A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization

Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 238; no. 2; pp. 859 - 873
Main Authors Wang, Letian, Zhang, Lin, George, Timothy S., Feng, Gu
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. See also the Commentary on this article by Johnson & Marín, 238: 461–463.
AbstractList The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on-site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co-enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on-site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co-enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.
Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. See also the Commentary on this article by Johnson & Marín, 238: 461–463.
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on‐site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co‐enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack. See also the Commentary on this article by Johnson & Marín, 238 : 461–463.
Author Zhang, Lin
George, Timothy S.
Wang, Letian
Feng, Gu
Author_xml – sequence: 1
  givenname: Letian
  orcidid: 0000-0002-7191-1376
  surname: Wang
  fullname: Wang, Letian
  organization: China Agricultural University
– sequence: 2
  givenname: Lin
  orcidid: 0000-0002-1663-5620
  surname: Zhang
  fullname: Zhang, Lin
  organization: China Agricultural University
– sequence: 3
  givenname: Timothy S.
  orcidid: 0000-0003-3231-2159
  surname: George
  fullname: George, Timothy S.
  organization: The James Hutton Institute
– sequence: 4
  givenname: Gu
  orcidid: 0000-0002-1052-5009
  surname: Feng
  fullname: Feng, Gu
  email: fenggu@cau.edu.cn
  organization: China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36444521$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvqwT9gSLzoYVpgGGCOTWOtSaMeNPFGGOabHZoZGGEmZr33f8vsbi-NRi4QeN6H5HvP0IkPHhB6TckFzevST_0FVYKzZ2hDuagLRUt5gjaEMFUILn6corOU7gkhdSXYC3RaCs55xegGPVxhGyLg0dkYGhdGwM7juQfc76Y-pKmH_Bo6bGKzJLsMJuJxlyOxd7_NgLvFbx3uTVpPdnbB58vktt51zhpv97oQt8Y7iw_CEJeU__MQzZAda-Ylet6ZIcGr436Ovt98-HZ9W9x9-fjp-uqusFxJVlQlp1aStqZ121KgXPGmNhZaaGldWSkqAkaAIrYE0fISQLKOKCFqpZqu6cpz9O7gnWL4uUCa9eiShWEwHsKSNFOU1lLIkv8flZyJSnDCMvr2CXoflpgHsVJKUlrJaqXeHKmlGaHVU3SjiTv92EUGLg9AbiKlCJ22bt6PZ47GDZoSvbatc9t633ZOvH-SeJT-jT3af7kBdv8G9eevt4fEHyduuzQ
CitedBy_id crossref_primary_10_1111_nph_19321
crossref_primary_10_1016_j_jenvman_2024_122940
crossref_primary_10_3389_fmicb_2023_1284648
crossref_primary_10_1155_2024_9977517
crossref_primary_10_1186_s40168_024_01811_2
crossref_primary_10_1016_j_pedsph_2023_09_007
crossref_primary_10_3390_agronomy14010041
crossref_primary_10_1007_s11104_024_06801_9
crossref_primary_10_1016_j_rhisph_2023_100754
crossref_primary_10_1007_s00572_023_01132_6
crossref_primary_10_1007_s00572_023_01134_4
crossref_primary_10_1111_nph_19605
crossref_primary_10_1021_acs_jafc_4c07428
crossref_primary_10_1016_j_apsoil_2023_105172
crossref_primary_10_1186_s40168_023_01726_4
crossref_primary_10_1007_s41742_024_00610_9
crossref_primary_10_1111_nph_20266
crossref_primary_10_1016_j_jes_2024_02_029
crossref_primary_10_1016_j_pedsph_2024_02_002
crossref_primary_10_1016_j_jes_2025_02_009
crossref_primary_10_1111_nph_19396
crossref_primary_10_1080_03650340_2023_2205135
crossref_primary_10_1007_s11104_024_06649_z
crossref_primary_10_1016_j_soilbio_2025_109797
crossref_primary_10_1007_s00572_025_01186_8
crossref_primary_10_1016_j_envres_2024_120262
crossref_primary_10_1111_nph_19541
crossref_primary_10_1128_msystems_01352_23
crossref_primary_10_1038_s41559_023_02298_0
crossref_primary_10_1146_annurev_micro_041522_105143
crossref_primary_10_1016_j_jhazmat_2025_137598
crossref_primary_10_1128_msystems_00886_23
crossref_primary_10_1016_j_soilbio_2024_109647
crossref_primary_10_1128_aem_00753_24
crossref_primary_10_1186_s40793_024_00614_0
crossref_primary_10_1038_s41579_024_01073_7
crossref_primary_10_1016_j_mib_2023_102357
crossref_primary_10_1093_ismejo_wraf023
crossref_primary_10_1111_nph_18933
crossref_primary_10_3390_plants13060912
crossref_primary_10_1016_j_agee_2025_109505
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_3390_agriculture14122361
crossref_primary_10_1007_s11104_024_06929_8
crossref_primary_10_3389_fmicb_2024_1504444
crossref_primary_10_3390_jof10030226
crossref_primary_10_1111_nph_19493
crossref_primary_10_3390_horticulturae10121326
crossref_primary_10_1007_s00374_024_01849_2
crossref_primary_10_1093_evolut_qpad234
crossref_primary_10_1111_nph_18803
crossref_primary_10_1007_s00572_023_01107_7
crossref_primary_10_3389_fsufs_2023_1124688
Cites_doi 10.1111/nph.13895
10.3389/fmicb.2018.00169
10.1103/PhysRevE.70.066111
10.1016/j.femsre.2004.11.005
10.1126/science.295.5562.2051
10.1038/s41396-021-01112-8
10.1038/s41396-021-00920-2
10.1111/nph.15472
10.1016/0038-0717(69)90012-1
10.1093/femsre/fuy008
10.1093/bioinformatics/btp616
10.1038/nature16192
10.1016/j.funeco.2014.09.011
10.1111/1462-2920.12081
10.1186/s40168-017-0389-9
10.1111/j.1747-0765.2007.00210.x
10.1111/1462-2920.13438
10.1007/s00374-022-01626-z
10.1111/j.1654-1103.2003.tb02228.x
10.1016/j.cell.2018.10.020
10.1038/nrmicro2832
10.1111/nph.15570
10.1111/1462-2920.14289
10.1073/pnas.2104429118
10.1016/j.mib.2017.06.006
10.1073/pnas.1800918115
10.1111/nph.13838
10.1038/s41579-020-0402-3
10.1016/j.tree.2003.10.013
10.1038/s41477-018-0139-4
10.1038/ismej.2015.91
10.1128/mSystems.00929-20
10.1126/science.1224304
10.1111/nph.15036
10.1016/j.mib.2019.09.008
10.1073/pnas.1005874107
10.1007/s00572-019-00896-0
10.1111/nph.15119
10.1111/j.1600-0706.2010.18334.x
10.1111/nph.13086
10.1111/j.1462-2920.2011.02585.x
10.1111/nph.13312
10.1038/nbt.2676
10.1046/j.1365-2486.1999.00230.x
10.1073/pnas.1313452110
10.1038/ismej.2010.5
10.1080/00103629109368432
10.1016/j.soilbio.2020.107724
10.1126/science.1208473
10.1038/s41579-018-0024-1
10.1038/s41396-018-0171-4
10.1126/science.aan0081
10.1016/j.tim.2016.11.003
10.1126/science.aam9970
10.1093/jxb/erv561
10.1111/j.1462-2920.2007.01474.x
10.1016/j.tplants.2021.10.008
10.1073/pnas.1019315108
10.1007/s00374-014-0989-5
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation.
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Copyright © 2023 New Phytologist Trust
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation.
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: Copyright © 2023 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.18642
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 873
ExternalDocumentID 36444521
10_1111_nph_18642
NPH18642
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32272807; U1703232
– fundername: National Key R&D Program of China
  funderid: 2017YFD0200200
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABSQW
ADXHL
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4872-5341c70d919dd1e1484b9aceded195c7650ea6e80c3e6d43ee72f0866988bfbf3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:30:02 EDT 2025
Thu Jul 10 18:46:17 EDT 2025
Sat Aug 23 12:58:32 EDT 2025
Wed Feb 19 02:24:02 EST 2025
Thu Aug 14 00:01:12 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 16:14:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords arbuscular mycorrhizal fungi
co-occurrence network
core microbiome
hyphosphere
phosphorus (P)
Language English
License 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4872-5341c70d919dd1e1484b9aceded195c7650ea6e80c3e6d43ee72f0866988bfbf3
Notes These authors contributed equally to this work.
See also the Commentary on this article by
461–463.
Johnson & Marín
238
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1663-5620
0000-0002-7191-1376
0000-0003-3231-2159
0000-0002-1052-5009
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18642
PMID 36444521
PQID 2787115752
PQPubID 2026848
PageCount 873
ParticipantIDs proquest_miscellaneous_2811976734
proquest_miscellaneous_2742656402
proquest_journals_2787115752
pubmed_primary_36444521
crossref_citationtrail_10_1111_nph_18642
crossref_primary_10_1111_nph_18642
wiley_primary_10_1111_nph_18642_NPH18642
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 107
2003; 14
2012; 14
2005; 29
2018; 42
2017; 356
2012; 10
2022; 27
2020; 18
2018; 175
2018; 6
2018; 9
2020; 5
2013; 15
2010; 26
2004; 70
2018; 4
2017; 37
1969; 1
2010; 119
2018; 218
2021; 118
1986
2019; 29
2013; 110
2012; 337
2010; 4
2011; 333
2018; 220
2017; 25
2015; 51
2020; 142
2002; 295
2016; 10
2015; 528
2008; 54
2008; 10
2015; 206
2015; 205
2018b; 20
2016; 18
1999; 5
2019; 221
2019; 222
2021; 15
2011; 108
2004; 19
1991; 22
2018a; 12
2013; 31
2018; 115
2016; 20
2019; 49
2016; 211
2022; 58
2016; 210
2018; 16
2022; 16
2016; 67
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
Trouvelot A (e_1_2_9_46_1) 1986
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
36853427 - New Phytol. 2023 Apr;238(2):461-463
References_xml – volume: 337
  start-page: 1084
  year: 2012
  end-page: 1087
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO
  publication-title: Science
– volume: 5
  start-page: 347
  year: 1999
  end-page: 358
  article-title: Effect of elevated atmospheric CO on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in and in association with the arbuscular mycorrhizal fungus
  publication-title: Global Change Biology
– volume: 14
  start-page: 4
  year: 2012
  end-page: 12
  article-title: Beyond the Venn diagram: the hunt for a core microbiome
  publication-title: Environmental Microbiology
– volume: 218
  start-page: 542
  year: 2018
  end-page: 553
  article-title: Lost in diversity: the interactions between soil‐borne fungi, biodiversity and plant productivity
  publication-title: New Phytologist
– volume: 54
  start-page: 62
  year: 2008
  end-page: 71
  article-title: Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter
  publication-title: Soil Science and Plant Nutrition
– volume: 356
  start-page: 1175
  year: 2017
  end-page: 1178
  article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant
  publication-title: Science
– volume: 70
  year: 2004
  article-title: Finding community structure in very large networks
  publication-title: Physical Review E
– volume: 27
  start-page: 402
  year: 2022
  end-page: 411
  article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra
  publication-title: Trends in Plant Science
– volume: 51
  start-page: 379
  year: 2015
  end-page: 389
  article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates
  publication-title: Biology and Fertility of Soils
– volume: 31
  start-page: 814
  year: 2013
  end-page: 821
  article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
  publication-title: Nature Biotechnology
– volume: 356
  start-page: 1172
  year: 2017
  end-page: 1175
  article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi
  publication-title: Science
– volume: 20
  start-page: 233
  year: 2016
  end-page: 240
  article-title: Host plant quality mediates competition between arbuscular mycorrhizal fungi
  publication-title: Fungal Ecology
– volume: 14
  start-page: 927
  year: 2003
  end-page: 930
  article-title: , a package of R functions for community ecology
  publication-title: Journal of Vegetation Science
– volume: 220
  start-page: 1059
  year: 2018
  end-page: 1075
  article-title: Biodiversity of arbuscular mycorrhizal fungi and ecosystem function
  publication-title: New Phytologist
– volume: 4
  start-page: 247
  year: 2018
  end-page: 257
  article-title: Core microbiomes for sustainable agroecosystems
  publication-title: Nature Plants
– volume: 29
  start-page: 795
  year: 2005
  end-page: 811
  article-title: Living in a fungal world: impact of fungi on soil bacterial niche development
  publication-title: FEMS Microbiology Reviews
– volume: 16
  start-page: 676
  year: 2022
  end-page: 685
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME Journal
– volume: 15
  start-page: 2276
  year: 2021
  end-page: 2288
  article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 107
  start-page: 13754
  year: 2010
  end-page: 13759
  article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 534
  year: 2008
  end-page: 541
  article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots
  publication-title: Environmental Microbiology
– volume: 25
  start-page: 125
  year: 2017
  end-page: 140
  article-title: Defining the core microbiome in corals' microbial soup
  publication-title: Trends in Microbiology
– start-page: 217
  year: 1986
  end-page: 221
– volume: 210
  start-page: 1022
  year: 2016
  end-page: 1032
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium
  publication-title: New Phytologist
– volume: 4
  start-page: 752
  year: 2010
  end-page: 763
  article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 6
  start-page: 14
  year: 2018
  article-title: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming
  publication-title: Microbiome
– volume: 295
  start-page: 2051
  year: 2002
  article-title: Extensive fungal diversity in plant roots
  publication-title: Science
– volume: 16
  start-page: 567
  year: 2018
  end-page: 576
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nature Reviews Microbiology
– volume: 211
  start-page: 265
  year: 2016
  end-page: 275
  article-title: An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts
  publication-title: New Phytologist
– volume: 67
  start-page: 1689
  year: 2016
  end-page: 1701
  article-title: stable isotope probing of phosphate‐solubilizing bacteria in the hyphosphere
  publication-title: Journal of Experimental Botany
– volume: 5
  year: 2020
  article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes
  publication-title: mSystems
– volume: 142
  start-page: 107724
  year: 2020
  article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure
  publication-title: Soil Biology and Biochemistry
– volume: 205
  start-page: 1485
  year: 2015
  end-page: 1491
  article-title: Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network
  publication-title: New Phytologist
– volume: 1
  start-page: 301
  year: 1969
  end-page: 307
  article-title: Use of ‐nitrophenyl phosphate for assay of soil phosphatase activity
  publication-title: Soil Biology and Biochemistry
– volume: 115
  start-page: 7368
  year: 2018
  end-page: 7373
  article-title: Large‐scale replicated field study of maize rhizosphere identifies heritable microbes
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 110
  start-page: 20117
  year: 2013
  end-page: 20122
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 2339
  year: 2018a
  end-page: 2351
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME Journal
– volume: 49
  start-page: 50
  year: 2019
  end-page: 58
  article-title: Abundance‐occupancy distributions to prioritize plant core microbiome membership
  publication-title: Current Opinion in Microbiology
– volume: 29
  start-page: 351
  year: 2019
  end-page: 362
  article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover
  publication-title: Mycorrhiza
– volume: 119
  start-page: 1674
  year: 2010
  end-page: 1684
  article-title: Improving indicator species analysis by combining groups of sites
  publication-title: Oikos
– volume: 15
  start-page: 1870
  year: 2013
  end-page: 1881
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environmental Microbiology
– volume: 175
  start-page: 973
  year: 2018
  end-page: 983
  article-title: Microbial interkingdom interactions in roots promote survival
  publication-title: Cell
– volume: 20
  start-page: 2639
  year: 2018b
  end-page: 2651
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environmental Microbiology
– volume: 10
  start-page: 538
  year: 2012
  end-page: 550
  article-title: Microbial interactions: from networks to models
  publication-title: Nature Reviews Microbiology
– volume: 206
  start-page: 1196
  year: 2015
  end-page: 1206
  article-title: The importance of the microbiome of the plant holobiont
  publication-title: New Phytologist
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 221
  start-page: 1556
  year: 2019
  end-page: 1573
  article-title: Genome and evolution of the arbuscular mycorrhizal fungus (formerly ) and its bacterial endosymbionts
  publication-title: New Phytologist
– volume: 108
  start-page: 9166
  year: 2011
  end-page: 9171
  article-title: Obligate biotrophy features unraveled by the genomic analysis of rust fungi
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 528
  start-page: 364
  year: 2015
  end-page: 369
  article-title: Functional overlap of the leaf and root microbiota
  publication-title: Nature
– volume: 22
  start-page: 465
  year: 1991
  end-page: 492
  article-title: Anion‐exchange membrane, water, and sodium‐bicarbonate extractions as soil tests for phosphorus
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 58
  start-page: 403
  year: 2022
  end-page: 419
  article-title: Long‐term sod‐based rotation promotes beneficial root microbiomes and increases crop productivity
  publication-title: Biology and Fertility of Soils
– volume: 9
  start-page: 169
  year: 2018
  article-title: Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil
  publication-title: Frontiers in Microbiology
– volume: 10
  start-page: 130
  year: 2016
  end-page: 144
  article-title: Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential
  publication-title: ISME Journal
– volume: 42
  start-page: 335
  year: 2018
  end-page: 352
  article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges
  publication-title: FEMS Microbiology Reviews
– volume: 37
  start-page: 135
  year: 2017
  end-page: 141
  article-title: Linking fungal‐bacterial co‐occurrences to soil ecosystem function
  publication-title: Current Opinion in Microbiology
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 18
  start-page: 2689
  year: 2016
  end-page: 2704
  article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore‐associated microbes
  publication-title: Environmental Microbiology
– volume: 118
  year: 2021
  article-title: Defining and quantifying the core microbiome: challenges and prospects
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 18
  start-page: 649
  year: 2020
  end-page: 660
  article-title: Unique and common traits in mycorrhizal symbioses
  publication-title: Nature Reviews Microbiology
– volume: 19
  start-page: 101
  year: 2004
  end-page: 108
  article-title: Model selection in ecology and evolution
  publication-title: Trends in Ecology and Evolution
– volume: 222
  start-page: 543
  year: 2019
  end-page: 555
  article-title: Arbuscular mycorrhizal fungi increase grain yields: a meta‐analysis
  publication-title: New Phytologist
– ident: e_1_2_9_49_1
  doi: 10.1111/nph.13895
– ident: e_1_2_9_53_1
  doi: 10.3389/fmicb.2018.00169
– ident: e_1_2_9_7_1
  doi: 10.1103/PhysRevE.70.066111
– ident: e_1_2_9_5_1
  doi: 10.1016/j.femsre.2004.11.005
– ident: e_1_2_9_47_1
  doi: 10.1126/science.295.5562.2051
– ident: e_1_2_9_33_1
  doi: 10.1038/s41396-021-01112-8
– ident: e_1_2_9_13_1
  doi: 10.1038/s41396-021-00920-2
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.15472
– ident: e_1_2_9_43_1
  doi: 10.1016/0038-0717(69)90012-1
– ident: e_1_2_9_9_1
  doi: 10.1093/femsre/fuy008
– ident: e_1_2_9_32_1
  doi: 10.1093/bioinformatics/btp616
– start-page: 217
  volume-title: Physiological and genetical aspects of mycorrhizae
  year: 1986
  ident: e_1_2_9_46_1
– ident: e_1_2_9_3_1
  doi: 10.1038/nature16192
– ident: e_1_2_9_24_1
  doi: 10.1016/j.funeco.2014.09.011
– ident: e_1_2_9_30_1
  doi: 10.1111/1462-2920.12081
– ident: e_1_2_9_17_1
  doi: 10.1186/s40168-017-0389-9
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1747-0765.2007.00210.x
– ident: e_1_2_9_20_1
  doi: 10.1111/1462-2920.13438
– ident: e_1_2_9_54_1
  doi: 10.1007/s00374-022-01626-z
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1654-1103.2003.tb02228.x
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cell.2018.10.020
– ident: e_1_2_9_15_1
  doi: 10.1038/nrmicro2832
– ident: e_1_2_9_60_1
  doi: 10.1111/nph.15570
– ident: e_1_2_9_57_1
  doi: 10.1111/1462-2920.14289
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.2104429118
– ident: e_1_2_9_27_1
  doi: 10.1016/j.mib.2017.06.006
– ident: e_1_2_9_50_1
  doi: 10.1073/pnas.1800918115
– ident: e_1_2_9_58_1
  doi: 10.1111/nph.13838
– ident: e_1_2_9_16_1
  doi: 10.1038/s41579-020-0402-3
– ident: e_1_2_9_22_1
  doi: 10.1016/j.tree.2003.10.013
– ident: e_1_2_9_45_1
  doi: 10.1038/s41477-018-0139-4
– ident: e_1_2_9_35_1
  doi: 10.1038/ismej.2015.91
– ident: e_1_2_9_61_1
  doi: 10.1128/mSystems.00929-20
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1224304
– ident: e_1_2_9_28_1
  doi: 10.1111/nph.15036
– ident: e_1_2_9_39_1
  doi: 10.1016/j.mib.2019.09.008
– ident: e_1_2_9_19_1
  doi: 10.1073/pnas.1005874107
– ident: e_1_2_9_51_1
  doi: 10.1007/s00572-019-00896-0
– ident: e_1_2_9_31_1
  doi: 10.1111/nph.15119
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1600-0706.2010.18334.x
– ident: e_1_2_9_14_1
  doi: 10.1111/nph.13086
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1462-2920.2011.02585.x
– ident: e_1_2_9_48_1
  doi: 10.1111/nph.13312
– ident: e_1_2_9_25_1
  doi: 10.1038/nbt.2676
– ident: e_1_2_9_41_1
  doi: 10.1046/j.1365-2486.1999.00230.x
– ident: e_1_2_9_44_1
  doi: 10.1073/pnas.1313452110
– ident: e_1_2_9_36_1
  doi: 10.1038/ismej.2010.5
– ident: e_1_2_9_37_1
  doi: 10.1080/00103629109368432
– ident: e_1_2_9_56_1
  doi: 10.1016/j.soilbio.2020.107724
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1208473
– ident: e_1_2_9_4_1
  doi: 10.1038/s41579-018-0024-1
– ident: e_1_2_9_55_1
  doi: 10.1038/s41396-018-0171-4
– ident: e_1_2_9_26_1
  doi: 10.1126/science.aan0081
– ident: e_1_2_9_18_1
  doi: 10.1016/j.tim.2016.11.003
– ident: e_1_2_9_21_1
  doi: 10.1126/science.aam9970
– ident: e_1_2_9_52_1
  doi: 10.1093/jxb/erv561
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1462-2920.2007.01474.x
– ident: e_1_2_9_59_1
  doi: 10.1016/j.tplants.2021.10.008
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1019315108
– ident: e_1_2_9_2_1
  doi: 10.1007/s00374-014-0989-5
– reference: 36853427 - New Phytol. 2023 Apr;238(2):461-463
SSID ssj0009562
Score 2.619568
Snippet Summary The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM)...
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two‐thirds of land plants. The arbuscular mycorrhizal (AM) fungi‐associated...
The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms Actinobacteria
alpha-Proteobacteria
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Arid zones
Bacteria - metabolism
climate
core microbiome
co‐occurrence network
Environmental factors
Fungi
Fungi - metabolism
gamma-Proteobacteria
genome
Genomes
Greenhouses
Guilds
hyphosphere
microbiome
Microbiomes
Microbiota
Mineralization
Mycorrhizae - metabolism
Organic phosphorus
Phosphatase
Phosphoric Monoester Hydrolases - metabolism
Phosphorus
phosphorus (P)
Phosphorus - metabolism
Plant Roots - metabolism
Soil
Soil Microbiology
Soil microorganisms
soil organic phosphorus
Soil types
Soils
Uptake
vesicular arbuscular mycorrhizae
Title A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18642
https://www.ncbi.nlm.nih.gov/pubmed/36444521
https://www.proquest.com/docview/2787115752
https://www.proquest.com/docview/2742656402
https://www.proquest.com/docview/2811976734
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQ4sClLaWlW2hlUA9csto4jpOIE0WgVSUQQiDtASmyHZus2k1Wm93Dcud_MxMnEa8ixC2Sx44fM_Y39vgzIb-UUdZnlnnSl8rjNhl4chArj2ljI641KAlecD49E8Mr_mcUjlbIQXsXxvFDdBtuaBn1fI0GLlX1wMiLad73Y4DPMP9irBYCogv2gHBXsJaBWXAxaliFMIqny_l4LXoGMB_j1XrBOflIrtuqujiTv_3FXPX17RMWx3e25RP50ABReug0Z4OsmOIzWftdAlhcbpK7Q4r8lnQydkRNE0PHBQWwSPPlNC8rJCMwtLRUwqi4WFY6WUKWWT6-hWJhubwZ01xW-KXdfiPFWBGMTEJFw-Lci1KaugLL2aKC_9Us2M3l0C_k6uT48mjoNS82eBocH_BqYU3U0SBL_CTLfAOuFleJ1CYzmZ-EOgI4aKQw8UAHRmQ8MCZiFpwqkcSxssoGX8lqURbmG6Exz5SQijFpFddSJCpWIpAcPVrLddgj--3YpbqhM8dXNf6lrVsDnZrWndoje53o1HF4vCS00ypA2phxlTKYzpCNKITk3S4ZDBBPVWRhygXKAMgJBfjhr8jEeForooD3yJZTrq4mASBSDiAKGlSryP-rmJ6dD-uP728X3SbrDGCZizXaIavz2cL8ABg1Vz9re7kHw2Ecsg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggQX3o-FAgZx4JLVxnGcROJSENUC7QqhVtoLimzHJqt2k9U-Dts7_5uZOIlaXkLcInns-DFjf2OPPwO80la7kDseqFDpQLhsFKhRqgNurEuEMagkdMH5aCLHJ-LjNJ7uwJvuLoznh-g33MgymvmaDJw2pC9YebUoh2GK-PkKXKUXvRuH6gu_QLkrecfBLIWctrxCFMfTZ728Gv0CMS8j1mbJObgFX7vK-kiT0-FmrYfm_Ccex_9tzW242WJRtu-V5w7s2OouXHtbI17c3oPv-4woLtl85rma5pbNKoZ4kZXbRVmviI_AstoxhQPjw1nZfItZluXsHIvFFfPbjJVqRV_GbzkyCheh4CTSNSrOPyplmC-wXm5W-L-GCLu9H3ofTg7eH78bB-2jDYFB3wcdW1wWTTIqsjAritCityV0powtbBFmsUkQEVolbToykZWFiKxNuEO_SmZpqp120QPYrerKPgKWikJLpTlXTgujZKZTLSMlyKl1wsQDeN0NXm5aRnN6WOMs7zwb7NS86dQBvOxFF57G43dCe50G5K0lr3KOMxoREsWY_KJPRhukgxVV2XpDMohzYomu-F9kUjqwlUkkBvDQa1dfkwhBqUAchQ1qdOTPVcwnn8fNx-N_F30O18fHR4f54YfJpydwgyNK86FHe7C7Xm7sU0RVa_2sMZ4fayYgzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tC0JcWN6UXcAgDlxSJY7jOOK0D6ryqlaIlXpAimzHJhU0qfo4dO_8b8ZxEu3yEuIWyWPHjxn7G3v8GeCFMspG1NJARlIFzGZhIEOhAqqNTZnWqCTugvOHCR-fsbfTZLoDr7q7MJ4fot9wc5bRzNfOwBeFvWDk1aIcRgLh8xW4yngonEqffKQXGHc57SiYOePTllbIhfH0WS8vRr8gzMuAtVlxRnvwuaurDzT5Otys1VCf_0Tj-J-NuQU3WyRKDr3q3IYdU92Ba0c1osXtXfh-SBzBJZnPPFPT3JBZRRAtknK7KOuVYyMwpLZE4rD4YFYy32KWZTk7x2JxvfwyI6VcuS_tNxyJCxZxoUlO01xx_kkpTXyB9XKzwv81NNjt7dB7cDZ6_el4HLRPNgQaPR90a3FR1GlYZFFWFJFBX4upTGpTmCLKEp0iHjSSGxHq2PCCxcak1KJXxTMhlFU2vg-7VV2Zh0AEKxSXilJpFdOSZ0ooHkvmXFrLdDKAl93Y5brlM3fPanzLO78GOzVvOnUAz3vRhSfx-J3QQacAeWvHq5zifOboiBJMftYnowW6YxVZmXrjZBDlJBwd8b_ICHdcy9OYDeCBV66-JjFCUoYoChvUqMifq5hPTsfNx6N_F30K109PRvn7N5N3-3CDIkTzcUcHsLtebsxjhFRr9aQxnR8ZUh-F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+core+microbiome+in+the+hyphosphere+of+arbuscular+mycorrhizal+fungi+has+functional+significance+in+organic+phosphorus+mineralization&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Letian&rft.au=Zhang%2C+Lin&rft.au=George%2C+Timothy+S&rft.au=Feng%2C+Gu&rft.date=2023-04-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=238&rft.issue=2&rft.spage=859&rft_id=info:doi/10.1111%2Fnph.18642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon