Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography
The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal sub...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 24; no. 5; pp. 1165 - 1177 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.05.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-3211 1460-2199 1460-2199 |
DOI | 10.1093/cercor/bhs397 |
Cover
Loading…
Abstract | The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints. |
---|---|
AbstractList | The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints. The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d -amphetamine in the functional subdivisions of the striatum of healthy humans with [ 11 C]PHNO and [ 11 C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d -amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints. The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [ super(11)C]PHNO and [ super(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints. The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints. |
Author | Tsoumpas, Charalampos Douaud, Gwenaelle Rabiner, Eugenii A. Searle, Graham E. Jenkinson, Mark Long, Christopher J. Haber, Suzanne N. Shotbolt, Paul Behrens, Timothy E. J. Tziortzi, Andri C. Jbabdi, Saad Gunn, Roger N. |
AuthorAffiliation | 3 GlaxoSmithKline Clinical Imaging Centre , Hammersmith Hospital , London , UK 1 FMRIB Centre, Nuffield Department of Clinical Neurosciences 4 School of Medicine and Dentistry , University of Rochester , Rochester , USA 6 Department of Medicine , Imperial College London , London , UK 5 Division of Imaging Sciences and Biomedical Engineering , King's College London , London , UK and 2 Department of Engineering Science , University of Oxford , Oxford , UK |
AuthorAffiliation_xml | – name: 5 Division of Imaging Sciences and Biomedical Engineering , King's College London , London , UK and – name: 2 Department of Engineering Science , University of Oxford , Oxford , UK – name: 3 GlaxoSmithKline Clinical Imaging Centre , Hammersmith Hospital , London , UK – name: 4 School of Medicine and Dentistry , University of Rochester , Rochester , USA – name: 1 FMRIB Centre, Nuffield Department of Clinical Neurosciences – name: 6 Department of Medicine , Imperial College London , London , UK |
Author_xml | – sequence: 1 givenname: Andri C. surname: Tziortzi fullname: Tziortzi, Andri C. – sequence: 2 givenname: Suzanne N. surname: Haber fullname: Haber, Suzanne N. – sequence: 3 givenname: Graham E. surname: Searle fullname: Searle, Graham E. – sequence: 4 givenname: Charalampos surname: Tsoumpas fullname: Tsoumpas, Charalampos – sequence: 5 givenname: Christopher J. surname: Long fullname: Long, Christopher J. – sequence: 6 givenname: Paul surname: Shotbolt fullname: Shotbolt, Paul – sequence: 7 givenname: Gwenaelle surname: Douaud fullname: Douaud, Gwenaelle – sequence: 8 givenname: Saad surname: Jbabdi fullname: Jbabdi, Saad – sequence: 9 givenname: Timothy E. J. surname: Behrens fullname: Behrens, Timothy E. J. – sequence: 10 givenname: Eugenii A. surname: Rabiner fullname: Rabiner, Eugenii A. – sequence: 11 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark – sequence: 12 givenname: Roger N. surname: Gunn fullname: Gunn, Roger N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23283687$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-wZIu8ZBPqZxJvkMq0hUpFRaUVS8vj3EyMEnuwnUrzD_jZeDRtVRCLbmzr-rtHx77nEO354AGht5R8oETxYwvRhni8HBJXzQt0QEVNKkaV2itnIpqKM0r30WFKPwmhDZPsFdpnnLW8bpsD9HsRvAeb3Z3Lm-qTSdDh89mXQvBmxCdl2SSXcOjxaVibyXnA1zBCAbHzOA-Av-foTJ4nfJucX-FT1_dzKu3VD3CrIRfBr9cX2PgOfwvJ5Rg8Pptc2iL4JkxhFc162LxGL3szJnhzvx-h2_Ozm8WX6vLq88Xi5LKyoq1zBa0B1RmgdW9V0wkruSTQN9K2tlYcJChGG0EElYZ1nMrWFmppVW27XoLkR-jjTnc9LyfoLPgczajX0U0mbnQwTv99492gV-FOl-9tatoUgff3AjH8miFlXR5jYRyNhzAnTSUXLakV4c9AqRCcKLa19e6prUc_D5MqAN8BNoaUIvTaumy2Yyou3agp0ds86F0e9C4Ppav6p-tB-P_8HyjOvfY |
CitedBy_id | crossref_primary_10_1007_s10334_016_0546_3 crossref_primary_10_1002_ana_26606 crossref_primary_10_1523_JNEUROSCI_0945_22_2022 crossref_primary_10_1016_j_nicl_2023_103519 crossref_primary_10_1212_WNL_0000000000010825 crossref_primary_10_1016_j_neuroimage_2017_02_019 crossref_primary_10_1038_s42003_022_03665_6 crossref_primary_10_1186_s13550_020_00676_4 crossref_primary_10_1016_j_neuroimage_2021_118714 crossref_primary_10_1007_s11682_021_00454_3 crossref_primary_10_3389_fnbeh_2021_749252 crossref_primary_10_1002_hbm_24456 crossref_primary_10_1177_15459683231164787 crossref_primary_10_1073_pnas_1507610113 crossref_primary_10_1016_j_media_2018_03_004 crossref_primary_10_1038_npp_2013_349 crossref_primary_10_1016_j_celrep_2023_113107 crossref_primary_10_1111_pcn_12980 crossref_primary_10_1007_s00259_023_06132_4 crossref_primary_10_1016_j_nicl_2024_103592 crossref_primary_10_3389_fnagi_2022_902169 crossref_primary_10_1016_j_neuropsychologia_2020_107492 crossref_primary_10_1007_s12264_020_00543_1 crossref_primary_10_1007_s00330_022_09014_9 crossref_primary_10_1073_pnas_1804641115 crossref_primary_10_1111_adb_12767 crossref_primary_10_1002_mds_28024 crossref_primary_10_1002_hbm_22701 crossref_primary_10_1002_hbm_25538 crossref_primary_10_1093_cercor_bhw382 crossref_primary_10_1007_s11682_018_9837_9 crossref_primary_10_1523_JNEUROSCI_1767_16_2016 crossref_primary_10_1093_scan_nsac058 crossref_primary_10_3758_s13415_019_00688_1 crossref_primary_10_1038_s41531_022_00398_5 crossref_primary_10_1016_j_eurpsy_2016_01_2426 crossref_primary_10_1093_brain_awy222 crossref_primary_10_1016_j_neurobiolaging_2014_07_010 crossref_primary_10_1093_brain_awab367 crossref_primary_10_1111_ane_13320 crossref_primary_10_1093_scan_nsz024 crossref_primary_10_1038_s41467_019_08922_7 crossref_primary_10_1002_mds_27641 crossref_primary_10_3389_fnhum_2022_997131 crossref_primary_10_1186_s13195_022_01157_7 crossref_primary_10_1093_cercor_bhad057 crossref_primary_10_1016_j_neubiorev_2015_09_007 crossref_primary_10_1371_journal_pone_0112075 crossref_primary_10_1007_s11910_019_1006_z crossref_primary_10_1016_j_nicl_2025_103750 crossref_primary_10_3390_brainsci11050560 crossref_primary_10_1002_hbm_23817 crossref_primary_10_1038_s41591_020_0793_8 crossref_primary_10_1007_s00221_022_06484_7 crossref_primary_10_1007_s00702_017_1747_2 crossref_primary_10_1016_j_pneurobio_2023_102510 crossref_primary_10_1007_s00415_020_09806_3 crossref_primary_10_1162_jocn_a_01830 crossref_primary_10_1002_hbm_24349 crossref_primary_10_1007_s00213_016_4464_x crossref_primary_10_1007_s40336_020_00386_w crossref_primary_10_1007_s00234_016_1721_y crossref_primary_10_1111_gbb_12386 crossref_primary_10_1016_j_neuroimage_2017_07_042 crossref_primary_10_3389_fnins_2019_00623 crossref_primary_10_3390_nu15122671 crossref_primary_10_1016_j_tins_2018_12_004 crossref_primary_10_3389_fpsyt_2014_00176 crossref_primary_10_1007_s00429_019_01938_1 crossref_primary_10_1177_2398212818771822 crossref_primary_10_1177_1545968316675429 crossref_primary_10_3758_s13415_021_00937_2 crossref_primary_10_1523_ENEURO_0200_17_2017 crossref_primary_10_1038_s41380_022_01588_6 crossref_primary_10_1093_brain_awab064 crossref_primary_10_1093_braincomms_fcac250 crossref_primary_10_1093_scan_nsad035 crossref_primary_10_1002_hbm_26390 crossref_primary_10_1038_mp_2015_147 crossref_primary_10_1093_cercor_bhw157 crossref_primary_10_1038_s41386_021_00993_9 crossref_primary_10_1038_s41380_019_0570_6 crossref_primary_10_1038_s41598_018_26382_9 crossref_primary_10_1093_brain_awz164 crossref_primary_10_1016_j_exger_2024_112388 crossref_primary_10_1111_adb_13257 crossref_primary_10_1016_j_neuroimage_2018_10_045 crossref_primary_10_1016_j_pscychresns_2020_111089 crossref_primary_10_1016_j_neuroimage_2021_118006 crossref_primary_10_1002_hbm_25733 crossref_primary_10_1016_j_neuron_2014_08_031 crossref_primary_10_1007_s11682_019_00061_3 crossref_primary_10_1371_journal_pone_0317566 crossref_primary_10_3389_fpsyt_2020_00013 crossref_primary_10_1212_WNL_0000000000004680 crossref_primary_10_1007_s00429_016_1250_9 crossref_primary_10_1177_02698811231189441 crossref_primary_10_1016_j_pscychresns_2021_111273 crossref_primary_10_1111_add_16144 crossref_primary_10_4081_ejh_2021_3284 crossref_primary_10_1016_j_bbr_2023_114525 crossref_primary_10_1002_hbm_23466 crossref_primary_10_1016_j_media_2025_103482 crossref_primary_10_1177_0271678X231168687 crossref_primary_10_1002_jnr_25051 crossref_primary_10_1016_j_neuroimage_2016_11_050 crossref_primary_10_3389_fncom_2016_00100 crossref_primary_10_1002_jnr_24760 crossref_primary_10_1093_brain_awab280 crossref_primary_10_1016_j_cortex_2015_01_003 crossref_primary_10_1186_s13550_019_0547_0 crossref_primary_10_1016_j_drugalcdep_2021_109010 crossref_primary_10_1016_j_nsa_2023_101134 crossref_primary_10_1016_j_jad_2024_08_028 crossref_primary_10_1893_BIOS_D_15_00013_1 crossref_primary_10_1002_jmri_27682 crossref_primary_10_1111_ner_13376 crossref_primary_10_1371_journal_pone_0162160 crossref_primary_10_1016_j_parkreldis_2024_106031 crossref_primary_10_1080_13546805_2021_1899906 crossref_primary_10_1016_j_nicl_2018_11_007 crossref_primary_10_1016_j_nicl_2021_102825 crossref_primary_10_1177_0271678X16654497 crossref_primary_10_1016_j_bpsc_2021_05_002 crossref_primary_10_1038_s41531_024_00731_0 crossref_primary_10_1089_brain_2020_0781 crossref_primary_10_1097_QAD_0000000000000680 crossref_primary_10_1002_mds_26137 crossref_primary_10_1016_j_yebeh_2018_06_038 crossref_primary_10_1007_s11604_021_01152_2 crossref_primary_10_1093_brain_awv214 crossref_primary_10_1093_brain_awad043 crossref_primary_10_1016_j_parkreldis_2019_02_003 crossref_primary_10_1002_hbm_25147 crossref_primary_10_1038_s41398_021_01548_8 crossref_primary_10_1093_cercor_bhy259 crossref_primary_10_1002_nbm_3752 crossref_primary_10_1038_s41531_020_00133_y crossref_primary_10_1097_MNM_0000000000000559 crossref_primary_10_1016_j_nicl_2020_102410 crossref_primary_10_7554_eLife_53680 crossref_primary_10_1038_s41598_020_69923_x crossref_primary_10_7554_eLife_64694 crossref_primary_10_3389_fnins_2019_00709 crossref_primary_10_1038_s41398_022_02080_z crossref_primary_10_1007_s11682_021_00485_w crossref_primary_10_1016_j_dcn_2019_100749 crossref_primary_10_1002_hbm_23636 crossref_primary_10_1002_brb3_886 crossref_primary_10_1016_j_bbr_2019_03_036 crossref_primary_10_1007_s00259_024_06954_w crossref_primary_10_1016_j_neuroimage_2019_03_002 crossref_primary_10_1016_j_nicl_2021_102927 crossref_primary_10_1097_RLU_0000000000003609 crossref_primary_10_1002_jnr_24798 crossref_primary_10_1007_s13365_022_01097_w crossref_primary_10_1016_j_neuroimage_2018_02_035 crossref_primary_10_1002_mds_26956 crossref_primary_10_1111_adb_70008 crossref_primary_10_1016_j_pscychresns_2024_111918 crossref_primary_10_1016_j_neuroimage_2017_12_005 crossref_primary_10_1093_cercor_bhab387 crossref_primary_10_1016_j_nbd_2022_105668 crossref_primary_10_1038_s41398_023_02537_9 crossref_primary_10_1016_j_brs_2021_03_010 crossref_primary_10_1016_j_euroneuro_2022_01_003 crossref_primary_10_1111_pcn_13650 crossref_primary_10_1007_s00702_019_02131_8 crossref_primary_10_1111_jon_12949 crossref_primary_10_1016_j_parkreldis_2019_02_027 crossref_primary_10_1038_s41398_020_01174_w crossref_primary_10_1097_RLU_0000000000002869 crossref_primary_10_3233_JAD_190954 crossref_primary_10_1007_s12149_025_02038_3 crossref_primary_10_1016_j_neuroimage_2018_03_076 crossref_primary_10_1111_nyas_12271 crossref_primary_10_1016_j_neuroimage_2022_118959 crossref_primary_10_1007_s00213_022_06138_0 crossref_primary_10_1371_journal_pone_0174219 crossref_primary_10_1016_j_cortex_2022_07_015 crossref_primary_10_1016_j_neuroimage_2020_117154 crossref_primary_10_1093_cercor_bhac487 crossref_primary_10_1038_jcbfm_2015_53 crossref_primary_10_1177_02698811221092506 crossref_primary_10_1371_journal_pone_0106768 crossref_primary_10_3758_s13415_019_00689_0 crossref_primary_10_1016_j_schres_2017_05_017 crossref_primary_10_1016_j_neuropsychologia_2023_108524 crossref_primary_10_3389_fnhum_2017_00421 crossref_primary_10_1111_adb_12457 crossref_primary_10_1016_j_neuroimage_2018_02_054 crossref_primary_10_3389_fneur_2020_00982 crossref_primary_10_1089_brain_2020_0868 crossref_primary_10_1016_j_jneuroling_2024_101243 crossref_primary_10_3389_fnagi_2022_830602 crossref_primary_10_1016_j_neuroimage_2022_119553 crossref_primary_10_1038_mp_2016_21 crossref_primary_10_3389_fpsyt_2019_00756 crossref_primary_10_1017_S1355617715000879 crossref_primary_10_1172_JCI149722 crossref_primary_10_1002_brb3_1987 crossref_primary_10_3389_fnagi_2017_00151 crossref_primary_10_1016_j_cortex_2021_05_022 crossref_primary_10_3988_jcn_2022_0147 crossref_primary_10_1016_j_nlm_2024_107930 crossref_primary_10_1016_j_parkreldis_2017_12_024 crossref_primary_10_1016_j_neuroimage_2020_117252 crossref_primary_10_1038_s41386_024_01891_6 crossref_primary_10_1089_brain_2014_0323 crossref_primary_10_1016_j_biopsych_2023_05_023 crossref_primary_10_1016_j_brs_2017_07_002 crossref_primary_10_1016_j_neuroimage_2019_116044 crossref_primary_10_1089_aid_2022_0069 crossref_primary_10_1155_2015_123636 crossref_primary_10_7554_eLife_29088 crossref_primary_10_1016_j_pscychresns_2015_10_004 crossref_primary_10_1002_hipo_23608 crossref_primary_10_1093_schbul_sbac181 crossref_primary_10_1002_mds_28818 crossref_primary_10_1093_ijnp_pyaa056 crossref_primary_10_1073_pnas_1423095112 crossref_primary_10_1093_scan_nsaa065 crossref_primary_10_1016_j_addbeh_2020_106786 crossref_primary_10_1007_s00702_023_02628_3 crossref_primary_10_1038_s41386_017_0005_5 crossref_primary_10_1016_j_neuroimage_2021_118744 crossref_primary_10_1016_j_parkreldis_2023_105288 crossref_primary_10_1093_cercor_bhac328 crossref_primary_10_1523_ENEURO_0392_17_2017 crossref_primary_10_3390_medicina56120686 crossref_primary_10_1002_hbm_23855 |
Cites_doi | 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5 10.1016/0165-0173(94)00007-C 10.1038/jcbfm.1993.39 10.1523/JNEUROSCI.20-06-02369.2000 10.1016/j.neuroimage.2008.09.012 10.1016/j.jchemneu.2003.10.003 10.1523/JNEUROSCI.1311-05.2005 10.1002/ana.20030 10.1016/S0306-4522(01)00546-2 10.1016/j.neubiorev.2009.05.005 10.1523/JNEUROSCI.0271-06.2006 10.1006/nimg.1996.0066 10.1016/j.biopsych.2010.04.038 10.1016/j.neurobiolaging.2010.02.009 10.1016/j.neuroimage.2010.06.044 10.1097/01.WCB.0000048520.34839.1A 10.1016/j.pneurobio.2004.03.006 10.1006/nimg.1997.0303 10.1016/S0893-133X(98)00066-9 10.1093/brain/93.3.525 10.1016/j.biopsych.2011.10.009 10.1002/syn.21535 10.1118/1.3608907 10.1093/biomet/52.3-4.591 10.1002/cne.902870403 10.1097/00004647-200003000-00001 10.1006/nimg.2002.1132 10.1038/jcbfm.2011.115 10.1016/j.neulet.2007.04.049 10.1109/42.158935 10.1002/cne.901990205 10.1523/JNEUROSCI.16-19-06100.1996 10.1016/j.nbd.2011.02.010 10.1088/0031-9155/57/10/3107 10.1523/JNEUROSCI.1486-08.2008 10.1016/0306-4522(91)90037-O 10.1097/00004647-200208000-00014 10.1002/mrm.10609 10.1016/j.neuroimage.2006.09.018 10.1098/rstb.2005.1631 10.1016/S0893-133X(99)00079-2 10.1038/nn.2228 10.1002/syn.20013 10.1088/1742-6596/317/1/012005 10.1111/j.1460-9568.2007.05825.x 10.1002/(SICI)1096-9861(20000619)422:1<35::AID-CNE3>3.0.CO;2-E 10.1016/S1053-8119(03)00336-7 10.1093/brain/awn337 10.1001/archgenpsychiatry.2010.10 10.1523/JNEUROSCI.4371-11.2012 10.1093/cercor/bhh105 10.1097/00004647-200109000-00002 10.1523/JNEUROSCI.05-03-00776.1985 10.1146/annurev.neuro.30.051606.094334 10.2174/092986712802002518 10.1016/j.schres.2011.05.005 10.1038/nn1075 |
ContentType | Journal Article |
Copyright | The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012 |
Copyright_xml | – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 7TK 5PM |
DOI | 10.1093/cercor/bhs397 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts Animal Behavior Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2199 |
EndPage | 1177 |
ExternalDocumentID | PMC3977617 23283687 10_1093_cercor_bhs397 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G53035X/1 – fundername: NIMH NIH HHS grantid: MH045573 – fundername: Medical Research Council grantid: G0800578 – fundername: NIMH NIH HHS grantid: MH086400 – fundername: Medical Research Council grantid: MR/K006673/1 – fundername: Medical Research Council grantid: MR/L009013/1 |
GroupedDBID | --- -E4 .2P .GJ .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAYXX ABDFA ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM BZKNY C1A CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z MBLQV MBTAY ML0 N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBFPC OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TEORI TJX TLC TMA TR2 UQL W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF NPM 7X8 7QG 7TK 5PM |
ID | FETCH-LOGICAL-c486t-e8ae9dae16fc97d4c5350ef75c8c693e5e921740415a2d3158c7d4bc96cdf5e53 |
ISSN | 1047-3211 1460-2199 |
IngestDate | Thu Aug 21 13:17:24 EDT 2025 Fri Jul 11 12:12:59 EDT 2025 Fri Jul 11 06:50:35 EDT 2025 Mon Jul 21 05:29:45 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 02:59:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | probabilistic tractography diffusion-weighted image dopamine receptors striatum positron emission tomography |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-e8ae9dae16fc97d4c5350ef75c8c693e5e921740415a2d3158c7d4bc96cdf5e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M.J. and R.N.G. contributed equally to this work. |
OpenAccessLink | https://kclpure.kcl.ac.uk/portal/en/publications/705ff72c-cf69-47c6-8836-746e0d51e580 |
PMID | 23283687 |
PQID | 1514430925 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977617 proquest_miscellaneous_1534806903 proquest_miscellaneous_1514430925 pubmed_primary_23283687 crossref_citationtrail_10_1093_cercor_bhs397 crossref_primary_10_1093_cercor_bhs397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
PublicationTitleAlternate | Cereb Cortex |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Shapiro ( key 20170503063616_BHS397C46) 1965; 52 Staley ( key 20170503063616_BHS397C51) 1996; 16 Holt ( key 20170503063616_BHS397C26) 1997; 384 Shidahara ( key 20170503063616_BHS397C48) 2012; 57 Chang ( key 20170503063616_BHS397C12) 1992; 11 Haber ( key 20170503063616_BHS397C24) 2000; 20 Behrens ( key 20170503063616_BHS397C4) 2003; 6 Haber ( key 20170503063616_BHS397C23) 2003; 26 Lammertsma ( key 20170503063616_BHS397C32) 1996; 4 Suridjan ( key 20170503063616_BHS397C52) 2012; 37 Cavada ( key 20170503063616_BHS397C10) 1989; 287 Bohanna ( key 20170503063616_BHS397C7) 2011; 42 Boileau ( key 20170503063616_BHS397C58) 2009; 132 Voineskos ( key 20170503063616_BHS397C56) 2012; 33 Tziortzi ( key 20170503063616_BHS397C53) 2011; 317 Boileau ( key 20170503063616_BHS397C8) 2012; 32 Laruelle ( key 20170503063616_BHS397C33) 2000; 20 Egerton ( key 20170503063616_BHS397C18) 2009; 33 Haber ( key 20170503063616_BHS397C25) 2006; 26 Fudge ( key 20170503063616_BHS397C19) 2002; 110 Parent ( key 20170503063616_BHS397C42) 1995; 20 Tziortzi ( key 20170503063616_BHS397C54) 2011; 54 Cohen ( key 20170503063616_BHS397C14) 2009; 12 Kringelbach ( key 20170503063616_BHS397C31) 2004; 72 Draganski ( key 20170503063616_BHS397C16) 2008; 28 Gunn ( key 20170503063616_BHS397C21) 1997; 6 Shotbolt ( key 20170503063616_BHS397C50) 2012; 32 Behrens ( key 20170503063616_BHS397C5) 2007; 34 Kegeles ( key 20170503063616_BHS397C29) 2010; 67 Kemp ( key 20170503063616_BHS397C30) 1970; 93 Martinez ( key 20170503063616_BHS397C37) 2003; 23 Leh ( key 20170503063616_BHS397C35) 2007; 419 Laruelle ( key 20170503063616_BHS397C34) 2012 Gurevich ( key 20170503063616_BHS397C22) 1999; 20 Banerjee ( key 20170503063616_BHS397C3) 2012; 19 Calzavara ( key 20170503063616_BHS397C9) 2007; 26 Croxson ( key 20170503063616_BHS397C15) 2005; 25 Selemon ( key 20170503063616_BHS397C45) 1985; 5 Shidahara ( key 20170503063616_BHS397C47) 2009; 44 Cavada ( key 20170503063616_BHS397C11) 1991; 42 Drevets ( key 20170503063616_BHS397C17) 1999; 21 Andersson ( key 20170503063616_BHS397C1) 2003; 20 Lehéricy ( key 20170503063616_BHS397C36) 2004; 55 Searle ( key 20170503063616_BHS397C60) 2010; 68 Van Hoesen ( key 20170503063616_BHS397C55) 1981; 199 Mizrahi ( key 20170503063616_BHS397C39) 2012; 71 Wallis ( key 20170503063616_BHS397C57) 2007; 30 Le Pogam ( key 20170503063616_BHS397C59) 2011; 38 Behrens ( key 20170503063616_BHS397C6) 2003; 50 Chiavaras ( key 20170503063616_BHS397C13) 2000; 422 Petrides ( key 20170503063616_BHS397C43) 2005; 360 Jenkinson ( key 20170503063616_BHS397C27) 2002; 17 Mawlawi ( key 20170503063616_BHS397C38) 2001; 21 Gallezot ( key 20170503063616_BHS397C20) 2012; 66 Mizrahi ( key 20170503063616_BHS397C40) 2011; 131 Narendran ( key 20170503063616_BHS397C41) 2004; 52 Aston ( key 20170503063616_BHS397C2) 2002; 22 Johansen-Berg ( key 20170503063616_BHS397C28) 2005; 15 Rinne ( key 20170503063616_BHS397C44) 1993; 13 |
References_xml | – volume: 384 start-page: 1 year: 1997 ident: key 20170503063616_BHS397C26 article-title: Neurochemical architecture of the human striatum publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5 – volume: 20 start-page: 91 year: 1995 ident: key 20170503063616_BHS397C42 article-title: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop publication-title: Brain Res Rev doi: 10.1016/0165-0173(94)00007-C – volume: 13 start-page: 310 year: 1993 ident: key 20170503063616_BHS397C44 article-title: Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1993.39 – volume: 20 start-page: 2369 year: 2000 ident: key 20170503063616_BHS397C24 article-title: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-06-02369.2000 – volume: 44 start-page: 340 year: 2009 ident: key 20170503063616_BHS397C47 article-title: Functional and structural synergy for resolution recovery and partial volume correction in brain PET publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.012 – volume: 26 start-page: 317 year: 2003 ident: key 20170503063616_BHS397C23 article-title: The primate basal ganglia: parallel and integrative networks publication-title: J Chem Neuroanat doi: 10.1016/j.jchemneu.2003.10.003 – volume: 25 start-page: 8854 year: 2005 ident: key 20170503063616_BHS397C15 article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1311-05.2005 – volume: 55 start-page: 522 year: 2004 ident: key 20170503063616_BHS397C36 article-title: Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans publication-title: Ann Neurol doi: 10.1002/ana.20030 – volume: 110 start-page: 257 year: 2002 ident: key 20170503063616_BHS397C19 article-title: Amygdaloid projections to ventromedial striatal subterritories in the primate publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00546-2 – volume: 33 start-page: 1109 year: 2009 ident: key 20170503063616_BHS397C18 article-title: The dopaminergic basis of human behaviors: a review of molecular imaging studies publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2009.05.005 – start-page: 163 year: 2012 ident: key 20170503063616_BHS397C34 article-title: Measuring dopamine synaptic transmission with molecular imaging and pharmacological challenges: the state of the art molecular imaging in the clinical neurosciences – volume: 26 start-page: 8368 year: 2006 ident: key 20170503063616_BHS397C25 article-title: Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0271-06.2006 – volume: 4 start-page: 153 year: 1996 ident: key 20170503063616_BHS397C32 article-title: Simplified reference tissue model for PET receptor studies publication-title: Neuroimage doi: 10.1006/nimg.1996.0066 – volume: 68 start-page: 392 year: 2010 ident: key 20170503063616_BHS397C60 article-title: Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.04.038 – volume: 33 start-page: 21 year: 2012 ident: key 20170503063616_BHS397C56 article-title: Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.02.009 – volume: 54 start-page: 264 year: 2011 ident: key 20170503063616_BHS397C54 article-title: Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.044 – volume: 23 start-page: 285 year: 2003 ident: key 20170503063616_BHS397C37 article-title: Imaging human mesolimbic dopamine transmission with positron emission tomography. part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum publication-title: J Cereb Blood Flow Metab doi: 10.1097/01.WCB.0000048520.34839.1A – volume: 72 start-page: 341 year: 2004 ident: key 20170503063616_BHS397C31 article-title: The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology publication-title: Progr Neurobiol doi: 10.1016/j.pneurobio.2004.03.006 – volume: 6 start-page: 279 year: 1997 ident: key 20170503063616_BHS397C21 article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model publication-title: Neuroimage doi: 10.1006/nimg.1997.0303 – volume: 20 start-page: 60 year: 1999 ident: key 20170503063616_BHS397C22 article-title: Distribution of dopamine D3 receptor expressing neurons in the human forebrain comparison with D2 receptor expressing neurons publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(98)00066-9 – volume: 93 start-page: 525 year: 1970 ident: key 20170503063616_BHS397C30 article-title: The cortico-striate projection in the monkey publication-title: Brain doi: 10.1093/brain/93.3.525 – volume: 37 start-page: 110181 year: 2012 ident: key 20170503063616_BHS397C52 article-title: Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task publication-title: J Psychiatry Neurosci – volume: 71 start-page: 561 year: 2012 ident: key 20170503063616_BHS397C39 article-title: Increased stress-induced dopamine release in psychosis publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2011.10.009 – volume: 66 start-page: 489 year: 2012 ident: key 20170503063616_BHS397C20 article-title: Affinity and selectivity of [(1)(1)C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo publication-title: Synapse doi: 10.1002/syn.21535 – volume: 38 start-page: 4920 year: 2011 ident: key 20170503063616_BHS397C59 article-title: Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography publication-title: Med Phys doi: 10.1118/1.3608907 – volume: 52 start-page: 591 year: 1965 ident: key 20170503063616_BHS397C46 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 287 start-page: 422 year: 1989 ident: key 20170503063616_BHS397C10 article-title: Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe publication-title: J Comp Neurol doi: 10.1002/cne.902870403 – volume: 20 start-page: 423 year: 2000 ident: key 20170503063616_BHS397C33 article-title: Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200003000-00001 – volume: 17 start-page: 825 year: 2002 ident: key 20170503063616_BHS397C27 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 32 start-page: 127 year: 2012 ident: key 20170503063616_BHS397C50 article-title: Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.115 – volume: 419 start-page: 113 year: 2007 ident: key 20170503063616_BHS397C35 article-title: Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.04.049 – volume: 11 start-page: 319 year: 1992 ident: key 20170503063616_BHS397C12 article-title: A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities publication-title: IEEE Trans Med Imaging doi: 10.1109/42.158935 – volume: 199 start-page: 205 year: 1981 ident: key 20170503063616_BHS397C55 article-title: Widespread corticostriate projections from temporal cortex of the rhesus monkey publication-title: J Comp Neurol doi: 10.1002/cne.901990205 – volume: 16 start-page: 6100 year: 1996 ident: key 20170503063616_BHS397C51 article-title: Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-19-06100.1996 – volume: 42 start-page: 475 year: 2011 ident: key 20170503063616_BHS397C7 article-title: Connectivity-based segmentation of the striatum in Huntington's disease: vulnerability of motor pathways publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.02.010 – volume: 57 start-page: 3107 year: 2012 ident: key 20170503063616_BHS397C48 article-title: Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [(1)(1)C]raclopride data publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/10/3107 – volume: 28 start-page: 7143 year: 2008 ident: key 20170503063616_BHS397C16 article-title: Evidence for segregated and integrative connectivity patterns in the human basal ganglia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1486-08.2008 – volume: 42 start-page: 683 year: 1991 ident: key 20170503063616_BHS397C11 article-title: Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey publication-title: Neuroscience doi: 10.1016/0306-4522(91)90037-O – volume: 22 start-page: 1019 year: 2002 ident: key 20170503063616_BHS397C2 article-title: Positron emission tomography partial volume correction: estimation and algorithms publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200208000-00014 – volume: 50 start-page: 1077 year: 2003 ident: key 20170503063616_BHS397C6 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn Reson Med doi: 10.1002/mrm.10609 – volume: 34 start-page: 144 year: 2007 ident: key 20170503063616_BHS397C5 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 360 start-page: 781 year: 2005 ident: key 20170503063616_BHS397C43 article-title: Lateral prefrontal cortex: architectonic and functional organization publication-title: Philos Trans Roy Soc B Biol Sci doi: 10.1098/rstb.2005.1631 – volume: 21 start-page: 694 year: 1999 ident: key 20170503063616_BHS397C17 article-title: PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(99)00079-2 – volume: 12 start-page: 32 year: 2009 ident: key 20170503063616_BHS397C14 article-title: Connectivity-based segregation of the human striatum predicts personality characteristics publication-title: Nat Neurosci doi: 10.1038/nn.2228 – volume: 52 start-page: 188 year: 2004 ident: key 20170503063616_BHS397C41 article-title: In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (−)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride publication-title: Synapse doi: 10.1002/syn.20013 – volume: 317 year: 2011 ident: key 20170503063616_BHS397C53 article-title: MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/317/1/012005 – volume: 26 start-page: 2005 year: 2007 ident: key 20170503063616_BHS397C9 article-title: Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05825.x – volume: 422 start-page: 35 year: 2000 ident: key 20170503063616_BHS397C13 article-title: Orbitofrontal sulci of the human and macaque monkey brain publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(20000619)422:1<35::AID-CNE3>3.0.CO;2-E – volume: 20 start-page: 870 year: 2003 ident: key 20170503063616_BHS397C1 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 132 start-page: 1336 year: 2009 ident: key 20170503063616_BHS397C58 article-title: Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awn337 – volume: 67 start-page: 231 year: 2010 ident: key 20170503063616_BHS397C29 article-title: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.10 – volume: 32 start-page: 1353 year: 2012 ident: key 20170503063616_BHS397C8 article-title: Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4371-11.2012 – volume: 15 start-page: 31 year: 2005 ident: key 20170503063616_BHS397C28 article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus publication-title: Cereb Cortex doi: 10.1093/cercor/bhh105 – volume: 21 start-page: 1034 year: 2001 ident: key 20170503063616_BHS397C38 article-title: Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D2 receptor parameter measurements in ventral striatum publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200109000-00002 – volume: 5 start-page: 776 year: 1985 ident: key 20170503063616_BHS397C45 article-title: Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey publication-title: J Neurosci doi: 10.1523/JNEUROSCI.05-03-00776.1985 – volume: 30 start-page: 31 year: 2007 ident: key 20170503063616_BHS397C57 article-title: Orbitofrontal cortex and its contribution to decision-making publication-title: Ann Rev Neurosci doi: 10.1146/annurev.neuro.30.051606.094334 – volume: 19 start-page: 3957 year: 2012 ident: key 20170503063616_BHS397C3 article-title: Subtype-selective dopamine receptor radioligands for PET imaging: current status and recent developments publication-title: Curr Med Chem doi: 10.2174/092986712802002518 – volume: 131 start-page: 63 year: 2011 ident: key 20170503063616_BHS397C40 article-title: Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO publication-title: Schizophr Res doi: 10.1016/j.schres.2011.05.005 – volume: 6 start-page: 750 year: 2003 ident: key 20170503063616_BHS397C4 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat Neurosci doi: 10.1038/nn1075 |
SSID | ssj0017252 |
Score | 2.5602322 |
Snippet | The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1165 |
SubjectTerms | Adult Brain Mapping Corpus Striatum - diagnostic imaging Corpus Striatum - drug effects Corpus Striatum - metabolism Diffusion Tensor Imaging Dopamine - metabolism Dopamine Antagonists - pharmacokinetics Dopamine Antagonists - pharmacology Executive Function - physiology Humans Male Middle Aged Nerve Net - diagnostic imaging Nerve Net - drug effects Nerve Net - metabolism Positron-Emission Tomography Primates Probability Raclopride - pharmacokinetics Raclopride - pharmacology |
Title | Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23283687 https://www.proquest.com/docview/1514430925 https://www.proquest.com/docview/1534806903 https://pubmed.ncbi.nlm.nih.gov/PMC3977617 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkBAvCDZg5UtGQnspYU0cp8kj0FYdrEMaqehblDiOFokmU5tI0F_AP-LvcW8cNyktaPASVemVneie2L7X5x4T8iqKWSgcKQzXTLhhW2ZoeLaXwGCYJCF8fJEjsBp5euFMZvaHOZ93Oj9brKWyiN6I9d66kv_xKtwDv2KV7D94dtMo3IDf4F-4gofheiMfVywVoc5_MN7BfBT3xjBP1em9tt7IEGLjBS4oL2GaAUNNb_yMp3YU5aKnqAPDNElKzJ8ZX6qUKTQ4vTxTFQXI7loCVkaADDTp-fmirXet5Q7kEveiUXVkWchv-0776SERqpWC8Ncp2K5TTbBMm9TtJIzqk8HKdQgv29o5ksgTUGU2WOzdlFT4qxwwGq40myAE0F_nW_kN027YhPWQjFoSzKqHZKnu2U7fgLHWa4_jqha7xitvDcqoMNSa4HGbeu_koYS1hFwKzJSMo6sVU9zhbZnui0_BeHZ-HvijuX-L3LYgPsEZYXj2cbN9NbC4pWUw8NFrcVfo4FQ1f6oa314M7UQ4vxN1Wysf_z65V4cs9K3C3wPSkdkhOQJ0FfniOz2hFYm42p05JHemNVfjiPzYRSdt0Ek1OmmeUI1OWqOTphkFdFKNTlqhk-6ikwI6KaCTanRSjU7aoPMhmY1H_vuJUZ_7YQjbdQpDuqH04lCaTiK8QWwLznhfJgMuXOF4THLpYSCN4hKhFTOTuwKsIuE5Ik645OwROcjyTB4T6sSx24-lK73EBsxAc7AAFxB29yPowjW75LV2QCBqUXw8m-VroMgZLFD-CpS_uuRkY36t1GD-ZPhSezOA98ZNuDCTebkKYIVt26zvWfxvNsx2UUKcdcljhYBNdxABucxxoYfBFjY2BqgXv_1Pll5VuvEY60HA8uQG_T4ld5tv8Rk5KJalfA6r7yJ6USH9F2E95Tg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity-Based+Functional+Analysis+of+Dopamine+Release+in+the+Striatum+Using+Diffusion-Weighted+MRI+and+Positron+Emission+Tomography&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Tziortzi%2C+Andri+C&rft.au=Haber%2C+Suzanne+N&rft.au=Searle%2C+Graham+E&rft.au=Tsoumpas%2C+Charalampos&rft.date=2014-05-01&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=24&rft.issue=5&rft.spage=1165&rft.epage=1177&rft_id=info:doi/10.1093%2Fcercor%2Fbhs397&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |