NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal component...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 31; pp. 12873 - 12878 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.08.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins. |
---|---|
AbstractList | Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins. Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus . NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins. Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins. Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s.c. infection with S. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins. Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. Here we show that NOD2-deficient mice exhibit a delayed but ultimately exacerbated ulcerative response and impaired bacterial clearance after s. c. infection with 5. aureus. NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by α-toxin (α-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1β-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracel lu la rly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate poreforming toxins. |
Author | Karin, Michael Botwin, Gregory J Eckmann, Lars Zinkernagel, Annelies S Hugot, Jean-Pierre Hruz, Petr Jenikova, Gabriela Nizet, Victor |
Author_xml | – sequence: 1 fullname: Hruz, Petr – sequence: 2 fullname: Zinkernagel, Annelies S – sequence: 3 fullname: Jenikova, Gabriela – sequence: 4 fullname: Botwin, Gregory J – sequence: 5 fullname: Hugot, Jean-Pierre – sequence: 6 fullname: Karin, Michael – sequence: 7 fullname: Nizet, Victor – sequence: 8 fullname: Eckmann, Lars |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19541630$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFNSsgq0os0vovTrxBQuVXquiiZW05zs2Mq8QOtlPax-qL8Ex4mGEKSKirq6vz3aOjew7QnvMOEHpO8DHBNTuZnI7HWGIuq4Zg8QgtCJakFFziPbTAmNZlwynfRwcxXmGMM4afoH0iK04Ewwv0_cv5O1oY71Kw7ZwgFskXZk7agZ9j0UEPLkKhl9q6mIqLpKfV7eCNNybLeg6QR1oFPy9XxY-7Mvkb68oOJnAduFRY53SCwo7j7LKNSfZaJ-vdU_S410OEZ9t5iC4_vL88_VSenX_8fPr2rDS8EansWwPG8L5pqNFQG6yxrCWvBcsLSFNxKQWHrmMtbwlrBGkb0fW0ElUrWccO0ZuN7TS3I3QmRwp6UFOwow63ymur_lacXamlv1a0ppQJkg2OtgbBf5shJjXaaGAYNg9Soq5qKjh7EOSCiRxrDb78M9Iuy-9OMlBtABN8jAF6ZWz69bSc0A6KYLXuXq27V_fd57uTf-521v-9KLZR1sI9LRQjitCmXqd9_QCi-nkYEtykzL7YsFcx-bCDOeYNF6TJ-quN3muv9DLYqL5eUEwYJkJwnh_-E4OG4Ww |
CitedBy_id | crossref_primary_10_1038_ncomms7442 crossref_primary_10_1371_journal_ppat_1005826 crossref_primary_10_3390_ijms15058753 crossref_primary_10_3390_microorganisms9020287 crossref_primary_10_3389_fimmu_2024_1353039 crossref_primary_10_1111_cmi_12304 crossref_primary_10_1371_journal_pone_0030273 crossref_primary_10_1007_s13671_018_0235_8 crossref_primary_10_1155_2012_861426 crossref_primary_10_3389_fimmu_2018_03082 crossref_primary_10_1002_eji_200939929 crossref_primary_10_1371_journal_pone_0011071 crossref_primary_10_1016_j_micinf_2010_05_003 crossref_primary_10_1038_cmi_2015_77 crossref_primary_10_1186_s13567_021_00937_7 crossref_primary_10_1371_journal_pone_0051078 crossref_primary_10_3390_ijms22115486 crossref_primary_10_1096_fj_201902836R crossref_primary_10_3389_froh_2022_851786 crossref_primary_10_3390_biom13020369 crossref_primary_10_4049_jimmunol_1402665 crossref_primary_10_4049_jimmunol_1701574 crossref_primary_10_1016_j_jss_2012_08_038 crossref_primary_10_1016_j_humimm_2010_10_001 crossref_primary_10_1586_egh_09_47 crossref_primary_10_1111_all_13726 crossref_primary_10_1016_j_bbrc_2013_09_097 crossref_primary_10_3390_molecules21040471 crossref_primary_10_1186_1476_9255_10_28 crossref_primary_10_1186_s41232_017_0044_7 crossref_primary_10_1155_2022_4537343 crossref_primary_10_1016_j_micpath_2013_09_006 crossref_primary_10_3389_fimmu_2022_828626 crossref_primary_10_1021_acs_est_5b03583 crossref_primary_10_3389_fmicb_2021_789042 crossref_primary_10_2500_ajra_2015_29_4130 crossref_primary_10_4049_jimmunol_1600549 crossref_primary_10_15252_emmm_201809024 crossref_primary_10_1159_000368048 crossref_primary_10_3390_genes12091424 crossref_primary_10_4061_2011_249802 crossref_primary_10_3892_ijmm_2020_4563 crossref_primary_10_1074_jbc_M114_574756 crossref_primary_10_1371_journal_ppat_1002812 crossref_primary_10_1189_jlb_0213080 crossref_primary_10_1038_nri3010 crossref_primary_10_1172_JCI68453 crossref_primary_10_1002_alr_21213 crossref_primary_10_1002_path_4095 crossref_primary_10_1586_eci_12_87 crossref_primary_10_3390_toxins5061140 crossref_primary_10_1073_pnas_1821806116 crossref_primary_10_3899_jrheum_181393 crossref_primary_10_1099_jmm_0_000331 crossref_primary_10_1371_journal_pone_0075103 crossref_primary_10_1016_j_clindermatol_2011_01_006 crossref_primary_10_4049_jimmunol_0903536 crossref_primary_10_1016_j_vaccine_2011_11_006 crossref_primary_10_1128_cmr_00015_23 crossref_primary_10_1126_sciimmunol_abe5084 crossref_primary_10_1093_cid_cis033 crossref_primary_10_1128_IAI_01304_12 crossref_primary_10_1007_s00281_011_0297_1 crossref_primary_10_15829_1560_4071_2018_10_145_150 crossref_primary_10_1093_femsre_fuy025 crossref_primary_10_4161_viru_26514 crossref_primary_10_1038_jid_2013_313 crossref_primary_10_1111_exd_14853 crossref_primary_10_3390_ijms22041507 crossref_primary_10_1016_j_bbadis_2019_07_004 crossref_primary_10_1074_jbc_M111_237495 crossref_primary_10_1177_17534259231207198 crossref_primary_10_1016_j_ijmm_2013_03_004 crossref_primary_10_1097_MOG_0b013e3283365279 crossref_primary_10_1038_s41419_020_2368_5 crossref_primary_10_1111_tan_12001 crossref_primary_10_1002_eji_201040827 crossref_primary_10_1111_cmi_12550 crossref_primary_10_1371_journal_pone_0074287 crossref_primary_10_1002_adma_202002962 crossref_primary_10_1155_2013_608456 crossref_primary_10_1038_s41598_018_27012_0 crossref_primary_10_1016_j_vetimm_2017_04_010 crossref_primary_10_1111_j_1462_5822_2012_01772_x crossref_primary_10_1021_acs_chemrev_1c00716 crossref_primary_10_1016_j_immuni_2011_04_015 crossref_primary_10_1093_infdis_jis244 crossref_primary_10_1016_j_immuni_2014_12_010 crossref_primary_10_1186_1471_2180_12_274 crossref_primary_10_1371_journal_pone_0076218 crossref_primary_10_1111_bjd_15139 crossref_primary_10_1128_IAI_00898_19 crossref_primary_10_3390_antibiotics12030557 crossref_primary_10_1097_SHK_0000000000000874 crossref_primary_10_1007_s00281_015_0544_y crossref_primary_10_1371_journal_pone_0087927 crossref_primary_10_1007_s00281_011_0292_6 crossref_primary_10_1189_jlb_3MR0316_097RR crossref_primary_10_1371_journal_pone_0056846 crossref_primary_10_17816_KMJ2019_944 crossref_primary_10_3389_fcimb_2023_1265471 crossref_primary_10_3389_fimmu_2015_00518 crossref_primary_10_1128_IAI_06230_11 crossref_primary_10_1371_journal_ppat_1003047 crossref_primary_10_1016_j_imbio_2021_152096 crossref_primary_10_1093_infdis_jir846 crossref_primary_10_1128_IAI_06360_11 crossref_primary_10_1073_pnas_1317181111 crossref_primary_10_1111_j_1462_5822_2010_01544_x crossref_primary_10_1128_IAI_00912_17 crossref_primary_10_1016_j_ajpath_2014_11_030 crossref_primary_10_1111_apa_12559 crossref_primary_10_1016_j_mib_2011_11_003 crossref_primary_10_1126_scisignal_2003305 crossref_primary_10_1016_j_cimid_2016_08_004 crossref_primary_10_1371_journal_ppat_1002736 crossref_primary_10_1002_adbi_202200109 crossref_primary_10_1016_j_it_2012_01_003 crossref_primary_10_1016_j_imlet_2013_01_004 crossref_primary_10_1111_j_1600_065X_2011_01039_x crossref_primary_10_1038_nri3565 crossref_primary_10_1080_21505594_2024_2359483 crossref_primary_10_4049_jimmunol_2001360 crossref_primary_10_4049_jimmunol_1600185 crossref_primary_10_1016_j_abb_2018_12_022 crossref_primary_10_1128_IAI_01364_09 crossref_primary_10_1016_j_cdev_2021_203658 crossref_primary_10_1159_000360006 crossref_primary_10_1172_JCI57761 crossref_primary_10_3390_ijms23010372 crossref_primary_10_1186_s40779_014_0029_7 crossref_primary_10_1128_mBio_02110_14 crossref_primary_10_1128_IAI_01050_13 crossref_primary_10_1073_pnas_1510265112 crossref_primary_10_1093_infdis_jiy149 crossref_primary_10_4049_jimmunol_1402566 crossref_primary_10_1097_SHK_0b013e3181e86f10 crossref_primary_10_3390_cancers16233947 crossref_primary_10_1038_mi_2011_29 crossref_primary_10_1111_imr_12902 crossref_primary_10_3389_fimmu_2019_02622 crossref_primary_10_1042_BSR20120055 crossref_primary_10_1038_s41392_023_01344_4 crossref_primary_10_3390_ijms22094677 crossref_primary_10_1371_journal_pone_0119179 crossref_primary_10_1016_j_micinf_2012_03_004 crossref_primary_10_1371_journal_ppat_1006496 crossref_primary_10_1128_mBio_00133_15 crossref_primary_10_1016_j_jaci_2012_12_1563 |
Cites_doi | 10.1111/j.1462-5822.2007.00917.x 10.4049/jimmunol.180.10.6816 10.1371/journal.pone.0001409 10.1038/sj.emboj.7600175 10.1053/gast.2002.35393 10.4049/jimmunol.158.11.5267 10.1111/j.1462-5822.2006.00878.x 10.1146/annurev.immunol.23.021704.115616 10.1046/j.1365-2133.2003.05017.x 10.1074/jbc.274.47.33419 10.1016/0924-8579(96)00007-6 10.1073/pnas.0802726105 10.1111/j.1462-5822.2008.01166.x 10.2353/ajpath.2008.080337 10.1038/35106587 10.1038/nature03253 10.1128/IAI.00940-08 10.1056/NEJM199808203390806 10.1016/0016-5085(91)90229-E 10.1016/j.cub.2005.12.039 10.1053/gast.2002.32415 10.1038/nm1207-1405 10.1016/S1074-7613(00)80119-3 10.3109/00365528209181050 10.1074/jbc.M008072200 10.1128/iai.65.7.2517-2521.1997 10.1038/368339a0 10.1126/science.7535475 10.1371/journal.pone.0000523 10.1126/science.1104911 10.1053/gast.2003.50019 10.4049/jimmunol.159.7.3364 10.1074/jbc.C200651200 10.4049/jimmunol.180.6.4050 10.1128/IAI.01199-06 10.4049/jimmunol.165.10.5392 10.1172/JCI11783 |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0904958106 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12878 |
ExternalDocumentID | PMC2722361 19541630 10_1073_pnas_0904958106 106_31_12873 40484618 US201301664422 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES006376 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c486t-fbcecc4f882cae7c0a09794763e7ce9c549964edd3b4b13861b86df2565b93d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:33:47 EDT 2025 Fri Jul 11 02:17:25 EDT 2025 Fri Jul 11 08:25:39 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Tue Jul 01 02:39:19 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Wed Nov 11 00:29:54 EST 2020 Thu May 30 08:50:59 EDT 2019 Thu May 29 08:42:54 EDT 2025 Thu Apr 03 09:45:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-fbcecc4f882cae7c0a09794763e7ce9c549964edd3b4b13861b86df2565b93d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1P.H. and A.S.Z. contributed equally to this work. Contributed by Michael Karin, May 6, 2009 Author contributions: P.H., A.S.Z., J.-P.H., M.K., V.N., and L.E. designed research; P.H., A.S.Z., G.J., and G.J.B. performed research; J.-P.H. contributed new reagents/analytic tools; P.H., A.S.Z., V.N., and L.E. analyzed data; and P.H., A.S.Z., M.K., V.N., and L.E. wrote the paper. |
PMID | 19541630 |
PQID | 46362563 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | jstor_primary_40484618 fao_agris_US201301664422 pubmed_primary_19541630 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2722361 proquest_miscellaneous_46362563 proquest_miscellaneous_67572643 pnas_primary_106_31_12873_fulltext crossref_citationtrail_10_1073_pnas_0904958106 pnas_primary_106_31_12873 crossref_primary_10_1073_pnas_0904958106 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-04 |
PublicationDateYYYYMMDD | 2009-08-04 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-04 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Akira S (e_1_3_3_2_2) 2006; 311 Sawada T (e_1_3_3_17_2) 1997; 158 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 Glaccum MB (e_1_3_3_35_2) 1997; 159 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 9317135 - J Immunol. 1997 Oct 1;159(7):3364-71 1985051 - Gastroenterology. 1991 Feb;100(2):549-54 18183290 - PLoS One. 2008;3(1):e1409 11067888 - J Immunol. 2000 Nov 15;165(10):5392-6 10549626 - Immunity. 1999 Oct;11(4):443-51 18974303 - Am J Pathol. 2008 Dec;173(6):1657-68 17048703 - Curr Top Microbiol Immunol. 2006;311:1-16 11719807 - Nature. 2001 Nov 22;414(6862):454-7 12534593 - Br J Dermatol. 2003 Jan;148(1):46-50 12512038 - Gastroenterology. 2003 Jan;124(1):140-6 11285305 - J Clin Invest. 2001 Apr;107(7):861-9 8127368 - Nature. 1994 Mar 24;368(6469):339-42 17359518 - Cell Microbiol. 2007 Jul;9(7):1809-21 18611733 - Int J Antimicrob Agents. 1996 May;7(1):33-40 17565376 - PLoS One. 2007;2(6):e523 18453602 - J Immunol. 2008 May 15;180(10):6816-26 12198692 - Gastroenterology. 2002 Sep;123(3):679-88 15771576 - Annu Rev Immunol. 2005;23:387-414 11910337 - Gastroenterology. 2002 Apr;122(4):867-74 17118979 - Infect Immun. 2007 Feb;75(2):830-7 17474907 - Cell Microbiol. 2007 May;9(5):1343-51 11087742 - J Biol Chem. 2001 Feb 16;276(7):4812-8 19139201 - Infect Immun. 2009 Apr;77(4):1376-82 12527755 - J Biol Chem. 2003 Mar 14;278(11):8869-72 18322214 - J Immunol. 2008 Mar 15;180(6):4050-7 18064027 - Nat Med. 2007 Dec;13(12):1405-6 7535475 - Science. 1995 Mar 31;267(5206):2000-3 9199413 - Infect Immun. 1997 Jul;65(7):2517-21 16488874 - Curr Biol. 2006 Feb 21;16(4):396-400 18511561 - Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7803-8 18466345 - Cell Microbiol. 2008 Sep;10(9):1801-14 9164945 - J Immunol. 1997 Jun 1;158(11):5267-76 7134842 - Scand J Gastroenterol. 1982 Jan;17(1):91-6 10559223 - J Biol Chem. 1999 Nov 19;274(47):33419-25 15690042 - Nature. 2005 Feb 3;433(7025):523-7 15044951 - EMBO J. 2004 Apr 7;23(7):1587-97 15692051 - Science. 2005 Feb 4;307(5710):731-4 9709046 - N Engl J Med. 1998 Aug 20;339(8):520-32 |
References_xml | – ident: e_1_3_3_21_2 doi: 10.1111/j.1462-5822.2007.00917.x – ident: e_1_3_3_38_2 doi: 10.4049/jimmunol.180.10.6816 – ident: e_1_3_3_19_2 doi: 10.1371/journal.pone.0001409 – ident: e_1_3_3_28_2 doi: 10.1038/sj.emboj.7600175 – ident: e_1_3_3_27_2 doi: 10.1053/gast.2002.35393 – volume: 158 start-page: 5267 year: 1997 ident: e_1_3_3_17_2 article-title: IL-6 induction of protein-DNA complexes via a novel regulatory region of the inducible nitric oxide synthase gene promoter: Role of octamer binding proteins publication-title: J Immunol doi: 10.4049/jimmunol.158.11.5267 – ident: e_1_3_3_22_2 doi: 10.1111/j.1462-5822.2006.00878.x – ident: e_1_3_3_3_2 doi: 10.1146/annurev.immunol.23.021704.115616 – ident: e_1_3_3_14_2 doi: 10.1046/j.1365-2133.2003.05017.x – volume: 311 start-page: 1 year: 2006 ident: e_1_3_3_2_2 article-title: TLR signaling publication-title: Curr Top Microbiol Immunol – ident: e_1_3_3_5_2 doi: 10.1074/jbc.274.47.33419 – ident: e_1_3_3_25_2 doi: 10.1016/0924-8579(96)00007-6 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0802726105 – ident: e_1_3_3_18_2 doi: 10.1111/j.1462-5822.2008.01166.x – ident: e_1_3_3_24_2 doi: 10.2353/ajpath.2008.080337 – ident: e_1_3_3_32_2 doi: 10.1038/35106587 – ident: e_1_3_3_8_2 doi: 10.1038/nature03253 – ident: e_1_3_3_10_2 doi: 10.1128/IAI.00940-08 – ident: e_1_3_3_1_2 doi: 10.1056/NEJM199808203390806 – ident: e_1_3_3_31_2 doi: 10.1016/0016-5085(91)90229-E – ident: e_1_3_3_33_2 doi: 10.1016/j.cub.2005.12.039 – ident: e_1_3_3_26_2 doi: 10.1053/gast.2002.32415 – ident: e_1_3_3_20_2 doi: 10.1038/nm1207-1405 – ident: e_1_3_3_6_2 doi: 10.1016/S1074-7613(00)80119-3 – ident: e_1_3_3_30_2 doi: 10.3109/00365528209181050 – ident: e_1_3_3_12_2 doi: 10.1074/jbc.M008072200 – ident: e_1_3_3_13_2 doi: 10.1128/iai.65.7.2517-2521.1997 – ident: e_1_3_3_36_2 doi: 10.1038/368339a0 – ident: e_1_3_3_37_2 doi: 10.1126/science.7535475 – ident: e_1_3_3_34_2 doi: 10.1371/journal.pone.0000523 – ident: e_1_3_3_4_2 doi: 10.1126/science.1104911 – ident: e_1_3_3_29_2 doi: 10.1053/gast.2003.50019 – volume: 159 start-page: 3364 year: 1997 ident: e_1_3_3_35_2 article-title: Phenotypic and functional characterization of mice that lack the type I receptor for IL-1 publication-title: J Immunol doi: 10.4049/jimmunol.159.7.3364 – ident: e_1_3_3_11_2 doi: 10.1074/jbc.C200651200 – ident: e_1_3_3_23_2 doi: 10.4049/jimmunol.180.6.4050 – ident: e_1_3_3_7_2 doi: 10.1128/IAI.01199-06 – ident: e_1_3_3_9_2 doi: 10.4049/jimmunol.165.10.5392 – ident: e_1_3_3_16_2 doi: 10.1172/JCI11783 – reference: 11910337 - Gastroenterology. 2002 Apr;122(4):867-74 – reference: 9199413 - Infect Immun. 1997 Jul;65(7):2517-21 – reference: 7134842 - Scand J Gastroenterol. 1982 Jan;17(1):91-6 – reference: 18183290 - PLoS One. 2008;3(1):e1409 – reference: 18064027 - Nat Med. 2007 Dec;13(12):1405-6 – reference: 9709046 - N Engl J Med. 1998 Aug 20;339(8):520-32 – reference: 12534593 - Br J Dermatol. 2003 Jan;148(1):46-50 – reference: 18466345 - Cell Microbiol. 2008 Sep;10(9):1801-14 – reference: 9317135 - J Immunol. 1997 Oct 1;159(7):3364-71 – reference: 11087742 - J Biol Chem. 2001 Feb 16;276(7):4812-8 – reference: 11285305 - J Clin Invest. 2001 Apr;107(7):861-9 – reference: 18511561 - Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7803-8 – reference: 18974303 - Am J Pathol. 2008 Dec;173(6):1657-68 – reference: 18322214 - J Immunol. 2008 Mar 15;180(6):4050-7 – reference: 10549626 - Immunity. 1999 Oct;11(4):443-51 – reference: 15771576 - Annu Rev Immunol. 2005;23:387-414 – reference: 17118979 - Infect Immun. 2007 Feb;75(2):830-7 – reference: 15690042 - Nature. 2005 Feb 3;433(7025):523-7 – reference: 17359518 - Cell Microbiol. 2007 Jul;9(7):1809-21 – reference: 18611733 - Int J Antimicrob Agents. 1996 May;7(1):33-40 – reference: 11067888 - J Immunol. 2000 Nov 15;165(10):5392-6 – reference: 11719807 - Nature. 2001 Nov 22;414(6862):454-7 – reference: 7535475 - Science. 1995 Mar 31;267(5206):2000-3 – reference: 1985051 - Gastroenterology. 1991 Feb;100(2):549-54 – reference: 17474907 - Cell Microbiol. 2007 May;9(5):1343-51 – reference: 12512038 - Gastroenterology. 2003 Jan;124(1):140-6 – reference: 16488874 - Curr Biol. 2006 Feb 21;16(4):396-400 – reference: 15692051 - Science. 2005 Feb 4;307(5710):731-4 – reference: 19139201 - Infect Immun. 2009 Apr;77(4):1376-82 – reference: 15044951 - EMBO J. 2004 Apr 7;23(7):1587-97 – reference: 8127368 - Nature. 1994 Mar 24;368(6469):339-42 – reference: 12527755 - J Biol Chem. 2003 Mar 14;278(11):8869-72 – reference: 9164945 - J Immunol. 1997 Jun 1;158(11):5267-76 – reference: 18453602 - J Immunol. 2008 May 15;180(10):6816-26 – reference: 17048703 - Curr Top Microbiol Immunol. 2006;311:1-16 – reference: 12198692 - Gastroenterology. 2002 Sep;123(3):679-88 – reference: 10559223 - J Biol Chem. 1999 Nov 19;274(47):33419-25 – reference: 17565376 - PLoS One. 2007;2(6):e523 |
SSID | ssj0009580 |
Score | 2.3889773 |
Snippet | Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing... Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12873 |
SubjectTerms | Animals Bacteria Bacterial Toxins Biological Sciences cross infection Cytokines cytoplasm endocarditis Hemolysin Proteins - physiology hemolysins Immunity, Innate Infections innate immunity Interleukin-1beta - biosynthesis interleukin-6 Interleukin-6 - biosynthesis Interleukin-8 - biosynthesis intracellular signaling peptides and proteins Lesions Macrophages Mice Mice, Inbred C57BL microbial detection Neutrophil Activation Neutrophils Nod2 Signaling Adaptor Protein - physiology oligomerization Pathogens peptidoglycans pneumonia Secretion septicemia Skin Skin - immunology Skin - microbiology Staphylococcal Infections - immunology Staphylococcus aureus Staphylococcus aureus - immunology Toll-like receptor 2 Toll-like receptor 4 toxins virulence |
Title | NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation |
URI | https://www.jstor.org/stable/40484618 http://www.pnas.org/content/106/31/12873.abstract https://www.ncbi.nlm.nih.gov/pubmed/19541630 https://www.proquest.com/docview/46362563 https://www.proquest.com/docview/67572643 https://pubmed.ncbi.nlm.nih.gov/PMC2722361 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELbS8sILokDpclqIh6Jow17x7j5WXFElQiVSqeLFsh07RJTdKtkUlB_Fb2R87JGSSMBLjvWxkudbz4z3mxmEXgqZCaZ4rIu7MD_JOffzmMODB442S1UWhVLHDn8ck9F5cnoxvOj1fnVYS6uKD8R6a1zJ_0gVroFcdZTsP0i2mRQuwG-QL3yChOHzr2Q8_vQ2smRzXbXKJmsQKzD3pCa2TqUCH1X22Qy8_2Wl7UpYU1BepRDQzFYLCV91oR4TdOtX5c954deVcXX5gAKM0f5cR5HYxBvXrSidTXvW6MBlzTgY10eMJ23AittFln2_fzZuyx-PFqu1Iwo3POEv4CDrc8qZoxBoLg549O0x7aks5t_Ka2P4fmAc3P3L9mChrH7YxAgu_sa9-aqPNnJDrLPHC9Jux2DN-CSxBUWb_TogHWA6HWK3X1C2tjDKH4oBdjJdzbhgy0GQg1c0zNw0HZhcfTc40TnwwEoNWg3Z8Bbrpj10KwK3xBBJR90kz1lQp49K49c37mby09rxG0bQnmJlzYbVKXZh1DZ35yZrt2MGTe6iO85_wScWjAeoJ4t76KCWLT52acxf3UdrjU7cQSeuStygEzt0YodOvIlObNGJHTrxVnRii05s0YlbdD5Ak_fvJm9Gvqv04YskI5WvuICtJFHg7gkmUxGwIAdFAboP_shc6EMMksjpNOYJD-OMhDwjUwXm-pDn8TQ-RPtFWcgjhAnPVaKEUgmHATzPcgY2ehiIFExtcNU9NKhXngqXBV8XY7mkho2RxlSvP22l5qHjZsCVTQCzu-sRiJKyGahnev450qSAkIDDEUUeOjTybaZIQHMmJMw85JlZ2qkJjUNqgOyhFzvbqHLcMA89r6FCQTPo131WjlSnAoQVinf3IOkwBYcIejy00Gpv5YDqoXQDdE0HnZV-s6WYfzXZ6aM00gmdHu2c8zG63T7sT9B-tVjJp2DZV_yZeZx-A5bS_cc |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NOD2+contributes+to+cutaneous+defense+against+Staphylococcus+aureus+through+alpha-toxin-dependent+innate+immune+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hruz%2C+Petr&rft.au=Zinkernagel%2C+Annelies+S&rft.au=Jenikova%2C+Gabriela&rft.au=Botwin%2C+Gregory+J&rft.date=2009-08-04&rft.eissn=1091-6490&rft.volume=106&rft.issue=31&rft.spage=12873&rft_id=info:doi/10.1073%2Fpnas.0904958106&rft_id=info%3Apmid%2F19541630&rft.externalDocID=19541630 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F31.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F31.cover.gif |