SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis

Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae;...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 102; no. 3; pp. 431 - 447
Main Authors Cohen, Hagai, Fedyuk, Vadim, Wang, Chunhua, Wu, Shuang, Aharoni, Asaph
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Significance Statement The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
AbstractList Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Significance Statement The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Author Wang, Chunhua
Wu, Shuang
Aharoni, Asaph
Cohen, Hagai
Fedyuk, Vadim
Author_xml – sequence: 1
  givenname: Hagai
  surname: Cohen
  fullname: Cohen, Hagai
  organization: Weizmann Institute of Science
– sequence: 2
  givenname: Vadim
  surname: Fedyuk
  fullname: Fedyuk, Vadim
  organization: Weizmann Institute of Science
– sequence: 3
  givenname: Chunhua
  surname: Wang
  fullname: Wang, Chunhua
  organization: Fujian Agriculture and Forestry University
– sequence: 4
  givenname: Shuang
  orcidid: 0000-0003-1913-8125
  surname: Wu
  fullname: Wu, Shuang
  organization: Fujian Agriculture and Forestry University
– sequence: 5
  givenname: Asaph
  orcidid: 0000-0002-6077-1590
  surname: Aharoni
  fullname: Aharoni, Asaph
  email: asaph.aharoni@weizmann.ac.il
  organization: Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32027440$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1v1DAQBmALFdFt4cAfQJG4wCHtTOzEyXGpypcKVNBK3KJJMgavsnGwHVD59bjdwqES4Isvz_tanjkQe5ObWIjHCEeYznGcN0eoNOI9sUJZlblE-XlPrKCpINcKi31xEMIGALWs1AOxLwsotFKwEuefLl-cfny3fp95_rKMFDlkA3_n0c1bniKNWVg69vYnReumzJksfuVs7amzg5uDDZl3LmY8DW5gv7XhobhvaAz86PY-FJcvTy9OXudnH169OVmf5b2qNeaNUT0ZzXow2PfUkByQEOqSqMOhagpVakWGUNUKy0qbDkrdERggI6mq5KF4tuudvfu2cIhterzncaSJ3RLaQskmJWVd_5_KsoASEJtEn96hG7f4KX0kFQIoKBp9rZ7cqqXb8tDO3m7JX7W_x5rA8x3ovQvBs_lDENrrlbVpZe3NypI9vmN7G2-mHT3Z8V-JH3bkq79Xtxfnb3eJX2jspjo
CitedBy_id crossref_primary_10_1093_plcell_koae278
crossref_primary_10_1111_tpj_15275
crossref_primary_10_3389_fpls_2022_1007494
crossref_primary_10_1038_s41477_024_01842_5
crossref_primary_10_1126_science_abd0695
crossref_primary_10_1007_s00425_023_04102_6
crossref_primary_10_1111_tpj_16722
crossref_primary_10_1111_tpj_15315
crossref_primary_10_1016_j_isci_2020_101978
crossref_primary_10_1186_s13068_021_01892_3
crossref_primary_10_1111_tpj_14785
crossref_primary_10_3390_biom12060811
crossref_primary_10_1080_07388551_2023_2165900
crossref_primary_10_1038_s41477_023_01391_3
crossref_primary_10_1007_s00425_021_03663_8
crossref_primary_10_3389_fpls_2022_1039014
crossref_primary_10_3390_ijms25116091
crossref_primary_10_3390_plants13091276
crossref_primary_10_1093_plphys_kiac298
crossref_primary_10_1007_s10142_022_00836_w
crossref_primary_10_3390_ijms232416156
crossref_primary_10_1111_tpj_15249
crossref_primary_10_1360_TB_2022_0971
crossref_primary_10_1016_j_jplph_2023_154118
crossref_primary_10_1016_j_isci_2021_103228
crossref_primary_10_48130_VR_2023_0019
crossref_primary_10_3390_plants11040555
crossref_primary_10_1016_j_devcel_2021_02_027
crossref_primary_10_1111_pce_15334
crossref_primary_10_1007_s00344_024_11453_1
crossref_primary_10_1146_annurev_arplant_102720_031405
crossref_primary_10_3390_plants12091890
crossref_primary_10_1073_pnas_2101730118
crossref_primary_10_1270_jsbbs_20123
crossref_primary_10_1111_tpj_15691
crossref_primary_10_1093_plphys_kiab392
crossref_primary_10_1007_s11103_022_01312_6
crossref_primary_10_1111_plb_13650
crossref_primary_10_1016_j_postharvbio_2022_112071
crossref_primary_10_1242_bio_059184
crossref_primary_10_3389_fpls_2023_1156356
crossref_primary_10_1016_j_stress_2024_100698
crossref_primary_10_1111_tpj_14920
crossref_primary_10_1002_pld3_278
crossref_primary_10_1016_j_envexpbot_2022_105140
crossref_primary_10_1016_j_plantsci_2024_112300
crossref_primary_10_1186_s12870_021_03407_6
crossref_primary_10_1111_ppl_13371
crossref_primary_10_34133_plantphenomics_0156
crossref_primary_10_1038_s41477_023_01567_x
crossref_primary_10_3390_plants12223786
crossref_primary_10_1016_j_pbi_2021_102153
crossref_primary_10_1016_j_xplc_2022_100308
crossref_primary_10_1093_jxb_eraa444
crossref_primary_10_1111_ppl_14393
crossref_primary_10_3389_fpls_2023_1143961
crossref_primary_10_3390_plants11030392
crossref_primary_10_1093_database_baaa114
crossref_primary_10_1016_j_jplph_2023_153921
crossref_primary_10_1038_s41467_024_55755_0
crossref_primary_10_1016_j_plaphy_2023_01_064
crossref_primary_10_1038_s41477_023_01555_1
crossref_primary_10_3390_ijms251910430
crossref_primary_10_3390_genes12121936
crossref_primary_10_1111_pce_14143
crossref_primary_10_1016_j_postharvbio_2024_113375
crossref_primary_10_1007_s00344_023_11168_9
crossref_primary_10_1016_j_postharvbio_2023_112741
Cites_doi 10.1128/EC.4.9.1539-1549.2005
10.1038/nature09143
10.1016/j.pbi.2007.04.004
10.1016/S0092-8674(00)80865-X
10.1111/nph.14170
10.1111/nph.14140
10.1139/b02-017
10.1105/tpc.112.099796
10.1073/pnas.1515576112
10.1104/pp.109.144907
10.1038/nature10070
10.1104/pp.113.217661
10.1073/pnas.1507691112
10.1104/pp.109.141408
10.1016/j.tplants.2010.06.004
10.1105/tpc.106.048033
10.1093/jxb/ern101
10.1111/tpj.14101
10.3390/ijms20246117
10.1073/pnas.1308412110
10.1093/nar/gky310
10.1073/pnas.1205726109
10.1093/aob/mci266
10.1093/jxb/erv434
10.1007/s00425-009-0930-6
10.1186/s12870-018-1403-5
10.1126/science.1139531
10.1016/j.tplants.2010.06.005
10.1093/jxb/erw305
10.7554/eLife.03115
10.1111/tpj.12624
10.1074/jbc.270.13.7382
10.1093/jxb/erx348
10.1104/pp.107.099432
10.1016/S0092-8674(00)80115-4
10.1101/gad.305504
10.1104/pp.113.224410
10.1016/j.cell.2015.12.021
10.1016/j.pbi.2012.03.003
10.1093/jxb/err135
10.1105/tpc.114.129049
10.1104/pp.16.01614
10.1111/j.1365-3040.2004.01245.x
10.1038/nprot.2006.286
10.1016/j.pbi.2015.08.004
10.1104/pp.106.091090
10.1104/pp.107.105676
10.1104/pp.110.158238
10.1073/pnas.0905555106
10.1111/j.1365-313X.2009.03973.x
10.1093/nar/gkx382
10.1073/pnas.0706984104
10.1104/pp.18.01158
10.1111/tpj.13820
10.1111/j.1365-313X.2008.03674.x
10.1016/S0031-9422(01)00046-2
10.1371/journal.pgen.1000492
10.1111/tpj.13784
10.1105/tpc.16.00490
10.1093/jexbot/50.337.1267
10.1111/tpj.14015
10.1016/j.phytochem.2005.09.027
ContentType Journal Article
Copyright 2020 Society for Experimental Biology and John Wiley & Sons Ltd
2020 Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2020 Society for Experimental Biology and John Wiley & Sons Ltd
– notice: 2020 Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.14711
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
Genetics Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 447
ExternalDocumentID 32027440
10_1111_tpj_14711
TPJ14711
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4871-9f4caf7e7df1cca9a3d1a1085aab1d6924574afa14841567fb057ba0f0af3a663
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:31:19 EDT 2025
Fri Jul 11 06:24:54 EDT 2025
Fri Jul 25 10:45:46 EDT 2025
Wed Feb 19 02:30:28 EST 2025
Thu Apr 24 23:03:18 EDT 2025
Tue Jul 01 03:57:32 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords root endodermis
lipophilic barriers
suberin lamellae
Casparian strips
phenylpropanoids
Language English
License 2020 Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4871-9f4caf7e7df1cca9a3d1a1085aab1d6924574afa14841567fb057ba0f0af3a663
Notes Linked article: This paper is the subject of a Research Highlight article. To view this Research Highlight article visit
The copyright line for this article was changed on 25 April 2020 after original online publication
https://doi.org/10.1111/tpj.14785
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1913-8125
0000-0002-6077-1590
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.14711
PMID 32027440
PQID 2400402979
PQPubID 31702
PageCount 17
ParticipantIDs proquest_miscellaneous_2439415388
proquest_miscellaneous_2352050119
proquest_journals_2400402979
pubmed_primary_32027440
crossref_primary_10_1111_tpj_14711
crossref_citationtrail_10_1111_tpj_14711
wiley_primary_10_1111_tpj_14711_TPJ14711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 145
2010; 15
2010; 466
2007; 144
2011; 62
2017; 45
2014; 26
2009; 150
2013; 163
2009; 151
2013; 162
2007b; 104
2012; 15
2009; 230
2005; 66
2011; 473
2018; 46
2009; 57
2014; 3
2019; 20
2010; 153
2013; 110
1999; 50
2012; 24
2001; 57
2007; 19
2009; 60
2017; 68
2008; 59
2017; 173
2008; 98
2006; 1
2002; 80
2007; 10
2017; 213
2008; 93
2016; 164
1995; 270
2012; 109
2007a; 144
2018; 18
2015; 28
2007; 316
2014; 80
2004; 18
2015; 112
2015; 66
2016; 212
2005; 96
2005; 4
2019; 179
2018; 96
2009; 5
2000; 101
2018; 93
2016; 28
1996; 86
2016; 67
2009; 106
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
32391931 - Plant J. 2020 May;102(3):429-430
References_xml – volume: 15
  start-page: 573
  year: 2010
  end-page: 581
  article-title: MYB transcription factors in Arabidopsis
  publication-title: Trends Plant Sci.
– volume: 1
  start-page: 2019
  year: 2006
  end-page: 2025
  article-title: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants
  publication-title: Nat. Protoc.
– volume: 96
  start-page: 223
  year: 2018
  end-page: 232
  article-title: The ‘TranSeq’ 3’ end sequencing method for high throughput transcriptomics and gene space refinement in plant genomes
  publication-title: Plant J.
– volume: 67
  start-page: 5415
  year: 2016
  end-page: 5427
  article-title: Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin
  publication-title: J. Exp. Bot.
– volume: 57
  start-page: 1115
  year: 2001
  end-page: 1122
  article-title: The poly(phenolic) domain of potato suberin: a non‐lignin cell wall biopolymer
  publication-title: Phytochemistry
– volume: 86
  start-page: 423
  year: 1996
  end-page: 433
  article-title: The gene regulates an asymmetric cell division that is essential for generating the radian organization of the Arabidopsis root
  publication-title: Cell
– volume: 46
  start-page: 486
  year: 2018
  end-page: 494
  article-title: MetaboAnalyst4.0: towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res.
– volume: 145
  start-page: 1345
  year: 2007
  end-page: 1360
  article-title: The Arabidopsis DESPERDAO/AtWBC11 transporter is required for cutin and wax secretion
  publication-title: Plant Physiol.
– volume: 66
  start-page: 2643
  year: 2005
  end-page: 2658
  article-title: Apoplastic polyesters in Arabidopsis surface tissues: a typical suberin and a particular cutin
  publication-title: Phytochemistry
– volume: 26
  start-page: 3569
  year: 2014
  end-page: 3588
  article-title: ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis
  publication-title: Plant Cell
– volume: 164
  start-page: 447
  year: 2016
  end-page: 459
  article-title: Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation
  publication-title: Cell
– volume: 96
  start-page: 1026
  year: 2018
  end-page: 1217
  article-title: Disruption of glycosylphosphatidylinositol‐anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis
  publication-title: Plant J.
– volume: 4
  start-page: 1539
  year: 2005
  end-page: 1549
  article-title: Dual luciferase assay system for rapid assessment of gene expression in
  publication-title: Eukaryot. Cell
– volume: 93
  start-page: 931
  year: 2008
  end-page: 942
  article-title: Differential induction of polar and non‐polar metabolism during wound‐induced suberization in potato ( L.) tubers
  publication-title: Plant J.
– volume: 98
  start-page: 1179
  year: 2008
  end-page: 1189
  article-title: Soybean root suberin and partial resistance to root rot caused by
  publication-title: Phytopathology
– volume: 28
  start-page: 2097
  year: 2016
  end-page: 2116
  article-title: MYB107 and MYB9 homologs regulate suberin deposition in angiosperms
  publication-title: Plant Cell
– volume: 62
  start-page: 4215
  year: 2011
  end-page: 4228
  article-title: Root apoplastic barriers block Na+ transport to shoots in rice ( L.)
  publication-title: J. Exp. Bot.
– volume: 18
  start-page: 1964
  year: 2004
  end-page: 1969
  article-title: Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division
  publication-title: Genes Dev.
– volume: 144
  start-page: 299
  year: 2007
  end-page: 311
  article-title: Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to
  publication-title: Plant Physiol.
– volume: 466
  start-page: 128
  year: 2010
  end-page: 132
  article-title: Spatiotemporal regulation of cell‐cycle gene by SHORTROOT links patterning and growth
  publication-title: Nature
– volume: 80
  start-page: 227
  year: 2002
  end-page: 240
  article-title: Demystifying suberin
  publication-title: Can. J. Bot.
– volume: 20
  start-page: 6017
  year: 2019
  article-title: Overexpression of ANAC046 promotes suberin biosynthesis in root of
  publication-title: Int. J. Mol. Sci.
– volume: 173
  start-page: 1045
  year: 2017
  end-page: 1058
  article-title: The MYB107 transcription factor positively regulates suberin biosynthesis
  publication-title: Plant Physiol.
– volume: 59
  start-page: 2347
  year: 2008
  end-page: 2360
  article-title: The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega‐hydroxylase involved in suberin monomer biosynthesis
  publication-title: J. Exp. Bot.
– volume: 101
  start-page: 555
  year: 2000
  end-page: 567
  article-title: The gene controls radial patterning pf the root through radial signaling
  publication-title: Cell
– volume: 110
  start-page: 14498
  year: 2013
  end-page: 14503
  article-title: Dirigent domain‐containing protein is part of the machinery required for formation of the lignin‐based Casparian strip in the root
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 230
  start-page: 119
  year: 2009
  end-page: 134
  article-title: The role of root apoplastic transport barriers in salt tolerance of rice ( L.)
  publication-title: Planta
– volume: 163
  start-page: 1118
  year: 2013
  end-page: 1132
  article-title: Suberin‐associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties
  publication-title: Plant Physiol.
– volume: 153
  start-page: 1539
  year: 2010
  end-page: 1554
  article-title: Three Arabidopsis fatty acyl‐coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition
  publication-title: Plant Physiol.
– volume: 104
  start-page: 18339
  year: 2007b
  end-page: 18344
  article-title: Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin‐like monomers
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 179
  start-page: 1486
  year: 2019
  end-page: 1501
  article-title: A multilevel study of melon fruit reticulation provides insight into skin ligno‐suberization hallmarks
  publication-title: Plant Physiol.
– volume: 66
  start-page: 7377
  year: 2015
  end-page: 7389
  article-title: Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato
  publication-title: J. Exp. Bot.
– volume: 60
  start-page: 462
  year: 2009
  end-page: 475
  article-title: Two Arabidopsis 3‐ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress
  publication-title: Plant J.
– volume: 109
  start-page: 10101
  year: 2012
  end-page: 10106
  article-title: Casparian strip diffusion barrier in is made of lignin polymer without suberin
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 270
  start-page: 7382
  year: 1995
  end-page: 7386
  article-title: Hydroxycinnamic acid‐derived polymers constitute the polyaromatic domain of suberin
  publication-title: J. Biol. Chem.
– volume: 80
  start-page: 216
  year: 2014
  end-page: 229
  article-title: AtMYB41 activates ectopic suberin biosynthesis and assembly in multiple plant species and cell types
  publication-title: Plant J.
– volume: 151
  start-page: 1317
  year: 2009
  end-page: 1328
  article-title: Identification of an Arabidopsis feruloyl‐coenzyme A transferase required for suberin synthesis
  publication-title: Plant Physiol.
– volume: 3
  year: 2014
  article-title: A receptor‐like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects
  publication-title: ELife
– volume: 10
  start-page: 252
  year: 2007
  end-page: 259
  article-title: Suberin – a biopolyester forming apoplastic barriers
  publication-title: Curr. Opin. Plant Biol.
– volume: 45
  start-page: 122
  year: 2017
  end-page: 129
  article-title: agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update
  publication-title: Nucleic Acids Res.
– volume: 5
  year: 2009
  article-title: Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis
  publication-title: PLoS Genet.
– volume: 473
  start-page: 380
  year: 2011
  end-page: 383
  article-title: A novel protein family mediates Casparian strip formation in the endodermis
  publication-title: Nature
– volume: 18
  start-page: s12870
  year: 2018
  article-title: ChIP‐Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak ( )
  publication-title: BMC Plant Biol.
– volume: 93
  start-page: 399
  year: 2018
  end-page: 412
  article-title: A protocol for combining fluorescent proteins with histological stains for diverse cell wall components
  publication-title: Plant J.
– volume: 150
  start-page: 1831
  year: 2009
  end-page: 1843
  article-title: CYP86B1 is required for very long chain omega‐hydroxyacid and alpha, omega‐dicarboxylic acid synthesis in root and seed suberin polyester
  publication-title: Plant Physiol.
– volume: 112
  start-page: 12099
  year: 2015
  end-page: 12104
  article-title: MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 213
  start-page: 1604
  year: 2017
  end-page: 1610
  article-title: The endodermis as a checkpoint for nutrients
  publication-title: New Phytol.
– volume: 15
  start-page: 329
  year: 2012
  end-page: 337
  article-title: Solving the puzzles of cutin and suberin polymer biosynthesis
  publication-title: Curr. Opin. Plant. Biol.
– volume: 50
  start-page: 1267
  year: 1999
  end-page: 1280
  article-title: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls
  publication-title: J. Exp. Bot.
– volume: 24
  start-page: 3106
  year: 2012
  end-page: 3118
  article-title: Reconstruction of plant alkaline biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very‐long‐chain alkane synthesis complex
  publication-title: Plant Cell
– volume: 15
  start-page: 546
  year: 2010
  end-page: 553
  article-title: Transport barriers made of cutin, suberin and associated waxes
  publication-title: Trends Plant Sci.
– volume: 68
  start-page: 5389
  year: 2017
  end-page: 5400
  article-title: Assimilation of ‘omics’ strategies to study the cuticle layer and suberin lamellae in plants
  publication-title: J. Exp. Bot.
– volume: 28
  start-page: 9
  year: 2015
  end-page: 15
  article-title: Suberization – the second life of an endodermal cell
  publication-title: Curr. Opin. Plant Biol.
– volume: 57
  start-page: 80
  year: 2009
  end-page: 95
  article-title: The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza‐micropyle region of seeds
  publication-title: Plant J.
– volume: 112
  start-page: 10533
  year: 2015
  end-page: 10538
  article-title: The MYB36 transcription factor orchestrates Casparian strip formation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 212
  start-page: 977
  year: 2016
  end-page: 991
  article-title: MdMYB93 is a regulator of suberin deposition in russeted apple fruit skins
  publication-title: New. Phytol.
– volume: 96
  start-page: 989
  year: 2005
  end-page: 996
  article-title: An improved method for clearing and staining free‐hand sections and whole‐mount samples
  publication-title: Ann. Bot.
– volume: 106
  start-page: 18855
  year: 2009
  end-page: 18860
  article-title: A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 162
  start-page: 1618
  year: 2013
  end-page: 1631
  article-title: GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology
  publication-title: Plant Physiol.
– volume: 144
  start-page: 1267
  year: 2007a
  end-page: 1277
  article-title: Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin‐associated acyltransferase
  publication-title: Plant Physiol.
– volume: 19
  start-page: 351
  year: 2007
  end-page: 368
  article-title: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis
  publication-title: Plant Cell
– volume: 316
  start-page: 421
  year: 2007
  end-page: 425
  article-title: An evolutionary conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants
  publication-title: Science
– ident: e_1_2_9_43_1
  doi: 10.1128/EC.4.9.1539-1549.2005
– ident: e_1_2_9_53_1
  doi: 10.1038/nature09143
– ident: e_1_2_9_21_1
  doi: 10.1016/j.pbi.2007.04.004
– ident: e_1_2_9_27_1
  doi: 10.1016/S0092-8674(00)80865-X
– ident: e_1_2_9_37_1
  doi: 10.1111/nph.14170
– ident: e_1_2_9_3_1
  doi: 10.1111/nph.14140
– ident: e_1_2_9_9_1
  doi: 10.1139/b02-017
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.112.099796
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1515576112
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.109.144907
– ident: e_1_2_9_49_1
  doi: 10.1038/nature10070
– ident: e_1_2_9_50_1
  doi: 10.1104/pp.113.217661
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.1507691112
– ident: e_1_2_9_16_1
  doi: 10.1104/pp.109.141408
– ident: e_1_2_9_51_1
  doi: 10.1016/j.tplants.2010.06.004
– ident: e_1_2_9_6_1
  doi: 10.1105/tpc.106.048033
– ident: e_1_2_9_28_1
  doi: 10.1093/jxb/ern101
– ident: e_1_2_9_35_1
  doi: 10.1111/tpj.14101
– ident: e_1_2_9_42_1
  doi: 10.3390/ijms20246117
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.1308412110
– ident: e_1_2_9_13_1
  doi: 10.1093/nar/gky310
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1205726109
– ident: e_1_2_9_41_1
  doi: 10.1093/aob/mci266
– ident: e_1_2_9_63_1
  doi: 10.1093/jxb/erv434
– ident: e_1_2_9_32_1
  doi: 10.1007/s00425-009-0930-6
– ident: e_1_2_9_12_1
  doi: 10.1186/s12870-018-1403-5
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1139531
– ident: e_1_2_9_20_1
  doi: 10.1016/j.tplants.2010.06.005
– ident: e_1_2_9_59_1
  doi: 10.1093/jxb/erw305
– ident: e_1_2_9_47_1
  doi: 10.7554/eLife.03115
– ident: e_1_2_9_31_1
  doi: 10.1111/tpj.12624
– ident: e_1_2_9_11_1
  doi: 10.1074/jbc.270.13.7382
– ident: e_1_2_9_14_1
  doi: 10.1093/jxb/erx348
– ident: e_1_2_9_38_1
  doi: 10.1104/pp.107.099432
– ident: e_1_2_9_18_1
  doi: 10.1016/S0092-8674(00)80115-4
– ident: e_1_2_9_26_1
  doi: 10.1101/gad.305504
– ident: e_1_2_9_60_1
  doi: 10.1104/pp.113.224410
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cell.2015.12.021
– ident: e_1_2_9_7_1
  doi: 10.1016/j.pbi.2012.03.003
– ident: e_1_2_9_33_1
  doi: 10.1093/jxb/err135
– ident: e_1_2_9_62_1
  doi: 10.1105/tpc.114.129049
– ident: e_1_2_9_25_1
  doi: 10.1104/pp.16.01614
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365-3040.2004.01245.x
– ident: e_1_2_9_54_1
  doi: 10.1038/nprot.2006.286
– ident: e_1_2_9_2_1
  doi: 10.1016/j.pbi.2015.08.004
– ident: e_1_2_9_55_1
  doi: 10.1104/pp.106.091090
– ident: e_1_2_9_46_1
  doi: 10.1104/pp.107.105676
– ident: e_1_2_9_19_1
  doi: 10.1104/pp.110.158238
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.0905555106
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1365-313X.2009.03973.x
– ident: e_1_2_9_56_1
  doi: 10.1093/nar/gkx382
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.0706984104
– ident: e_1_2_9_15_1
  doi: 10.1104/pp.18.01158
– ident: e_1_2_9_61_1
  doi: 10.1111/tpj.13820
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1365-313X.2008.03674.x
– ident: e_1_2_9_10_1
  doi: 10.1016/S0031-9422(01)00046-2
– ident: e_1_2_9_5_1
  doi: 10.1371/journal.pgen.1000492
– ident: e_1_2_9_58_1
  doi: 10.1111/tpj.13784
– ident: e_1_2_9_34_1
  doi: 10.1105/tpc.16.00490
– ident: e_1_2_9_52_1
  doi: 10.1093/jexbot/50.337.1267
– ident: e_1_2_9_57_1
  doi: 10.1111/tpj.14015
– ident: e_1_2_9_22_1
  doi: 10.1016/j.phytochem.2005.09.027
– reference: 32391931 - Plant J. 2020 May;102(3):429-430
SSID ssj0017364
Score 2.5719342
Snippet Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken...
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms Arabidopsis
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Biosynthesis
Casparian strips
Cell Wall - metabolism
Cell walls
coatings
Deposition
endodermis
Gene expression
Gene Expression Profiling
gene expression regulation
gene regulatory networks
Genes
Hydrophobicity
ionomics
Lamellae
Leaves
Lignin
Lipids
lipophilic barriers
Molecular modelling
Monomers
Nicotiana benthamiana
Nutrients
phenotype
Phenotypes
Phenylpropanoids
Plant Roots - metabolism
Polymers
Regulatory mechanisms (biology)
root endodermis
roots
soil
Solutes
suberin
suberin lamellae
suberization
transcription factors
Title SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14711
https://www.ncbi.nlm.nih.gov/pubmed/32027440
https://www.proquest.com/docview/2400402979
https://www.proquest.com/docview/2352050119
https://www.proquest.com/docview/2439415388
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8RQDA4iHry4L6OjVPHgpdJO23kWT6MoIiiiDngQSt4GorSD7Rz015t0cxfxVmha3pI0X16TLwA7oq9jpfYjNwr4tMo3ysU41C5pl1LkAnWAXI18ftE_HYZnt9HtBBw0tTAVP0R74MaWUX6v2cBR5u-MvBixmYuyrpdztRgQXbXUUb4IKuooQuguec1ezSrEWTztkx990ReA-RGvlg7nZBbumqFWeSYPe-NC7qmXTyyO_5zLHMzUQNQZVJozDxMmXYCpw4zA4vMiXF4PD4-vzgcXzlPVrN7kjn7LL6IH87Ek5a2KOJ3MOgQk6WUo73U2yu9zhxB54ZhUc6810qUlGJ4c3xydunXzBVdRDOO7sQ0VWmGEtj7tcoyB9pFLFRClr_sUtkUiRIsUTnEMKKwk5CfRsx7aAAnHLMNkmqVmFZzQ0NyiQFjUGBrRQ6mUIBGMRM960uvAbrMNiaqZyblBxmPSRCi0Pkm5Ph3YbkVHFR3Hd0LdZi-T2iLzhHNlQ-7UFXdgq71N8-cfJJiabEwyhEa9iFnwfpHhUmJ2E_sdWKn0pB0J96JnwkWaULnbPw8xubk8Ky_W_i66DtM9DvbLbMsuTBZPY7NBiKiQm6XqvwI4-Qa7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xQEB5EC_WlWrV21doofehLJNkkewz4okXZqruI3QVfSphzA1GSxWQf9Nc7k5v1SvEtkEk4l5nMNycz3wD8ED0dK7UbuVHAp1W-US7GoXZJu5QiF6gD5GrkwbDXH4fHF9HFDOw1tTAVP0R74MaWUX6v2cD5QPofKy8mbOeCC3vnuKN3GVCdt-RRvggq8ijC6C75zW7NK8R5PO2jj73RM4j5GLGWLudoAf42g60yTa52poXcUXdPeBzfO5tF-FRjUWe_Up7PMGPSJfhwkBFevF2Gsz_jg8Pzwf7Quan61Zvc0Q8pRvRgPpWkv1Udp5NZh7AkvQzlpc4m-WXuECgvHJNqbrdG6rQC46PD0a--W_dfcBWFMb4b21ChFUZo69NGxxhoH7laAVH6ukeRWyRCtEgRFYeBwkoCfxI966ENkKDMF5hNs9R8BSc0NLcoEBY1hkZ0USolSAQj0bWe9Drws9mHRNXk5Nwj4zppghRan6Rcnw5st6KTipHjJaGNZjOT2ijzhNNlQ27WFXdgq71N8-d_JJiabEoyBEi9iInw3pDhamL2FLsdWK0UpR0Jt6NnzkWaULndrw8xGZ0dlxdr_y_6HT72R4PT5PT38GQd5rsc-5fJlxswW9xMzTcCSIXcLO3gHpcnCtY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9tQDLYQm9Be2MY2KIMRJh72EpQ0SU-jPbVAxbWqgEo8TIp8blIFSiqSPmy_fnZuwDamaW-R4kTnYsefT-zPAHuip2Ol-pEbBXxa5RvlYhxql7RLKXKBOkCuRr4Y946n4elNdLMEX5tamIofoj1wY8sov9ds4HNtHxl5MWczF1zX-yLseX1W6cPLljvKF0HFHUUQ3SW32a1phTiNp330qTP6DWE-Baylxxm9hm_NWKtEk9v9RSH31Y9faBz_czJvYLVGos6gUp23sGTSNXg5zAgtfn8Hk6vp8OjyYjB27qtu9SZ39EOCET2YLyRpb1XF6WTWISRJL0M509k8n-UOQfLCManmZmukTO9hOjq6Pjh26-4LrqIgxndjGyq0wghtfdrmGAPtI9cqIEpf9yhui0SIFime4iBQWEnQT6JnPbQBEpD5AMtplpoNcEJDc4sCYVFjaEQXpVKCRDASXetJrwNfmm1IVE1Nzh0y7pImRKH1Scr16cDnVnRe8XH8SWir2cukNsk84WTZkFt1xR3YbW_T_PkPCaYmW5AMwVEvYhq8v8hwLTH7iX4H1is9aUfCzeiZcZEmVO7280NMrien5cXmv4vuwMrkcJScn4zPPsKrLgf-ZeblFiwX9wuzTeiokJ9KK_gJjhYJjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SUBERMAN+regulates+developmental+suberization+of+the+Arabidopsis+root+endodermis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Cohen%2C+Hagai&rft.au=Fedyuk%2C+Vadim&rft.au=Wang%2C+Chunhua&rft.au=Wu%2C+Shuang&rft.date=2020-05-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=102&rft.issue=3&rft.spage=431&rft_id=info:doi/10.1111%2Ftpj.14711&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon