SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis
Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae;...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 102; no. 3; pp. 431 - 447 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Significance Statement
The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. |
---|---|
AbstractList | Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Summary Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin‐type monomers, and consequent deposition of suberin‐like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. Significance Statement The capacity of root endodermis to function as a successful barrier is achieved by the deposition of lignified Casparian strips and suberin lamellae in its cell walls during development. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls establishment of the root suberin lamellae. Its characterization constitutes a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities. |
Author | Wang, Chunhua Wu, Shuang Aharoni, Asaph Cohen, Hagai Fedyuk, Vadim |
Author_xml | – sequence: 1 givenname: Hagai surname: Cohen fullname: Cohen, Hagai organization: Weizmann Institute of Science – sequence: 2 givenname: Vadim surname: Fedyuk fullname: Fedyuk, Vadim organization: Weizmann Institute of Science – sequence: 3 givenname: Chunhua surname: Wang fullname: Wang, Chunhua organization: Fujian Agriculture and Forestry University – sequence: 4 givenname: Shuang orcidid: 0000-0003-1913-8125 surname: Wu fullname: Wu, Shuang organization: Fujian Agriculture and Forestry University – sequence: 5 givenname: Asaph orcidid: 0000-0002-6077-1590 surname: Aharoni fullname: Aharoni, Asaph email: asaph.aharoni@weizmann.ac.il organization: Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32027440$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1v1DAQBmALFdFt4cAfQJG4wCHtTOzEyXGpypcKVNBK3KJJMgavsnGwHVD59bjdwqES4Isvz_tanjkQe5ObWIjHCEeYznGcN0eoNOI9sUJZlblE-XlPrKCpINcKi31xEMIGALWs1AOxLwsotFKwEuefLl-cfny3fp95_rKMFDlkA3_n0c1bniKNWVg69vYnReumzJksfuVs7amzg5uDDZl3LmY8DW5gv7XhobhvaAz86PY-FJcvTy9OXudnH169OVmf5b2qNeaNUT0ZzXow2PfUkByQEOqSqMOhagpVakWGUNUKy0qbDkrdERggI6mq5KF4tuudvfu2cIhterzncaSJ3RLaQskmJWVd_5_KsoASEJtEn96hG7f4KX0kFQIoKBp9rZ7cqqXb8tDO3m7JX7W_x5rA8x3ovQvBs_lDENrrlbVpZe3NypI9vmN7G2-mHT3Z8V-JH3bkq79Xtxfnb3eJX2jspjo |
CitedBy_id | crossref_primary_10_1093_plcell_koae278 crossref_primary_10_1111_tpj_15275 crossref_primary_10_3389_fpls_2022_1007494 crossref_primary_10_1038_s41477_024_01842_5 crossref_primary_10_1126_science_abd0695 crossref_primary_10_1007_s00425_023_04102_6 crossref_primary_10_1111_tpj_16722 crossref_primary_10_1111_tpj_15315 crossref_primary_10_1016_j_isci_2020_101978 crossref_primary_10_1186_s13068_021_01892_3 crossref_primary_10_1111_tpj_14785 crossref_primary_10_3390_biom12060811 crossref_primary_10_1080_07388551_2023_2165900 crossref_primary_10_1038_s41477_023_01391_3 crossref_primary_10_1007_s00425_021_03663_8 crossref_primary_10_3389_fpls_2022_1039014 crossref_primary_10_3390_ijms25116091 crossref_primary_10_3390_plants13091276 crossref_primary_10_1093_plphys_kiac298 crossref_primary_10_1007_s10142_022_00836_w crossref_primary_10_3390_ijms232416156 crossref_primary_10_1111_tpj_15249 crossref_primary_10_1360_TB_2022_0971 crossref_primary_10_1016_j_jplph_2023_154118 crossref_primary_10_1016_j_isci_2021_103228 crossref_primary_10_48130_VR_2023_0019 crossref_primary_10_3390_plants11040555 crossref_primary_10_1016_j_devcel_2021_02_027 crossref_primary_10_1111_pce_15334 crossref_primary_10_1007_s00344_024_11453_1 crossref_primary_10_1146_annurev_arplant_102720_031405 crossref_primary_10_3390_plants12091890 crossref_primary_10_1073_pnas_2101730118 crossref_primary_10_1270_jsbbs_20123 crossref_primary_10_1111_tpj_15691 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_1007_s11103_022_01312_6 crossref_primary_10_1111_plb_13650 crossref_primary_10_1016_j_postharvbio_2022_112071 crossref_primary_10_1242_bio_059184 crossref_primary_10_3389_fpls_2023_1156356 crossref_primary_10_1016_j_stress_2024_100698 crossref_primary_10_1111_tpj_14920 crossref_primary_10_1002_pld3_278 crossref_primary_10_1016_j_envexpbot_2022_105140 crossref_primary_10_1016_j_plantsci_2024_112300 crossref_primary_10_1186_s12870_021_03407_6 crossref_primary_10_1111_ppl_13371 crossref_primary_10_34133_plantphenomics_0156 crossref_primary_10_1038_s41477_023_01567_x crossref_primary_10_3390_plants12223786 crossref_primary_10_1016_j_pbi_2021_102153 crossref_primary_10_1016_j_xplc_2022_100308 crossref_primary_10_1093_jxb_eraa444 crossref_primary_10_1111_ppl_14393 crossref_primary_10_3389_fpls_2023_1143961 crossref_primary_10_3390_plants11030392 crossref_primary_10_1093_database_baaa114 crossref_primary_10_1016_j_jplph_2023_153921 crossref_primary_10_1038_s41467_024_55755_0 crossref_primary_10_1016_j_plaphy_2023_01_064 crossref_primary_10_1038_s41477_023_01555_1 crossref_primary_10_3390_ijms251910430 crossref_primary_10_3390_genes12121936 crossref_primary_10_1111_pce_14143 crossref_primary_10_1016_j_postharvbio_2024_113375 crossref_primary_10_1007_s00344_023_11168_9 crossref_primary_10_1016_j_postharvbio_2023_112741 |
Cites_doi | 10.1128/EC.4.9.1539-1549.2005 10.1038/nature09143 10.1016/j.pbi.2007.04.004 10.1016/S0092-8674(00)80865-X 10.1111/nph.14170 10.1111/nph.14140 10.1139/b02-017 10.1105/tpc.112.099796 10.1073/pnas.1515576112 10.1104/pp.109.144907 10.1038/nature10070 10.1104/pp.113.217661 10.1073/pnas.1507691112 10.1104/pp.109.141408 10.1016/j.tplants.2010.06.004 10.1105/tpc.106.048033 10.1093/jxb/ern101 10.1111/tpj.14101 10.3390/ijms20246117 10.1073/pnas.1308412110 10.1093/nar/gky310 10.1073/pnas.1205726109 10.1093/aob/mci266 10.1093/jxb/erv434 10.1007/s00425-009-0930-6 10.1186/s12870-018-1403-5 10.1126/science.1139531 10.1016/j.tplants.2010.06.005 10.1093/jxb/erw305 10.7554/eLife.03115 10.1111/tpj.12624 10.1074/jbc.270.13.7382 10.1093/jxb/erx348 10.1104/pp.107.099432 10.1016/S0092-8674(00)80115-4 10.1101/gad.305504 10.1104/pp.113.224410 10.1016/j.cell.2015.12.021 10.1016/j.pbi.2012.03.003 10.1093/jxb/err135 10.1105/tpc.114.129049 10.1104/pp.16.01614 10.1111/j.1365-3040.2004.01245.x 10.1038/nprot.2006.286 10.1016/j.pbi.2015.08.004 10.1104/pp.106.091090 10.1104/pp.107.105676 10.1104/pp.110.158238 10.1073/pnas.0905555106 10.1111/j.1365-313X.2009.03973.x 10.1093/nar/gkx382 10.1073/pnas.0706984104 10.1104/pp.18.01158 10.1111/tpj.13820 10.1111/j.1365-313X.2008.03674.x 10.1016/S0031-9422(01)00046-2 10.1371/journal.pgen.1000492 10.1111/tpj.13784 10.1105/tpc.16.00490 10.1093/jexbot/50.337.1267 10.1111/tpj.14015 10.1016/j.phytochem.2005.09.027 |
ContentType | Journal Article |
Copyright | 2020 Society for Experimental Biology and John Wiley & Sons Ltd 2020 Society for Experimental Biology and John Wiley & Sons Ltd. Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2020 Society for Experimental Biology and John Wiley & Sons Ltd – notice: 2020 Society for Experimental Biology and John Wiley & Sons Ltd. – notice: Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/tpj.14711 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 447 |
ExternalDocumentID | 32027440 10_1111_tpj_14711 TPJ14711 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4871-9f4caf7e7df1cca9a3d1a1085aab1d6924574afa14841567fb057ba0f0af3a663 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:31:19 EDT 2025 Fri Jul 11 06:24:54 EDT 2025 Fri Jul 25 10:45:46 EDT 2025 Wed Feb 19 02:30:28 EST 2025 Thu Apr 24 23:03:18 EDT 2025 Tue Jul 01 03:57:32 EDT 2025 Wed Jan 22 16:33:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | root endodermis lipophilic barriers suberin lamellae Casparian strips phenylpropanoids |
Language | English |
License | 2020 Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4871-9f4caf7e7df1cca9a3d1a1085aab1d6924574afa14841567fb057ba0f0af3a663 |
Notes | Linked article: This paper is the subject of a Research Highlight article. To view this Research Highlight article visit The copyright line for this article was changed on 25 April 2020 after original online publication https://doi.org/10.1111/tpj.14785 . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1913-8125 0000-0002-6077-1590 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.14711 |
PMID | 32027440 |
PQID | 2400402979 |
PQPubID | 31702 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2439415388 proquest_miscellaneous_2352050119 proquest_journals_2400402979 pubmed_primary_32027440 crossref_primary_10_1111_tpj_14711 crossref_citationtrail_10_1111_tpj_14711 wiley_primary_10_1111_tpj_14711_TPJ14711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 145 2010; 15 2010; 466 2007; 144 2011; 62 2017; 45 2014; 26 2009; 150 2013; 163 2009; 151 2013; 162 2007b; 104 2012; 15 2009; 230 2005; 66 2011; 473 2018; 46 2009; 57 2014; 3 2019; 20 2010; 153 2013; 110 1999; 50 2012; 24 2001; 57 2007; 19 2009; 60 2017; 68 2008; 59 2017; 173 2008; 98 2006; 1 2002; 80 2007; 10 2017; 213 2008; 93 2016; 164 1995; 270 2012; 109 2007a; 144 2018; 18 2015; 28 2007; 316 2014; 80 2004; 18 2015; 112 2015; 66 2016; 212 2005; 96 2005; 4 2019; 179 2018; 96 2009; 5 2000; 101 2018; 93 2016; 28 1996; 86 2016; 67 2009; 106 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 32391931 - Plant J. 2020 May;102(3):429-430 |
References_xml | – volume: 15 start-page: 573 year: 2010 end-page: 581 article-title: MYB transcription factors in Arabidopsis publication-title: Trends Plant Sci. – volume: 1 start-page: 2019 year: 2006 end-page: 2025 article-title: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants publication-title: Nat. Protoc. – volume: 96 start-page: 223 year: 2018 end-page: 232 article-title: The ‘TranSeq’ 3’ end sequencing method for high throughput transcriptomics and gene space refinement in plant genomes publication-title: Plant J. – volume: 67 start-page: 5415 year: 2016 end-page: 5427 article-title: Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin publication-title: J. Exp. Bot. – volume: 57 start-page: 1115 year: 2001 end-page: 1122 article-title: The poly(phenolic) domain of potato suberin: a non‐lignin cell wall biopolymer publication-title: Phytochemistry – volume: 86 start-page: 423 year: 1996 end-page: 433 article-title: The gene regulates an asymmetric cell division that is essential for generating the radian organization of the Arabidopsis root publication-title: Cell – volume: 46 start-page: 486 year: 2018 end-page: 494 article-title: MetaboAnalyst4.0: towards more transparent and integrative metabolomics analysis publication-title: Nucleic Acids Res. – volume: 145 start-page: 1345 year: 2007 end-page: 1360 article-title: The Arabidopsis DESPERDAO/AtWBC11 transporter is required for cutin and wax secretion publication-title: Plant Physiol. – volume: 66 start-page: 2643 year: 2005 end-page: 2658 article-title: Apoplastic polyesters in Arabidopsis surface tissues: a typical suberin and a particular cutin publication-title: Phytochemistry – volume: 26 start-page: 3569 year: 2014 end-page: 3588 article-title: ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis publication-title: Plant Cell – volume: 164 start-page: 447 year: 2016 end-page: 459 article-title: Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation publication-title: Cell – volume: 96 start-page: 1026 year: 2018 end-page: 1217 article-title: Disruption of glycosylphosphatidylinositol‐anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis publication-title: Plant J. – volume: 4 start-page: 1539 year: 2005 end-page: 1549 article-title: Dual luciferase assay system for rapid assessment of gene expression in publication-title: Eukaryot. Cell – volume: 93 start-page: 931 year: 2008 end-page: 942 article-title: Differential induction of polar and non‐polar metabolism during wound‐induced suberization in potato ( L.) tubers publication-title: Plant J. – volume: 98 start-page: 1179 year: 2008 end-page: 1189 article-title: Soybean root suberin and partial resistance to root rot caused by publication-title: Phytopathology – volume: 28 start-page: 2097 year: 2016 end-page: 2116 article-title: MYB107 and MYB9 homologs regulate suberin deposition in angiosperms publication-title: Plant Cell – volume: 62 start-page: 4215 year: 2011 end-page: 4228 article-title: Root apoplastic barriers block Na+ transport to shoots in rice ( L.) publication-title: J. Exp. Bot. – volume: 18 start-page: 1964 year: 2004 end-page: 1969 article-title: Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division publication-title: Genes Dev. – volume: 144 start-page: 299 year: 2007 end-page: 311 article-title: Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to publication-title: Plant Physiol. – volume: 466 start-page: 128 year: 2010 end-page: 132 article-title: Spatiotemporal regulation of cell‐cycle gene by SHORTROOT links patterning and growth publication-title: Nature – volume: 80 start-page: 227 year: 2002 end-page: 240 article-title: Demystifying suberin publication-title: Can. J. Bot. – volume: 20 start-page: 6017 year: 2019 article-title: Overexpression of ANAC046 promotes suberin biosynthesis in root of publication-title: Int. J. Mol. Sci. – volume: 173 start-page: 1045 year: 2017 end-page: 1058 article-title: The MYB107 transcription factor positively regulates suberin biosynthesis publication-title: Plant Physiol. – volume: 59 start-page: 2347 year: 2008 end-page: 2360 article-title: The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega‐hydroxylase involved in suberin monomer biosynthesis publication-title: J. Exp. Bot. – volume: 101 start-page: 555 year: 2000 end-page: 567 article-title: The gene controls radial patterning pf the root through radial signaling publication-title: Cell – volume: 110 start-page: 14498 year: 2013 end-page: 14503 article-title: Dirigent domain‐containing protein is part of the machinery required for formation of the lignin‐based Casparian strip in the root publication-title: Proc. Natl Acad. Sci. USA – volume: 230 start-page: 119 year: 2009 end-page: 134 article-title: The role of root apoplastic transport barriers in salt tolerance of rice ( L.) publication-title: Planta – volume: 163 start-page: 1118 year: 2013 end-page: 1132 article-title: Suberin‐associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties publication-title: Plant Physiol. – volume: 153 start-page: 1539 year: 2010 end-page: 1554 article-title: Three Arabidopsis fatty acyl‐coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition publication-title: Plant Physiol. – volume: 104 start-page: 18339 year: 2007b end-page: 18344 article-title: Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin‐like monomers publication-title: Proc. Natl Acad. Sci. USA – volume: 179 start-page: 1486 year: 2019 end-page: 1501 article-title: A multilevel study of melon fruit reticulation provides insight into skin ligno‐suberization hallmarks publication-title: Plant Physiol. – volume: 66 start-page: 7377 year: 2015 end-page: 7389 article-title: Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato publication-title: J. Exp. Bot. – volume: 60 start-page: 462 year: 2009 end-page: 475 article-title: Two Arabidopsis 3‐ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress publication-title: Plant J. – volume: 109 start-page: 10101 year: 2012 end-page: 10106 article-title: Casparian strip diffusion barrier in is made of lignin polymer without suberin publication-title: Proc. Natl Acad. Sci. USA – volume: 270 start-page: 7382 year: 1995 end-page: 7386 article-title: Hydroxycinnamic acid‐derived polymers constitute the polyaromatic domain of suberin publication-title: J. Biol. Chem. – volume: 80 start-page: 216 year: 2014 end-page: 229 article-title: AtMYB41 activates ectopic suberin biosynthesis and assembly in multiple plant species and cell types publication-title: Plant J. – volume: 151 start-page: 1317 year: 2009 end-page: 1328 article-title: Identification of an Arabidopsis feruloyl‐coenzyme A transferase required for suberin synthesis publication-title: Plant Physiol. – volume: 3 year: 2014 article-title: A receptor‐like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects publication-title: ELife – volume: 10 start-page: 252 year: 2007 end-page: 259 article-title: Suberin – a biopolyester forming apoplastic barriers publication-title: Curr. Opin. Plant Biol. – volume: 45 start-page: 122 year: 2017 end-page: 129 article-title: agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update publication-title: Nucleic Acids Res. – volume: 5 year: 2009 article-title: Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis publication-title: PLoS Genet. – volume: 473 start-page: 380 year: 2011 end-page: 383 article-title: A novel protein family mediates Casparian strip formation in the endodermis publication-title: Nature – volume: 18 start-page: s12870 year: 2018 article-title: ChIP‐Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak ( ) publication-title: BMC Plant Biol. – volume: 93 start-page: 399 year: 2018 end-page: 412 article-title: A protocol for combining fluorescent proteins with histological stains for diverse cell wall components publication-title: Plant J. – volume: 150 start-page: 1831 year: 2009 end-page: 1843 article-title: CYP86B1 is required for very long chain omega‐hydroxyacid and alpha, omega‐dicarboxylic acid synthesis in root and seed suberin polyester publication-title: Plant Physiol. – volume: 112 start-page: 12099 year: 2015 end-page: 12104 article-title: MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root publication-title: Proc. Natl Acad. Sci. USA – volume: 213 start-page: 1604 year: 2017 end-page: 1610 article-title: The endodermis as a checkpoint for nutrients publication-title: New Phytol. – volume: 15 start-page: 329 year: 2012 end-page: 337 article-title: Solving the puzzles of cutin and suberin polymer biosynthesis publication-title: Curr. Opin. Plant. Biol. – volume: 50 start-page: 1267 year: 1999 end-page: 1280 article-title: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls publication-title: J. Exp. Bot. – volume: 24 start-page: 3106 year: 2012 end-page: 3118 article-title: Reconstruction of plant alkaline biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very‐long‐chain alkane synthesis complex publication-title: Plant Cell – volume: 15 start-page: 546 year: 2010 end-page: 553 article-title: Transport barriers made of cutin, suberin and associated waxes publication-title: Trends Plant Sci. – volume: 68 start-page: 5389 year: 2017 end-page: 5400 article-title: Assimilation of ‘omics’ strategies to study the cuticle layer and suberin lamellae in plants publication-title: J. Exp. Bot. – volume: 28 start-page: 9 year: 2015 end-page: 15 article-title: Suberization – the second life of an endodermal cell publication-title: Curr. Opin. Plant Biol. – volume: 57 start-page: 80 year: 2009 end-page: 95 article-title: The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza‐micropyle region of seeds publication-title: Plant J. – volume: 112 start-page: 10533 year: 2015 end-page: 10538 article-title: The MYB36 transcription factor orchestrates Casparian strip formation publication-title: Proc. Natl Acad. Sci. USA – volume: 212 start-page: 977 year: 2016 end-page: 991 article-title: MdMYB93 is a regulator of suberin deposition in russeted apple fruit skins publication-title: New. Phytol. – volume: 96 start-page: 989 year: 2005 end-page: 996 article-title: An improved method for clearing and staining free‐hand sections and whole‐mount samples publication-title: Ann. Bot. – volume: 106 start-page: 18855 year: 2009 end-page: 18860 article-title: A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 162 start-page: 1618 year: 2013 end-page: 1631 article-title: GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology publication-title: Plant Physiol. – volume: 144 start-page: 1267 year: 2007a end-page: 1277 article-title: Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin‐associated acyltransferase publication-title: Plant Physiol. – volume: 19 start-page: 351 year: 2007 end-page: 368 article-title: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis publication-title: Plant Cell – volume: 316 start-page: 421 year: 2007 end-page: 425 article-title: An evolutionary conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants publication-title: Science – ident: e_1_2_9_43_1 doi: 10.1128/EC.4.9.1539-1549.2005 – ident: e_1_2_9_53_1 doi: 10.1038/nature09143 – ident: e_1_2_9_21_1 doi: 10.1016/j.pbi.2007.04.004 – ident: e_1_2_9_27_1 doi: 10.1016/S0092-8674(00)80865-X – ident: e_1_2_9_37_1 doi: 10.1111/nph.14170 – ident: e_1_2_9_3_1 doi: 10.1111/nph.14140 – ident: e_1_2_9_9_1 doi: 10.1139/b02-017 – ident: e_1_2_9_8_1 doi: 10.1105/tpc.112.099796 – ident: e_1_2_9_40_1 doi: 10.1073/pnas.1515576112 – ident: e_1_2_9_44_1 doi: 10.1104/pp.109.144907 – ident: e_1_2_9_49_1 doi: 10.1038/nature10070 – ident: e_1_2_9_50_1 doi: 10.1104/pp.113.217661 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.1507691112 – ident: e_1_2_9_16_1 doi: 10.1104/pp.109.141408 – ident: e_1_2_9_51_1 doi: 10.1016/j.tplants.2010.06.004 – ident: e_1_2_9_6_1 doi: 10.1105/tpc.106.048033 – ident: e_1_2_9_28_1 doi: 10.1093/jxb/ern101 – ident: e_1_2_9_35_1 doi: 10.1111/tpj.14101 – ident: e_1_2_9_42_1 doi: 10.3390/ijms20246117 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.1308412110 – ident: e_1_2_9_13_1 doi: 10.1093/nar/gky310 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.1205726109 – ident: e_1_2_9_41_1 doi: 10.1093/aob/mci266 – ident: e_1_2_9_63_1 doi: 10.1093/jxb/erv434 – ident: e_1_2_9_32_1 doi: 10.1007/s00425-009-0930-6 – ident: e_1_2_9_12_1 doi: 10.1186/s12870-018-1403-5 – ident: e_1_2_9_17_1 doi: 10.1126/science.1139531 – ident: e_1_2_9_20_1 doi: 10.1016/j.tplants.2010.06.005 – ident: e_1_2_9_59_1 doi: 10.1093/jxb/erw305 – ident: e_1_2_9_47_1 doi: 10.7554/eLife.03115 – ident: e_1_2_9_31_1 doi: 10.1111/tpj.12624 – ident: e_1_2_9_11_1 doi: 10.1074/jbc.270.13.7382 – ident: e_1_2_9_14_1 doi: 10.1093/jxb/erx348 – ident: e_1_2_9_38_1 doi: 10.1104/pp.107.099432 – ident: e_1_2_9_18_1 doi: 10.1016/S0092-8674(00)80115-4 – ident: e_1_2_9_26_1 doi: 10.1101/gad.305504 – ident: e_1_2_9_60_1 doi: 10.1104/pp.113.224410 – ident: e_1_2_9_4_1 doi: 10.1016/j.cell.2015.12.021 – ident: e_1_2_9_7_1 doi: 10.1016/j.pbi.2012.03.003 – ident: e_1_2_9_33_1 doi: 10.1093/jxb/err135 – ident: e_1_2_9_62_1 doi: 10.1105/tpc.114.129049 – ident: e_1_2_9_25_1 doi: 10.1104/pp.16.01614 – ident: e_1_2_9_48_1 doi: 10.1111/j.1365-3040.2004.01245.x – ident: e_1_2_9_54_1 doi: 10.1038/nprot.2006.286 – ident: e_1_2_9_2_1 doi: 10.1016/j.pbi.2015.08.004 – ident: e_1_2_9_55_1 doi: 10.1104/pp.106.091090 – ident: e_1_2_9_46_1 doi: 10.1104/pp.107.105676 – ident: e_1_2_9_19_1 doi: 10.1104/pp.110.158238 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.0905555106 – ident: e_1_2_9_36_1 doi: 10.1111/j.1365-313X.2009.03973.x – ident: e_1_2_9_56_1 doi: 10.1093/nar/gkx382 – ident: e_1_2_9_39_1 doi: 10.1073/pnas.0706984104 – ident: e_1_2_9_15_1 doi: 10.1104/pp.18.01158 – ident: e_1_2_9_61_1 doi: 10.1111/tpj.13820 – ident: e_1_2_9_23_1 doi: 10.1111/j.1365-313X.2008.03674.x – ident: e_1_2_9_10_1 doi: 10.1016/S0031-9422(01)00046-2 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pgen.1000492 – ident: e_1_2_9_58_1 doi: 10.1111/tpj.13784 – ident: e_1_2_9_34_1 doi: 10.1105/tpc.16.00490 – ident: e_1_2_9_52_1 doi: 10.1093/jexbot/50.337.1267 – ident: e_1_2_9_57_1 doi: 10.1111/tpj.14015 – ident: e_1_2_9_22_1 doi: 10.1016/j.phytochem.2005.09.027 – reference: 32391931 - Plant J. 2020 May;102(3):429-430 |
SSID | ssj0017364 |
Score | 2.5719342 |
Snippet | Summary
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken... Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 431 |
SubjectTerms | Arabidopsis Arabidopsis - metabolism Arabidopsis Proteins - metabolism Biosynthesis Casparian strips Cell Wall - metabolism Cell walls coatings Deposition endodermis Gene expression Gene Expression Profiling gene expression regulation gene regulatory networks Genes Hydrophobicity ionomics Lamellae Leaves Lignin Lipids lipophilic barriers Molecular modelling Monomers Nicotiana benthamiana Nutrients phenotype Phenotypes Phenylpropanoids Plant Roots - metabolism Polymers Regulatory mechanisms (biology) root endodermis roots soil Solutes suberin suberin lamellae suberization transcription factors |
Title | SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14711 https://www.ncbi.nlm.nih.gov/pubmed/32027440 https://www.proquest.com/docview/2400402979 https://www.proquest.com/docview/2352050119 https://www.proquest.com/docview/2439415388 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8RQDA4iHry4L6OjVPHgpdJO23kWT6MoIiiiDngQSt4GorSD7Rz015t0cxfxVmha3pI0X16TLwA7oq9jpfYjNwr4tMo3ysU41C5pl1LkAnWAXI18ftE_HYZnt9HtBBw0tTAVP0R74MaWUX6v2cBR5u-MvBixmYuyrpdztRgQXbXUUb4IKuooQuguec1ezSrEWTztkx990ReA-RGvlg7nZBbumqFWeSYPe-NC7qmXTyyO_5zLHMzUQNQZVJozDxMmXYCpw4zA4vMiXF4PD4-vzgcXzlPVrN7kjn7LL6IH87Ek5a2KOJ3MOgQk6WUo73U2yu9zhxB54ZhUc6810qUlGJ4c3xydunXzBVdRDOO7sQ0VWmGEtj7tcoyB9pFLFRClr_sUtkUiRIsUTnEMKKwk5CfRsx7aAAnHLMNkmqVmFZzQ0NyiQFjUGBrRQ6mUIBGMRM960uvAbrMNiaqZyblBxmPSRCi0Pkm5Ph3YbkVHFR3Hd0LdZi-T2iLzhHNlQ-7UFXdgq71N8-cfJJiabEwyhEa9iFnwfpHhUmJ2E_sdWKn0pB0J96JnwkWaULnbPw8xubk8Ky_W_i66DtM9DvbLbMsuTBZPY7NBiKiQm6XqvwI4-Qa7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xQEB5EC_WlWrV21doofehLJNkkewz4okXZqruI3QVfSphzA1GSxWQf9Nc7k5v1SvEtkEk4l5nMNycz3wD8ED0dK7UbuVHAp1W-US7GoXZJu5QiF6gD5GrkwbDXH4fHF9HFDOw1tTAVP0R74MaWUX6v2cD5QPofKy8mbOeCC3vnuKN3GVCdt-RRvggq8ijC6C75zW7NK8R5PO2jj73RM4j5GLGWLudoAf42g60yTa52poXcUXdPeBzfO5tF-FRjUWe_Up7PMGPSJfhwkBFevF2Gsz_jg8Pzwf7Quan61Zvc0Q8pRvRgPpWkv1Udp5NZh7AkvQzlpc4m-WXuECgvHJNqbrdG6rQC46PD0a--W_dfcBWFMb4b21ChFUZo69NGxxhoH7laAVH6ukeRWyRCtEgRFYeBwkoCfxI966ENkKDMF5hNs9R8BSc0NLcoEBY1hkZ0USolSAQj0bWe9Drws9mHRNXk5Nwj4zppghRan6Rcnw5st6KTipHjJaGNZjOT2ijzhNNlQ27WFXdgq71N8-d_JJiabEoyBEi9iInw3pDhamL2FLsdWK0UpR0Jt6NnzkWaULndrw8xGZ0dlxdr_y_6HT72R4PT5PT38GQd5rsc-5fJlxswW9xMzTcCSIXcLO3gHpcnCtY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9tQDLYQm9Be2MY2KIMRJh72EpQ0SU-jPbVAxbWqgEo8TIp8blIFSiqSPmy_fnZuwDamaW-R4kTnYsefT-zPAHuip2Ol-pEbBXxa5RvlYhxql7RLKXKBOkCuRr4Y946n4elNdLMEX5tamIofoj1wY8sov9ds4HNtHxl5MWczF1zX-yLseX1W6cPLljvKF0HFHUUQ3SW32a1phTiNp330qTP6DWE-Baylxxm9hm_NWKtEk9v9RSH31Y9faBz_czJvYLVGos6gUp23sGTSNXg5zAgtfn8Hk6vp8OjyYjB27qtu9SZ39EOCET2YLyRpb1XF6WTWISRJL0M509k8n-UOQfLCManmZmukTO9hOjq6Pjh26-4LrqIgxndjGyq0wghtfdrmGAPtI9cqIEpf9yhui0SIFime4iBQWEnQT6JnPbQBEpD5AMtplpoNcEJDc4sCYVFjaEQXpVKCRDASXetJrwNfmm1IVE1Nzh0y7pImRKH1Scr16cDnVnRe8XH8SWir2cukNsk84WTZkFt1xR3YbW_T_PkPCaYmW5AMwVEvYhq8v8hwLTH7iX4H1is9aUfCzeiZcZEmVO7280NMrien5cXmv4vuwMrkcJScn4zPPsKrLgf-ZeblFiwX9wuzTeiokJ9KK_gJjhYJjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SUBERMAN+regulates+developmental+suberization+of+the+Arabidopsis+root+endodermis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Cohen%2C+Hagai&rft.au=Fedyuk%2C+Vadim&rft.au=Wang%2C+Chunhua&rft.au=Wu%2C+Shuang&rft.date=2020-05-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=102&rft.issue=3&rft.spage=431&rft_id=info:doi/10.1111%2Ftpj.14711&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |