Bayesian Estimation of Ancestral Character States on Phylogenies

Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its bra...

Full description

Saved in:
Bibliographic Details
Published inSystematic biology Vol. 53; no. 5; pp. 673 - 684
Main Authors Pagel, Mark, Meade, Andrew, Barker, Daniel, Thorne, Jeffrey
Format Journal Article
LanguageEnglish
Published England Society of Systematic Zoology 01.10.2004
Taylor and Francis
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.
AbstractList Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. [Ancestral states; comparative methods; maximum likelihood; MCMC; phylogeny.] [PUBLICATION ABSTRACT]
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.
Abstract Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.
Author Barker, Daniel
Meade, Andrew
Pagel, Mark
Author_xml – sequence: 1
  givenname: Mark
  surname: Pagel
  fullname: Pagel, Mark
  email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk
  organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.)
– sequence: 2
  givenname: Andrew
  surname: Meade
  fullname: Meade, Andrew
  email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk
  organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.)
– sequence: 3
  givenname: Daniel
  surname: Barker
  fullname: Barker, Daniel
  email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk
  organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.)
– sequence: 4
  givenname: Jeffrey
  surname: Thorne
  fullname: Thorne, Jeffrey
  email: m.pagel@rdg.ac.uk
  organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ England
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15545248$$D View this record in MEDLINE/PubMed
BookMark eNqNkF1rFDEUhoNU7Jc_QBAZvPDKaXMmk4-9a12qlRZc7CrFm3Bm5oyddXayJhlw_72pUytUEK8SeJ83OefZZzuDG4ixZ8CPgBt-DFwJCZKXMy6LohDFI7YHXKvcCHW9c3tXIk-A3mX7Iaw4B1ASnrBdkLKURWn22Mkb3FLocMjOQuzWGDs3ZK7NToeaQvTYZ_Mb9FhH8tlVxEghS8DiZtu7rzR0FA7Z4xb7QE_vzgP26e3Zcn6eX354935-epnXpVExb2dIAoqqapsKeGOAZk2F1DQkVFOpUlSgkaM0kgRWRiByKIpWAdVNjcqIA_Zqenfj3fcxzWbXXaip73EgNwarNNcSdJHAlw_AlRv9kGazMCu14ZrzBL24g8ZqTY3d-LS739rfYhIAE1B7F4Kn9g_C7a18-5f81NEPOnUXfxlNIrv-n83XU9ONm__66PmEr0J0_r5QgpBC6hTnU9yFSD_uY_TfkiWhpT2__mLlx4vl4vPVwi7FTzzzq8U
CitedBy_id crossref_primary_10_1111_j_1558_5646_2007_00039_x
crossref_primary_10_1111_nph_14197
crossref_primary_10_1016_j_asd_2013_03_006
crossref_primary_10_1002_ece3_1482
crossref_primary_10_1111_j_1420_9101_2009_01789_x
crossref_primary_10_1002_ece3_3420
crossref_primary_10_1093_zoolinnean_zlab087
crossref_primary_10_1016_j_cbpa_2013_01_007
crossref_primary_10_1111_evo_13671
crossref_primary_10_1111_cla_12383
crossref_primary_10_1111_cla_12140
crossref_primary_10_1128_mBio_01024_18
crossref_primary_10_1093_isd_ixac020
crossref_primary_10_1016_j_ympev_2013_10_010
crossref_primary_10_1093_molbev_msac171
crossref_primary_10_1007_s00606_021_01752_5
crossref_primary_10_1111_pala_12178
crossref_primary_10_3389_fgene_2021_693541
crossref_primary_10_1007_s11262_012_0762_5
crossref_primary_10_1098_rstb_2020_0057
crossref_primary_10_1371_journal_pcbi_1004763
crossref_primary_10_1007_s00435_014_0231_x
crossref_primary_10_1093_gbe_evw055
crossref_primary_10_1093_sysbio_sys034
crossref_primary_10_1016_j_ppees_2018_12_001
crossref_primary_10_1093_molbev_msq081
crossref_primary_10_1111_j_1558_5646_2007_00159_x
crossref_primary_10_1111_j_1469_8137_2012_04079_x
crossref_primary_10_1111_j_1558_5646_2009_00741_x
crossref_primary_10_1111_evo_12599
crossref_primary_10_1371_journal_pone_0141187
crossref_primary_10_1016_j_ympev_2007_12_015
crossref_primary_10_1111_bij_12186
crossref_primary_10_1093_aob_mcac006
crossref_primary_10_1371_journal_pone_0110685
crossref_primary_10_1111_j_1463_6409_2010_00458_x
crossref_primary_10_1016_j_anbehav_2019_10_015
crossref_primary_10_1098_rspb_2018_1932
crossref_primary_10_1093_aob_mcs083
crossref_primary_10_12705_634_14
crossref_primary_10_3852_15_036
crossref_primary_10_1098_rspb_2016_1006
crossref_primary_10_1016_j_ympev_2012_08_022
crossref_primary_10_1016_j_ympev_2018_12_002
crossref_primary_10_1186_s12862_015_0283_7
crossref_primary_10_1098_rsos_230725
crossref_primary_10_1111_j_1365_294X_2011_05082_x
crossref_primary_10_1111_j_1420_9101_2010_02072_x
crossref_primary_10_1007_s12041_017_0785_8
crossref_primary_10_1038_s41559_023_02012_0
crossref_primary_10_1007_s00606_014_1034_8
crossref_primary_10_1093_aob_mcw219
crossref_primary_10_1371_journal_pone_0026370
crossref_primary_10_1111_j_1469_8137_2011_03783_x
crossref_primary_10_1073_pnas_1502036112
crossref_primary_10_1098_rspb_2016_0140
crossref_primary_10_1016_j_ympev_2006_09_009
crossref_primary_10_1111_jbi_13552
crossref_primary_10_1186_1471_2164_9_48
crossref_primary_10_1371_journal_pone_0067957
crossref_primary_10_1111_nph_17437
crossref_primary_10_1371_journal_pone_0021915
crossref_primary_10_1086_668219
crossref_primary_10_1371_journal_pone_0001065
crossref_primary_10_1007_s12110_006_1000_4
crossref_primary_10_3732_ajb_0900161
crossref_primary_10_1086_689399
crossref_primary_10_1093_icb_icz040
crossref_primary_10_1093_sysbio_syq045
crossref_primary_10_1126_science_1240578
crossref_primary_10_1038_s41559_017_0137
crossref_primary_10_1111_j_1759_6831_2010_00088_x
crossref_primary_10_1214_08_AOAS173
crossref_primary_10_1093_aob_mcw223
crossref_primary_10_1111_evo_12300
crossref_primary_10_1007_s11557_021_01710_y
crossref_primary_10_1038_s41467_019_11307_5
crossref_primary_10_1111_evo_13879
crossref_primary_10_1038_ncomms14445
crossref_primary_10_1038_nature04597
crossref_primary_10_1371_journal_pone_0162299
crossref_primary_10_1111_j_1558_5646_2010_00993_x
crossref_primary_10_1093_gbe_evy030
crossref_primary_10_1093_sysbio_syq055
crossref_primary_10_1086_710489
crossref_primary_10_1371_journal_pone_0147920
crossref_primary_10_3390_pr13010114
crossref_primary_10_1016_j_ygcen_2016_03_011
crossref_primary_10_1016_j_ympev_2010_03_039
crossref_primary_10_1016_j_meegid_2010_12_001
crossref_primary_10_1016_j_ympev_2012_07_020
crossref_primary_10_1890_09_0817_1
crossref_primary_10_1038_s41576_024_00803_0
crossref_primary_10_1111_jbi_14603
crossref_primary_10_1086_519460
crossref_primary_10_1093_aob_mcw243
crossref_primary_10_1038_s41598_022_18407_1
crossref_primary_10_1111_j_1558_5646_2011_01258_x
crossref_primary_10_1643_h2021058
crossref_primary_10_1016_j_tree_2008_02_003
crossref_primary_10_1016_j_ejop_2017_02_001
crossref_primary_10_1111_j_1469_8137_2011_03663_x
crossref_primary_10_1186_s13039_016_0270_8
crossref_primary_10_1093_biolinnean_bly101
crossref_primary_10_1111_evo_12328
crossref_primary_10_1111_evo_13899
crossref_primary_10_1016_j_meegid_2016_03_036
crossref_primary_10_1186_s12862_014_0229_5
crossref_primary_10_1007_s00265_020_02889_y
crossref_primary_10_1093_molbev_msr116
crossref_primary_10_1093_sysbio_syt102
crossref_primary_10_1093_gbe_evy013
crossref_primary_10_1554_04_675_1
crossref_primary_10_3417_2012047
crossref_primary_10_1016_j_cub_2016_02_042
crossref_primary_10_1093_molbev_msae162
crossref_primary_10_1075_dia_32_1_03ver
crossref_primary_10_1093_molbev_msq237
crossref_primary_10_1002_ece3_8034
crossref_primary_10_1016_j_ijpara_2015_03_008
crossref_primary_10_4003_006_032_0103
crossref_primary_10_1038_srep45966
crossref_primary_10_1038_nature10601
crossref_primary_10_1371_journal_pone_0059917
crossref_primary_10_1086_503444
crossref_primary_10_1111_ivb_12151
crossref_primary_10_1111_jbi_12636
crossref_primary_10_1016_j_physbeh_2014_10_018
crossref_primary_10_1098_rspb_2009_0182
crossref_primary_10_1098_rspb_2012_0075
crossref_primary_10_7717_peerj_6288
crossref_primary_10_1371_journal_pbio_3001495
crossref_primary_10_3852_13_059
crossref_primary_10_1016_j_celrep_2011_12_010
crossref_primary_10_1080_10635150500354837
crossref_primary_10_1111_j_1474_9726_2011_00718_x
crossref_primary_10_1086_675571
crossref_primary_10_1111_evo_12997
crossref_primary_10_1016_j_ympev_2014_09_030
crossref_primary_10_1002_ajpa_70009
crossref_primary_10_1080_14772000_2021_1914764
crossref_primary_10_1371_journal_pone_0180908
crossref_primary_10_1038_srep12471
crossref_primary_10_1016_j_cub_2018_05_058
crossref_primary_10_1093_ve_veae009
crossref_primary_10_1016_j_ympev_2010_02_009
crossref_primary_10_1111_j_1439_0469_2008_00491_x
crossref_primary_10_1007_s13127_013_0165_z
crossref_primary_10_1186_1471_2105_11_7
crossref_primary_10_1073_pnas_1115169109
crossref_primary_10_1111_j_1096_0031_2005_00080_x
crossref_primary_10_1073_pnas_1610603114
crossref_primary_10_1098_rspb_2012_1140
crossref_primary_10_1016_j_ympev_2010_02_011
crossref_primary_10_1016_j_ympev_2015_08_016
crossref_primary_10_1111_1365_2656_13132
crossref_primary_10_1007_s00239_014_9639_7
crossref_primary_10_1371_journal_pone_0021086
crossref_primary_10_1371_journal_pbio_3000183
crossref_primary_10_1111_j_1365_2699_2005_01261_x
crossref_primary_10_3114_sim_2008_61_11
crossref_primary_10_3732_ajb_1300053
crossref_primary_10_1016_j_ympev_2023_107796
crossref_primary_10_1098_rsbl_2010_0757
crossref_primary_10_3389_fcomm_2021_661862
crossref_primary_10_1002_evan_21940
crossref_primary_10_1016_j_ympev_2012_05_030
crossref_primary_10_1111_bij_12536
crossref_primary_10_1016_j_ympev_2007_11_003
crossref_primary_10_1186_s12862_019_1398_z
crossref_primary_10_1111_j_1365_2699_2012_02771_x
crossref_primary_10_1111_mec_12205
crossref_primary_10_1111_ele_13431
crossref_primary_10_1111_plb_12348
crossref_primary_10_1111_jbi_12611
crossref_primary_10_1111_jbi_12853
crossref_primary_10_1016_j_ympev_2010_01_011
crossref_primary_10_1111_2041_210X_13872
crossref_primary_10_1016_j_ympev_2016_01_012
crossref_primary_10_1111_j_1558_5646_2011_01487_x
crossref_primary_10_1007_s13127_021_00532_w
crossref_primary_10_12705_645_1
crossref_primary_10_12705_645_2
crossref_primary_10_1371_journal_pcbi_1000520
crossref_primary_10_1007_s10750_013_1599_1
crossref_primary_10_1111_j_1420_9101_2009_01915_x
crossref_primary_10_1002_evl3_219
crossref_primary_10_1016_j_ympev_2014_08_010
crossref_primary_10_1098_rstb_2010_0017
crossref_primary_10_1111_bij_12784
crossref_primary_10_1186_1471_2148_11_114
crossref_primary_10_1016_j_ympev_2023_107734
crossref_primary_10_1179_037366809X12469790518529
crossref_primary_10_1016_j_ympev_2021_107178
crossref_primary_10_1186_s12864_020_06838_x
crossref_primary_10_1111_mec_12664
crossref_primary_10_1038_s41598_017_09834_6
crossref_primary_10_1111_jeb_12190
crossref_primary_10_1186_s13358_023_00285_3
crossref_primary_10_3390_plants12142721
crossref_primary_10_1016_j_ympev_2012_04_006
crossref_primary_10_1111_j_1420_9101_2006_01273_x
crossref_primary_10_1371_journal_pone_0034690
crossref_primary_10_1111_jeb_13288
crossref_primary_10_1186_1471_2148_12_183
crossref_primary_10_1038_s41467_018_04265_x
crossref_primary_10_1186_1471_2148_11_45
crossref_primary_10_3389_fpsyg_2023_1128461
crossref_primary_10_1111_mec_13506
crossref_primary_10_1534_g3_115_017822
crossref_primary_10_1098_rspb_2020_0045
crossref_primary_10_3390_ijerph20116030
crossref_primary_10_1371_journal_pone_0132819
crossref_primary_10_7717_peerj_3194
crossref_primary_10_1111_brv_12957
crossref_primary_10_1111_jeb_13059
crossref_primary_10_1080_09583157_2014_952711
crossref_primary_10_1093_gbe_evae277
crossref_primary_10_1093_botlinnean_boy064
crossref_primary_10_1098_rspb_2014_2734
crossref_primary_10_1093_sysbio_syx036
crossref_primary_10_1111_j_1439_0469_2006_00392_x
crossref_primary_10_1186_1471_2148_9_187
crossref_primary_10_1073_pnas_0901594106
crossref_primary_10_1080_22221751_2023_2253340
crossref_primary_10_1371_journal_pone_0047546
crossref_primary_10_3372_wi_50_50301
crossref_primary_10_1016_j_jhevol_2012_12_003
crossref_primary_10_1098_rspb_2018_2325
crossref_primary_10_1007_s13127_014_0189_z
crossref_primary_10_1093_botlinnean_box024
crossref_primary_10_1038_s41559_023_02074_0
crossref_primary_10_1111_j_1365_2699_2008_01885_x
crossref_primary_10_3389_fpls_2020_536135
crossref_primary_10_1016_j_ympev_2023_107945
crossref_primary_10_1111_boj_12296
crossref_primary_10_1371_journal_pone_0127780
crossref_primary_10_1007_s11258_011_9987_y
crossref_primary_10_1111_j_1558_5646_2010_01045_x
crossref_primary_10_1038_s41598_021_84910_6
crossref_primary_10_1111_j_1438_8677_2008_00145_x
crossref_primary_10_1098_rspb_2013_2818
crossref_primary_10_1016_j_isci_2023_108740
crossref_primary_10_1073_pnas_1503793112
crossref_primary_10_1086_708764
crossref_primary_10_1002_ar_23768
crossref_primary_10_1080_15572536_2006_11832626
crossref_primary_10_1146_annurev_biophys_030722_125440
crossref_primary_10_1098_rstb_2009_0199
crossref_primary_10_1016_j_gde_2005_09_011
crossref_primary_10_1038_s41598_017_12324_4
crossref_primary_10_1111_geb_13783
crossref_primary_10_1016_j_ympev_2021_107134
crossref_primary_10_4003_006_033_0210
crossref_primary_10_1016_j_evolhumbehav_2014_03_001
crossref_primary_10_1098_rspb_2011_1045
crossref_primary_10_1186_1471_2148_11_98
crossref_primary_10_1186_1471_2148_13_30
crossref_primary_10_1186_s12862_019_1416_1
crossref_primary_10_1111_jse_12713
crossref_primary_10_1111_j_1558_5646_2011_01532_x
crossref_primary_10_1098_rstb_2013_0348
crossref_primary_10_1007_s11103_009_9572_0
crossref_primary_10_1098_rspb_2015_1278
crossref_primary_10_1038_s41598_024_63991_z
crossref_primary_10_1093_botlinnean_box049
crossref_primary_10_1093_sysbio_syab092
crossref_primary_10_1080_10635150802044045
crossref_primary_10_1534_genetics_114_164269
crossref_primary_10_1038_ncomms16047
crossref_primary_10_1002_ecm_1411
crossref_primary_10_1016_j_ympev_2022_107403
crossref_primary_10_1093_sysbio_syx065
crossref_primary_10_1111_j_1095_8312_2009_01341_x
crossref_primary_10_1038_s41559_017_0454_6
crossref_primary_10_1128_jvi_01369_23
crossref_primary_10_1002_ajb2_1250
crossref_primary_10_1016_j_ympev_2017_05_022
crossref_primary_10_1016_j_jaridenv_2011_04_004
crossref_primary_10_1086_731784
crossref_primary_10_1111_j_1420_9101_2009_01827_x
crossref_primary_10_1371_journal_pone_0024749
crossref_primary_10_1016_j_ympev_2015_01_002
crossref_primary_10_1071_SB21009
crossref_primary_10_1111_mec_13499
crossref_primary_10_1371_journal_pone_0035118
crossref_primary_10_1111_j_1558_5646_2009_00856_x
crossref_primary_10_1111_j_1469_7998_2009_00622_x
crossref_primary_10_1016_j_ympev_2017_06_008
crossref_primary_10_3732_ajb_1100152
crossref_primary_10_12705_675_7
crossref_primary_10_1016_j_ympev_2023_107904
crossref_primary_10_1186_s12859_017_1479_1
crossref_primary_10_1371_journal_pone_0037544
crossref_primary_10_1515_hsz_2018_0344
crossref_primary_10_1086_698301
crossref_primary_10_1098_rstb_2022_0148
crossref_primary_10_1111_ele_13962
crossref_primary_10_1016_j_tim_2014_04_008
crossref_primary_10_12705_664_4
crossref_primary_10_1016_j_jtbi_2016_05_029
crossref_primary_10_1080_15659801_2013_825431
crossref_primary_10_1016_j_meegid_2011_02_007
crossref_primary_10_7717_peerj_3016
crossref_primary_10_1186_1471_2148_8_329
crossref_primary_10_1093_molbev_msv053
crossref_primary_10_1016_j_ympev_2010_08_029
crossref_primary_10_1098_rspb_2021_1855
crossref_primary_10_1016_j_ympev_2010_08_022
crossref_primary_10_12705_653_2
crossref_primary_10_1186_1471_2148_13_74
crossref_primary_10_1111_jeb_12231
crossref_primary_10_1016_j_ympev_2015_02_003
crossref_primary_10_1670_06_2273_1
crossref_primary_10_1371_journal_pone_0021206
crossref_primary_10_1186_s12862_016_0741_x
crossref_primary_10_1111_evo_13099
crossref_primary_10_1111_j_1365_294X_2009_04149_x
crossref_primary_10_1016_j_ppees_2011_11_005
crossref_primary_10_1111_j_1365_2486_2012_02752_x
crossref_primary_10_1111_jipb_13751
crossref_primary_10_1093_molbev_msu176
crossref_primary_10_1111_j_1095_8339_2012_01325_x
crossref_primary_10_1098_rspb_2021_0533
crossref_primary_10_1111_mec_16738
crossref_primary_10_1073_pnas_2122604119
crossref_primary_10_1074_jbc_M117_790865
crossref_primary_10_1099_mgen_0_000440
crossref_primary_10_3389_fmars_2020_00461
crossref_primary_10_1016_j_ympev_2013_04_026
crossref_primary_10_1093_beheco_arp137
crossref_primary_10_1002_bies_20291
crossref_primary_10_1007_s42977_023_00191_2
crossref_primary_10_1016_j_isci_2024_110903
crossref_primary_10_1038_s41598_022_26514_2
crossref_primary_10_1016_j_ympev_2020_106961
crossref_primary_10_1007_s13225_014_0283_8
crossref_primary_10_1371_journal_ppat_1010062
crossref_primary_10_1073_pnas_0914418107
crossref_primary_10_3732_ajb_1300403
crossref_primary_10_1371_journal_pone_0034070
crossref_primary_10_1111_ecog_01370
crossref_primary_10_1111_syen_12111
crossref_primary_10_1111_j_1469_8137_2011_03683_x
crossref_primary_10_1017_S1089332600002448
crossref_primary_10_1016_j_ympev_2011_12_022
crossref_primary_10_1098_rsos_150340
crossref_primary_10_1016_j_tree_2009_09_007
crossref_primary_10_1093_biolinnean_blab115
crossref_primary_10_1080_14772000_2019_1679273
crossref_primary_10_1186_s12870_018_1398_y
crossref_primary_10_1093_biolinnean_blaa021
crossref_primary_10_1007_s00040_011_0206_6
crossref_primary_10_1093_beheco_araa039
crossref_primary_10_1111_1755_0998_13813
crossref_primary_10_1111_j_1558_5646_2008_00534_x
crossref_primary_10_1073_pnas_1006299107
crossref_primary_10_1111_evo_12197
crossref_primary_10_1016_j_anbehav_2023_02_003
crossref_primary_10_1111_j_1463_6409_2011_00506_x
crossref_primary_10_1016_j_cub_2023_12_069
crossref_primary_10_1016_j_ympev_2017_07_025
crossref_primary_10_1002_ajpa_22008
crossref_primary_10_1080_14772000_2017_1392371
crossref_primary_10_1071_IS11026
crossref_primary_10_1073_pnas_0914380107
crossref_primary_10_1371_journal_pone_0155154
crossref_primary_10_1093_gbe_evy187
crossref_primary_10_1371_journal_pone_0198237
crossref_primary_10_1038_s41467_021_24023_w
crossref_primary_10_1186_s12862_015_0471_5
crossref_primary_10_1098_rspb_2013_0495
crossref_primary_10_1111_ede_12390
crossref_primary_10_7554_eLife_01914
crossref_primary_10_1089_cmb_2006_13_1701
crossref_primary_10_1111_j_1095_8312_2010_01478_x
crossref_primary_10_1371_journal_pone_0094104
crossref_primary_10_1038_ismej_2016_198
crossref_primary_10_1111_j_1558_5646_2008_00465_x
crossref_primary_10_1002_ece3_70859
crossref_primary_10_1016_j_ympev_2015_04_026
crossref_primary_10_1038_ncomms1844
crossref_primary_10_1086_688097
crossref_primary_10_3390_d14110942
crossref_primary_10_1093_sysbio_syr126
crossref_primary_10_1098_rspb_2023_1734
crossref_primary_10_1186_s12862_014_0272_2
crossref_primary_10_1016_j_ympev_2024_108023
crossref_primary_10_3732_ajb_1100549
crossref_primary_10_1126_science_1165069
crossref_primary_10_1111_brv_12483
crossref_primary_10_1515_lingvan_2021_0011
crossref_primary_10_1016_j_rmb_2017_01_022
crossref_primary_10_1038_s41467_018_05484_y
crossref_primary_10_1186_1475_2875_8_110
crossref_primary_10_1098_rsbl_2024_0472
crossref_primary_10_1038_s41598_018_30607_2
crossref_primary_10_1086_705294
crossref_primary_10_1073_pnas_1922539117
crossref_primary_10_1111_j_1558_5646_2008_00567_x
crossref_primary_10_1098_rspb_2008_1226
crossref_primary_10_1111_zsc_12258
crossref_primary_10_1093_aob_mcq088
crossref_primary_10_1038_s41467_019_12608_5
crossref_primary_10_1111_cla_12186
crossref_primary_10_1016_j_ympev_2013_01_015
crossref_primary_10_1111_nph_14382
crossref_primary_10_1186_s12862_014_0187_y
crossref_primary_10_7717_peerj_1228
crossref_primary_10_1016_j_ympev_2012_08_013
crossref_primary_10_1111_jzs_12037
crossref_primary_10_1371_journal_pcbi_1004447
crossref_primary_10_1007_s10682_008_9255_3
crossref_primary_10_1016_j_csbj_2021_03_008
crossref_primary_10_1186_1471_2148_14_102
crossref_primary_10_1002_ajpa_24640
crossref_primary_10_1099_mic_0_061952_0
crossref_primary_10_1098_rspb_2013_0200
crossref_primary_10_1111_j_1558_5646_2007_00304_x
crossref_primary_10_3378_027_083_0106
crossref_primary_10_1016_j_meegid_2010_07_005
crossref_primary_10_3378_027_083_0107
crossref_primary_10_3378_027_083_0108
crossref_primary_10_1016_j_ympev_2010_05_025
crossref_primary_10_1016_j_ympev_2018_01_006
crossref_primary_10_1371_journal_pone_0018212
crossref_primary_10_1111_brv_12016
crossref_primary_10_1111_j_1529_8817_2009_00803_x
crossref_primary_10_1093_zoolinnean_zlaa135
crossref_primary_10_1002_ajpa_22206
crossref_primary_10_1093_ornithology_ukad048
crossref_primary_10_1016_j_cub_2019_01_078
crossref_primary_10_1186_s12862_015_0388_z
crossref_primary_10_1645_GE_3045_1
crossref_primary_10_1016_j_ijpara_2010_08_009
crossref_primary_10_1002_ece3_6359
crossref_primary_10_1098_rstb_2021_0228
crossref_primary_10_3732_ajb_1400196
crossref_primary_10_1111_j_1469_8137_2010_03609_x
crossref_primary_10_1371_journal_pone_0064537
crossref_primary_10_1080_10635150802044003
crossref_primary_10_1186_s12862_016_0661_9
crossref_primary_10_1111_bij_12199
crossref_primary_10_1089_cmb_2022_0357
crossref_primary_10_3732_ajb_1600248
crossref_primary_10_1128_mBio_00204_19
crossref_primary_10_1111_j_1095_8312_2010_01578_x
crossref_primary_10_1093_bioinformatics_btv541
crossref_primary_10_1111_j_1420_9101_2012_02473_x
crossref_primary_10_1016_j_ijpara_2009_07_012
crossref_primary_10_1093_jxb_erac149
crossref_primary_10_1098_rstb_2023_0310
crossref_primary_10_1111_j_1558_5646_2012_01797_x
crossref_primary_10_3389_fpls_2021_627909
crossref_primary_10_1098_rspb_2010_1942
crossref_primary_10_1371_journal_pbio_3000894
crossref_primary_10_1111_evo_14351
crossref_primary_10_1080_10635150701883881
crossref_primary_10_1098_rstb_2023_0309
crossref_primary_10_1002_ajb2_1050
crossref_primary_10_1111_mec_14152
crossref_primary_10_1073_pnas_0807230106
crossref_primary_10_1111_cla_12193
crossref_primary_10_1016_j_ympev_2018_01_023
crossref_primary_10_1038_s42003_019_0417_3
crossref_primary_10_1080_0028825X_2020_1840400
crossref_primary_10_1111_geb_12900
crossref_primary_10_1111_j_1365_2699_2011_02488_x
crossref_primary_10_1098_rsbl_2009_0840
crossref_primary_10_1093_icb_icn041
crossref_primary_10_1080_00275514_2021_1983352
crossref_primary_10_1111_j_1095_8312_2007_00807_x
crossref_primary_10_14411_fp_2014_032
crossref_primary_10_1111_j_1558_5646_2012_01720_x
crossref_primary_10_1002_ece3_3789
crossref_primary_10_1111_j_1095_8339_2012_01307_x
crossref_primary_10_1038_s41598_018_37412_x
crossref_primary_10_1111_1365_2656_13426
crossref_primary_10_1016_j_evolhumbehav_2018_06_002
crossref_primary_10_1111_evo_12223
crossref_primary_10_1093_bioinformatics_btl558
crossref_primary_10_1111_evo_13558
crossref_primary_10_1371_journal_pbio_1002315
crossref_primary_10_1016_j_micinf_2024_105405
crossref_primary_10_1186_s12862_014_0226_8
crossref_primary_10_1093_sysbio_syr060
crossref_primary_10_1093_sysbio_syt008
crossref_primary_10_1016_j_funbio_2018_11_013
crossref_primary_10_1371_journal_pgen_1001284
crossref_primary_10_1017_S1477200009990132
crossref_primary_10_1186_1471_2164_15_939
crossref_primary_10_1371_journal_pone_0143481
crossref_primary_10_1080_14772000_2018_1442885
crossref_primary_10_1534_genetics_112_142448
crossref_primary_10_1016_j_chroma_2022_463703
crossref_primary_10_1093_nar_gky494
crossref_primary_10_1093_aob_mcu134
crossref_primary_10_1098_rspb_2013_2146
crossref_primary_10_4137_EBO_S2765
crossref_primary_10_1111_brv_12695
crossref_primary_10_3897_zookeys_547_6018
crossref_primary_10_1093_sysbio_syr073
crossref_primary_10_1111_j_1759_6831_2009_00044_x
crossref_primary_10_1111_jse_12276
crossref_primary_10_1073_pnas_1415744111
crossref_primary_10_1016_j_cub_2008_08_046
crossref_primary_10_1371_journal_pbio_1002307
crossref_primary_10_1093_nargab_lqaa041
crossref_primary_10_1016_j_ympev_2011_06_015
crossref_primary_10_1007_s11692_013_9255_2
crossref_primary_10_1016_j_pld_2022_05_006
crossref_primary_10_1093_molbev_msq171
crossref_primary_10_1038_nature14460
crossref_primary_10_1017_S0031182012001758
crossref_primary_10_1098_rsos_201079
crossref_primary_10_7554_eLife_40630
crossref_primary_10_1111_jbi_12357
crossref_primary_10_1098_rsos_150645
crossref_primary_10_1111_syen_12098
crossref_primary_10_3732_ajb_1300100
crossref_primary_10_1093_zoolinnean_zly048
crossref_primary_10_1111_j_1475_4983_2006_00615_x
crossref_primary_10_1128_spectrum_03829_23
crossref_primary_10_7554_eLife_75796
crossref_primary_10_1007_s10336_019_01632_3
crossref_primary_10_1177_117693430600200027
crossref_primary_10_1086_715638
crossref_primary_10_1371_journal_pcbi_1002492
crossref_primary_10_3732_ajb_1000059
crossref_primary_10_1642_AUK_15_23_1
crossref_primary_10_1016_j_dib_2016_02_062
crossref_primary_10_1093_aob_mcaa184
crossref_primary_10_2139_ssrn_3155895
crossref_primary_10_1093_biolinnean_blaa217
crossref_primary_10_1146_annurev_ecolsys_110411_160331
crossref_primary_10_1016_j_ympev_2013_08_003
crossref_primary_10_1111_ele_14001
crossref_primary_10_1017_pab_2019_9
crossref_primary_10_3986_alternator_2023_24
crossref_primary_10_1016_j_ympev_2008_05_012
crossref_primary_10_1002_tax_613002
crossref_primary_10_1086_657435
crossref_primary_10_1111_imr_12664
crossref_primary_10_1111_syen_12278
crossref_primary_10_1111_j_1096_0031_2011_00365_x
crossref_primary_10_1038_nature09923
crossref_primary_10_1111_j_1558_5646_2011_01373_x
crossref_primary_10_1093_sysbio_syr020
crossref_primary_10_1098_rspb_2024_0235
crossref_primary_10_1038_ncomms5471
crossref_primary_10_1016_j_ympev_2019_04_008
crossref_primary_10_1080_00275514_2024_2327972
crossref_primary_10_1093_biolinnean_blw014
crossref_primary_10_1002_jez_b_22912
crossref_primary_10_12705_635_12
crossref_primary_10_1093_aob_mcv020
crossref_primary_10_1111_ede_12042
crossref_primary_10_1371_journal_pone_0066767
crossref_primary_10_1016_j_scienta_2021_110845
crossref_primary_10_1016_j_compbiomed_2014_12_013
crossref_primary_10_1080_14772000_2014_905506
crossref_primary_10_1016_j_ympev_2012_01_002
crossref_primary_10_1111_2041_210X_12033
crossref_primary_10_1186_1471_2148_10_295
crossref_primary_10_3389_fmicb_2015_01070
crossref_primary_10_1002_mbo3_1103
crossref_primary_10_1016_j_ympev_2011_05_014
crossref_primary_10_1093_sysbio_syr030
crossref_primary_10_1111_nph_19783
crossref_primary_10_1093_botlinnean_boad009
crossref_primary_10_1534_g3_117_300512
crossref_primary_10_1371_journal_pone_0131223
crossref_primary_10_1017_scs_2017_9
crossref_primary_10_3732_ajb_0900021
crossref_primary_10_1038_s41598_021_93764_x
crossref_primary_10_1371_journal_pone_0089876
crossref_primary_10_1007_s00265_011_1221_3
crossref_primary_10_1016_j_meegid_2011_07_012
crossref_primary_10_3852_13_346
crossref_primary_10_1038_s41598_019_56549_x
crossref_primary_10_1098_rspb_2020_1883
crossref_primary_10_1098_rspb_2014_0848
crossref_primary_10_1016_j_pnsc_2009_05_005
crossref_primary_10_1111_j_1365_294X_2006_03114_x
crossref_primary_10_1016_j_ympev_2014_05_018
crossref_primary_10_1016_j_ympev_2016_09_020
crossref_primary_10_1098_rspb_2023_0606
crossref_primary_10_1554_05_483_1
crossref_primary_10_1016_j_ympev_2016_09_023
crossref_primary_10_1098_rspb_2009_0088
crossref_primary_10_1111_j_1439_0469_2011_00646_x
crossref_primary_10_1111_j_1474_919X_2005_00467_x
crossref_primary_10_1016_j_cois_2016_05_017
crossref_primary_10_1093_biolinnean_blw039
crossref_primary_10_1002_tax_613013
crossref_primary_10_1098_rspb_2011_0559
crossref_primary_10_1111_syen_12287
crossref_primary_10_1073_pnas_2119671119
crossref_primary_10_3389_fevo_2022_1058746
crossref_primary_10_1073_pnas_1811268115
crossref_primary_10_1093_jole_lzae001
crossref_primary_10_1007_s11557_016_1165_0
crossref_primary_10_1016_j_evolhumbehav_2021_12_002
crossref_primary_10_1098_rspb_2016_1736
crossref_primary_10_1098_rspb_2016_0403
crossref_primary_10_1371_journal_pone_0065012
crossref_primary_10_1007_s13225_015_0325_x
crossref_primary_10_1099_mgen_0_000057
crossref_primary_10_1016_j_ympev_2010_09_013
crossref_primary_10_1098_rspb_2010_0051
crossref_primary_10_1093_aob_mcv057
crossref_primary_10_1111_jbi_12531
crossref_primary_10_1038_ncomms15213
crossref_primary_10_1111_j_1095_8312_2012_02024_x
crossref_primary_10_3390_biology13110952
crossref_primary_10_1016_j_ympev_2010_09_018
crossref_primary_10_1111_bij_12211
crossref_primary_10_1016_j_ympev_2017_12_021
crossref_primary_10_1111_j_1420_9101_2006_01132_x
crossref_primary_10_1007_s00438_021_01845_3
crossref_primary_10_1073_pnas_1206512109
crossref_primary_10_1007_s10393_017_1228_y
crossref_primary_10_1016_j_ympev_2019_106707
crossref_primary_10_1643_CH_14_210
crossref_primary_10_3732_ajb_95_4_506
crossref_primary_10_1186_1471_2148_10_242
crossref_primary_10_1111_plb_12430
crossref_primary_10_1016_j_fgb_2010_05_002
crossref_primary_10_1098_rspb_2020_1474
crossref_primary_10_1093_jole_lzw003
crossref_primary_10_3852_12_136
crossref_primary_10_1075_dia_22022_ski
crossref_primary_10_1371_journal_ppat_1007314
crossref_primary_10_1038_ismej_2011_160
crossref_primary_10_1080_10635150600697465
crossref_primary_10_1016_j_ympev_2014_06_013
crossref_primary_10_1073_pnas_1607576113
crossref_primary_10_1016_j_cell_2018_10_023
crossref_primary_10_1016_j_ympev_2008_12_022
crossref_primary_10_1016_j_ympev_2013_07_026
crossref_primary_10_1093_aob_mcad063
crossref_primary_10_1016_j_gene_2012_10_019
crossref_primary_10_1111_j_1469_185X_2009_00111_x
crossref_primary_10_1111_jeb_13373
crossref_primary_10_1007_s10682_013_9645_z
crossref_primary_10_3732_ajb_1200359
crossref_primary_10_3732_ajb_1000457
crossref_primary_10_1038_s41586_024_07323_1
crossref_primary_10_1093_botlinnean_boz073
crossref_primary_10_1038_s41477_024_01726_8
crossref_primary_10_1093_jhered_esad016
crossref_primary_10_1111_evo_12655
crossref_primary_10_1016_j_tree_2012_02_002
crossref_primary_10_1111_j_0014_3820_2006_tb01224_x
crossref_primary_10_1111_jeb_12097
crossref_primary_10_1111_jbi_12726
crossref_primary_10_1093_aob_mcad081
crossref_primary_10_1371_journal_pcbi_0010003
crossref_primary_10_1007_s00227_009_1205_2
crossref_primary_10_1038_s41559_016_0009
crossref_primary_10_1073_pnas_1119506109
crossref_primary_10_1093_molbev_msp222
crossref_primary_10_1016_j_ympev_2011_03_023
crossref_primary_10_1111_j_1461_0248_2012_01858_x
crossref_primary_10_3389_fpls_2021_710590
crossref_primary_10_1111_azo_12039
crossref_primary_10_1371_journal_pone_0035649
crossref_primary_10_1038_s41558_021_01123_5
crossref_primary_10_1093_molbev_msz131
crossref_primary_10_1016_j_tim_2011_07_006
crossref_primary_10_3732_ajb_1500184
crossref_primary_10_1016_j_ympev_2022_107596
crossref_primary_10_1111_evo_12832
crossref_primary_10_1111_j_1420_9101_2011_02339_x
crossref_primary_10_3732_ajb_1500168
crossref_primary_10_1111_1755_0998_12173
crossref_primary_10_1016_j_ympev_2008_07_005
crossref_primary_10_1073_pnas_1018956108
crossref_primary_10_1038_s41467_023_35869_7
crossref_primary_10_1111_mec_12549
crossref_primary_10_1111_j_1469_8137_2011_03951_x
crossref_primary_10_1038_ncomms1482
crossref_primary_10_1098_rspb_2024_2850
crossref_primary_10_1016_j_ympev_2006_10_018
crossref_primary_10_1111_j_1420_9101_2009_01818_x
crossref_primary_10_1111_j_1558_5646_2008_00505_x
crossref_primary_10_1073_pnas_2001913117
crossref_primary_10_1111_bij_12649
crossref_primary_10_1093_molbev_msn036
crossref_primary_10_1098_rspb_2010_1145
crossref_primary_10_1111_j_1558_5646_2007_00069_x
crossref_primary_10_1098_rspb_2020_0167
crossref_primary_10_1554_05_169_1
crossref_primary_10_4161_cib_20821
crossref_primary_10_1007_s13258_014_0198_5
crossref_primary_10_1126_sciadv_aay1276
crossref_primary_10_3852_12_390
crossref_primary_10_1099_mgen_0_000050
crossref_primary_10_1093_aob_mcy159
crossref_primary_10_1603_EN11281
crossref_primary_10_1111_j_1095_8312_2012_02013_x
crossref_primary_10_1073_pnas_1507072112
crossref_primary_10_1111_j_1366_9516_2006_00207_x
crossref_primary_10_1093_biolinnean_blz140
crossref_primary_10_1111_j_1558_5646_2009_00744_x
crossref_primary_10_1111_2041_210X_13540
crossref_primary_10_1111_nph_13833
crossref_primary_10_1016_j_ympev_2017_10_020
crossref_primary_10_1111_nph_13835
crossref_primary_10_1186_1471_2148_5_50
crossref_primary_10_1093_sysbio_syw065
crossref_primary_10_1038_s41586_019_1476_9
crossref_primary_10_1016_j_cub_2017_08_043
crossref_primary_10_1002_ece3_8434
crossref_primary_10_1016_j_cub_2018_03_064
crossref_primary_10_1086_706454
crossref_primary_10_1093_ornithology_ukaa070
crossref_primary_10_1016_j_jebo_2024_02_034
crossref_primary_10_1111_j_1095_8312_2006_00696_x
crossref_primary_10_1186_1471_2148_5_59
crossref_primary_10_1093_molbev_msx145
crossref_primary_10_1111_j_1365_2699_2011_02600_x
crossref_primary_10_1093_icb_ics066
crossref_primary_10_1093_evolut_qpae105
crossref_primary_10_3852_11_149
crossref_primary_10_1111_j_1558_5646_2010_00957_x
crossref_primary_10_2142_biophysico_bppb_v19_0011
crossref_primary_10_1016_j_ympev_2008_02_020
crossref_primary_10_1093_bioinformatics_btr405
crossref_primary_10_1186_1471_2105_15_320
crossref_primary_10_1515_lingvan_2014_1009
crossref_primary_10_1007_s10579_019_09483_3
crossref_primary_10_1111_boj_12184
crossref_primary_10_1002_tax_606007
crossref_primary_10_1111_syen_12417
crossref_primary_10_1016_j_ympev_2012_11_008
crossref_primary_10_1093_jole_lzx022
crossref_primary_10_1111_jeb_13880
crossref_primary_10_1186_s12864_017_3569_x
crossref_primary_10_1038_ncomms1796
crossref_primary_10_1645_20_35
crossref_primary_10_1016_j_ympev_2022_107523
crossref_primary_10_1371_journal_pone_0001513
crossref_primary_10_1534_g3_113_009910
crossref_primary_10_1002_evl3_127
crossref_primary_10_1093_molbev_msv185
crossref_primary_10_3109_19401736_2011_653801
crossref_primary_10_1111_syen_12406
crossref_primary_10_1016_j_tree_2008_06_013
crossref_primary_10_1038_srep27259
crossref_primary_10_1111_jzo_12102
crossref_primary_10_1111_jse_12846
crossref_primary_10_1038_s41586_020_2653_6
crossref_primary_10_1093_sysbio_syy036
crossref_primary_10_1038_s41559_022_01838_4
crossref_primary_10_1111_j_1756_1051_2012_01706_x
crossref_primary_10_1111_mec_14470
crossref_primary_10_1016_j_ympev_2012_03_010
crossref_primary_10_1093_aob_mcn082
crossref_primary_10_1016_j_ympev_2016_03_016
crossref_primary_10_1098_rsif_2022_0543
crossref_primary_10_1002_ajp_22937
crossref_primary_10_1099_jgv_0_001897
crossref_primary_10_12688_f1000research_2_103_v1
crossref_primary_10_1111_j_1601_183X_2012_00844_x
crossref_primary_10_1093_botlinnean_box101
crossref_primary_10_1111_j_0014_3820_2005_tb00933_x
crossref_primary_10_1016_j_jtbi_2011_11_011
crossref_primary_10_1093_sysbio_syae020
crossref_primary_10_1016_j_zool_2020_125742
crossref_primary_10_1093_biolinnean_blz099
crossref_primary_10_1128_JVI_01861_14
crossref_primary_10_1515_lingty_2023_0076
crossref_primary_10_1111_nph_15768
crossref_primary_10_4061_2011_423938
crossref_primary_10_1016_j_ympev_2007_07_019
crossref_primary_10_1111_j_1365_3113_2009_00505_x
crossref_primary_10_1111_mec_14451
crossref_primary_10_1098_rspb_2010_0355
crossref_primary_10_1111_jzs_12550
crossref_primary_10_1073_pnas_1424030112
crossref_primary_10_1086_523368
crossref_primary_10_1093_jeb_voae119
crossref_primary_10_1098_rstb_2009_0276
crossref_primary_10_3732_ajb_1100046
crossref_primary_10_1016_j_ympev_2016_05_029
crossref_primary_10_1016_j_ympev_2024_108168
crossref_primary_10_1371_journal_pone_0040838
crossref_primary_10_1111_1462_2920_14783
crossref_primary_10_1111_mec_13113
crossref_primary_10_1038_s41467_019_09579_y
crossref_primary_10_1073_pnas_1220784110
crossref_primary_10_3732_ajb_1100294
crossref_primary_10_1111_j_1095_8312_2009_01222_x
crossref_primary_10_1186_1471_2148_12_223
crossref_primary_10_1111_j_1365_294X_2010_04929_x
crossref_primary_10_1080_14772000_2020_1795741
crossref_primary_10_1186_1471_2148_14_16
crossref_primary_10_1016_j_ympev_2021_107201
crossref_primary_10_1007_s10682_014_9750_7
crossref_primary_10_1111_j_1096_3642_2012_00861_x
crossref_primary_10_1093_sysbio_syw054
crossref_primary_10_1038_s41467_022_30419_z
crossref_primary_10_1098_rspb_2010_0577
crossref_primary_10_1016_j_ympev_2014_01_023
crossref_primary_10_1371_journal_pone_0040851
crossref_primary_10_1126_science_1219669
crossref_primary_10_1111_j_1365_294X_2011_05099_x
crossref_primary_10_7717_peerj_6625
crossref_primary_10_1111_j_0014_3820_2006_tb01129_x
crossref_primary_10_1038_srep22177
crossref_primary_10_1371_journal_pone_0311365
crossref_primary_10_1016_j_ympev_2018_10_041
crossref_primary_10_1371_journal_pone_0000879
crossref_primary_10_1016_j_ympev_2012_02_025
crossref_primary_10_1371_journal_pone_0083115
crossref_primary_10_3390_genes13020376
crossref_primary_10_1093_sysbio_syy089
crossref_primary_10_1093_nar_gkv378
crossref_primary_10_7554_eLife_45833
crossref_primary_10_1111_evo_13394
crossref_primary_10_1093_molbev_msu270
crossref_primary_10_1080_10635150801910451
crossref_primary_10_1111_jeb_12975
crossref_primary_10_1080_10635150701211844
crossref_primary_10_1111_syen_12232
crossref_primary_10_1016_j_placenta_2009_08_004
crossref_primary_10_1073_pnas_1307903110
crossref_primary_10_1093_jole_lzac002
crossref_primary_10_1371_journal_pone_0062649
crossref_primary_10_1111_ede_12249
crossref_primary_10_1111_j_1525_142X_2009_00348_x
crossref_primary_10_1007_s00606_014_1162_1
crossref_primary_10_1111_j_1469_8137_2012_04109_x
crossref_primary_10_1098_rspb_2013_0361
crossref_primary_10_1016_j_ympev_2020_106860
crossref_primary_10_1016_j_isci_2024_109169
crossref_primary_10_1002_tax_574008
crossref_primary_10_1098_rstb_2008_0176
crossref_primary_10_3372_wi_51_51307
crossref_primary_10_1002_jmor_21255
crossref_primary_10_1007_s11756_022_01055_1
crossref_primary_10_1126_science_1259442
crossref_primary_10_1038_s41562_020_01013_4
crossref_primary_10_1162_biot_2007_2_4_360
crossref_primary_10_1016_j_ympev_2016_05_015
crossref_primary_10_1111_jeb_12955
crossref_primary_10_1111_jbi_12074
crossref_primary_10_1016_j_ympev_2007_09_020
crossref_primary_10_1007_s10750_013_1518_5
crossref_primary_10_1111_j_1558_5646_2010_01184_x
crossref_primary_10_3378_027_083_0209
crossref_primary_10_1093_mollus_eyu024
crossref_primary_10_1111_j_1463_6409_2012_00572_x
crossref_primary_10_1371_journal_pone_0039429
crossref_primary_10_1016_j_watbs_2022_100036
crossref_primary_10_1093_molbev_msaa039
crossref_primary_10_1093_sysbio_syr006
crossref_primary_10_1093_sysbio_syr005
crossref_primary_10_1111_ede_12023
crossref_primary_10_1654_4366_1
crossref_primary_10_1002_tax_13284
crossref_primary_10_1016_j_ympev_2024_108147
crossref_primary_10_1093_nar_gkq909
crossref_primary_10_1016_j_cub_2023_06_012
crossref_primary_10_1111_cla_12055
crossref_primary_10_3390_microorganisms9010040
crossref_primary_10_1002_jez_b_22740
crossref_primary_10_1080_10635150500541698
crossref_primary_10_1080_09670260802207530
crossref_primary_10_1111_jse_12259
crossref_primary_10_1093_sysbio_syaa067
crossref_primary_10_3897_asp_81_e110014
crossref_primary_10_1016_j_evolhumbehav_2024_106610
crossref_primary_10_1038_nature05857
crossref_primary_10_1017_S1089332600001674
crossref_primary_10_1098_rspb_2023_1211
crossref_primary_10_1146_annurev_ecolsys_37_091305_110018
crossref_primary_10_1111_j_1525_142X_2008_00214_x
crossref_primary_10_1098_rspb_2011_2428
crossref_primary_10_1098_rspb_2024_1184
crossref_primary_10_1093_molbev_mst145
crossref_primary_10_1242_jeb_243235
crossref_primary_10_1039_b910458p
crossref_primary_10_1080_10635150601088995
crossref_primary_10_1038_s41559_024_02451_3
crossref_primary_10_1086_695327
crossref_primary_10_1111_ele_12911
crossref_primary_10_1086_704088
crossref_primary_10_1111_j_1095_8339_2012_01279_x
crossref_primary_10_1038_s42003_023_05077_6
crossref_primary_10_1017_ehs_2020_31
crossref_primary_10_1111_boj_12388
crossref_primary_10_1071_ZO09038
crossref_primary_10_1111_evo_12274
crossref_primary_10_1016_j_ydbio_2007_07_030
crossref_primary_10_1111_mec_16223
crossref_primary_10_3852_09_114
crossref_primary_10_1016_j_mbs_2012_12_003
crossref_primary_10_1038_s42003_021_02348_y
crossref_primary_10_1016_j_ympev_2009_11_027
crossref_primary_10_1073_pnas_1518823112
crossref_primary_10_1002_bies_20344
crossref_primary_10_1038_srep19613
crossref_primary_10_1007_s10071_011_0448_8
crossref_primary_10_1111_cla_12085
crossref_primary_10_1086_719365
crossref_primary_10_1186_s12862_016_0586_3
crossref_primary_10_1016_j_cub_2021_02_008
crossref_primary_10_1186_1741_7007_8_9
crossref_primary_10_1093_aob_mct027
crossref_primary_10_1093_gbe_evz187
crossref_primary_10_1086_684412
crossref_primary_10_1073_pnas_1814329116
crossref_primary_10_1093_gbe_evaa107
crossref_primary_10_1146_annurev_ecolsys_102209_144710
crossref_primary_10_1111_zsc_12121
crossref_primary_10_1093_botlinnean_boaa031
Cites_doi 10.1111/j.1558-5646.1997.tb05095.x
10.1080/106351599260184
10.1038/377108a0
10.1080/10635150490468675
10.1080/106351599260238
10.1093/sysbio/42.2.193
10.1080/10635150390192726
10.1093/genetics/150.1.499
10.1038/374057a0
10.1093/nar/25.24.4876
10.1098/rspb.1994.0006
10.1038/35082053
10.1007/BF00160154
10.1080/106351599260193
10.1080/10635150119871
10.1111/j.1463-6409.1997.tb00423.x
10.1098/rspb.2002.1955
10.1038/44766
10.1126/science.283.5399.220
10.1093/biomet/57.1.97
10.1063/1.1699114
10.1080/106351501753462876
10.1080/10635150290102393
10.1093/biomet/83.2.315
10.1007/BF02338839
10.1214/ss/1177011137
10.1038/35035065
10.1093/oxfordjournals.molbev.a026160
10.1111/j.0006-341X.1999.00001.x
10.1126/science.1065889
10.1007/3-540-45692-9_8
10.1073/pnas.93.23.13429
ContentType Journal Article
Copyright Copyright 2004 Society of Systematic Biologists
2004 Society of Systematic Biologists 2004
Copyright Society of Systematic Biologists Oct 2004
Copyright_xml – notice: Copyright 2004 Society of Systematic Biologists
– notice: 2004 Society of Systematic Biologists 2004
– notice: Copyright Society of Systematic Biologists Oct 2004
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7P
MBDVC
PADUT
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
DOI 10.1080/10635150490522232
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Research Library China
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
EndPage 684
ExternalDocumentID 750404391
15545248
10_1080_10635150490522232
10.1080/10635150490522232
4135357
ark_67375_HXZ_5RKTPVSP_T
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-~X
.-4
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
4.4
48X
53G
5VS
5WD
70D
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAHBH
AAHKG
AAIMJ
AAISJ
AAJKP
AAJQQ
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABMNT
ABNGD
ABNKS
ABPIB
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABSMQ
ABSQW
ABTLG
ABUWG
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ABZEO
ACCCW
ACFRR
ACGEJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACNCT
ACPQN
ACPRK
ACSTJ
ACUFI
ACUHS
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADXHL
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEUYN
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKRA
AFKVX
AFOFC
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUYK
AHGBF
AHMBA
AHXOZ
AHXPO
AIAGR
AIJHB
AILXY
AJBYB
AJDVS
AJEEA
AJNCP
AJWEG
AKHUL
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHONS
BHPHI
BKSAR
BPHCQ
BQDIO
BSCLL
BSWAC
BVXVI
C45
CAG
CBGCD
CCPQU
CDBKE
COF
CS3
CUYZI
CXTWN
CZ4
D1J
DAKXR
DEVKO
DFGAJ
DILTD
DU5
DWQXO
D~K
EAD
EAP
EAS
EBC
EBD
EBS
EE~
EHN
EJD
ELUNK
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GJXCC
GNUQQ
GTFYD
GUQSH
H13
H5~
HAR
HCIFZ
HF~
HGD
HMCUK
HQ2
HTVGU
HVGLF
HW0
HZ~
I-F
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JEB
JEFFH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
LK8
M-Z
M1P
M2O
M2P
M2Q
M7P
MBTAY
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PADUT
PAFKI
PB-
PCBAR
PEELM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q1.
Q5Y
QBD
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
S0X
SA0
SV3
TAE
TCN
TEORI
TLC
TN5
TUS
UBC
UKHRP
WH7
WHG
X7H
XOL
XSW
YAYTL
YKOAZ
YXANX
YXE
ZCG
ZY4
~02
~91
3V.
88A
AASNB
ADACV
ADRIX
AFXEN
DOOOF
JSODD
M0L
M49
VQA
AAYXX
CITATION
6.Y
ABSAR
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c486t-f9ae312bbfdb10d81e9dbaedde36db643b17a0a585e3ab83aa0122f61ecdca683
IEDL.DBID 7X7
ISSN 1063-5157
IngestDate Fri Jul 11 04:13:09 EDT 2025
Thu Aug 21 00:48:07 EDT 2025
Wed Feb 19 01:37:40 EST 2025
Tue Jul 01 01:54:10 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Wed Sep 11 04:47:46 EDT 2024
Thu Jun 19 15:24:46 EDT 2025
Tue Aug 05 16:47:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords MCMC
comparative methods
Ancestral states
phylogeny
maximum likelihood
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-f9ae312bbfdb10d81e9dbaedde36db643b17a0a585e3ab83aa0122f61ecdca683
Notes istex:2D4D7A48484A661CDE828EEA0A5036214B5985D3
ark:/67375/HXZ-5RKTPVSP-T
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PMID 15545248
PQID 194780700
PQPubID 37498
PageCount 12
ParticipantIDs proquest_miscellaneous_67075172
proquest_journals_194780700
pubmed_primary_15545248
crossref_primary_10_1080_10635150490522232
crossref_citationtrail_10_1080_10635150490522232
oup_primary_10_1080_10635150490522232
jstor_primary_4135357
istex_primary_ark_67375_HXZ_5RKTPVSP_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10
20041001
2004-10-01
2004-Oct
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Systematic biology
PublicationTitleAlternate Syst Biol
PublicationYear 2004
Publisher Society of Systematic Zoology
Taylor and Francis
Oxford University Press
Publisher_xml – name: Society of Systematic Zoology
– name: Taylor and Francis
– name: Oxford University Press
References Pagel ( key 20180228053108_b30)
Felsenstein ( key 20180228053108_b4) 1993; 42
Metropolis ( key 20180228053108_b19) 1953; 21
Schluter ( key 20180228053108_b33) 1997; 51
Geyer ( key 20180228053108_b6) 1992; 7
Pagel ( key 20180228053108_b28) 2002
Huelsenbeck ( key 20180228053108_b12) 2001; 50
Swofford ( key 20180228053108_b34) 1996
Gilks ( key 20180228053108_b7) 1996
Galtier ( key 20180228053108_b5) 1999; 283
Schluter ( key 20180228053108_b32) 1995; 377
Yang ( key 20180228053108_b37) 1994; 39
Holden ( key 20180228053108_b11) 2002; 269
Mau ( key 20180228053108_b18) 1999; 55
Pagel ( key 20180228053108_b25) 1997; 26
Rannala ( key 20180228053108_b31) 1996; 43
Efron ( key 20180228053108_b3) 1996; 93
Hastings ( key 20180228053108_b9) 1970; 57
Edwards ( key 20180228053108_b2) 1972
Lewis ( key 20180228053108_b16) 2001; 50
Hibbett ( key 20180228053108_b10) 2000; 407
Larget ( key 20180228053108_b15) 1999; 16
Pagel ( key 20180228053108_b24) 1994; 255
Newton ( key 20180228053108_b21) 1996; 83
Newton ( key 20180228053108_b22) 1999
Wilson ( key 20180228053108_b36) 1998; 150
Nielsen ( key 20180228053108_b23) 2002; 51
Huelsenbeck ( key 20180228053108_b13) 2001; 294
Mooers ( key 20180228053108_b20) 1999; 48
Hassanin ( key 20180228053108_b8) 2003; 52
Pagel ( key 20180228053108_b29) 2004; 53
Pagel ( key 20180228053108_b27) 1999; 48
Jermann ( key 20180228053108_b14) 1995; 374
Cunningham ( key 20180228053108_b1) 1999; 48
Thompson ( key 20180228053108_b35) 1997; 25
Lutzoni ( key 20180228053108_b17) 2001; 411
Pagel ( key 20180228053108_b26) 1999; 401
References_xml – volume: 51
  start-page: 1699
  year: 1997
  ident: key 20180228053108_b33
  article-title: Likelihood of ancestor states in adaptive radiation
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1997.tb05095.x
– volume: 48
  start-page: 612
  year: 1999
  ident: key 20180228053108_b27
  article-title: The maximum likelihood approach to reconstructing ancestral character states on phylogenies
  publication-title: Syst. Biol.
  doi: 10.1080/106351599260184
– volume: 377
  start-page: 108
  year: 1995
  ident: key 20180228053108_b32
  article-title: Uncertainty in ancient phylogenies
  publication-title: Nature
  doi: 10.1038/377108a0
– start-page: 407
  volume-title: Molecular systematics, 2nd edition
  year: 1996
  ident: key 20180228053108_b34
  article-title: Phylogenetic inference
– volume: 53
  start-page: 571
  year: 2004
  ident: key 20180228053108_b29
  article-title: A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data
  publication-title: Syst. Biol.
  doi: 10.1080/10635150490468675
– volume: 48
  start-page: 665
  year: 1999
  ident: key 20180228053108_b1
  article-title: Some limitations of ancestral character-state reconstruction when testing evolutionary hypotheses
  publication-title: Syst. Biol.
  doi: 10.1080/106351599260238
– volume: 42
  start-page: 193
  year: 1993
  ident: key 20180228053108_b4
  article-title: Is there something wrong with the bootstrap? A reply to Hillis and Bull
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/42.2.193
– volume: 52
  start-page: 206
  year: 2003
  ident: key 20180228053108_b8
  article-title: Molecular and morphological phylogenies of Ruminantia, and the alternative position of the Moschidae
  publication-title: Syst. Biol.
  doi: 10.1080/10635150390192726
– volume: 150
  start-page: 499
  year: 1998
  ident: key 20180228053108_b36
  article-title: Genealogical inference from microsatellite data
  publication-title: Genetics
  doi: 10.1093/genetics/150.1.499
– volume: 374
  start-page: 57
  year: 1995
  ident: key 20180228053108_b14
  article-title: Reconstructing the evolutionary history of the artiodactyl ribonulcease superfamily
  publication-title: Nature
  doi: 10.1038/374057a0
– volume: 25
  start-page: 4876
  year: 1997
  ident: key 20180228053108_b35
  article-title: The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.24.4876
– volume: 255
  start-page: 37
  year: 1994
  ident: key 20180228053108_b24
  article-title: Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.1994.0006
– start-page: 1
  volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: key 20180228053108_b7
  article-title: Introducing Markov chain Monte Carlo
– volume: 411
  start-page: 937
  year: 2001
  ident: key 20180228053108_b17
  article-title: Major fungal lineages derived from lichen-symbiotic ancestors
  publication-title: Nature
  doi: 10.1038/35082053
– volume: 39
  start-page: 306
  year: 1994
  ident: key 20180228053108_b37
  article-title: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00160154
– volume: 48
  start-page: 623
  year: 1999
  ident: key 20180228053108_b20
  article-title: Support for one and two rate models of discrete trait evolution
  publication-title: Syst. Biol.
  doi: 10.1080/106351599260193
– volume-title: The evolution of cultural diversity: A phylogenetic approach
  ident: key 20180228053108_b30
  article-title: Bayesian estimation of correlated evolution across cultures: A case study of marriage systems and wealth transfer at marriage. To appear
– year: 1972
  ident: key 20180228053108_b2
  article-title: Likelihood
– volume: 50
  start-page: 351
  year: 2001
  ident: key 20180228053108_b12
  article-title: Empirical and hierarchical Bayesian estimation of ancestral states
  publication-title: Syst. Biol.
  doi: 10.1080/10635150119871
– volume: 26
  start-page: 331
  year: 1997
  ident: key 20180228053108_b25
  article-title: Inferring evolutionary processes from phylogenies
  publication-title: Zool. Scripta
  doi: 10.1111/j.1463-6409.1997.tb00423.x
– volume: 269
  start-page: 793
  year: 2002
  ident: key 20180228053108_b11
  article-title: Bantu language trees reflect the spread of farming across sub-Saharan Africa: A maximum-parsimony analysis
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2002.1955
– volume: 401
  start-page: 877
  year: 1999
  ident: key 20180228053108_b26
  article-title: Inferring the historical patterns of biological evolution
  publication-title: Nature
  doi: 10.1038/44766
– volume: 283
  start-page: 220
  year: 1999
  ident: key 20180228053108_b5
  article-title: A nonhyperthermophilic common ancestor to extant life forms
  publication-title: Science
  doi: 10.1126/science.283.5399.220
– volume: 57
  start-page: 97
  year: 1970
  ident: key 20180228053108_b9
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 21
  start-page: 1087
  year: 1953
  ident: key 20180228053108_b19
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 50
  start-page: 913
  year: 2001
  ident: key 20180228053108_b16
  article-title: A likelihood approach to estimating phylogeny from discrete morphological character data
  publication-title: Syst. Biol.
  doi: 10.1080/106351501753462876
– volume: 51
  start-page: 729
  year: 2002
  ident: key 20180228053108_b23
  article-title: Mapping mutations on phylogenies
  publication-title: Syst. Biol.
  doi: 10.1080/10635150290102393
– volume: 83
  start-page: 315
  year: 1996
  ident: key 20180228053108_b21
  article-title: Bootstrapping phylogenies: Large deviations and dispersion effects
  publication-title: Biometrika
  doi: 10.1093/biomet/83.2.315
– volume: 43
  start-page: 304
  year: 1996
  ident: key 20180228053108_b31
  article-title: Probability distributions of molecular evolutionary trees: A new method of phylogenetic inference
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02338839
– volume: 7
  start-page: 473
  year: 1992
  ident: key 20180228053108_b6
  article-title: Practical Markov chain Monte Carlo
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011137
– volume: 407
  start-page: 506
  year: 2000
  ident: key 20180228053108_b10
  article-title: Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes
  publication-title: Nature
  doi: 10.1038/35035065
– volume: 16
  start-page: 750
  year: 1999
  ident: key 20180228053108_b15
  article-title: Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026160
– volume: 55
  start-page: 1
  year: 1999
  ident: key 20180228053108_b18
  article-title: Bayesian phylogenetic inference via Markov chain Monte Carlo methods
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00001.x
– volume: 294
  start-page: 2310
  year: 2001
  ident: key 20180228053108_b13
  article-title: Bayesian inference of phylogeny and its impact on evolutionary biology
  publication-title: Science
  doi: 10.1126/science.1065889
– start-page: 148
  volume-title: Biological evolution and statistical physics
  year: 2002
  ident: key 20180228053108_b28
  article-title: Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation
  doi: 10.1007/3-540-45692-9_8
– volume: 93
  start-page: 13429
  year: 1996
  ident: key 20180228053108_b3
  article-title: Bootstrap confidence levels for phylogenetic trees
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.23.13429
– start-page: 143
  volume-title: Statistics in molecular biology
  year: 1999
  ident: key 20180228053108_b22
  article-title: Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences
SSID ssj0011651
Score 2.4025984
Snippet Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary...
Abstract Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary...
SourceID proquest
pubmed
crossref
oup
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 673
SubjectTerms Ancestral states
Animals
Artiodactyla - genetics
Bayes Theorem
Bayesian analysis
Biological diversity
Biological taxonomies
Classification - methods
Coefficients
comparative methods
Comparative studies
Decision trees
Evolution
Evolution, Molecular
Evolutionary biology
Markov Chains
maximum likelihood
MCMC
Models, Biological
Monte Carlo Method
Monte Carlo simulation
Parametric models
Phenotypic traits
Phylogenetics
Phylogeny
Probability distributions
Ribonucleases - genetics
Statistical models
Title Bayesian Estimation of Ancestral Character States on Phylogenies
URI https://api.istex.fr/ark:/67375/HXZ-5RKTPVSP-T/fulltext.pdf
https://www.jstor.org/stable/4135357
https://www.ncbi.nlm.nih.gov/pubmed/15545248
https://www.proquest.com/docview/194780700
https://www.proquest.com/docview/67075172
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS9xAcLAehb6ItbaNVpuHtg-F4O5lk9081Tt7x6FUDnuWw5ewX6GgXNQ7Qf-9M_kqrSB9SZbNJBt2Zndmdr4APqV9IXWcuYhJvAgrWJTF3EWxY7bwCiXyjAKFf5ymk3NxPE_mjW_OsnGrbPfEaqN2paUz8gNUtqVC-mTfrm8iKhpFxtWmgsYL6FHmMvLokvNO36LEMpW-hVw4QrYtW6OmYgfUh11k9kqIQ_b_Yks9muH71kPxn9C3JxJoxYnGm7DRiJDhoMb5a1jziy14WReVfMDWyLati7JqvYHDoX7wFC4ZjnBJ19GKYVmEA3KiprOO8KhN3BzW4meIANPfqM0jgaEyvQ3n49HsaBI1tRMiK1S6iopM-5j3jSmc4cwp7jNntMfNLE6dQTHEcKmZRmXBx9qoWGuysRUp99ZZnar4LawvyoV_D6GyZPIymeRci8QyLbzwTmueKkfJYwJg7dTltkksTvUtrnLe5B99MtsBfO1eua6zajwH_KXCRwepby_JHU0m-WR-kSdnJ7Ppr5_TfBbAdoWwDlBQUY9EBvAZEfg_A-22KM6blbzMO7oL4GP3FJcg2VX0wpd3S_wXlLtQEAzgXU0Xf4ZKqIS7UDvPfnkXXtXpI8lF8AOsr27v_B6KOiuzXxH0PvQGw-_DMd6Ho9Pp2SMWG_Xk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXSG4VAUKpAWaA-WAFDWOncQ5IGjLVlu2Xa3KFq16SR3bERIoKd2tYH9U_yMzeSGoVHHpJbISPyLP2P7G8wJ4HQUiVjwxnh_jQ2jhewlnxuPG17mViMgTchQ-HkfDU_FpFs5W4Lr1hSGzynZPrDZqU2q6I99BYTuWyJ_--4sfHiWNIuVqm0Gj5oqRXf5EiW3-7vAjknc7CA4G0_2h1yQV8LSQ0cLLE2U5C7IsNxnzjWQ2MZmyuMp5ZDI8nzMWK18hirZcZZIrRcqnPGJWG60iybHfe9AXHCWZHvT3BuPJSae2YFGV7xHFLO4hUIhbNar0d-gdviJFW0hncvDXQdgnmv5qbSL_cba7gXmrs-9gDVYb0Oru1lz2CFZs8Rju12ksl1ga6LZ0VlalJ_BhTy0tOWi6A9xEav9It8zdXTLbptsVd78NFe3WgNfFCpOvS2xuCxTf1-H0Tib2KfSKsrDPwZWalGxZEjOmRKh9JaywRikWSUPhahzw26lLdRPKnDJqfE9ZE_H0xmw78LZrclHH8bit8puKHl1NdfmNDODiMB3OztLwZDSdfPk8SacOrFcE6yoKSiMSxg5sIwH_Z6DNlsRps3fM047THdjqvuKiJ02OKmx5Ncd_QaSH0NOBZzVf_BkqpKTxQm7c2vMWPBhOj4_So8PxaBMe1sEryUDxBfQWl1f2JQKtRfaqYW8Xzu96Rf0Geig0Eg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiEeBUKA5UA5I0caxEzsHBKXd1ZaFagVbtOolOLajSkVJ6W4F-9P4d8zkhaBSxaWXyEpsJ_LM2N9kXgAvkkhIzVMbhBIvwogwSDmzAbehKZxCRJ5SoPDHw2R8JN7P4_ka_OpiYcitstsT643aVob-kQ9Q2ZYK-TMcFK1XxHR_9Obse0AFpMjQ2lXTaDhk4lY_UHtbvD7YR1LvRNFoONsbB22BgcAIlSyDItWOsyjPC5uz0CrmUptrhxLPE5vjWZ0zqUONiNpxnSuuNRmiioQ5Y41OFMd5b8CG5DEjEZPzXtejpDa1rocIIEDIIDuDqgoHdA9vkcktptM5-utI3CDq_uy8I_8Ju7uEfutTcHQX7rTw1d9t-O0erLnyPtxsClqusDU0Xeu4qlsP4O07vXIUqukPcTtpIiX9qvB3yYGb_rP4e13SaL-Bvj52mJ6scLgrUZHfhKNrWdaHsF5WpXsMvjJkbstTyZgWsQm1cMJZrVmiLCWu8SDsli4zbVJzqq3xLWNt7tNLq-3Bq37IWZPR46rOL2t69D31-Sm5wsk4G8-Ps_jTZDb98nmazTzYrAnWdxRUUCSWHuwgAf_nRVsdibN2F1lkPc97sN0_RfEnm44uXXWxwG9BzIcg1INHDV_8eVVM5eOFenLlzNtwC-Uo-3BwONmC200WS_JUfArry_ML9wwR1zJ_XvO2D1-vW5h-A8N6NuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+estimation+of+ancestral+character+states+on+phylogenies&rft.jtitle=Systematic+biology&rft.au=Pagel%2C+Mark&rft.au=Meade%2C+Andrew&rft.au=Barker%2C+Daniel&rft.date=2004-10-01&rft.issn=1063-5157&rft.volume=53&rft.issue=5&rft.spage=673&rft_id=info:doi/10.1080%2F10635150490522232&rft_id=info%3Apmid%2F15545248&rft.externalDocID=15545248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon