Bayesian Estimation of Ancestral Character States on Phylogenies
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its bra...
Saved in:
Published in | Systematic biology Vol. 53; no. 5; pp. 673 - 684 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Society of Systematic Zoology
01.10.2004
Taylor and Francis Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. |
---|---|
AbstractList | Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. [Ancestral states; comparative methods; maximum likelihood; MCMC; phylogeny.] [PUBLICATION ABSTRACT] Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. Abstract Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors. |
Author | Barker, Daniel Meade, Andrew Pagel, Mark |
Author_xml | – sequence: 1 givenname: Mark surname: Pagel fullname: Pagel, Mark email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.) – sequence: 2 givenname: Andrew surname: Meade fullname: Meade, Andrew email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.) – sequence: 3 givenname: Daniel surname: Barker fullname: Barker, Daniel email: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; m.pagel@rdg.ac.uk (M.P.), m.pagel@rdg.ac.uk organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights Reading RG6 6AJ England; E-mail: m.pagel@rdg.ac.uk (M.P.) – sequence: 4 givenname: Jeffrey surname: Thorne fullname: Thorne, Jeffrey email: m.pagel@rdg.ac.uk organization: School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ England |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15545248$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkF1rFDEUhoNU7Jc_QBAZvPDKaXMmk4-9a12qlRZc7CrFm3Bm5oyddXayJhlw_72pUytUEK8SeJ83OefZZzuDG4ixZ8CPgBt-DFwJCZKXMy6LohDFI7YHXKvcCHW9c3tXIk-A3mX7Iaw4B1ASnrBdkLKURWn22Mkb3FLocMjOQuzWGDs3ZK7NToeaQvTYZ_Mb9FhH8tlVxEghS8DiZtu7rzR0FA7Z4xb7QE_vzgP26e3Zcn6eX354935-epnXpVExb2dIAoqqapsKeGOAZk2F1DQkVFOpUlSgkaM0kgRWRiByKIpWAdVNjcqIA_Zqenfj3fcxzWbXXaip73EgNwarNNcSdJHAlw_AlRv9kGazMCu14ZrzBL24g8ZqTY3d-LS739rfYhIAE1B7F4Kn9g_C7a18-5f81NEPOnUXfxlNIrv-n83XU9ONm__66PmEr0J0_r5QgpBC6hTnU9yFSD_uY_TfkiWhpT2__mLlx4vl4vPVwi7FTzzzq8U |
CitedBy_id | crossref_primary_10_1111_j_1558_5646_2007_00039_x crossref_primary_10_1111_nph_14197 crossref_primary_10_1016_j_asd_2013_03_006 crossref_primary_10_1002_ece3_1482 crossref_primary_10_1111_j_1420_9101_2009_01789_x crossref_primary_10_1002_ece3_3420 crossref_primary_10_1093_zoolinnean_zlab087 crossref_primary_10_1016_j_cbpa_2013_01_007 crossref_primary_10_1111_evo_13671 crossref_primary_10_1111_cla_12383 crossref_primary_10_1111_cla_12140 crossref_primary_10_1128_mBio_01024_18 crossref_primary_10_1093_isd_ixac020 crossref_primary_10_1016_j_ympev_2013_10_010 crossref_primary_10_1093_molbev_msac171 crossref_primary_10_1007_s00606_021_01752_5 crossref_primary_10_1111_pala_12178 crossref_primary_10_3389_fgene_2021_693541 crossref_primary_10_1007_s11262_012_0762_5 crossref_primary_10_1098_rstb_2020_0057 crossref_primary_10_1371_journal_pcbi_1004763 crossref_primary_10_1007_s00435_014_0231_x crossref_primary_10_1093_gbe_evw055 crossref_primary_10_1093_sysbio_sys034 crossref_primary_10_1016_j_ppees_2018_12_001 crossref_primary_10_1093_molbev_msq081 crossref_primary_10_1111_j_1558_5646_2007_00159_x crossref_primary_10_1111_j_1469_8137_2012_04079_x crossref_primary_10_1111_j_1558_5646_2009_00741_x crossref_primary_10_1111_evo_12599 crossref_primary_10_1371_journal_pone_0141187 crossref_primary_10_1016_j_ympev_2007_12_015 crossref_primary_10_1111_bij_12186 crossref_primary_10_1093_aob_mcac006 crossref_primary_10_1371_journal_pone_0110685 crossref_primary_10_1111_j_1463_6409_2010_00458_x crossref_primary_10_1016_j_anbehav_2019_10_015 crossref_primary_10_1098_rspb_2018_1932 crossref_primary_10_1093_aob_mcs083 crossref_primary_10_12705_634_14 crossref_primary_10_3852_15_036 crossref_primary_10_1098_rspb_2016_1006 crossref_primary_10_1016_j_ympev_2012_08_022 crossref_primary_10_1016_j_ympev_2018_12_002 crossref_primary_10_1186_s12862_015_0283_7 crossref_primary_10_1098_rsos_230725 crossref_primary_10_1111_j_1365_294X_2011_05082_x crossref_primary_10_1111_j_1420_9101_2010_02072_x crossref_primary_10_1007_s12041_017_0785_8 crossref_primary_10_1038_s41559_023_02012_0 crossref_primary_10_1007_s00606_014_1034_8 crossref_primary_10_1093_aob_mcw219 crossref_primary_10_1371_journal_pone_0026370 crossref_primary_10_1111_j_1469_8137_2011_03783_x crossref_primary_10_1073_pnas_1502036112 crossref_primary_10_1098_rspb_2016_0140 crossref_primary_10_1016_j_ympev_2006_09_009 crossref_primary_10_1111_jbi_13552 crossref_primary_10_1186_1471_2164_9_48 crossref_primary_10_1371_journal_pone_0067957 crossref_primary_10_1111_nph_17437 crossref_primary_10_1371_journal_pone_0021915 crossref_primary_10_1086_668219 crossref_primary_10_1371_journal_pone_0001065 crossref_primary_10_1007_s12110_006_1000_4 crossref_primary_10_3732_ajb_0900161 crossref_primary_10_1086_689399 crossref_primary_10_1093_icb_icz040 crossref_primary_10_1093_sysbio_syq045 crossref_primary_10_1126_science_1240578 crossref_primary_10_1038_s41559_017_0137 crossref_primary_10_1111_j_1759_6831_2010_00088_x crossref_primary_10_1214_08_AOAS173 crossref_primary_10_1093_aob_mcw223 crossref_primary_10_1111_evo_12300 crossref_primary_10_1007_s11557_021_01710_y crossref_primary_10_1038_s41467_019_11307_5 crossref_primary_10_1111_evo_13879 crossref_primary_10_1038_ncomms14445 crossref_primary_10_1038_nature04597 crossref_primary_10_1371_journal_pone_0162299 crossref_primary_10_1111_j_1558_5646_2010_00993_x crossref_primary_10_1093_gbe_evy030 crossref_primary_10_1093_sysbio_syq055 crossref_primary_10_1086_710489 crossref_primary_10_1371_journal_pone_0147920 crossref_primary_10_3390_pr13010114 crossref_primary_10_1016_j_ygcen_2016_03_011 crossref_primary_10_1016_j_ympev_2010_03_039 crossref_primary_10_1016_j_meegid_2010_12_001 crossref_primary_10_1016_j_ympev_2012_07_020 crossref_primary_10_1890_09_0817_1 crossref_primary_10_1038_s41576_024_00803_0 crossref_primary_10_1111_jbi_14603 crossref_primary_10_1086_519460 crossref_primary_10_1093_aob_mcw243 crossref_primary_10_1038_s41598_022_18407_1 crossref_primary_10_1111_j_1558_5646_2011_01258_x crossref_primary_10_1643_h2021058 crossref_primary_10_1016_j_tree_2008_02_003 crossref_primary_10_1016_j_ejop_2017_02_001 crossref_primary_10_1111_j_1469_8137_2011_03663_x crossref_primary_10_1186_s13039_016_0270_8 crossref_primary_10_1093_biolinnean_bly101 crossref_primary_10_1111_evo_12328 crossref_primary_10_1111_evo_13899 crossref_primary_10_1016_j_meegid_2016_03_036 crossref_primary_10_1186_s12862_014_0229_5 crossref_primary_10_1007_s00265_020_02889_y crossref_primary_10_1093_molbev_msr116 crossref_primary_10_1093_sysbio_syt102 crossref_primary_10_1093_gbe_evy013 crossref_primary_10_1554_04_675_1 crossref_primary_10_3417_2012047 crossref_primary_10_1016_j_cub_2016_02_042 crossref_primary_10_1093_molbev_msae162 crossref_primary_10_1075_dia_32_1_03ver crossref_primary_10_1093_molbev_msq237 crossref_primary_10_1002_ece3_8034 crossref_primary_10_1016_j_ijpara_2015_03_008 crossref_primary_10_4003_006_032_0103 crossref_primary_10_1038_srep45966 crossref_primary_10_1038_nature10601 crossref_primary_10_1371_journal_pone_0059917 crossref_primary_10_1086_503444 crossref_primary_10_1111_ivb_12151 crossref_primary_10_1111_jbi_12636 crossref_primary_10_1016_j_physbeh_2014_10_018 crossref_primary_10_1098_rspb_2009_0182 crossref_primary_10_1098_rspb_2012_0075 crossref_primary_10_7717_peerj_6288 crossref_primary_10_1371_journal_pbio_3001495 crossref_primary_10_3852_13_059 crossref_primary_10_1016_j_celrep_2011_12_010 crossref_primary_10_1080_10635150500354837 crossref_primary_10_1111_j_1474_9726_2011_00718_x crossref_primary_10_1086_675571 crossref_primary_10_1111_evo_12997 crossref_primary_10_1016_j_ympev_2014_09_030 crossref_primary_10_1002_ajpa_70009 crossref_primary_10_1080_14772000_2021_1914764 crossref_primary_10_1371_journal_pone_0180908 crossref_primary_10_1038_srep12471 crossref_primary_10_1016_j_cub_2018_05_058 crossref_primary_10_1093_ve_veae009 crossref_primary_10_1016_j_ympev_2010_02_009 crossref_primary_10_1111_j_1439_0469_2008_00491_x crossref_primary_10_1007_s13127_013_0165_z crossref_primary_10_1186_1471_2105_11_7 crossref_primary_10_1073_pnas_1115169109 crossref_primary_10_1111_j_1096_0031_2005_00080_x crossref_primary_10_1073_pnas_1610603114 crossref_primary_10_1098_rspb_2012_1140 crossref_primary_10_1016_j_ympev_2010_02_011 crossref_primary_10_1016_j_ympev_2015_08_016 crossref_primary_10_1111_1365_2656_13132 crossref_primary_10_1007_s00239_014_9639_7 crossref_primary_10_1371_journal_pone_0021086 crossref_primary_10_1371_journal_pbio_3000183 crossref_primary_10_1111_j_1365_2699_2005_01261_x crossref_primary_10_3114_sim_2008_61_11 crossref_primary_10_3732_ajb_1300053 crossref_primary_10_1016_j_ympev_2023_107796 crossref_primary_10_1098_rsbl_2010_0757 crossref_primary_10_3389_fcomm_2021_661862 crossref_primary_10_1002_evan_21940 crossref_primary_10_1016_j_ympev_2012_05_030 crossref_primary_10_1111_bij_12536 crossref_primary_10_1016_j_ympev_2007_11_003 crossref_primary_10_1186_s12862_019_1398_z crossref_primary_10_1111_j_1365_2699_2012_02771_x crossref_primary_10_1111_mec_12205 crossref_primary_10_1111_ele_13431 crossref_primary_10_1111_plb_12348 crossref_primary_10_1111_jbi_12611 crossref_primary_10_1111_jbi_12853 crossref_primary_10_1016_j_ympev_2010_01_011 crossref_primary_10_1111_2041_210X_13872 crossref_primary_10_1016_j_ympev_2016_01_012 crossref_primary_10_1111_j_1558_5646_2011_01487_x crossref_primary_10_1007_s13127_021_00532_w crossref_primary_10_12705_645_1 crossref_primary_10_12705_645_2 crossref_primary_10_1371_journal_pcbi_1000520 crossref_primary_10_1007_s10750_013_1599_1 crossref_primary_10_1111_j_1420_9101_2009_01915_x crossref_primary_10_1002_evl3_219 crossref_primary_10_1016_j_ympev_2014_08_010 crossref_primary_10_1098_rstb_2010_0017 crossref_primary_10_1111_bij_12784 crossref_primary_10_1186_1471_2148_11_114 crossref_primary_10_1016_j_ympev_2023_107734 crossref_primary_10_1179_037366809X12469790518529 crossref_primary_10_1016_j_ympev_2021_107178 crossref_primary_10_1186_s12864_020_06838_x crossref_primary_10_1111_mec_12664 crossref_primary_10_1038_s41598_017_09834_6 crossref_primary_10_1111_jeb_12190 crossref_primary_10_1186_s13358_023_00285_3 crossref_primary_10_3390_plants12142721 crossref_primary_10_1016_j_ympev_2012_04_006 crossref_primary_10_1111_j_1420_9101_2006_01273_x crossref_primary_10_1371_journal_pone_0034690 crossref_primary_10_1111_jeb_13288 crossref_primary_10_1186_1471_2148_12_183 crossref_primary_10_1038_s41467_018_04265_x crossref_primary_10_1186_1471_2148_11_45 crossref_primary_10_3389_fpsyg_2023_1128461 crossref_primary_10_1111_mec_13506 crossref_primary_10_1534_g3_115_017822 crossref_primary_10_1098_rspb_2020_0045 crossref_primary_10_3390_ijerph20116030 crossref_primary_10_1371_journal_pone_0132819 crossref_primary_10_7717_peerj_3194 crossref_primary_10_1111_brv_12957 crossref_primary_10_1111_jeb_13059 crossref_primary_10_1080_09583157_2014_952711 crossref_primary_10_1093_gbe_evae277 crossref_primary_10_1093_botlinnean_boy064 crossref_primary_10_1098_rspb_2014_2734 crossref_primary_10_1093_sysbio_syx036 crossref_primary_10_1111_j_1439_0469_2006_00392_x crossref_primary_10_1186_1471_2148_9_187 crossref_primary_10_1073_pnas_0901594106 crossref_primary_10_1080_22221751_2023_2253340 crossref_primary_10_1371_journal_pone_0047546 crossref_primary_10_3372_wi_50_50301 crossref_primary_10_1016_j_jhevol_2012_12_003 crossref_primary_10_1098_rspb_2018_2325 crossref_primary_10_1007_s13127_014_0189_z crossref_primary_10_1093_botlinnean_box024 crossref_primary_10_1038_s41559_023_02074_0 crossref_primary_10_1111_j_1365_2699_2008_01885_x crossref_primary_10_3389_fpls_2020_536135 crossref_primary_10_1016_j_ympev_2023_107945 crossref_primary_10_1111_boj_12296 crossref_primary_10_1371_journal_pone_0127780 crossref_primary_10_1007_s11258_011_9987_y crossref_primary_10_1111_j_1558_5646_2010_01045_x crossref_primary_10_1038_s41598_021_84910_6 crossref_primary_10_1111_j_1438_8677_2008_00145_x crossref_primary_10_1098_rspb_2013_2818 crossref_primary_10_1016_j_isci_2023_108740 crossref_primary_10_1073_pnas_1503793112 crossref_primary_10_1086_708764 crossref_primary_10_1002_ar_23768 crossref_primary_10_1080_15572536_2006_11832626 crossref_primary_10_1146_annurev_biophys_030722_125440 crossref_primary_10_1098_rstb_2009_0199 crossref_primary_10_1016_j_gde_2005_09_011 crossref_primary_10_1038_s41598_017_12324_4 crossref_primary_10_1111_geb_13783 crossref_primary_10_1016_j_ympev_2021_107134 crossref_primary_10_4003_006_033_0210 crossref_primary_10_1016_j_evolhumbehav_2014_03_001 crossref_primary_10_1098_rspb_2011_1045 crossref_primary_10_1186_1471_2148_11_98 crossref_primary_10_1186_1471_2148_13_30 crossref_primary_10_1186_s12862_019_1416_1 crossref_primary_10_1111_jse_12713 crossref_primary_10_1111_j_1558_5646_2011_01532_x crossref_primary_10_1098_rstb_2013_0348 crossref_primary_10_1007_s11103_009_9572_0 crossref_primary_10_1098_rspb_2015_1278 crossref_primary_10_1038_s41598_024_63991_z crossref_primary_10_1093_botlinnean_box049 crossref_primary_10_1093_sysbio_syab092 crossref_primary_10_1080_10635150802044045 crossref_primary_10_1534_genetics_114_164269 crossref_primary_10_1038_ncomms16047 crossref_primary_10_1002_ecm_1411 crossref_primary_10_1016_j_ympev_2022_107403 crossref_primary_10_1093_sysbio_syx065 crossref_primary_10_1111_j_1095_8312_2009_01341_x crossref_primary_10_1038_s41559_017_0454_6 crossref_primary_10_1128_jvi_01369_23 crossref_primary_10_1002_ajb2_1250 crossref_primary_10_1016_j_ympev_2017_05_022 crossref_primary_10_1016_j_jaridenv_2011_04_004 crossref_primary_10_1086_731784 crossref_primary_10_1111_j_1420_9101_2009_01827_x crossref_primary_10_1371_journal_pone_0024749 crossref_primary_10_1016_j_ympev_2015_01_002 crossref_primary_10_1071_SB21009 crossref_primary_10_1111_mec_13499 crossref_primary_10_1371_journal_pone_0035118 crossref_primary_10_1111_j_1558_5646_2009_00856_x crossref_primary_10_1111_j_1469_7998_2009_00622_x crossref_primary_10_1016_j_ympev_2017_06_008 crossref_primary_10_3732_ajb_1100152 crossref_primary_10_12705_675_7 crossref_primary_10_1016_j_ympev_2023_107904 crossref_primary_10_1186_s12859_017_1479_1 crossref_primary_10_1371_journal_pone_0037544 crossref_primary_10_1515_hsz_2018_0344 crossref_primary_10_1086_698301 crossref_primary_10_1098_rstb_2022_0148 crossref_primary_10_1111_ele_13962 crossref_primary_10_1016_j_tim_2014_04_008 crossref_primary_10_12705_664_4 crossref_primary_10_1016_j_jtbi_2016_05_029 crossref_primary_10_1080_15659801_2013_825431 crossref_primary_10_1016_j_meegid_2011_02_007 crossref_primary_10_7717_peerj_3016 crossref_primary_10_1186_1471_2148_8_329 crossref_primary_10_1093_molbev_msv053 crossref_primary_10_1016_j_ympev_2010_08_029 crossref_primary_10_1098_rspb_2021_1855 crossref_primary_10_1016_j_ympev_2010_08_022 crossref_primary_10_12705_653_2 crossref_primary_10_1186_1471_2148_13_74 crossref_primary_10_1111_jeb_12231 crossref_primary_10_1016_j_ympev_2015_02_003 crossref_primary_10_1670_06_2273_1 crossref_primary_10_1371_journal_pone_0021206 crossref_primary_10_1186_s12862_016_0741_x crossref_primary_10_1111_evo_13099 crossref_primary_10_1111_j_1365_294X_2009_04149_x crossref_primary_10_1016_j_ppees_2011_11_005 crossref_primary_10_1111_j_1365_2486_2012_02752_x crossref_primary_10_1111_jipb_13751 crossref_primary_10_1093_molbev_msu176 crossref_primary_10_1111_j_1095_8339_2012_01325_x crossref_primary_10_1098_rspb_2021_0533 crossref_primary_10_1111_mec_16738 crossref_primary_10_1073_pnas_2122604119 crossref_primary_10_1074_jbc_M117_790865 crossref_primary_10_1099_mgen_0_000440 crossref_primary_10_3389_fmars_2020_00461 crossref_primary_10_1016_j_ympev_2013_04_026 crossref_primary_10_1093_beheco_arp137 crossref_primary_10_1002_bies_20291 crossref_primary_10_1007_s42977_023_00191_2 crossref_primary_10_1016_j_isci_2024_110903 crossref_primary_10_1038_s41598_022_26514_2 crossref_primary_10_1016_j_ympev_2020_106961 crossref_primary_10_1007_s13225_014_0283_8 crossref_primary_10_1371_journal_ppat_1010062 crossref_primary_10_1073_pnas_0914418107 crossref_primary_10_3732_ajb_1300403 crossref_primary_10_1371_journal_pone_0034070 crossref_primary_10_1111_ecog_01370 crossref_primary_10_1111_syen_12111 crossref_primary_10_1111_j_1469_8137_2011_03683_x crossref_primary_10_1017_S1089332600002448 crossref_primary_10_1016_j_ympev_2011_12_022 crossref_primary_10_1098_rsos_150340 crossref_primary_10_1016_j_tree_2009_09_007 crossref_primary_10_1093_biolinnean_blab115 crossref_primary_10_1080_14772000_2019_1679273 crossref_primary_10_1186_s12870_018_1398_y crossref_primary_10_1093_biolinnean_blaa021 crossref_primary_10_1007_s00040_011_0206_6 crossref_primary_10_1093_beheco_araa039 crossref_primary_10_1111_1755_0998_13813 crossref_primary_10_1111_j_1558_5646_2008_00534_x crossref_primary_10_1073_pnas_1006299107 crossref_primary_10_1111_evo_12197 crossref_primary_10_1016_j_anbehav_2023_02_003 crossref_primary_10_1111_j_1463_6409_2011_00506_x crossref_primary_10_1016_j_cub_2023_12_069 crossref_primary_10_1016_j_ympev_2017_07_025 crossref_primary_10_1002_ajpa_22008 crossref_primary_10_1080_14772000_2017_1392371 crossref_primary_10_1071_IS11026 crossref_primary_10_1073_pnas_0914380107 crossref_primary_10_1371_journal_pone_0155154 crossref_primary_10_1093_gbe_evy187 crossref_primary_10_1371_journal_pone_0198237 crossref_primary_10_1038_s41467_021_24023_w crossref_primary_10_1186_s12862_015_0471_5 crossref_primary_10_1098_rspb_2013_0495 crossref_primary_10_1111_ede_12390 crossref_primary_10_7554_eLife_01914 crossref_primary_10_1089_cmb_2006_13_1701 crossref_primary_10_1111_j_1095_8312_2010_01478_x crossref_primary_10_1371_journal_pone_0094104 crossref_primary_10_1038_ismej_2016_198 crossref_primary_10_1111_j_1558_5646_2008_00465_x crossref_primary_10_1002_ece3_70859 crossref_primary_10_1016_j_ympev_2015_04_026 crossref_primary_10_1038_ncomms1844 crossref_primary_10_1086_688097 crossref_primary_10_3390_d14110942 crossref_primary_10_1093_sysbio_syr126 crossref_primary_10_1098_rspb_2023_1734 crossref_primary_10_1186_s12862_014_0272_2 crossref_primary_10_1016_j_ympev_2024_108023 crossref_primary_10_3732_ajb_1100549 crossref_primary_10_1126_science_1165069 crossref_primary_10_1111_brv_12483 crossref_primary_10_1515_lingvan_2021_0011 crossref_primary_10_1016_j_rmb_2017_01_022 crossref_primary_10_1038_s41467_018_05484_y crossref_primary_10_1186_1475_2875_8_110 crossref_primary_10_1098_rsbl_2024_0472 crossref_primary_10_1038_s41598_018_30607_2 crossref_primary_10_1086_705294 crossref_primary_10_1073_pnas_1922539117 crossref_primary_10_1111_j_1558_5646_2008_00567_x crossref_primary_10_1098_rspb_2008_1226 crossref_primary_10_1111_zsc_12258 crossref_primary_10_1093_aob_mcq088 crossref_primary_10_1038_s41467_019_12608_5 crossref_primary_10_1111_cla_12186 crossref_primary_10_1016_j_ympev_2013_01_015 crossref_primary_10_1111_nph_14382 crossref_primary_10_1186_s12862_014_0187_y crossref_primary_10_7717_peerj_1228 crossref_primary_10_1016_j_ympev_2012_08_013 crossref_primary_10_1111_jzs_12037 crossref_primary_10_1371_journal_pcbi_1004447 crossref_primary_10_1007_s10682_008_9255_3 crossref_primary_10_1016_j_csbj_2021_03_008 crossref_primary_10_1186_1471_2148_14_102 crossref_primary_10_1002_ajpa_24640 crossref_primary_10_1099_mic_0_061952_0 crossref_primary_10_1098_rspb_2013_0200 crossref_primary_10_1111_j_1558_5646_2007_00304_x crossref_primary_10_3378_027_083_0106 crossref_primary_10_1016_j_meegid_2010_07_005 crossref_primary_10_3378_027_083_0107 crossref_primary_10_3378_027_083_0108 crossref_primary_10_1016_j_ympev_2010_05_025 crossref_primary_10_1016_j_ympev_2018_01_006 crossref_primary_10_1371_journal_pone_0018212 crossref_primary_10_1111_brv_12016 crossref_primary_10_1111_j_1529_8817_2009_00803_x crossref_primary_10_1093_zoolinnean_zlaa135 crossref_primary_10_1002_ajpa_22206 crossref_primary_10_1093_ornithology_ukad048 crossref_primary_10_1016_j_cub_2019_01_078 crossref_primary_10_1186_s12862_015_0388_z crossref_primary_10_1645_GE_3045_1 crossref_primary_10_1016_j_ijpara_2010_08_009 crossref_primary_10_1002_ece3_6359 crossref_primary_10_1098_rstb_2021_0228 crossref_primary_10_3732_ajb_1400196 crossref_primary_10_1111_j_1469_8137_2010_03609_x crossref_primary_10_1371_journal_pone_0064537 crossref_primary_10_1080_10635150802044003 crossref_primary_10_1186_s12862_016_0661_9 crossref_primary_10_1111_bij_12199 crossref_primary_10_1089_cmb_2022_0357 crossref_primary_10_3732_ajb_1600248 crossref_primary_10_1128_mBio_00204_19 crossref_primary_10_1111_j_1095_8312_2010_01578_x crossref_primary_10_1093_bioinformatics_btv541 crossref_primary_10_1111_j_1420_9101_2012_02473_x crossref_primary_10_1016_j_ijpara_2009_07_012 crossref_primary_10_1093_jxb_erac149 crossref_primary_10_1098_rstb_2023_0310 crossref_primary_10_1111_j_1558_5646_2012_01797_x crossref_primary_10_3389_fpls_2021_627909 crossref_primary_10_1098_rspb_2010_1942 crossref_primary_10_1371_journal_pbio_3000894 crossref_primary_10_1111_evo_14351 crossref_primary_10_1080_10635150701883881 crossref_primary_10_1098_rstb_2023_0309 crossref_primary_10_1002_ajb2_1050 crossref_primary_10_1111_mec_14152 crossref_primary_10_1073_pnas_0807230106 crossref_primary_10_1111_cla_12193 crossref_primary_10_1016_j_ympev_2018_01_023 crossref_primary_10_1038_s42003_019_0417_3 crossref_primary_10_1080_0028825X_2020_1840400 crossref_primary_10_1111_geb_12900 crossref_primary_10_1111_j_1365_2699_2011_02488_x crossref_primary_10_1098_rsbl_2009_0840 crossref_primary_10_1093_icb_icn041 crossref_primary_10_1080_00275514_2021_1983352 crossref_primary_10_1111_j_1095_8312_2007_00807_x crossref_primary_10_14411_fp_2014_032 crossref_primary_10_1111_j_1558_5646_2012_01720_x crossref_primary_10_1002_ece3_3789 crossref_primary_10_1111_j_1095_8339_2012_01307_x crossref_primary_10_1038_s41598_018_37412_x crossref_primary_10_1111_1365_2656_13426 crossref_primary_10_1016_j_evolhumbehav_2018_06_002 crossref_primary_10_1111_evo_12223 crossref_primary_10_1093_bioinformatics_btl558 crossref_primary_10_1111_evo_13558 crossref_primary_10_1371_journal_pbio_1002315 crossref_primary_10_1016_j_micinf_2024_105405 crossref_primary_10_1186_s12862_014_0226_8 crossref_primary_10_1093_sysbio_syr060 crossref_primary_10_1093_sysbio_syt008 crossref_primary_10_1016_j_funbio_2018_11_013 crossref_primary_10_1371_journal_pgen_1001284 crossref_primary_10_1017_S1477200009990132 crossref_primary_10_1186_1471_2164_15_939 crossref_primary_10_1371_journal_pone_0143481 crossref_primary_10_1080_14772000_2018_1442885 crossref_primary_10_1534_genetics_112_142448 crossref_primary_10_1016_j_chroma_2022_463703 crossref_primary_10_1093_nar_gky494 crossref_primary_10_1093_aob_mcu134 crossref_primary_10_1098_rspb_2013_2146 crossref_primary_10_4137_EBO_S2765 crossref_primary_10_1111_brv_12695 crossref_primary_10_3897_zookeys_547_6018 crossref_primary_10_1093_sysbio_syr073 crossref_primary_10_1111_j_1759_6831_2009_00044_x crossref_primary_10_1111_jse_12276 crossref_primary_10_1073_pnas_1415744111 crossref_primary_10_1016_j_cub_2008_08_046 crossref_primary_10_1371_journal_pbio_1002307 crossref_primary_10_1093_nargab_lqaa041 crossref_primary_10_1016_j_ympev_2011_06_015 crossref_primary_10_1007_s11692_013_9255_2 crossref_primary_10_1016_j_pld_2022_05_006 crossref_primary_10_1093_molbev_msq171 crossref_primary_10_1038_nature14460 crossref_primary_10_1017_S0031182012001758 crossref_primary_10_1098_rsos_201079 crossref_primary_10_7554_eLife_40630 crossref_primary_10_1111_jbi_12357 crossref_primary_10_1098_rsos_150645 crossref_primary_10_1111_syen_12098 crossref_primary_10_3732_ajb_1300100 crossref_primary_10_1093_zoolinnean_zly048 crossref_primary_10_1111_j_1475_4983_2006_00615_x crossref_primary_10_1128_spectrum_03829_23 crossref_primary_10_7554_eLife_75796 crossref_primary_10_1007_s10336_019_01632_3 crossref_primary_10_1177_117693430600200027 crossref_primary_10_1086_715638 crossref_primary_10_1371_journal_pcbi_1002492 crossref_primary_10_3732_ajb_1000059 crossref_primary_10_1642_AUK_15_23_1 crossref_primary_10_1016_j_dib_2016_02_062 crossref_primary_10_1093_aob_mcaa184 crossref_primary_10_2139_ssrn_3155895 crossref_primary_10_1093_biolinnean_blaa217 crossref_primary_10_1146_annurev_ecolsys_110411_160331 crossref_primary_10_1016_j_ympev_2013_08_003 crossref_primary_10_1111_ele_14001 crossref_primary_10_1017_pab_2019_9 crossref_primary_10_3986_alternator_2023_24 crossref_primary_10_1016_j_ympev_2008_05_012 crossref_primary_10_1002_tax_613002 crossref_primary_10_1086_657435 crossref_primary_10_1111_imr_12664 crossref_primary_10_1111_syen_12278 crossref_primary_10_1111_j_1096_0031_2011_00365_x crossref_primary_10_1038_nature09923 crossref_primary_10_1111_j_1558_5646_2011_01373_x crossref_primary_10_1093_sysbio_syr020 crossref_primary_10_1098_rspb_2024_0235 crossref_primary_10_1038_ncomms5471 crossref_primary_10_1016_j_ympev_2019_04_008 crossref_primary_10_1080_00275514_2024_2327972 crossref_primary_10_1093_biolinnean_blw014 crossref_primary_10_1002_jez_b_22912 crossref_primary_10_12705_635_12 crossref_primary_10_1093_aob_mcv020 crossref_primary_10_1111_ede_12042 crossref_primary_10_1371_journal_pone_0066767 crossref_primary_10_1016_j_scienta_2021_110845 crossref_primary_10_1016_j_compbiomed_2014_12_013 crossref_primary_10_1080_14772000_2014_905506 crossref_primary_10_1016_j_ympev_2012_01_002 crossref_primary_10_1111_2041_210X_12033 crossref_primary_10_1186_1471_2148_10_295 crossref_primary_10_3389_fmicb_2015_01070 crossref_primary_10_1002_mbo3_1103 crossref_primary_10_1016_j_ympev_2011_05_014 crossref_primary_10_1093_sysbio_syr030 crossref_primary_10_1111_nph_19783 crossref_primary_10_1093_botlinnean_boad009 crossref_primary_10_1534_g3_117_300512 crossref_primary_10_1371_journal_pone_0131223 crossref_primary_10_1017_scs_2017_9 crossref_primary_10_3732_ajb_0900021 crossref_primary_10_1038_s41598_021_93764_x crossref_primary_10_1371_journal_pone_0089876 crossref_primary_10_1007_s00265_011_1221_3 crossref_primary_10_1016_j_meegid_2011_07_012 crossref_primary_10_3852_13_346 crossref_primary_10_1038_s41598_019_56549_x crossref_primary_10_1098_rspb_2020_1883 crossref_primary_10_1098_rspb_2014_0848 crossref_primary_10_1016_j_pnsc_2009_05_005 crossref_primary_10_1111_j_1365_294X_2006_03114_x crossref_primary_10_1016_j_ympev_2014_05_018 crossref_primary_10_1016_j_ympev_2016_09_020 crossref_primary_10_1098_rspb_2023_0606 crossref_primary_10_1554_05_483_1 crossref_primary_10_1016_j_ympev_2016_09_023 crossref_primary_10_1098_rspb_2009_0088 crossref_primary_10_1111_j_1439_0469_2011_00646_x crossref_primary_10_1111_j_1474_919X_2005_00467_x crossref_primary_10_1016_j_cois_2016_05_017 crossref_primary_10_1093_biolinnean_blw039 crossref_primary_10_1002_tax_613013 crossref_primary_10_1098_rspb_2011_0559 crossref_primary_10_1111_syen_12287 crossref_primary_10_1073_pnas_2119671119 crossref_primary_10_3389_fevo_2022_1058746 crossref_primary_10_1073_pnas_1811268115 crossref_primary_10_1093_jole_lzae001 crossref_primary_10_1007_s11557_016_1165_0 crossref_primary_10_1016_j_evolhumbehav_2021_12_002 crossref_primary_10_1098_rspb_2016_1736 crossref_primary_10_1098_rspb_2016_0403 crossref_primary_10_1371_journal_pone_0065012 crossref_primary_10_1007_s13225_015_0325_x crossref_primary_10_1099_mgen_0_000057 crossref_primary_10_1016_j_ympev_2010_09_013 crossref_primary_10_1098_rspb_2010_0051 crossref_primary_10_1093_aob_mcv057 crossref_primary_10_1111_jbi_12531 crossref_primary_10_1038_ncomms15213 crossref_primary_10_1111_j_1095_8312_2012_02024_x crossref_primary_10_3390_biology13110952 crossref_primary_10_1016_j_ympev_2010_09_018 crossref_primary_10_1111_bij_12211 crossref_primary_10_1016_j_ympev_2017_12_021 crossref_primary_10_1111_j_1420_9101_2006_01132_x crossref_primary_10_1007_s00438_021_01845_3 crossref_primary_10_1073_pnas_1206512109 crossref_primary_10_1007_s10393_017_1228_y crossref_primary_10_1016_j_ympev_2019_106707 crossref_primary_10_1643_CH_14_210 crossref_primary_10_3732_ajb_95_4_506 crossref_primary_10_1186_1471_2148_10_242 crossref_primary_10_1111_plb_12430 crossref_primary_10_1016_j_fgb_2010_05_002 crossref_primary_10_1098_rspb_2020_1474 crossref_primary_10_1093_jole_lzw003 crossref_primary_10_3852_12_136 crossref_primary_10_1075_dia_22022_ski crossref_primary_10_1371_journal_ppat_1007314 crossref_primary_10_1038_ismej_2011_160 crossref_primary_10_1080_10635150600697465 crossref_primary_10_1016_j_ympev_2014_06_013 crossref_primary_10_1073_pnas_1607576113 crossref_primary_10_1016_j_cell_2018_10_023 crossref_primary_10_1016_j_ympev_2008_12_022 crossref_primary_10_1016_j_ympev_2013_07_026 crossref_primary_10_1093_aob_mcad063 crossref_primary_10_1016_j_gene_2012_10_019 crossref_primary_10_1111_j_1469_185X_2009_00111_x crossref_primary_10_1111_jeb_13373 crossref_primary_10_1007_s10682_013_9645_z crossref_primary_10_3732_ajb_1200359 crossref_primary_10_3732_ajb_1000457 crossref_primary_10_1038_s41586_024_07323_1 crossref_primary_10_1093_botlinnean_boz073 crossref_primary_10_1038_s41477_024_01726_8 crossref_primary_10_1093_jhered_esad016 crossref_primary_10_1111_evo_12655 crossref_primary_10_1016_j_tree_2012_02_002 crossref_primary_10_1111_j_0014_3820_2006_tb01224_x crossref_primary_10_1111_jeb_12097 crossref_primary_10_1111_jbi_12726 crossref_primary_10_1093_aob_mcad081 crossref_primary_10_1371_journal_pcbi_0010003 crossref_primary_10_1007_s00227_009_1205_2 crossref_primary_10_1038_s41559_016_0009 crossref_primary_10_1073_pnas_1119506109 crossref_primary_10_1093_molbev_msp222 crossref_primary_10_1016_j_ympev_2011_03_023 crossref_primary_10_1111_j_1461_0248_2012_01858_x crossref_primary_10_3389_fpls_2021_710590 crossref_primary_10_1111_azo_12039 crossref_primary_10_1371_journal_pone_0035649 crossref_primary_10_1038_s41558_021_01123_5 crossref_primary_10_1093_molbev_msz131 crossref_primary_10_1016_j_tim_2011_07_006 crossref_primary_10_3732_ajb_1500184 crossref_primary_10_1016_j_ympev_2022_107596 crossref_primary_10_1111_evo_12832 crossref_primary_10_1111_j_1420_9101_2011_02339_x crossref_primary_10_3732_ajb_1500168 crossref_primary_10_1111_1755_0998_12173 crossref_primary_10_1016_j_ympev_2008_07_005 crossref_primary_10_1073_pnas_1018956108 crossref_primary_10_1038_s41467_023_35869_7 crossref_primary_10_1111_mec_12549 crossref_primary_10_1111_j_1469_8137_2011_03951_x crossref_primary_10_1038_ncomms1482 crossref_primary_10_1098_rspb_2024_2850 crossref_primary_10_1016_j_ympev_2006_10_018 crossref_primary_10_1111_j_1420_9101_2009_01818_x crossref_primary_10_1111_j_1558_5646_2008_00505_x crossref_primary_10_1073_pnas_2001913117 crossref_primary_10_1111_bij_12649 crossref_primary_10_1093_molbev_msn036 crossref_primary_10_1098_rspb_2010_1145 crossref_primary_10_1111_j_1558_5646_2007_00069_x crossref_primary_10_1098_rspb_2020_0167 crossref_primary_10_1554_05_169_1 crossref_primary_10_4161_cib_20821 crossref_primary_10_1007_s13258_014_0198_5 crossref_primary_10_1126_sciadv_aay1276 crossref_primary_10_3852_12_390 crossref_primary_10_1099_mgen_0_000050 crossref_primary_10_1093_aob_mcy159 crossref_primary_10_1603_EN11281 crossref_primary_10_1111_j_1095_8312_2012_02013_x crossref_primary_10_1073_pnas_1507072112 crossref_primary_10_1111_j_1366_9516_2006_00207_x crossref_primary_10_1093_biolinnean_blz140 crossref_primary_10_1111_j_1558_5646_2009_00744_x crossref_primary_10_1111_2041_210X_13540 crossref_primary_10_1111_nph_13833 crossref_primary_10_1016_j_ympev_2017_10_020 crossref_primary_10_1111_nph_13835 crossref_primary_10_1186_1471_2148_5_50 crossref_primary_10_1093_sysbio_syw065 crossref_primary_10_1038_s41586_019_1476_9 crossref_primary_10_1016_j_cub_2017_08_043 crossref_primary_10_1002_ece3_8434 crossref_primary_10_1016_j_cub_2018_03_064 crossref_primary_10_1086_706454 crossref_primary_10_1093_ornithology_ukaa070 crossref_primary_10_1016_j_jebo_2024_02_034 crossref_primary_10_1111_j_1095_8312_2006_00696_x crossref_primary_10_1186_1471_2148_5_59 crossref_primary_10_1093_molbev_msx145 crossref_primary_10_1111_j_1365_2699_2011_02600_x crossref_primary_10_1093_icb_ics066 crossref_primary_10_1093_evolut_qpae105 crossref_primary_10_3852_11_149 crossref_primary_10_1111_j_1558_5646_2010_00957_x crossref_primary_10_2142_biophysico_bppb_v19_0011 crossref_primary_10_1016_j_ympev_2008_02_020 crossref_primary_10_1093_bioinformatics_btr405 crossref_primary_10_1186_1471_2105_15_320 crossref_primary_10_1515_lingvan_2014_1009 crossref_primary_10_1007_s10579_019_09483_3 crossref_primary_10_1111_boj_12184 crossref_primary_10_1002_tax_606007 crossref_primary_10_1111_syen_12417 crossref_primary_10_1016_j_ympev_2012_11_008 crossref_primary_10_1093_jole_lzx022 crossref_primary_10_1111_jeb_13880 crossref_primary_10_1186_s12864_017_3569_x crossref_primary_10_1038_ncomms1796 crossref_primary_10_1645_20_35 crossref_primary_10_1016_j_ympev_2022_107523 crossref_primary_10_1371_journal_pone_0001513 crossref_primary_10_1534_g3_113_009910 crossref_primary_10_1002_evl3_127 crossref_primary_10_1093_molbev_msv185 crossref_primary_10_3109_19401736_2011_653801 crossref_primary_10_1111_syen_12406 crossref_primary_10_1016_j_tree_2008_06_013 crossref_primary_10_1038_srep27259 crossref_primary_10_1111_jzo_12102 crossref_primary_10_1111_jse_12846 crossref_primary_10_1038_s41586_020_2653_6 crossref_primary_10_1093_sysbio_syy036 crossref_primary_10_1038_s41559_022_01838_4 crossref_primary_10_1111_j_1756_1051_2012_01706_x crossref_primary_10_1111_mec_14470 crossref_primary_10_1016_j_ympev_2012_03_010 crossref_primary_10_1093_aob_mcn082 crossref_primary_10_1016_j_ympev_2016_03_016 crossref_primary_10_1098_rsif_2022_0543 crossref_primary_10_1002_ajp_22937 crossref_primary_10_1099_jgv_0_001897 crossref_primary_10_12688_f1000research_2_103_v1 crossref_primary_10_1111_j_1601_183X_2012_00844_x crossref_primary_10_1093_botlinnean_box101 crossref_primary_10_1111_j_0014_3820_2005_tb00933_x crossref_primary_10_1016_j_jtbi_2011_11_011 crossref_primary_10_1093_sysbio_syae020 crossref_primary_10_1016_j_zool_2020_125742 crossref_primary_10_1093_biolinnean_blz099 crossref_primary_10_1128_JVI_01861_14 crossref_primary_10_1515_lingty_2023_0076 crossref_primary_10_1111_nph_15768 crossref_primary_10_4061_2011_423938 crossref_primary_10_1016_j_ympev_2007_07_019 crossref_primary_10_1111_j_1365_3113_2009_00505_x crossref_primary_10_1111_mec_14451 crossref_primary_10_1098_rspb_2010_0355 crossref_primary_10_1111_jzs_12550 crossref_primary_10_1073_pnas_1424030112 crossref_primary_10_1086_523368 crossref_primary_10_1093_jeb_voae119 crossref_primary_10_1098_rstb_2009_0276 crossref_primary_10_3732_ajb_1100046 crossref_primary_10_1016_j_ympev_2016_05_029 crossref_primary_10_1016_j_ympev_2024_108168 crossref_primary_10_1371_journal_pone_0040838 crossref_primary_10_1111_1462_2920_14783 crossref_primary_10_1111_mec_13113 crossref_primary_10_1038_s41467_019_09579_y crossref_primary_10_1073_pnas_1220784110 crossref_primary_10_3732_ajb_1100294 crossref_primary_10_1111_j_1095_8312_2009_01222_x crossref_primary_10_1186_1471_2148_12_223 crossref_primary_10_1111_j_1365_294X_2010_04929_x crossref_primary_10_1080_14772000_2020_1795741 crossref_primary_10_1186_1471_2148_14_16 crossref_primary_10_1016_j_ympev_2021_107201 crossref_primary_10_1007_s10682_014_9750_7 crossref_primary_10_1111_j_1096_3642_2012_00861_x crossref_primary_10_1093_sysbio_syw054 crossref_primary_10_1038_s41467_022_30419_z crossref_primary_10_1098_rspb_2010_0577 crossref_primary_10_1016_j_ympev_2014_01_023 crossref_primary_10_1371_journal_pone_0040851 crossref_primary_10_1126_science_1219669 crossref_primary_10_1111_j_1365_294X_2011_05099_x crossref_primary_10_7717_peerj_6625 crossref_primary_10_1111_j_0014_3820_2006_tb01129_x crossref_primary_10_1038_srep22177 crossref_primary_10_1371_journal_pone_0311365 crossref_primary_10_1016_j_ympev_2018_10_041 crossref_primary_10_1371_journal_pone_0000879 crossref_primary_10_1016_j_ympev_2012_02_025 crossref_primary_10_1371_journal_pone_0083115 crossref_primary_10_3390_genes13020376 crossref_primary_10_1093_sysbio_syy089 crossref_primary_10_1093_nar_gkv378 crossref_primary_10_7554_eLife_45833 crossref_primary_10_1111_evo_13394 crossref_primary_10_1093_molbev_msu270 crossref_primary_10_1080_10635150801910451 crossref_primary_10_1111_jeb_12975 crossref_primary_10_1080_10635150701211844 crossref_primary_10_1111_syen_12232 crossref_primary_10_1016_j_placenta_2009_08_004 crossref_primary_10_1073_pnas_1307903110 crossref_primary_10_1093_jole_lzac002 crossref_primary_10_1371_journal_pone_0062649 crossref_primary_10_1111_ede_12249 crossref_primary_10_1111_j_1525_142X_2009_00348_x crossref_primary_10_1007_s00606_014_1162_1 crossref_primary_10_1111_j_1469_8137_2012_04109_x crossref_primary_10_1098_rspb_2013_0361 crossref_primary_10_1016_j_ympev_2020_106860 crossref_primary_10_1016_j_isci_2024_109169 crossref_primary_10_1002_tax_574008 crossref_primary_10_1098_rstb_2008_0176 crossref_primary_10_3372_wi_51_51307 crossref_primary_10_1002_jmor_21255 crossref_primary_10_1007_s11756_022_01055_1 crossref_primary_10_1126_science_1259442 crossref_primary_10_1038_s41562_020_01013_4 crossref_primary_10_1162_biot_2007_2_4_360 crossref_primary_10_1016_j_ympev_2016_05_015 crossref_primary_10_1111_jeb_12955 crossref_primary_10_1111_jbi_12074 crossref_primary_10_1016_j_ympev_2007_09_020 crossref_primary_10_1007_s10750_013_1518_5 crossref_primary_10_1111_j_1558_5646_2010_01184_x crossref_primary_10_3378_027_083_0209 crossref_primary_10_1093_mollus_eyu024 crossref_primary_10_1111_j_1463_6409_2012_00572_x crossref_primary_10_1371_journal_pone_0039429 crossref_primary_10_1016_j_watbs_2022_100036 crossref_primary_10_1093_molbev_msaa039 crossref_primary_10_1093_sysbio_syr006 crossref_primary_10_1093_sysbio_syr005 crossref_primary_10_1111_ede_12023 crossref_primary_10_1654_4366_1 crossref_primary_10_1002_tax_13284 crossref_primary_10_1016_j_ympev_2024_108147 crossref_primary_10_1093_nar_gkq909 crossref_primary_10_1016_j_cub_2023_06_012 crossref_primary_10_1111_cla_12055 crossref_primary_10_3390_microorganisms9010040 crossref_primary_10_1002_jez_b_22740 crossref_primary_10_1080_10635150500541698 crossref_primary_10_1080_09670260802207530 crossref_primary_10_1111_jse_12259 crossref_primary_10_1093_sysbio_syaa067 crossref_primary_10_3897_asp_81_e110014 crossref_primary_10_1016_j_evolhumbehav_2024_106610 crossref_primary_10_1038_nature05857 crossref_primary_10_1017_S1089332600001674 crossref_primary_10_1098_rspb_2023_1211 crossref_primary_10_1146_annurev_ecolsys_37_091305_110018 crossref_primary_10_1111_j_1525_142X_2008_00214_x crossref_primary_10_1098_rspb_2011_2428 crossref_primary_10_1098_rspb_2024_1184 crossref_primary_10_1093_molbev_mst145 crossref_primary_10_1242_jeb_243235 crossref_primary_10_1039_b910458p crossref_primary_10_1080_10635150601088995 crossref_primary_10_1038_s41559_024_02451_3 crossref_primary_10_1086_695327 crossref_primary_10_1111_ele_12911 crossref_primary_10_1086_704088 crossref_primary_10_1111_j_1095_8339_2012_01279_x crossref_primary_10_1038_s42003_023_05077_6 crossref_primary_10_1017_ehs_2020_31 crossref_primary_10_1111_boj_12388 crossref_primary_10_1071_ZO09038 crossref_primary_10_1111_evo_12274 crossref_primary_10_1016_j_ydbio_2007_07_030 crossref_primary_10_1111_mec_16223 crossref_primary_10_3852_09_114 crossref_primary_10_1016_j_mbs_2012_12_003 crossref_primary_10_1038_s42003_021_02348_y crossref_primary_10_1016_j_ympev_2009_11_027 crossref_primary_10_1073_pnas_1518823112 crossref_primary_10_1002_bies_20344 crossref_primary_10_1038_srep19613 crossref_primary_10_1007_s10071_011_0448_8 crossref_primary_10_1111_cla_12085 crossref_primary_10_1086_719365 crossref_primary_10_1186_s12862_016_0586_3 crossref_primary_10_1016_j_cub_2021_02_008 crossref_primary_10_1186_1741_7007_8_9 crossref_primary_10_1093_aob_mct027 crossref_primary_10_1093_gbe_evz187 crossref_primary_10_1086_684412 crossref_primary_10_1073_pnas_1814329116 crossref_primary_10_1093_gbe_evaa107 crossref_primary_10_1146_annurev_ecolsys_102209_144710 crossref_primary_10_1111_zsc_12121 crossref_primary_10_1093_botlinnean_boaa031 |
Cites_doi | 10.1111/j.1558-5646.1997.tb05095.x 10.1080/106351599260184 10.1038/377108a0 10.1080/10635150490468675 10.1080/106351599260238 10.1093/sysbio/42.2.193 10.1080/10635150390192726 10.1093/genetics/150.1.499 10.1038/374057a0 10.1093/nar/25.24.4876 10.1098/rspb.1994.0006 10.1038/35082053 10.1007/BF00160154 10.1080/106351599260193 10.1080/10635150119871 10.1111/j.1463-6409.1997.tb00423.x 10.1098/rspb.2002.1955 10.1038/44766 10.1126/science.283.5399.220 10.1093/biomet/57.1.97 10.1063/1.1699114 10.1080/106351501753462876 10.1080/10635150290102393 10.1093/biomet/83.2.315 10.1007/BF02338839 10.1214/ss/1177011137 10.1038/35035065 10.1093/oxfordjournals.molbev.a026160 10.1111/j.0006-341X.1999.00001.x 10.1126/science.1065889 10.1007/3-540-45692-9_8 10.1073/pnas.93.23.13429 |
ContentType | Journal Article |
Copyright | Copyright 2004 Society of Systematic Biologists 2004 Society of Systematic Biologists 2004 Copyright Society of Systematic Biologists Oct 2004 |
Copyright_xml | – notice: Copyright 2004 Society of Systematic Biologists – notice: 2004 Society of Systematic Biologists 2004 – notice: Copyright Society of Systematic Biologists Oct 2004 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M2P M7P MBDVC PADUT PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 |
DOI | 10.1080/10635150490522232 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database Biological Science Database Research Library (Corporate) Research Library China Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology Ecology |
EISSN | 1076-836X |
EndPage | 684 |
ExternalDocumentID | 750404391 15545248 10_1080_10635150490522232 10.1080/10635150490522232 4135357 ark_67375_HXZ_5RKTPVSP_T |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GroupedDBID | --- -~X .-4 .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 4.4 48X 53G 5VS 5WD 70D 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAHBH AAHKG AAIMJ AAISJ AAJKP AAJQQ AAKGQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABMNT ABNGD ABNKS ABPIB ABPLY ABPPZ ABPQP ABPTD ABQLI ABSMQ ABSQW ABTLG ABUWG ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ABZEO ACCCW ACFRR ACGEJ ACGFO ACGFS ACGOD ACHIC ACIPB ACNCT ACPQN ACPRK ACSTJ ACUFI ACUHS ACUKT ACUTJ ACVCV ACZBC ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADXHL ADXPE ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEUYN AEWNT AFAZZ AFFZL AFGWE AFIYH AFKRA AFKVX AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUYK AHGBF AHMBA AHXOZ AHXPO AIAGR AIJHB AILXY AJBYB AJDVS AJEEA AJNCP AJWEG AKHUL AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN AZQEC BAYMD BBNVY BCRHZ BENPR BES BEYMZ BHONS BHPHI BKSAR BPHCQ BQDIO BSCLL BSWAC BVXVI C45 CAG CBGCD CCPQU CDBKE COF CS3 CUYZI CXTWN CZ4 D1J DAKXR DEVKO DFGAJ DILTD DU5 DWQXO D~K EAD EAP EAS EBC EBD EBS EE~ EHN EJD ELUNK EMB EMK EMOBN EPL EPT EST ESX F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK FYUFA GAUVT GJXCC GNUQQ GTFYD GUQSH H13 H5~ HAR HCIFZ HF~ HGD HMCUK HQ2 HTVGU HVGLF HW0 HZ~ I-F IOX IPSME J21 JAAYA JBMMH JBS JEB JEFFH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KSI KSN LK8 M-Z M1P M2O M2P M2Q M7P MBTAY MVM N9A NEJ NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PADUT PAFKI PB- PCBAR PEELM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q1. Q5Y QBD Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW S0X SA0 SV3 TAE TCN TEORI TLC TN5 TUS UBC UKHRP WH7 WHG X7H XOL XSW YAYTL YKOAZ YXANX YXE ZCG ZY4 ~02 ~91 3V. 88A AASNB ADACV ADRIX AFXEN DOOOF JSODD M0L M49 VQA AAYXX CITATION 6.Y ABSAR ABTAH CGR CUY CVF ECM EIF NPM 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c486t-f9ae312bbfdb10d81e9dbaedde36db643b17a0a585e3ab83aa0122f61ecdca683 |
IEDL.DBID | 7X7 |
ISSN | 1063-5157 |
IngestDate | Fri Jul 11 04:13:09 EDT 2025 Thu Aug 21 00:48:07 EDT 2025 Wed Feb 19 01:37:40 EST 2025 Tue Jul 01 01:54:10 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Wed Sep 11 04:47:46 EDT 2024 Thu Jun 19 15:24:46 EDT 2025 Tue Aug 05 16:47:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | MCMC comparative methods Ancestral states phylogeny maximum likelihood |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-f9ae312bbfdb10d81e9dbaedde36db643b17a0a585e3ab83aa0122f61ecdca683 |
Notes | istex:2D4D7A48484A661CDE828EEA0A5036214B5985D3 ark:/67375/HXZ-5RKTPVSP-T SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PMID | 15545248 |
PQID | 194780700 |
PQPubID | 37498 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_67075172 proquest_journals_194780700 pubmed_primary_15545248 crossref_primary_10_1080_10635150490522232 crossref_citationtrail_10_1080_10635150490522232 oup_primary_10_1080_10635150490522232 jstor_primary_4135357 istex_primary_ark_67375_HXZ_5RKTPVSP_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10 20041001 2004-10-01 2004-Oct |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Systematic biology |
PublicationTitleAlternate | Syst Biol |
PublicationYear | 2004 |
Publisher | Society of Systematic Zoology Taylor and Francis Oxford University Press |
Publisher_xml | – name: Society of Systematic Zoology – name: Taylor and Francis – name: Oxford University Press |
References | Pagel ( key 20180228053108_b30) Felsenstein ( key 20180228053108_b4) 1993; 42 Metropolis ( key 20180228053108_b19) 1953; 21 Schluter ( key 20180228053108_b33) 1997; 51 Geyer ( key 20180228053108_b6) 1992; 7 Pagel ( key 20180228053108_b28) 2002 Huelsenbeck ( key 20180228053108_b12) 2001; 50 Swofford ( key 20180228053108_b34) 1996 Gilks ( key 20180228053108_b7) 1996 Galtier ( key 20180228053108_b5) 1999; 283 Schluter ( key 20180228053108_b32) 1995; 377 Yang ( key 20180228053108_b37) 1994; 39 Holden ( key 20180228053108_b11) 2002; 269 Mau ( key 20180228053108_b18) 1999; 55 Pagel ( key 20180228053108_b25) 1997; 26 Rannala ( key 20180228053108_b31) 1996; 43 Efron ( key 20180228053108_b3) 1996; 93 Hastings ( key 20180228053108_b9) 1970; 57 Edwards ( key 20180228053108_b2) 1972 Lewis ( key 20180228053108_b16) 2001; 50 Hibbett ( key 20180228053108_b10) 2000; 407 Larget ( key 20180228053108_b15) 1999; 16 Pagel ( key 20180228053108_b24) 1994; 255 Newton ( key 20180228053108_b21) 1996; 83 Newton ( key 20180228053108_b22) 1999 Wilson ( key 20180228053108_b36) 1998; 150 Nielsen ( key 20180228053108_b23) 2002; 51 Huelsenbeck ( key 20180228053108_b13) 2001; 294 Mooers ( key 20180228053108_b20) 1999; 48 Hassanin ( key 20180228053108_b8) 2003; 52 Pagel ( key 20180228053108_b29) 2004; 53 Pagel ( key 20180228053108_b27) 1999; 48 Jermann ( key 20180228053108_b14) 1995; 374 Cunningham ( key 20180228053108_b1) 1999; 48 Thompson ( key 20180228053108_b35) 1997; 25 Lutzoni ( key 20180228053108_b17) 2001; 411 Pagel ( key 20180228053108_b26) 1999; 401 |
References_xml | – volume: 51 start-page: 1699 year: 1997 ident: key 20180228053108_b33 article-title: Likelihood of ancestor states in adaptive radiation publication-title: Evolution doi: 10.1111/j.1558-5646.1997.tb05095.x – volume: 48 start-page: 612 year: 1999 ident: key 20180228053108_b27 article-title: The maximum likelihood approach to reconstructing ancestral character states on phylogenies publication-title: Syst. Biol. doi: 10.1080/106351599260184 – volume: 377 start-page: 108 year: 1995 ident: key 20180228053108_b32 article-title: Uncertainty in ancient phylogenies publication-title: Nature doi: 10.1038/377108a0 – start-page: 407 volume-title: Molecular systematics, 2nd edition year: 1996 ident: key 20180228053108_b34 article-title: Phylogenetic inference – volume: 53 start-page: 571 year: 2004 ident: key 20180228053108_b29 article-title: A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data publication-title: Syst. Biol. doi: 10.1080/10635150490468675 – volume: 48 start-page: 665 year: 1999 ident: key 20180228053108_b1 article-title: Some limitations of ancestral character-state reconstruction when testing evolutionary hypotheses publication-title: Syst. Biol. doi: 10.1080/106351599260238 – volume: 42 start-page: 193 year: 1993 ident: key 20180228053108_b4 article-title: Is there something wrong with the bootstrap? A reply to Hillis and Bull publication-title: Syst. Biol. doi: 10.1093/sysbio/42.2.193 – volume: 52 start-page: 206 year: 2003 ident: key 20180228053108_b8 article-title: Molecular and morphological phylogenies of Ruminantia, and the alternative position of the Moschidae publication-title: Syst. Biol. doi: 10.1080/10635150390192726 – volume: 150 start-page: 499 year: 1998 ident: key 20180228053108_b36 article-title: Genealogical inference from microsatellite data publication-title: Genetics doi: 10.1093/genetics/150.1.499 – volume: 374 start-page: 57 year: 1995 ident: key 20180228053108_b14 article-title: Reconstructing the evolutionary history of the artiodactyl ribonulcease superfamily publication-title: Nature doi: 10.1038/374057a0 – volume: 25 start-page: 4876 year: 1997 ident: key 20180228053108_b35 article-title: The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.24.4876 – volume: 255 start-page: 37 year: 1994 ident: key 20180228053108_b24 article-title: Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters publication-title: Proc. R. Soc. B doi: 10.1098/rspb.1994.0006 – start-page: 1 volume-title: Markov Chain Monte Carlo in Practice year: 1996 ident: key 20180228053108_b7 article-title: Introducing Markov chain Monte Carlo – volume: 411 start-page: 937 year: 2001 ident: key 20180228053108_b17 article-title: Major fungal lineages derived from lichen-symbiotic ancestors publication-title: Nature doi: 10.1038/35082053 – volume: 39 start-page: 306 year: 1994 ident: key 20180228053108_b37 article-title: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods publication-title: J. Mol. Evol. doi: 10.1007/BF00160154 – volume: 48 start-page: 623 year: 1999 ident: key 20180228053108_b20 article-title: Support for one and two rate models of discrete trait evolution publication-title: Syst. Biol. doi: 10.1080/106351599260193 – volume-title: The evolution of cultural diversity: A phylogenetic approach ident: key 20180228053108_b30 article-title: Bayesian estimation of correlated evolution across cultures: A case study of marriage systems and wealth transfer at marriage. To appear – year: 1972 ident: key 20180228053108_b2 article-title: Likelihood – volume: 50 start-page: 351 year: 2001 ident: key 20180228053108_b12 article-title: Empirical and hierarchical Bayesian estimation of ancestral states publication-title: Syst. Biol. doi: 10.1080/10635150119871 – volume: 26 start-page: 331 year: 1997 ident: key 20180228053108_b25 article-title: Inferring evolutionary processes from phylogenies publication-title: Zool. Scripta doi: 10.1111/j.1463-6409.1997.tb00423.x – volume: 269 start-page: 793 year: 2002 ident: key 20180228053108_b11 article-title: Bantu language trees reflect the spread of farming across sub-Saharan Africa: A maximum-parsimony analysis publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2002.1955 – volume: 401 start-page: 877 year: 1999 ident: key 20180228053108_b26 article-title: Inferring the historical patterns of biological evolution publication-title: Nature doi: 10.1038/44766 – volume: 283 start-page: 220 year: 1999 ident: key 20180228053108_b5 article-title: A nonhyperthermophilic common ancestor to extant life forms publication-title: Science doi: 10.1126/science.283.5399.220 – volume: 57 start-page: 97 year: 1970 ident: key 20180228053108_b9 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 21 start-page: 1087 year: 1953 ident: key 20180228053108_b19 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 50 start-page: 913 year: 2001 ident: key 20180228053108_b16 article-title: A likelihood approach to estimating phylogeny from discrete morphological character data publication-title: Syst. Biol. doi: 10.1080/106351501753462876 – volume: 51 start-page: 729 year: 2002 ident: key 20180228053108_b23 article-title: Mapping mutations on phylogenies publication-title: Syst. Biol. doi: 10.1080/10635150290102393 – volume: 83 start-page: 315 year: 1996 ident: key 20180228053108_b21 article-title: Bootstrapping phylogenies: Large deviations and dispersion effects publication-title: Biometrika doi: 10.1093/biomet/83.2.315 – volume: 43 start-page: 304 year: 1996 ident: key 20180228053108_b31 article-title: Probability distributions of molecular evolutionary trees: A new method of phylogenetic inference publication-title: J. Mol. Evol. doi: 10.1007/BF02338839 – volume: 7 start-page: 473 year: 1992 ident: key 20180228053108_b6 article-title: Practical Markov chain Monte Carlo publication-title: Stat. Sci. doi: 10.1214/ss/1177011137 – volume: 407 start-page: 506 year: 2000 ident: key 20180228053108_b10 article-title: Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes publication-title: Nature doi: 10.1038/35035065 – volume: 16 start-page: 750 year: 1999 ident: key 20180228053108_b15 article-title: Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026160 – volume: 55 start-page: 1 year: 1999 ident: key 20180228053108_b18 article-title: Bayesian phylogenetic inference via Markov chain Monte Carlo methods publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00001.x – volume: 294 start-page: 2310 year: 2001 ident: key 20180228053108_b13 article-title: Bayesian inference of phylogeny and its impact on evolutionary biology publication-title: Science doi: 10.1126/science.1065889 – start-page: 148 volume-title: Biological evolution and statistical physics year: 2002 ident: key 20180228053108_b28 article-title: Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation doi: 10.1007/3-540-45692-9_8 – volume: 93 start-page: 13429 year: 1996 ident: key 20180228053108_b3 article-title: Bootstrap confidence levels for phylogenetic trees publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.23.13429 – start-page: 143 volume-title: Statistics in molecular biology year: 1999 ident: key 20180228053108_b22 article-title: Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences |
SSID | ssj0011651 |
Score | 2.4025984 |
Snippet | Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary... Abstract Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary... |
SourceID | proquest pubmed crossref oup jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 673 |
SubjectTerms | Ancestral states Animals Artiodactyla - genetics Bayes Theorem Bayesian analysis Biological diversity Biological taxonomies Classification - methods Coefficients comparative methods Comparative studies Decision trees Evolution Evolution, Molecular Evolutionary biology Markov Chains maximum likelihood MCMC Models, Biological Monte Carlo Method Monte Carlo simulation Parametric models Phenotypic traits Phylogenetics Phylogeny Probability distributions Ribonucleases - genetics Statistical models |
Title | Bayesian Estimation of Ancestral Character States on Phylogenies |
URI | https://api.istex.fr/ark:/67375/HXZ-5RKTPVSP-T/fulltext.pdf https://www.jstor.org/stable/4135357 https://www.ncbi.nlm.nih.gov/pubmed/15545248 https://www.proquest.com/docview/194780700 https://www.proquest.com/docview/67075172 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS9xAcLAehb6ItbaNVpuHtg-F4O5lk9081Tt7x6FUDnuWw5ewX6GgXNQ7Qf-9M_kqrSB9SZbNJBt2Zndmdr4APqV9IXWcuYhJvAgrWJTF3EWxY7bwCiXyjAKFf5ymk3NxPE_mjW_OsnGrbPfEaqN2paUz8gNUtqVC-mTfrm8iKhpFxtWmgsYL6FHmMvLokvNO36LEMpW-hVw4QrYtW6OmYgfUh11k9kqIQ_b_Yks9muH71kPxn9C3JxJoxYnGm7DRiJDhoMb5a1jziy14WReVfMDWyLati7JqvYHDoX7wFC4ZjnBJ19GKYVmEA3KiprOO8KhN3BzW4meIANPfqM0jgaEyvQ3n49HsaBI1tRMiK1S6iopM-5j3jSmc4cwp7jNntMfNLE6dQTHEcKmZRmXBx9qoWGuysRUp99ZZnar4LawvyoV_D6GyZPIymeRci8QyLbzwTmueKkfJYwJg7dTltkksTvUtrnLe5B99MtsBfO1eua6zajwH_KXCRwepby_JHU0m-WR-kSdnJ7Ppr5_TfBbAdoWwDlBQUY9EBvAZEfg_A-22KM6blbzMO7oL4GP3FJcg2VX0wpd3S_wXlLtQEAzgXU0Xf4ZKqIS7UDvPfnkXXtXpI8lF8AOsr27v_B6KOiuzXxH0PvQGw-_DMd6Ho9Pp2SMWG_Xk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXSG4VAUKpAWaA-WAFDWOncQ5IGjLVlu2Xa3KFq16SR3bERIoKd2tYH9U_yMzeSGoVHHpJbISPyLP2P7G8wJ4HQUiVjwxnh_jQ2jhewlnxuPG17mViMgTchQ-HkfDU_FpFs5W4Lr1hSGzynZPrDZqU2q6I99BYTuWyJ_--4sfHiWNIuVqm0Gj5oqRXf5EiW3-7vAjknc7CA4G0_2h1yQV8LSQ0cLLE2U5C7IsNxnzjWQ2MZmyuMp5ZDI8nzMWK18hirZcZZIrRcqnPGJWG60iybHfe9AXHCWZHvT3BuPJSae2YFGV7xHFLO4hUIhbNar0d-gdviJFW0hncvDXQdgnmv5qbSL_cba7gXmrs-9gDVYb0Oru1lz2CFZs8Rju12ksl1ga6LZ0VlalJ_BhTy0tOWi6A9xEav9It8zdXTLbptsVd78NFe3WgNfFCpOvS2xuCxTf1-H0Tib2KfSKsrDPwZWalGxZEjOmRKh9JaywRikWSUPhahzw26lLdRPKnDJqfE9ZE_H0xmw78LZrclHH8bit8puKHl1NdfmNDODiMB3OztLwZDSdfPk8SacOrFcE6yoKSiMSxg5sIwH_Z6DNlsRps3fM047THdjqvuKiJ02OKmx5Ncd_QaSH0NOBZzVf_BkqpKTxQm7c2vMWPBhOj4_So8PxaBMe1sEryUDxBfQWl1f2JQKtRfaqYW8Xzu96Rf0Geig0Eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiEeBUKA5UA5I0caxEzsHBKXd1ZaFagVbtOolOLajSkVJ6W4F-9P4d8zkhaBSxaWXyEpsJ_LM2N9kXgAvkkhIzVMbhBIvwogwSDmzAbehKZxCRJ5SoPDHw2R8JN7P4_ka_OpiYcitstsT643aVob-kQ9Q2ZYK-TMcFK1XxHR_9Obse0AFpMjQ2lXTaDhk4lY_UHtbvD7YR1LvRNFoONsbB22BgcAIlSyDItWOsyjPC5uz0CrmUptrhxLPE5vjWZ0zqUONiNpxnSuuNRmiioQ5Y41OFMd5b8CG5DEjEZPzXtejpDa1rocIIEDIIDuDqgoHdA9vkcktptM5-utI3CDq_uy8I_8Ju7uEfutTcHQX7rTw1d9t-O0erLnyPtxsClqusDU0Xeu4qlsP4O07vXIUqukPcTtpIiX9qvB3yYGb_rP4e13SaL-Bvj52mJ6scLgrUZHfhKNrWdaHsF5WpXsMvjJkbstTyZgWsQm1cMJZrVmiLCWu8SDsli4zbVJzqq3xLWNt7tNLq-3Bq37IWZPR46rOL2t69D31-Sm5wsk4G8-Ps_jTZDb98nmazTzYrAnWdxRUUCSWHuwgAf_nRVsdibN2F1lkPc97sN0_RfEnm44uXXWxwG9BzIcg1INHDV_8eVVM5eOFenLlzNtwC-Uo-3BwONmC200WS_JUfArry_ML9wwR1zJ_XvO2D1-vW5h-A8N6NuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+estimation+of+ancestral+character+states+on+phylogenies&rft.jtitle=Systematic+biology&rft.au=Pagel%2C+Mark&rft.au=Meade%2C+Andrew&rft.au=Barker%2C+Daniel&rft.date=2004-10-01&rft.issn=1063-5157&rft.volume=53&rft.issue=5&rft.spage=673&rft_id=info:doi/10.1080%2F10635150490522232&rft_id=info%3Apmid%2F15545248&rft.externalDocID=15545248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon |