Dynamic optimization of the methylmethacrylate cell-cast process for plastic sheet production

Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecu...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 55; no. 6; pp. 1464 - 1486
Main Authors Rivera-Toledo, Martín, Flores-Tlacuahuac, Antonio, Vílchis-Ramírez, Leopoldo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2009
Wiley
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force-circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force-circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two-directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies. © 2009 American Institute of Chemical Engineers AIChE J, 2009
AbstractList Abstract Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force‐circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force‐circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two‐directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force-circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force-circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two-directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies. © 2009 American Institute of Chemical Engineers AIChE J, 2009
Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force-circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force-circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two-directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies. [PUBLICATION ABSTRACT]
Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force-circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force-circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two-directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies.
Author Flores-Tlacuahuac, Antonio
Vílchis-Ramírez, Leopoldo
Rivera-Toledo, Martín
Author_xml – sequence: 1
  fullname: Rivera-Toledo, Martín
– sequence: 2
  fullname: Flores-Tlacuahuac, Antonio
– sequence: 3
  fullname: Vílchis-Ramírez, Leopoldo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21532035$$DView record in Pascal Francis
BookMark eNqFkU1v1DAQQC1UJLaFA7-ACAmkHtL6M46P1QKlogJV0HJCluOMWZck3tpZlfDrcZrSAxLiYsvjN88znn20N4QBEHpO8BHBmB4bb48IqTl5hFZEcFkKhcUeWmGMSZkD5AnaT-k6n6is6Qp9ezMNpve2CNvR9_6XGX0YiuCKcQNFD-Nm6ubV2Dh1ZoTCQteV1qSx2MZgIaXChVhsuxzJkrQBuLtpd3YWPUWPnekSPLvfD9Dlu7df1u_L80-nZ-uT89LyWpKy5s5xp2zdgqSC2YY3LW6hbagTjjHngCthaCvaVrWgGANncysV5qAa4Rp2gF4v3vz0zQ7SqHuf5lLNAGGXNBNE1FTK_4NcSYYVzuDLv8DrsItDbkITpZhklRAZOlwgG0NKEZzeRt-bOGmC9TwOnceh78aR2Vf3QpOs6Vw0g_XpIYESwShms_N44W59B9O_hfrkbP3HXC4ZPo3w8yHDxB-6kkwK_fXjaf6BK1xffLjSF5l_sfDOBG2-x1zF5WeKCcOkYlxWgv0G27O0eg
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_compchemeng_2018_09_023
crossref_primary_10_1002_mren_201300147
crossref_primary_10_1016_S1004_9541_13_60441_3
crossref_primary_10_1021_ie500587r
crossref_primary_10_1021_ie5014162
Cites_doi 10.1021/ie0103409
10.1021/ma00237a002
10.1016/j.compchemeng.2006.05.034
10.1080/10543414.1994.10744448
10.1016/S0098-1354(98)00294-4
10.1021/ie960481o
10.1021/ie034280d
10.1021/ie00017a016
10.1021/ie060206u
10.1007/978-3-642-55508-4
10.1021/ie00073a018
10.1021/ie049534p
10.1021/ma00040a021
10.1016/0009-2509(96)00024-3
ContentType Journal Article
Copyright Copyright © 2009 American Institute of Chemical Engineers (AIChE)
2009 INIST-CNRS
Copyright American Institute of Chemical Engineers Jun 2009
Copyright_xml – notice: Copyright © 2009 American Institute of Chemical Engineers (AIChE)
– notice: 2009 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Jun 2009
DBID FBQ
BSCLL
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.11841
DatabaseName AGRIS
Istex
Pascal-Francis
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
Solid State and Superconductivity Abstracts

Technology Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 1486
ExternalDocumentID 1713028901
10_1002_aic_11841
21532035
AIC11841
ark_67375_WNG_35V08QKV_Q
US201301634765
Genre article
GrantInformation_xml – fundername: Universidad Iberoamericana
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDEX
ABDMP
ABEML
ABHUG
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
ABDPE
AHBTC
AITYG
BSCLL
HGLYW
OIG
08R
AAPBV
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4871-84ff4f9c8de7253cb4bd0dedb2f5f33ffe495a2d5dd9de933efc541604e9b5fb3
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Oct 25 21:46:25 EDT 2024
Fri Oct 25 10:36:58 EDT 2024
Thu Oct 10 19:27:51 EDT 2024
Fri Aug 23 00:47:39 EDT 2024
Sun Oct 29 17:09:26 EDT 2023
Sat Aug 24 01:03:46 EDT 2024
Wed Oct 30 09:48:52 EDT 2024
Wed Dec 27 19:32:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Warming
Temperature distribution
Molecular weight distribution
sheet reactor
Non linear programming
dynamic optimization
Modeling
Partial differential equation
Optimization
PDE
Free radical polymerization
Warm air
Discretization
PMMA
Heating
Production
Homogeneity
Kinetics
Plastics
Mathematical model
Reactor
Distributed parameter system
Mathematical programming
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4871-84ff4f9c8de7253cb4bd0dedb2f5f33ffe495a2d5dd9de933efc541604e9b5fb3
Notes http://dx.doi.org/10.1002/aic.11841
ark:/67375/WNG-35V08QKV-Q
istex:66EB1B268095611AA6456C856AEFAF370A68E994
Universidad Iberoamericana
ArticleID:AIC11841
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 199373655
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_35158277
proquest_miscellaneous_34973090
proquest_journals_199373655
crossref_primary_10_1002_aic_11841
pascalfrancis_primary_21532035
wiley_primary_10_1002_aic_11841_AIC11841
istex_primary_ark_67375_WNG_35V08QKV_Q
fao_agris_US201301634765
PublicationCentury 2000
PublicationDate June 2009
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: June 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: American Institute of Chemical Engineers
References Takamatsu T,Shioya S,Okada Y. Molecular weight distribution control in a batch polymerization. Ind Eng Chem Res. 1988; 27: 93-99.
Biegler LT,Saldívar-Guerra E,Flores-Tlacuahuac A. Optimization of HIPS open-loop unstable polymerization reactors. Ind Eng Chem Res. 2005; 44: 2659-2674.
Odian G. Principles of Polymerization. Wiley Interscience, 1991.
Mourikas G,Kiparissides C,Seferlis P,Morris AJ. Online optimizing control of molecular weight properties in batch free-radical polymerization reactors. Ind Eng Chem Res. 2002; 41: 6120-6131.
Gay DM,Fourer R,Kernighan BW. AMPL A Modeling Language for Mathematical Programming, 2nd ed. Thomson, Brooks/Cole, 2003.
Chiu WY,Carrat GM,Soong S. A computer method for the gel effect in free radical polymerization. Macromolecules 1983; 16: 348-357.
Schiesser WE. The Numerical Method of Lines. Integration of Partial Differential Equations. Academic Press, Inc., 1991.
Nising P,Meyer T. Modeling of the high-temperature polymerization of methyl methacrylate. I. Review of existing models for the description of the gel effect. Ind Eng Chem Res. 2004; 43: 7220-7226.
Kameswaran S,Biegler LT. Simultaneous dynamic optimization strategies: recent advances and challenges. Comput Chem Eng. 2006; 30: 1560-1575.
Kiparissides C. Polymerization reaction modeling: a review of recent developments and future directions. Chem Eng Sci. 1996; 51: 1637-1659.
Vivaldo-Lima A,Hamielec AE,Wood PE. Auto-acceleration effect in free radical polymerization. A comparison of the CCS and MH models. Polym React Eng. 1994; 2: 17-85.
Bird RB,Stewart WE,Lighfoot EN. Transport Phenomena. John Wiley, 2001.
Nunes RW,Martin JR,Johnson JF. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. J Polym Sci A: Polym Chem. 1982; 22: 205-228.
Soong DS,Louie BM. Optimization of batch polymerization processes- narrowing the mwd. I. Model simulation. J Appl Polym Sci. 1985; 380: 3707-3749.
Biegler LT,Ghattas O,Heinkenschloss M,van Bloemen Waanders B. Large-scale PDE-Constrained Optimization. Berlin: Springer, 2003.
O'Neil GA,Torkelson JM. Recent advances in the understanding of the gel effect in free radical polymerization. Trends Polym Sci. 1997; 5: 349-355.
Flores-Tlacuahuac A,Rivera-Toledo M,García-Crispín LE,Vílchis-Ramírez L. Dynamic modeling and experimental validation of the mma cells cast process for plastic sheet production. Ind Eng Chem Res. 2006; 45: 8539-8553.
Dubée MA,Soares JBP,Penlidis A,Hamielec AE. Mathematical modeling of multicomponent chain-growth polymerizations in batch, semibatch, and continuous reactors: a review. Ind Eng Chem Res. 1997; 36: 966-1015.
Soroush M,Kravaris C. Optimal design and operation of batch reactors. II. A case study. Ind Eng Chem Res. 1993; 32: 882-893.
Allgor RJ,Barton P. Mixed-integer dynamic optimization. I. Problem formulation. Comput Chem Eng. 1999; 23: 567-584.
Achilias DS,Kiparissides C. Development of a general mathematical framework for modeling diffusion-controlled free radical polymerization reactions. Macromolecules. 1992; 25: 3739-3750.
2004; 43
2006; 30
2006; 45
2002; 41
2001
2000
1993; 32
1997; 36
1988; 27
1982; 22
1999; 23
1996; 51
1973
1972
1992; 25
2003
1991
1997; 5
1985; 380
1994; 2
1983; 16
2005; 44
e_1_2_8_23_2
Gay DM (e_1_2_8_11_2) 2003
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
Nunes RW (e_1_2_8_22_2) 1982; 22
Odian G (e_1_2_8_14_2) 1991
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_15_2
Soong DS (e_1_2_8_8_2) 1985; 380
O'Neil GA (e_1_2_8_25_2) 1997; 5
Bird RB (e_1_2_8_19_2) 2001
e_1_2_8_10_2
Schiesser WE (e_1_2_8_24_2) 1991
References_xml – volume: 43
  start-page: 7220
  year: 2004
  end-page: 7226
  article-title: Modeling of the high‐temperature polymerization of methyl methacrylate. I. Review of existing models for the description of the gel effect
  publication-title: Ind Eng Chem Res.
– volume: 5
  start-page: 349
  year: 1997
  end-page: 355
  article-title: Recent advances in the understanding of the gel effect in free radical polymerization
  publication-title: Trends Polym Sci.
– volume: 45
  start-page: 8539
  year: 2006
  end-page: 8553
  article-title: Dynamic modeling and experimental validation of the mma cells cast process for plastic sheet production
  publication-title: Ind Eng Chem Res.
– volume: 32
  start-page: 882
  year: 1993
  end-page: 893
  article-title: Optimal design and operation of batch reactors. II. A case study
  publication-title: Ind Eng Chem Res.
– volume: 36
  start-page: 966
  year: 1997
  end-page: 1015
  article-title: Mathematical modeling of multicomponent chain‐growth polymerizations in batch, semibatch, and continuous reactors: a review
  publication-title: Ind Eng Chem Res.
– volume: 16
  start-page: 348
  year: 1983
  end-page: 357
  article-title: A computer method for the gel effect in free radical polymerization
  publication-title: Macromolecules
– volume: 27
  start-page: 93
  year: 1988
  end-page: 99
  article-title: Molecular weight distribution control in a batch polymerization
  publication-title: Ind Eng Chem Res.
– year: 2001
– volume: 23
  start-page: 567
  year: 1999
  end-page: 584
  article-title: Mixed‐integer dynamic optimization. I. Problem formulation
  publication-title: Comput Chem Eng.
– year: 2003
– volume: 51
  start-page: 1637
  year: 1996
  end-page: 1659
  article-title: Polymerization reaction modeling: a review of recent developments and future directions
  publication-title: Chem Eng Sci.
– year: 1973
– volume: 22
  start-page: 205
  year: 1982
  end-page: 228
  article-title: Influence of molecular weight and molecular weight distribution on mechanical properties of polymers
  publication-title: J Polym Sci A: Polym Chem.
– volume: 30
  start-page: 1560
  year: 2006
  end-page: 1575
  article-title: Simultaneous dynamic optimization strategies: recent advances and challenges
  publication-title: Comput Chem Eng.
– year: 2000
– year: 1972
– volume: 380
  start-page: 3707
  year: 1985
  end-page: 3749
  article-title: Optimization of batch polymerization processes— narrowing the mwd. I. Model simulation
  publication-title: J Appl Polym Sci.
– year: 1991
– volume: 2
  start-page: 17
  year: 1994
  end-page: 85
  article-title: Auto‐acceleration effect in free radical polymerization. A comparison of the CCS and MH models
  publication-title: Polym React Eng.
– volume: 41
  start-page: 6120
  year: 2002
  end-page: 6131
  article-title: Online optimizing control of molecular weight properties in batch free‐radical polymerization reactors
  publication-title: Ind Eng Chem Res.
– volume: 25
  start-page: 3739
  year: 1992
  end-page: 3750
  article-title: Development of a general mathematical framework for modeling diffusion‐controlled free radical polymerization reactions
  publication-title: Macromolecules
– volume: 44
  start-page: 2659
  year: 2005
  end-page: 2674
  article-title: Optimization of HIPS open‐loop unstable polymerization reactors
  publication-title: Ind Eng Chem Res.
– ident: e_1_2_8_17_2
  doi: 10.1021/ie0103409
– ident: e_1_2_8_21_2
– volume: 5
  start-page: 349
  year: 1997
  ident: e_1_2_8_25_2
  article-title: Recent advances in the understanding of the gel effect in free radical polymerization
  publication-title: Trends Polym Sci.
  contributor:
    fullname: O'Neil GA
– ident: e_1_2_8_20_2
  doi: 10.1021/ma00237a002
– volume-title: Principles of Polymerization
  year: 1991
  ident: e_1_2_8_14_2
  contributor:
    fullname: Odian G
– volume-title: Transport Phenomena
  year: 2001
  ident: e_1_2_8_19_2
  contributor:
    fullname: Bird RB
– volume-title: AMPL A Modeling Language for Mathematical Programming
  year: 2003
  ident: e_1_2_8_11_2
  contributor:
    fullname: Gay DM
– ident: e_1_2_8_3_2
  doi: 10.1016/j.compchemeng.2006.05.034
– ident: e_1_2_8_12_2
– volume-title: The Numerical Method of Lines. Integration of Partial Differential Equations
  year: 1991
  ident: e_1_2_8_24_2
  contributor:
    fullname: Schiesser WE
– ident: e_1_2_8_16_2
  doi: 10.1080/10543414.1994.10744448
– ident: e_1_2_8_5_2
  doi: 10.1016/S0098-1354(98)00294-4
– ident: e_1_2_8_15_2
  doi: 10.1021/ie960481o
– volume: 380
  start-page: 3707
  year: 1985
  ident: e_1_2_8_8_2
  article-title: Optimization of batch polymerization processes— narrowing the mwd. I. Model simulation
  publication-title: J Appl Polym Sci.
  contributor:
    fullname: Soong DS
– ident: e_1_2_8_26_2
  doi: 10.1021/ie034280d
– ident: e_1_2_8_9_2
  doi: 10.1021/ie00017a016
– ident: e_1_2_8_7_2
  doi: 10.1021/ie060206u
– ident: e_1_2_8_4_2
  doi: 10.1007/978-3-642-55508-4
– volume: 22
  start-page: 205
  year: 1982
  ident: e_1_2_8_22_2
  article-title: Influence of molecular weight and molecular weight distribution on mechanical properties of polymers
  publication-title: J Polym Sci A: Polym Chem.
  contributor:
    fullname: Nunes RW
– ident: e_1_2_8_23_2
  doi: 10.1021/ie00073a018
– ident: e_1_2_8_6_2
  doi: 10.1021/ie049534p
– ident: e_1_2_8_18_2
  doi: 10.1021/ma00040a021
– ident: e_1_2_8_2_2
  doi: 10.1016/0009-2509(96)00024-3
– ident: e_1_2_8_13_2
– ident: e_1_2_8_10_2
SSID ssj0012782
Score 1.9791056
Snippet Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it...
Abstract Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths....
SourceID proquest
crossref
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1464
SubjectTerms Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Chemical reactions
dynamic optimization
Exact sciences and technology
Mathematical models
Molecular weight
Optimization
Organic polymers
PDE
Physicochemistry of polymers
PMMA
Polymerization
Preparation, kinetics, thermodynamics, mechanism and catalysts
Reactors
sheet reactor
Title Dynamic optimization of the methylmethacrylate cell-cast process for plastic sheet production
URI https://api.istex.fr/ark:/67375/WNG-35V08QKV-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.11841
https://www.proquest.com/docview/199373655
https://search.proquest.com/docview/34973090
https://search.proquest.com/docview/35158277
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKT3DgHzUUioUQ4pI2sZ04EaeqpRQQlQps6QHJ8t8U1LJZbXYlyolH4Bl5EsbxJnSRQIhLEsl2Es94nG_imc-EPKpczrRwZWpKLlMBaOm6Mia1ee4kzw1UEPKdXx-U-yPx8rg4XiFP-1yYyA8x_HALltHN18HAtWm3fpGG6k8W7b3qktZzLkM41-6bgToqZ7KKTOHoLiNMyHtWoYxtDS2XvkWXQDeIUINwv4QISd2ikCDubrEEPy-C2O4rtHeNfOjfPwafnG7OZ2bTfv2N2vE_O3idXF2gU7odh9MNsuLHN8mVC5yFt4jajXvY0wYnm8-LLE7aAEUkScN-1Odn4ajt9PwMcSwNKwM_vn23up3RScxKoAiU6QRhOz6Fth-970pc5LG9TUZ7z97t7KeLXRpSi85OnlYCQEBtK-clK7g1wrjMeWcYFMA5gEcfTDNXOFc7X3PuwaI-ykz42hRg-B2yOm7Gfo3QqnYWggOUoxMnQNegvQAJnuGJWZ2Qh72-1CSScahIu8wUSkt10krIGmpS6ROcJNXoLQtLswg6hSyLhDzu1Ds01tPTENgmC_X-4LnixVFWHb46UocJ2VjS_9AAARJnGcc7rfcDQi2MvlUhFlLyssDSB0MpWmsQtB77Zt4qLmqcUuvsLzUQYFZMyoQ86QbHnzuqtl_sdBd3_73qOrkcl8PCb6R7ZHU2nfv7iKpmZqMzn5-Uhx9V
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAH3qih0FoIIS5pE9uJHYlL1VK2tF2p0C29IMtPQC2b1T4kyomfwG_klzCON6GLBEJckki2E3k843xje75B6KmwOVHMlqkuKU-ZB0tXQuvU5LnlNNde-BDvfNgvewP2-rQ4XUIv2liYyA_RLbgFy2jm62DgYUF68xdrqPpkwOBFiFq_CuZOQ-KGnTcdeVROuIhc4eAwA1DIW16hjGx2TRf-Rle8qgGjBvF-CWck1QTE5GN-iwUAehnGNv-h3VvofduDePzkbGM21Rvm62_kjv_bxdvo5hyg4q2oUXfQkhveRTcu0RbeQ3InprHHNcw3n-eBnLj2GMAkDimpL87DVZnxxTlAWRw2B358-27UZIpHMTABA1bGI0Du8BU8-ehcU2Ijle19NNh9ebzdS-eJGlID_k6eCuY985UR1nFSUKOZtpl1VhNfeEq9d-CGKWILayvrKkqdNzAgZcZcpQuv6QO0PKyHbgVhUVnjgw-Ugx_HvKq8csxz7wjciFEJetIOmBxFPg4ZmZeJBGnJRloJWoGhlOoDzJNy8JaE3VnAnYyXRYKeNePbNVbjs3C2jRfyXf-VpMVJJo72T-RRgtYWFKBrABiJkozCm1ZbjZBzu5_IcByS07KA0vWuFAw2CFoNXT2bSMoq0NUq-0sNwJiCcJ6g5412_Lmjcmtvu3l4-O9V19G13vHhgTzY6--voutxdyysKj1Cy9PxzD0GkDXVa40t_QRdWCNt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAceKOGQmshhLikTWznJU5Vy9JSWFFgSw9Ill_Topbd1WZXopz4CfxGfgnjeBO6SCDEJYlkO5FnPM439sxnQh6XNmVK2DzWOS9iAWjpqtQ6NmlqC55qKMHnO7_u57sD8fIoO1oiz9pcmMAP0S24ecto5mtv4GMLm79IQ9Ung_Ze-qT1yyJH5OsR0duOOyplRRmowtFfRpyQtrRCCdvsmi78jC6BGiFE9dL94kMkVY1SgnC8xQL-vIhim99Q7wb52HYgRJ-cbsymesN8_Y3b8T97eJNcn8NTuhXG0y2y5Ia3ybULpIV3iNwJh9jTEc42n-dpnHQEFKEk9QdSn5_5qzKT8zMEstRvDfz49t2oekrHIS2BIlKmY8Tt-BVanzjXlNhAZHuXDHrP32_vxvNjGmKD3k4alwJAQGVK6wqWcaOFtol1VjPIgHMAh06YYjaztrKu4tyBQX3kiXCVzkDze2R5OBq6FULLyhrwHlCKXpwAVYFyAgpwDG_MqIg8avUlx4GNQwbeZSZRWrKRVkRWUJNSHeMsKQfvmN-bRdQpijyLyJNGvV1jNTn1kW1FJj_0X0ieHSblwf6hPIjI2oL-uwaIkDhLOL5ptR0Qcm71tfTBkAXPMyxd70rRXL2g1dCNZrXkosI5tUr-UgMRZsmKIiJPm8Hx547Krb3t5uH-v1ddJ1fe7PTkq73-_iq5GrbG_JLSA7I8nczcQ0RYU73WWNJP4l4iHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+of+the+methylmethacrylate+cell-cast+process+for+plastic+sheet+production&rft.jtitle=AIChE+journal&rft.au=Rivera-Toledo%2C+Martin&rft.au=Flores-Tlacuahuac%2C+Antonio&rft.au=Vilchis-Ramirez%2C+Leopoldo&rft.date=2009-06-01&rft.issn=0001-1541&rft.volume=55&rft.issue=6&rft.spage=1464&rft.epage=1486&rft_id=info:doi/10.1002%2Faic.11841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon