NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation

Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal component...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 31; pp. 12873 - 12878
Main Authors Hruz, Petr, Zinkernagel, Annelies S, Jenikova, Gabriela, Botwin, Gregory J, Hugot, Jean-Pierre, Karin, Michael, Nizet, Victor, Eckmann, Lars
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.08.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
AbstractList Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus . NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s. c. infection with 5. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracel lu la rly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate poreforming toxins.
Author Karin, Michael
Botwin, Gregory J
Eckmann, Lars
Zinkernagel, Annelies S
Hugot, Jean-Pierre
Hruz, Petr
Jenikova, Gabriela
Nizet, Victor
Author_xml – sequence: 1
  fullname: Hruz, Petr
– sequence: 2
  fullname: Zinkernagel, Annelies S
– sequence: 3
  fullname: Jenikova, Gabriela
– sequence: 4
  fullname: Botwin, Gregory J
– sequence: 5
  fullname: Hugot, Jean-Pierre
– sequence: 6
  fullname: Karin, Michael
– sequence: 7
  fullname: Nizet, Victor
– sequence: 8
  fullname: Eckmann, Lars
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19541630$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFNSsgq0os0vovTrxBQuVXquiiZW05zs2Mq8QOtlPax-qL8Ex4mGEKSKirq6vz3aOjew7QnvMOEHpO8DHBNTuZnI7HWGIuq4Zg8QgtCJakFFziPbTAmNZlwynfRwcxXmGMM4afoH0iK04Ewwv0_cv5O1oY71Kw7ZwgFskXZk7agZ9j0UEPLkKhl9q6mIqLpKfV7eCNNybLeg6QR1oFPy9XxY-7Mvkb68oOJnAduFRY53SCwo7j7LKNSfZaJ-vdU_S410OEZ9t5iC4_vL88_VSenX_8fPr2rDS8EansWwPG8L5pqNFQG6yxrCWvBcsLSFNxKQWHrmMtbwlrBGkb0fW0ElUrWccO0ZuN7TS3I3QmRwp6UFOwow63ymur_lacXamlv1a0ppQJkg2OtgbBf5shJjXaaGAYNg9Soq5qKjh7EOSCiRxrDb78M9Iuy-9OMlBtABN8jAF6ZWz69bSc0A6KYLXuXq27V_fd57uTf-521v-9KLZR1sI9LRQjitCmXqd9_QCi-nkYEtykzL7YsFcx-bCDOeYNF6TJ-quN3muv9DLYqL5eUEwYJkJwnh_-E4OG4Ww
CitedBy_id crossref_primary_10_1038_ncomms7442
crossref_primary_10_1371_journal_ppat_1005826
crossref_primary_10_3390_ijms15058753
crossref_primary_10_3390_microorganisms9020287
crossref_primary_10_3389_fimmu_2024_1353039
crossref_primary_10_1111_cmi_12304
crossref_primary_10_1371_journal_pone_0030273
crossref_primary_10_1007_s13671_018_0235_8
crossref_primary_10_1155_2012_861426
crossref_primary_10_3389_fimmu_2018_03082
crossref_primary_10_1002_eji_200939929
crossref_primary_10_1371_journal_pone_0011071
crossref_primary_10_1016_j_micinf_2010_05_003
crossref_primary_10_1038_cmi_2015_77
crossref_primary_10_1186_s13567_021_00937_7
crossref_primary_10_1371_journal_pone_0051078
crossref_primary_10_3390_ijms22115486
crossref_primary_10_1096_fj_201902836R
crossref_primary_10_3389_froh_2022_851786
crossref_primary_10_3390_biom13020369
crossref_primary_10_4049_jimmunol_1402665
crossref_primary_10_4049_jimmunol_1701574
crossref_primary_10_1016_j_jss_2012_08_038
crossref_primary_10_1016_j_humimm_2010_10_001
crossref_primary_10_1586_egh_09_47
crossref_primary_10_1111_all_13726
crossref_primary_10_1016_j_bbrc_2013_09_097
crossref_primary_10_3390_molecules21040471
crossref_primary_10_1186_1476_9255_10_28
crossref_primary_10_1186_s41232_017_0044_7
crossref_primary_10_1155_2022_4537343
crossref_primary_10_1016_j_micpath_2013_09_006
crossref_primary_10_3389_fimmu_2022_828626
crossref_primary_10_1021_acs_est_5b03583
crossref_primary_10_3389_fmicb_2021_789042
crossref_primary_10_2500_ajra_2015_29_4130
crossref_primary_10_4049_jimmunol_1600549
crossref_primary_10_15252_emmm_201809024
crossref_primary_10_1159_000368048
crossref_primary_10_3390_genes12091424
crossref_primary_10_4061_2011_249802
crossref_primary_10_3892_ijmm_2020_4563
crossref_primary_10_1074_jbc_M114_574756
crossref_primary_10_1371_journal_ppat_1002812
crossref_primary_10_1189_jlb_0213080
crossref_primary_10_1038_nri3010
crossref_primary_10_1172_JCI68453
crossref_primary_10_1002_alr_21213
crossref_primary_10_1002_path_4095
crossref_primary_10_1586_eci_12_87
crossref_primary_10_3390_toxins5061140
crossref_primary_10_1073_pnas_1821806116
crossref_primary_10_3899_jrheum_181393
crossref_primary_10_1099_jmm_0_000331
crossref_primary_10_1371_journal_pone_0075103
crossref_primary_10_1016_j_clindermatol_2011_01_006
crossref_primary_10_4049_jimmunol_0903536
crossref_primary_10_1016_j_vaccine_2011_11_006
crossref_primary_10_1128_cmr_00015_23
crossref_primary_10_1126_sciimmunol_abe5084
crossref_primary_10_1093_cid_cis033
crossref_primary_10_1128_IAI_01304_12
crossref_primary_10_1007_s00281_011_0297_1
crossref_primary_10_15829_1560_4071_2018_10_145_150
crossref_primary_10_1093_femsre_fuy025
crossref_primary_10_4161_viru_26514
crossref_primary_10_1038_jid_2013_313
crossref_primary_10_1111_exd_14853
crossref_primary_10_3390_ijms22041507
crossref_primary_10_1016_j_bbadis_2019_07_004
crossref_primary_10_1074_jbc_M111_237495
crossref_primary_10_1177_17534259231207198
crossref_primary_10_1016_j_ijmm_2013_03_004
crossref_primary_10_1097_MOG_0b013e3283365279
crossref_primary_10_1038_s41419_020_2368_5
crossref_primary_10_1111_tan_12001
crossref_primary_10_1002_eji_201040827
crossref_primary_10_1111_cmi_12550
crossref_primary_10_1371_journal_pone_0074287
crossref_primary_10_1002_adma_202002962
crossref_primary_10_1155_2013_608456
crossref_primary_10_1038_s41598_018_27012_0
crossref_primary_10_1016_j_vetimm_2017_04_010
crossref_primary_10_1111_j_1462_5822_2012_01772_x
crossref_primary_10_1021_acs_chemrev_1c00716
crossref_primary_10_1016_j_immuni_2011_04_015
crossref_primary_10_1093_infdis_jis244
crossref_primary_10_1016_j_immuni_2014_12_010
crossref_primary_10_1186_1471_2180_12_274
crossref_primary_10_1371_journal_pone_0076218
crossref_primary_10_1111_bjd_15139
crossref_primary_10_1128_IAI_00898_19
crossref_primary_10_3390_antibiotics12030557
crossref_primary_10_1097_SHK_0000000000000874
crossref_primary_10_1007_s00281_015_0544_y
crossref_primary_10_1371_journal_pone_0087927
crossref_primary_10_1007_s00281_011_0292_6
crossref_primary_10_1189_jlb_3MR0316_097RR
crossref_primary_10_1371_journal_pone_0056846
crossref_primary_10_17816_KMJ2019_944
crossref_primary_10_3389_fcimb_2023_1265471
crossref_primary_10_3389_fimmu_2015_00518
crossref_primary_10_1128_IAI_06230_11
crossref_primary_10_1371_journal_ppat_1003047
crossref_primary_10_1016_j_imbio_2021_152096
crossref_primary_10_1093_infdis_jir846
crossref_primary_10_1128_IAI_06360_11
crossref_primary_10_1073_pnas_1317181111
crossref_primary_10_1111_j_1462_5822_2010_01544_x
crossref_primary_10_1128_IAI_00912_17
crossref_primary_10_1016_j_ajpath_2014_11_030
crossref_primary_10_1111_apa_12559
crossref_primary_10_1016_j_mib_2011_11_003
crossref_primary_10_1126_scisignal_2003305
crossref_primary_10_1016_j_cimid_2016_08_004
crossref_primary_10_1371_journal_ppat_1002736
crossref_primary_10_1002_adbi_202200109
crossref_primary_10_1016_j_it_2012_01_003
crossref_primary_10_1016_j_imlet_2013_01_004
crossref_primary_10_1111_j_1600_065X_2011_01039_x
crossref_primary_10_1038_nri3565
crossref_primary_10_1080_21505594_2024_2359483
crossref_primary_10_4049_jimmunol_2001360
crossref_primary_10_4049_jimmunol_1600185
crossref_primary_10_1016_j_abb_2018_12_022
crossref_primary_10_1128_IAI_01364_09
crossref_primary_10_1016_j_cdev_2021_203658
crossref_primary_10_1159_000360006
crossref_primary_10_1172_JCI57761
crossref_primary_10_3390_ijms23010372
crossref_primary_10_1186_s40779_014_0029_7
crossref_primary_10_1128_mBio_02110_14
crossref_primary_10_1128_IAI_01050_13
crossref_primary_10_1073_pnas_1510265112
crossref_primary_10_1093_infdis_jiy149
crossref_primary_10_4049_jimmunol_1402566
crossref_primary_10_1097_SHK_0b013e3181e86f10
crossref_primary_10_3390_cancers16233947
crossref_primary_10_1038_mi_2011_29
crossref_primary_10_1111_imr_12902
crossref_primary_10_3389_fimmu_2019_02622
crossref_primary_10_1042_BSR20120055
crossref_primary_10_1038_s41392_023_01344_4
crossref_primary_10_3390_ijms22094677
crossref_primary_10_1371_journal_pone_0119179
crossref_primary_10_1016_j_micinf_2012_03_004
crossref_primary_10_1371_journal_ppat_1006496
crossref_primary_10_1128_mBio_00133_15
crossref_primary_10_1016_j_jaci_2012_12_1563
Cites_doi 10.1111/j.1462-5822.2007.00917.x
10.4049/jimmunol.180.10.6816
10.1371/journal.pone.0001409
10.1038/sj.emboj.7600175
10.1053/gast.2002.35393
10.4049/jimmunol.158.11.5267
10.1111/j.1462-5822.2006.00878.x
10.1146/annurev.immunol.23.021704.115616
10.1046/j.1365-2133.2003.05017.x
10.1074/jbc.274.47.33419
10.1016/0924-8579(96)00007-6
10.1073/pnas.0802726105
10.1111/j.1462-5822.2008.01166.x
10.2353/ajpath.2008.080337
10.1038/35106587
10.1038/nature03253
10.1128/IAI.00940-08
10.1056/NEJM199808203390806
10.1016/0016-5085(91)90229-E
10.1016/j.cub.2005.12.039
10.1053/gast.2002.32415
10.1038/nm1207-1405
10.1016/S1074-7613(00)80119-3
10.3109/00365528209181050
10.1074/jbc.M008072200
10.1128/iai.65.7.2517-2521.1997
10.1038/368339a0
10.1126/science.7535475
10.1371/journal.pone.0000523
10.1126/science.1104911
10.1053/gast.2003.50019
10.4049/jimmunol.159.7.3364
10.1074/jbc.C200651200
10.4049/jimmunol.180.6.4050
10.1128/IAI.01199-06
10.4049/jimmunol.165.10.5392
10.1172/JCI11783
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0904958106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12878
ExternalDocumentID PMC2722361
19541630
10_1073_pnas_0904958106
106_31_12873
40484618
US201301664422
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES006376
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c486t-fbcecc4f882cae7c0a09794763e7ce9c549964edd3b4b13861b86df2565b93d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:33:47 EDT 2025
Fri Jul 11 02:17:25 EDT 2025
Fri Jul 11 08:25:39 EDT 2025
Mon Jul 21 05:59:10 EDT 2025
Tue Jul 01 02:39:19 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Wed Nov 11 00:29:54 EST 2020
Thu May 30 08:50:59 EDT 2019
Thu May 29 08:42:54 EDT 2025
Thu Apr 03 09:45:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-fbcecc4f882cae7c0a09794763e7ce9c549964edd3b4b13861b86df2565b93d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1P.H. and A.S.Z. contributed equally to this work.
Contributed by Michael Karin, May 6, 2009
Author contributions: P.H., A.S.Z., J.-P.H., M.K., V.N., and L.E. designed research; P.H., A.S.Z., G.J., and G.J.B. performed research; J.-P.H. contributed new reagents/analytic tools; P.H., A.S.Z., V.N., and L.E. analyzed data; and P.H., A.S.Z., M.K., V.N., and L.E. wrote the paper.
PMID 19541630
PQID 46362563
PQPubID 24069
PageCount 6
ParticipantIDs jstor_primary_40484618
fao_agris_US201301664422
pubmed_primary_19541630
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2722361
proquest_miscellaneous_46362563
proquest_miscellaneous_67572643
pnas_primary_106_31_12873_fulltext
crossref_citationtrail_10_1073_pnas_0904958106
pnas_primary_106_31_12873
crossref_primary_10_1073_pnas_0904958106
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-04
PublicationDateYYYYMMDD 2009-08-04
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-04
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Akira S (e_1_3_3_2_2) 2006; 311
Sawada T (e_1_3_3_17_2) 1997; 158
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
Glaccum MB (e_1_3_3_35_2) 1997; 159
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
9317135 - J Immunol. 1997 Oct 1;159(7):3364-71
1985051 - Gastroenterology. 1991 Feb;100(2):549-54
18183290 - PLoS One. 2008;3(1):e1409
11067888 - J Immunol. 2000 Nov 15;165(10):5392-6
10549626 - Immunity. 1999 Oct;11(4):443-51
18974303 - Am J Pathol. 2008 Dec;173(6):1657-68
17048703 - Curr Top Microbiol Immunol. 2006;311:1-16
11719807 - Nature. 2001 Nov 22;414(6862):454-7
12534593 - Br J Dermatol. 2003 Jan;148(1):46-50
12512038 - Gastroenterology. 2003 Jan;124(1):140-6
11285305 - J Clin Invest. 2001 Apr;107(7):861-9
8127368 - Nature. 1994 Mar 24;368(6469):339-42
17359518 - Cell Microbiol. 2007 Jul;9(7):1809-21
18611733 - Int J Antimicrob Agents. 1996 May;7(1):33-40
17565376 - PLoS One. 2007;2(6):e523
18453602 - J Immunol. 2008 May 15;180(10):6816-26
12198692 - Gastroenterology. 2002 Sep;123(3):679-88
15771576 - Annu Rev Immunol. 2005;23:387-414
11910337 - Gastroenterology. 2002 Apr;122(4):867-74
17118979 - Infect Immun. 2007 Feb;75(2):830-7
17474907 - Cell Microbiol. 2007 May;9(5):1343-51
11087742 - J Biol Chem. 2001 Feb 16;276(7):4812-8
19139201 - Infect Immun. 2009 Apr;77(4):1376-82
12527755 - J Biol Chem. 2003 Mar 14;278(11):8869-72
18322214 - J Immunol. 2008 Mar 15;180(6):4050-7
18064027 - Nat Med. 2007 Dec;13(12):1405-6
7535475 - Science. 1995 Mar 31;267(5206):2000-3
9199413 - Infect Immun. 1997 Jul;65(7):2517-21
16488874 - Curr Biol. 2006 Feb 21;16(4):396-400
18511561 - Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7803-8
18466345 - Cell Microbiol. 2008 Sep;10(9):1801-14
9164945 - J Immunol. 1997 Jun 1;158(11):5267-76
7134842 - Scand J Gastroenterol. 1982 Jan;17(1):91-6
10559223 - J Biol Chem. 1999 Nov 19;274(47):33419-25
15690042 - Nature. 2005 Feb 3;433(7025):523-7
15044951 - EMBO J. 2004 Apr 7;23(7):1587-97
15692051 - Science. 2005 Feb 4;307(5710):731-4
9709046 - N Engl J Med. 1998 Aug 20;339(8):520-32
References_xml – ident: e_1_3_3_21_2
  doi: 10.1111/j.1462-5822.2007.00917.x
– ident: e_1_3_3_38_2
  doi: 10.4049/jimmunol.180.10.6816
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.pone.0001409
– ident: e_1_3_3_28_2
  doi: 10.1038/sj.emboj.7600175
– ident: e_1_3_3_27_2
  doi: 10.1053/gast.2002.35393
– volume: 158
  start-page: 5267
  year: 1997
  ident: e_1_3_3_17_2
  article-title: IL-6 induction of protein-DNA complexes via a novel regulatory region of the inducible nitric oxide synthase gene promoter: Role of octamer binding proteins
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.11.5267
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1462-5822.2006.00878.x
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.immunol.23.021704.115616
– ident: e_1_3_3_14_2
  doi: 10.1046/j.1365-2133.2003.05017.x
– volume: 311
  start-page: 1
  year: 2006
  ident: e_1_3_3_2_2
  article-title: TLR signaling
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_3_3_5_2
  doi: 10.1074/jbc.274.47.33419
– ident: e_1_3_3_25_2
  doi: 10.1016/0924-8579(96)00007-6
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0802726105
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1462-5822.2008.01166.x
– ident: e_1_3_3_24_2
  doi: 10.2353/ajpath.2008.080337
– ident: e_1_3_3_32_2
  doi: 10.1038/35106587
– ident: e_1_3_3_8_2
  doi: 10.1038/nature03253
– ident: e_1_3_3_10_2
  doi: 10.1128/IAI.00940-08
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJM199808203390806
– ident: e_1_3_3_31_2
  doi: 10.1016/0016-5085(91)90229-E
– ident: e_1_3_3_33_2
  doi: 10.1016/j.cub.2005.12.039
– ident: e_1_3_3_26_2
  doi: 10.1053/gast.2002.32415
– ident: e_1_3_3_20_2
  doi: 10.1038/nm1207-1405
– ident: e_1_3_3_6_2
  doi: 10.1016/S1074-7613(00)80119-3
– ident: e_1_3_3_30_2
  doi: 10.3109/00365528209181050
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.M008072200
– ident: e_1_3_3_13_2
  doi: 10.1128/iai.65.7.2517-2521.1997
– ident: e_1_3_3_36_2
  doi: 10.1038/368339a0
– ident: e_1_3_3_37_2
  doi: 10.1126/science.7535475
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.pone.0000523
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1104911
– ident: e_1_3_3_29_2
  doi: 10.1053/gast.2003.50019
– volume: 159
  start-page: 3364
  year: 1997
  ident: e_1_3_3_35_2
  article-title: Phenotypic and functional characterization of mice that lack the type I receptor for IL-1
  publication-title: J Immunol
  doi: 10.4049/jimmunol.159.7.3364
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.C200651200
– ident: e_1_3_3_23_2
  doi: 10.4049/jimmunol.180.6.4050
– ident: e_1_3_3_7_2
  doi: 10.1128/IAI.01199-06
– ident: e_1_3_3_9_2
  doi: 10.4049/jimmunol.165.10.5392
– ident: e_1_3_3_16_2
  doi: 10.1172/JCI11783
– reference: 11910337 - Gastroenterology. 2002 Apr;122(4):867-74
– reference: 9199413 - Infect Immun. 1997 Jul;65(7):2517-21
– reference: 7134842 - Scand J Gastroenterol. 1982 Jan;17(1):91-6
– reference: 18183290 - PLoS One. 2008;3(1):e1409
– reference: 18064027 - Nat Med. 2007 Dec;13(12):1405-6
– reference: 9709046 - N Engl J Med. 1998 Aug 20;339(8):520-32
– reference: 12534593 - Br J Dermatol. 2003 Jan;148(1):46-50
– reference: 18466345 - Cell Microbiol. 2008 Sep;10(9):1801-14
– reference: 9317135 - J Immunol. 1997 Oct 1;159(7):3364-71
– reference: 11087742 - J Biol Chem. 2001 Feb 16;276(7):4812-8
– reference: 11285305 - J Clin Invest. 2001 Apr;107(7):861-9
– reference: 18511561 - Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7803-8
– reference: 18974303 - Am J Pathol. 2008 Dec;173(6):1657-68
– reference: 18322214 - J Immunol. 2008 Mar 15;180(6):4050-7
– reference: 10549626 - Immunity. 1999 Oct;11(4):443-51
– reference: 15771576 - Annu Rev Immunol. 2005;23:387-414
– reference: 17118979 - Infect Immun. 2007 Feb;75(2):830-7
– reference: 15690042 - Nature. 2005 Feb 3;433(7025):523-7
– reference: 17359518 - Cell Microbiol. 2007 Jul;9(7):1809-21
– reference: 18611733 - Int J Antimicrob Agents. 1996 May;7(1):33-40
– reference: 11067888 - J Immunol. 2000 Nov 15;165(10):5392-6
– reference: 11719807 - Nature. 2001 Nov 22;414(6862):454-7
– reference: 7535475 - Science. 1995 Mar 31;267(5206):2000-3
– reference: 1985051 - Gastroenterology. 1991 Feb;100(2):549-54
– reference: 17474907 - Cell Microbiol. 2007 May;9(5):1343-51
– reference: 12512038 - Gastroenterology. 2003 Jan;124(1):140-6
– reference: 16488874 - Curr Biol. 2006 Feb 21;16(4):396-400
– reference: 15692051 - Science. 2005 Feb 4;307(5710):731-4
– reference: 19139201 - Infect Immun. 2009 Apr;77(4):1376-82
– reference: 15044951 - EMBO J. 2004 Apr 7;23(7):1587-97
– reference: 8127368 - Nature. 1994 Mar 24;368(6469):339-42
– reference: 12527755 - J Biol Chem. 2003 Mar 14;278(11):8869-72
– reference: 9164945 - J Immunol. 1997 Jun 1;158(11):5267-76
– reference: 18453602 - J Immunol. 2008 May 15;180(10):6816-26
– reference: 17048703 - Curr Top Microbiol Immunol. 2006;311:1-16
– reference: 12198692 - Gastroenterology. 2002 Sep;123(3):679-88
– reference: 10559223 - J Biol Chem. 1999 Nov 19;274(47):33419-25
– reference: 17565376 - PLoS One. 2007;2(6):e523
SSID ssj0009580
Score 2.3889773
Snippet Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing...
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12873
SubjectTerms Animals
Bacteria
Bacterial Toxins
Biological Sciences
cross infection
Cytokines
cytoplasm
endocarditis
Hemolysin Proteins - physiology
hemolysins
Immunity, Innate
Infections
innate immunity
Interleukin-1beta - biosynthesis
interleukin-6
Interleukin-6 - biosynthesis
Interleukin-8 - biosynthesis
intracellular signaling peptides and proteins
Lesions
Macrophages
Mice
Mice, Inbred C57BL
microbial detection
Neutrophil Activation
Neutrophils
Nod2 Signaling Adaptor Protein - physiology
oligomerization
Pathogens
peptidoglycans
pneumonia
Secretion
septicemia
Skin
Skin - immunology
Skin - microbiology
Staphylococcal Infections - immunology
Staphylococcus aureus
Staphylococcus aureus - immunology
Toll-like receptor 2
Toll-like receptor 4
toxins
virulence
Title NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation
URI https://www.jstor.org/stable/40484618
http://www.pnas.org/content/106/31/12873.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19541630
https://www.proquest.com/docview/46362563
https://www.proquest.com/docview/67572643
https://pubmed.ncbi.nlm.nih.gov/PMC2722361
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELbS8sILokDpclqIh6Jow17x7j5WXFElQiVSqeLFsh07RJTdKtkUlB_Fb2R87JGSSMBLjvWxkudbz4z3mxmEXgqZCaZ4rIu7MD_JOffzmMODB442S1UWhVLHDn8ck9F5cnoxvOj1fnVYS6uKD8R6a1zJ_0gVroFcdZTsP0i2mRQuwG-QL3yChOHzr2Q8_vQ2smRzXbXKJmsQKzD3pCa2TqUCH1X22Qy8_2Wl7UpYU1BepRDQzFYLCV91oR4TdOtX5c954deVcXX5gAKM0f5cR5HYxBvXrSidTXvW6MBlzTgY10eMJ23AittFln2_fzZuyx-PFqu1Iwo3POEv4CDrc8qZoxBoLg549O0x7aks5t_Ka2P4fmAc3P3L9mChrH7YxAgu_sa9-aqPNnJDrLPHC9Jux2DN-CSxBUWb_TogHWA6HWK3X1C2tjDKH4oBdjJdzbhgy0GQg1c0zNw0HZhcfTc40TnwwEoNWg3Z8Bbrpj10KwK3xBBJR90kz1lQp49K49c37mby09rxG0bQnmJlzYbVKXZh1DZ35yZrt2MGTe6iO85_wScWjAeoJ4t76KCWLT52acxf3UdrjU7cQSeuStygEzt0YodOvIlObNGJHTrxVnRii05s0YlbdD5Ak_fvJm9Gvqv04YskI5WvuICtJFHg7gkmUxGwIAdFAboP_shc6EMMksjpNOYJD-OMhDwjUwXm-pDn8TQ-RPtFWcgjhAnPVaKEUgmHATzPcgY2ehiIFExtcNU9NKhXngqXBV8XY7mkho2RxlSvP22l5qHjZsCVTQCzu-sRiJKyGahnev450qSAkIDDEUUeOjTybaZIQHMmJMw85JlZ2qkJjUNqgOyhFzvbqHLcMA89r6FCQTPo131WjlSnAoQVinf3IOkwBYcIejy00Gpv5YDqoXQDdE0HnZV-s6WYfzXZ6aM00gmdHu2c8zG63T7sT9B-tVjJp2DZV_yZeZx-A5bS_cc
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NOD2+contributes+to+cutaneous+defense+against+Staphylococcus+aureus+through+alpha-toxin-dependent+innate+immune+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hruz%2C+Petr&rft.au=Zinkernagel%2C+Annelies+S&rft.au=Jenikova%2C+Gabriela&rft.au=Botwin%2C+Gregory+J&rft.date=2009-08-04&rft.eissn=1091-6490&rft.volume=106&rft.issue=31&rft.spage=12873&rft_id=info:doi/10.1073%2Fpnas.0904958106&rft_id=info%3Apmid%2F19541630&rft.externalDocID=19541630
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F31.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F31.cover.gif