AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4872-5341c70d919dd1e1484b9aceded195c7650ea6e80c3e6d43ee72f0866988bfbf3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:30:02 EDT 2025 Thu Jul 10 18:46:17 EDT 2025 Sat Aug 23 12:58:32 EDT 2025 Wed Feb 19 02:24:02 EST 2025 Thu Aug 14 00:01:12 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:14:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | arbuscular mycorrhizal fungi co-occurrence network core microbiome hyphosphere phosphorus (P) |
Language | English |
License | 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4872-5341c70d919dd1e1484b9aceded195c7650ea6e80c3e6d43ee72f0866988bfbf3 |
Notes | These authors contributed equally to this work. See also the Commentary on this article by 461–463. Johnson & Marín 238 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1663-5620 0000-0002-7191-1376 0000-0003-3231-2159 0000-0002-1052-5009 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18642 |
PMID | 36444521 |
PQID | 2787115752 |
PQPubID | 2026848 |
PageCount | 873 |
ParticipantIDs | proquest_miscellaneous_2811976734 proquest_miscellaneous_2742656402 proquest_journals_2787115752 pubmed_primary_36444521 crossref_citationtrail_10_1111_nph_18642 crossref_primary_10_1111_nph_18642 wiley_primary_10_1111_nph_18642_NPH18642 |
PublicationCentury | 2000 |
PublicationDate | April 2023 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 107 2003; 14 2012; 14 2005; 29 2018; 42 2017; 356 2012; 10 2022; 27 2020; 18 2018; 175 2018; 6 2018; 9 2020; 5 2013; 15 2010; 26 2004; 70 2018; 4 2017; 37 1969; 1 2010; 119 2018; 218 2021; 118 1986 2019; 29 2013; 110 2012; 337 2010; 4 2011; 333 2018; 220 2017; 25 2015; 51 2020; 142 2002; 295 2016; 10 2015; 528 2008; 54 2008; 10 2015; 206 2015; 205 2018b; 20 2016; 18 1999; 5 2019; 221 2019; 222 2021; 15 2011; 108 2004; 19 1991; 22 2018a; 12 2013; 31 2018; 115 2016; 20 2019; 49 2016; 211 2022; 58 2016; 210 2018; 16 2022; 16 2016; 67 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 Trouvelot A (e_1_2_9_46_1) 1986 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 36853427 - New Phytol. 2023 Apr;238(2):461-463 |
References_xml | – volume: 337 start-page: 1084 year: 2012 end-page: 1087 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO publication-title: Science – volume: 5 start-page: 347 year: 1999 end-page: 358 article-title: Effect of elevated atmospheric CO on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in and in association with the arbuscular mycorrhizal fungus publication-title: Global Change Biology – volume: 14 start-page: 4 year: 2012 end-page: 12 article-title: Beyond the Venn diagram: the hunt for a core microbiome publication-title: Environmental Microbiology – volume: 218 start-page: 542 year: 2018 end-page: 553 article-title: Lost in diversity: the interactions between soil‐borne fungi, biodiversity and plant productivity publication-title: New Phytologist – volume: 54 start-page: 62 year: 2008 end-page: 71 article-title: Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter publication-title: Soil Science and Plant Nutrition – volume: 356 start-page: 1175 year: 2017 end-page: 1178 article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant publication-title: Science – volume: 70 year: 2004 article-title: Finding community structure in very large networks publication-title: Physical Review E – volume: 27 start-page: 402 year: 2022 end-page: 411 article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra publication-title: Trends in Plant Science – volume: 51 start-page: 379 year: 2015 end-page: 389 article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates publication-title: Biology and Fertility of Soils – volume: 31 start-page: 814 year: 2013 end-page: 821 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nature Biotechnology – volume: 356 start-page: 1172 year: 2017 end-page: 1175 article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi publication-title: Science – volume: 20 start-page: 233 year: 2016 end-page: 240 article-title: Host plant quality mediates competition between arbuscular mycorrhizal fungi publication-title: Fungal Ecology – volume: 14 start-page: 927 year: 2003 end-page: 930 article-title: , a package of R functions for community ecology publication-title: Journal of Vegetation Science – volume: 220 start-page: 1059 year: 2018 end-page: 1075 article-title: Biodiversity of arbuscular mycorrhizal fungi and ecosystem function publication-title: New Phytologist – volume: 4 start-page: 247 year: 2018 end-page: 257 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nature Plants – volume: 29 start-page: 795 year: 2005 end-page: 811 article-title: Living in a fungal world: impact of fungi on soil bacterial niche development publication-title: FEMS Microbiology Reviews – volume: 16 start-page: 676 year: 2022 end-page: 685 article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist publication-title: ISME Journal – volume: 15 start-page: 2276 year: 2021 end-page: 2288 article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi publication-title: ISME Journal – volume: 107 start-page: 13754 year: 2010 end-page: 13759 article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 534 year: 2008 end-page: 541 article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots publication-title: Environmental Microbiology – volume: 25 start-page: 125 year: 2017 end-page: 140 article-title: Defining the core microbiome in corals' microbial soup publication-title: Trends in Microbiology – start-page: 217 year: 1986 end-page: 221 – volume: 210 start-page: 1022 year: 2016 end-page: 1032 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium publication-title: New Phytologist – volume: 4 start-page: 752 year: 2010 end-page: 763 article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi publication-title: ISME Journal – volume: 6 start-page: 14 year: 2018 article-title: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming publication-title: Microbiome – volume: 295 start-page: 2051 year: 2002 article-title: Extensive fungal diversity in plant roots publication-title: Science – volume: 16 start-page: 567 year: 2018 end-page: 576 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nature Reviews Microbiology – volume: 211 start-page: 265 year: 2016 end-page: 275 article-title: An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts publication-title: New Phytologist – volume: 67 start-page: 1689 year: 2016 end-page: 1701 article-title: stable isotope probing of phosphate‐solubilizing bacteria in the hyphosphere publication-title: Journal of Experimental Botany – volume: 5 year: 2020 article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes publication-title: mSystems – volume: 142 start-page: 107724 year: 2020 article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure publication-title: Soil Biology and Biochemistry – volume: 205 start-page: 1485 year: 2015 end-page: 1491 article-title: Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network publication-title: New Phytologist – volume: 1 start-page: 301 year: 1969 end-page: 307 article-title: Use of ‐nitrophenyl phosphate for assay of soil phosphatase activity publication-title: Soil Biology and Biochemistry – volume: 115 start-page: 7368 year: 2018 end-page: 7373 article-title: Large‐scale replicated field study of maize rhizosphere identifies heritable microbes publication-title: Proceedings of the National Academy of Sciences, USA – volume: 110 start-page: 20117 year: 2013 end-page: 20122 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 start-page: 2339 year: 2018a end-page: 2351 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME Journal – volume: 49 start-page: 50 year: 2019 end-page: 58 article-title: Abundance‐occupancy distributions to prioritize plant core microbiome membership publication-title: Current Opinion in Microbiology – volume: 29 start-page: 351 year: 2019 end-page: 362 article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover publication-title: Mycorrhiza – volume: 119 start-page: 1674 year: 2010 end-page: 1684 article-title: Improving indicator species analysis by combining groups of sites publication-title: Oikos – volume: 15 start-page: 1870 year: 2013 end-page: 1881 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environmental Microbiology – volume: 175 start-page: 973 year: 2018 end-page: 983 article-title: Microbial interkingdom interactions in roots promote survival publication-title: Cell – volume: 20 start-page: 2639 year: 2018b end-page: 2651 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environmental Microbiology – volume: 10 start-page: 538 year: 2012 end-page: 550 article-title: Microbial interactions: from networks to models publication-title: Nature Reviews Microbiology – volume: 206 start-page: 1196 year: 2015 end-page: 1206 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytologist – volume: 333 start-page: 880 year: 2011 end-page: 882 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – volume: 221 start-page: 1556 year: 2019 end-page: 1573 article-title: Genome and evolution of the arbuscular mycorrhizal fungus (formerly ) and its bacterial endosymbionts publication-title: New Phytologist – volume: 108 start-page: 9166 year: 2011 end-page: 9171 article-title: Obligate biotrophy features unraveled by the genomic analysis of rust fungi publication-title: Proceedings of the National Academy of Sciences, USA – volume: 528 start-page: 364 year: 2015 end-page: 369 article-title: Functional overlap of the leaf and root microbiota publication-title: Nature – volume: 22 start-page: 465 year: 1991 end-page: 492 article-title: Anion‐exchange membrane, water, and sodium‐bicarbonate extractions as soil tests for phosphorus publication-title: Communications in Soil Science and Plant Analysis – volume: 58 start-page: 403 year: 2022 end-page: 419 article-title: Long‐term sod‐based rotation promotes beneficial root microbiomes and increases crop productivity publication-title: Biology and Fertility of Soils – volume: 9 start-page: 169 year: 2018 article-title: Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil publication-title: Frontiers in Microbiology – volume: 10 start-page: 130 year: 2016 end-page: 144 article-title: Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential publication-title: ISME Journal – volume: 42 start-page: 335 year: 2018 end-page: 352 article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges publication-title: FEMS Microbiology Reviews – volume: 37 start-page: 135 year: 2017 end-page: 141 article-title: Linking fungal‐bacterial co‐occurrences to soil ecosystem function publication-title: Current Opinion in Microbiology – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 18 start-page: 2689 year: 2016 end-page: 2704 article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore‐associated microbes publication-title: Environmental Microbiology – volume: 118 year: 2021 article-title: Defining and quantifying the core microbiome: challenges and prospects publication-title: Proceedings of the National Academy of Sciences, USA – volume: 18 start-page: 649 year: 2020 end-page: 660 article-title: Unique and common traits in mycorrhizal symbioses publication-title: Nature Reviews Microbiology – volume: 19 start-page: 101 year: 2004 end-page: 108 article-title: Model selection in ecology and evolution publication-title: Trends in Ecology and Evolution – volume: 222 start-page: 543 year: 2019 end-page: 555 article-title: Arbuscular mycorrhizal fungi increase grain yields: a meta‐analysis publication-title: New Phytologist – ident: e_1_2_9_49_1 doi: 10.1111/nph.13895 – ident: e_1_2_9_53_1 doi: 10.3389/fmicb.2018.00169 – ident: e_1_2_9_7_1 doi: 10.1103/PhysRevE.70.066111 – ident: e_1_2_9_5_1 doi: 10.1016/j.femsre.2004.11.005 – ident: e_1_2_9_47_1 doi: 10.1126/science.295.5562.2051 – ident: e_1_2_9_33_1 doi: 10.1038/s41396-021-01112-8 – ident: e_1_2_9_13_1 doi: 10.1038/s41396-021-00920-2 – ident: e_1_2_9_42_1 doi: 10.1111/nph.15472 – ident: e_1_2_9_43_1 doi: 10.1016/0038-0717(69)90012-1 – ident: e_1_2_9_9_1 doi: 10.1093/femsre/fuy008 – ident: e_1_2_9_32_1 doi: 10.1093/bioinformatics/btp616 – start-page: 217 volume-title: Physiological and genetical aspects of mycorrhizae year: 1986 ident: e_1_2_9_46_1 – ident: e_1_2_9_3_1 doi: 10.1038/nature16192 – ident: e_1_2_9_24_1 doi: 10.1016/j.funeco.2014.09.011 – ident: e_1_2_9_30_1 doi: 10.1111/1462-2920.12081 – ident: e_1_2_9_17_1 doi: 10.1186/s40168-017-0389-9 – ident: e_1_2_9_34_1 doi: 10.1111/j.1747-0765.2007.00210.x – ident: e_1_2_9_20_1 doi: 10.1111/1462-2920.13438 – ident: e_1_2_9_54_1 doi: 10.1007/s00374-022-01626-z – ident: e_1_2_9_10_1 doi: 10.1111/j.1654-1103.2003.tb02228.x – ident: e_1_2_9_12_1 doi: 10.1016/j.cell.2018.10.020 – ident: e_1_2_9_15_1 doi: 10.1038/nrmicro2832 – ident: e_1_2_9_60_1 doi: 10.1111/nph.15570 – ident: e_1_2_9_57_1 doi: 10.1111/1462-2920.14289 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.2104429118 – ident: e_1_2_9_27_1 doi: 10.1016/j.mib.2017.06.006 – ident: e_1_2_9_50_1 doi: 10.1073/pnas.1800918115 – ident: e_1_2_9_58_1 doi: 10.1111/nph.13838 – ident: e_1_2_9_16_1 doi: 10.1038/s41579-020-0402-3 – ident: e_1_2_9_22_1 doi: 10.1016/j.tree.2003.10.013 – ident: e_1_2_9_45_1 doi: 10.1038/s41477-018-0139-4 – ident: e_1_2_9_35_1 doi: 10.1038/ismej.2015.91 – ident: e_1_2_9_61_1 doi: 10.1128/mSystems.00929-20 – ident: e_1_2_9_6_1 doi: 10.1126/science.1224304 – ident: e_1_2_9_28_1 doi: 10.1111/nph.15036 – ident: e_1_2_9_39_1 doi: 10.1016/j.mib.2019.09.008 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.1005874107 – ident: e_1_2_9_51_1 doi: 10.1007/s00572-019-00896-0 – ident: e_1_2_9_31_1 doi: 10.1111/nph.15119 – ident: e_1_2_9_8_1 doi: 10.1111/j.1600-0706.2010.18334.x – ident: e_1_2_9_14_1 doi: 10.1111/nph.13086 – ident: e_1_2_9_38_1 doi: 10.1111/j.1462-2920.2011.02585.x – ident: e_1_2_9_48_1 doi: 10.1111/nph.13312 – ident: e_1_2_9_25_1 doi: 10.1038/nbt.2676 – ident: e_1_2_9_41_1 doi: 10.1046/j.1365-2486.1999.00230.x – ident: e_1_2_9_44_1 doi: 10.1073/pnas.1313452110 – ident: e_1_2_9_36_1 doi: 10.1038/ismej.2010.5 – ident: e_1_2_9_37_1 doi: 10.1080/00103629109368432 – ident: e_1_2_9_56_1 doi: 10.1016/j.soilbio.2020.107724 – ident: e_1_2_9_23_1 doi: 10.1126/science.1208473 – ident: e_1_2_9_4_1 doi: 10.1038/s41579-018-0024-1 – ident: e_1_2_9_55_1 doi: 10.1038/s41396-018-0171-4 – ident: e_1_2_9_26_1 doi: 10.1126/science.aan0081 – ident: e_1_2_9_18_1 doi: 10.1016/j.tim.2016.11.003 – ident: e_1_2_9_21_1 doi: 10.1126/science.aam9970 – ident: e_1_2_9_52_1 doi: 10.1093/jxb/erv561 – ident: e_1_2_9_40_1 doi: 10.1111/j.1462-2920.2007.01474.x – ident: e_1_2_9_59_1 doi: 10.1016/j.tplants.2021.10.008 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.1019315108 – ident: e_1_2_9_2_1 doi: 10.1007/s00374-014-0989-5 – reference: 36853427 - New Phytol. 2023 Apr;238(2):461-463 |
SSID | ssj0009562 |
Score | 2.619568 |
Snippet | Summary
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM)... The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated... The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 859 |
SubjectTerms | Actinobacteria alpha-Proteobacteria arbuscular mycorrhizal fungi Arbuscular mycorrhizas Arid zones Bacteria - metabolism climate core microbiome co‐occurrence network Environmental factors Fungi Fungi - metabolism gamma-Proteobacteria genome Genomes Greenhouses Guilds hyphosphere microbiome Microbiomes Microbiota Mineralization Mycorrhizae - metabolism Organic phosphorus Phosphatase Phosphoric Monoester Hydrolases - metabolism Phosphorus phosphorus (P) Phosphorus - metabolism Plant Roots - metabolism Soil Soil Microbiology Soil microorganisms soil organic phosphorus Soil types Soils Uptake vesicular arbuscular mycorrhizae |
Title | A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18642 https://www.ncbi.nlm.nih.gov/pubmed/36444521 https://www.proquest.com/docview/2787115752 https://www.proquest.com/docview/2742656402 https://www.proquest.com/docview/2811976734 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQ4sClLaWlW2hlUA9csto4jpOIE0WgVSUQQiDtASmyHZus2k1Wm93Dcud_MxMnEa8ixC2Sx44fM_Y39vgzIb-UUdZnlnnSl8rjNhl4chArj2ljI641KAlecD49E8Mr_mcUjlbIQXsXxvFDdBtuaBn1fI0GLlX1wMiLad73Y4DPMP9irBYCogv2gHBXsJaBWXAxaliFMIqny_l4LXoGMB_j1XrBOflIrtuqujiTv_3FXPX17RMWx3e25RP50ABReug0Z4OsmOIzWftdAlhcbpK7Q4r8lnQydkRNE0PHBQWwSPPlNC8rJCMwtLRUwqi4WFY6WUKWWT6-hWJhubwZ01xW-KXdfiPFWBGMTEJFw-Lci1KaugLL2aKC_9Us2M3l0C_k6uT48mjoNS82eBocH_BqYU3U0SBL_CTLfAOuFleJ1CYzmZ-EOgI4aKQw8UAHRmQ8MCZiFpwqkcSxssoGX8lqURbmG6Exz5SQijFpFddSJCpWIpAcPVrLddgj--3YpbqhM8dXNf6lrVsDnZrWndoje53o1HF4vCS00ypA2phxlTKYzpCNKITk3S4ZDBBPVWRhygXKAMgJBfjhr8jEeForooD3yJZTrq4mASBSDiAKGlSryP-rmJ6dD-uP728X3SbrDGCZizXaIavz2cL8ABg1Vz9re7kHw2Ecsg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggQX3o-FAgZx4JLVxnGcROJSENUC7QqhVtoLimzHJqt2k9U-Dts7_5uZOIlaXkLcInns-DFjf2OPPwO80la7kDseqFDpQLhsFKhRqgNurEuEMagkdMH5aCLHJ-LjNJ7uwJvuLoznh-g33MgymvmaDJw2pC9YebUoh2GK-PkKXKUXvRuH6gu_QLkrecfBLIWctrxCFMfTZ728Gv0CMS8j1mbJObgFX7vK-kiT0-FmrYfm_Ccex_9tzW242WJRtu-V5w7s2OouXHtbI17c3oPv-4woLtl85rma5pbNKoZ4kZXbRVmviI_AstoxhQPjw1nZfItZluXsHIvFFfPbjJVqRV_GbzkyCheh4CTSNSrOPyplmC-wXm5W-L-GCLu9H3ofTg7eH78bB-2jDYFB3wcdW1wWTTIqsjAritCityV0powtbBFmsUkQEVolbToykZWFiKxNuEO_SmZpqp120QPYrerKPgKWikJLpTlXTgujZKZTLSMlyKl1wsQDeN0NXm5aRnN6WOMs7zwb7NS86dQBvOxFF57G43dCe50G5K0lr3KOMxoREsWY_KJPRhukgxVV2XpDMohzYomu-F9kUjqwlUkkBvDQa1dfkwhBqUAchQ1qdOTPVcwnn8fNx-N_F30O18fHR4f54YfJpydwgyNK86FHe7C7Xm7sU0RVa_2sMZ4fayYgzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tC0JcWN6UXcAgDlxSJY7jOOK0D6ryqlaIlXpAimzHJhU0qfo4dO_8b8ZxEu3yEuIWyWPHjxn7G3v8GeCFMspG1NJARlIFzGZhIEOhAqqNTZnWqCTugvOHCR-fsbfTZLoDr7q7MJ4fot9wc5bRzNfOwBeFvWDk1aIcRgLh8xW4yngonEqffKQXGHc57SiYOePTllbIhfH0WS8vRr8gzMuAtVlxRnvwuaurDzT5Otys1VCf_0Tj-J-NuQU3WyRKDr3q3IYdU92Ba0c1osXtXfh-SBzBJZnPPFPT3JBZRRAtknK7KOuVYyMwpLZE4rD4YFYy32KWZTk7x2JxvfwyI6VcuS_tNxyJCxZxoUlO01xx_kkpTXyB9XKzwv81NNjt7dB7cDZ6_el4HLRPNgQaPR90a3FR1GlYZFFWFJFBX4upTGpTmCLKEp0iHjSSGxHq2PCCxcak1KJXxTMhlFU2vg-7VV2Zh0AEKxSXilJpFdOSZ0ooHkvmXFrLdDKAl93Y5brlM3fPanzLO78GOzVvOnUAz3vRhSfx-J3QQacAeWvHq5zifOboiBJMftYnowW6YxVZmXrjZBDlJBwd8b_ICHdcy9OYDeCBV66-JjFCUoYoChvUqMifq5hPTsfNx6N_F30K109PRvn7N5N3-3CDIkTzcUcHsLtebsxjhFRr9aQxnR8ZUh-F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+core+microbiome+in+the+hyphosphere+of+arbuscular+mycorrhizal+fungi+has+functional+significance+in+organic+phosphorus+mineralization&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Letian&rft.au=Zhang%2C+Lin&rft.au=George%2C+Timothy+S&rft.au=Feng%2C+Gu&rft.date=2023-04-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=238&rft.issue=2&rft.spage=859&rft_id=info:doi/10.1111%2Fnph.18642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |