Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography

The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal sub...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 24; no. 5; pp. 1165 - 1177
Main Authors Tziortzi, Andri C., Haber, Suzanne N., Searle, Graham E., Tsoumpas, Charalampos, Long, Christopher J., Shotbolt, Paul, Douaud, Gwenaelle, Jbabdi, Saad, Behrens, Timothy E. J., Rabiner, Eugenii A., Jenkinson, Mark, Gunn, Roger N.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.05.2014
Subjects
Online AccessGet full text
ISSN1047-3211
1460-2199
1460-2199
DOI10.1093/cercor/bhs397

Cover

Loading…
Abstract The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
AbstractList The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d -amphetamine in the functional subdivisions of the striatum of healthy humans with [ 11 C]PHNO and [ 11 C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d -amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [ super(11)C]PHNO and [ super(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
Author Tsoumpas, Charalampos
Douaud, Gwenaelle
Rabiner, Eugenii A.
Searle, Graham E.
Jenkinson, Mark
Long, Christopher J.
Haber, Suzanne N.
Shotbolt, Paul
Behrens, Timothy E. J.
Tziortzi, Andri C.
Jbabdi, Saad
Gunn, Roger N.
AuthorAffiliation 3 GlaxoSmithKline Clinical Imaging Centre , Hammersmith Hospital , London , UK
1 FMRIB Centre, Nuffield Department of Clinical Neurosciences
4 School of Medicine and Dentistry , University of Rochester , Rochester , USA
6 Department of Medicine , Imperial College London , London , UK
5 Division of Imaging Sciences and Biomedical Engineering , King's College London , London , UK and
2 Department of Engineering Science , University of Oxford , Oxford , UK
AuthorAffiliation_xml – name: 5 Division of Imaging Sciences and Biomedical Engineering , King's College London , London , UK and
– name: 2 Department of Engineering Science , University of Oxford , Oxford , UK
– name: 3 GlaxoSmithKline Clinical Imaging Centre , Hammersmith Hospital , London , UK
– name: 4 School of Medicine and Dentistry , University of Rochester , Rochester , USA
– name: 1 FMRIB Centre, Nuffield Department of Clinical Neurosciences
– name: 6 Department of Medicine , Imperial College London , London , UK
Author_xml – sequence: 1
  givenname: Andri C.
  surname: Tziortzi
  fullname: Tziortzi, Andri C.
– sequence: 2
  givenname: Suzanne N.
  surname: Haber
  fullname: Haber, Suzanne N.
– sequence: 3
  givenname: Graham E.
  surname: Searle
  fullname: Searle, Graham E.
– sequence: 4
  givenname: Charalampos
  surname: Tsoumpas
  fullname: Tsoumpas, Charalampos
– sequence: 5
  givenname: Christopher J.
  surname: Long
  fullname: Long, Christopher J.
– sequence: 6
  givenname: Paul
  surname: Shotbolt
  fullname: Shotbolt, Paul
– sequence: 7
  givenname: Gwenaelle
  surname: Douaud
  fullname: Douaud, Gwenaelle
– sequence: 8
  givenname: Saad
  surname: Jbabdi
  fullname: Jbabdi, Saad
– sequence: 9
  givenname: Timothy E. J.
  surname: Behrens
  fullname: Behrens, Timothy E. J.
– sequence: 10
  givenname: Eugenii A.
  surname: Rabiner
  fullname: Rabiner, Eugenii A.
– sequence: 11
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
– sequence: 12
  givenname: Roger N.
  surname: Gunn
  fullname: Gunn, Roger N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23283687$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wZIu8ZBPqZxJvkMq0hUpFRaUVS8vj3EyMEnuwnUrzD_jZeDRtVRCLbmzr-rtHx77nEO354AGht5R8oETxYwvRhni8HBJXzQt0QEVNKkaV2itnIpqKM0r30WFKPwmhDZPsFdpnnLW8bpsD9HsRvAeb3Z3Lm-qTSdDh89mXQvBmxCdl2SSXcOjxaVibyXnA1zBCAbHzOA-Av-foTJ4nfJucX-FT1_dzKu3VD3CrIRfBr9cX2PgOfwvJ5Rg8Pptc2iL4JkxhFc162LxGL3szJnhzvx-h2_Ozm8WX6vLq88Xi5LKyoq1zBa0B1RmgdW9V0wkruSTQN9K2tlYcJChGG0EElYZ1nMrWFmppVW27XoLkR-jjTnc9LyfoLPgczajX0U0mbnQwTv99492gV-FOl-9tatoUgff3AjH8miFlXR5jYRyNhzAnTSUXLakV4c9AqRCcKLa19e6prUc_D5MqAN8BNoaUIvTaumy2Yyou3agp0ds86F0e9C4Ppav6p-tB-P_8HyjOvfY
CitedBy_id crossref_primary_10_1007_s10334_016_0546_3
crossref_primary_10_1002_ana_26606
crossref_primary_10_1523_JNEUROSCI_0945_22_2022
crossref_primary_10_1016_j_nicl_2023_103519
crossref_primary_10_1212_WNL_0000000000010825
crossref_primary_10_1016_j_neuroimage_2017_02_019
crossref_primary_10_1038_s42003_022_03665_6
crossref_primary_10_1186_s13550_020_00676_4
crossref_primary_10_1016_j_neuroimage_2021_118714
crossref_primary_10_1007_s11682_021_00454_3
crossref_primary_10_3389_fnbeh_2021_749252
crossref_primary_10_1002_hbm_24456
crossref_primary_10_1177_15459683231164787
crossref_primary_10_1073_pnas_1507610113
crossref_primary_10_1016_j_media_2018_03_004
crossref_primary_10_1038_npp_2013_349
crossref_primary_10_1016_j_celrep_2023_113107
crossref_primary_10_1111_pcn_12980
crossref_primary_10_1007_s00259_023_06132_4
crossref_primary_10_1016_j_nicl_2024_103592
crossref_primary_10_3389_fnagi_2022_902169
crossref_primary_10_1016_j_neuropsychologia_2020_107492
crossref_primary_10_1007_s12264_020_00543_1
crossref_primary_10_1007_s00330_022_09014_9
crossref_primary_10_1073_pnas_1804641115
crossref_primary_10_1111_adb_12767
crossref_primary_10_1002_mds_28024
crossref_primary_10_1002_hbm_22701
crossref_primary_10_1002_hbm_25538
crossref_primary_10_1093_cercor_bhw382
crossref_primary_10_1007_s11682_018_9837_9
crossref_primary_10_1523_JNEUROSCI_1767_16_2016
crossref_primary_10_1093_scan_nsac058
crossref_primary_10_3758_s13415_019_00688_1
crossref_primary_10_1038_s41531_022_00398_5
crossref_primary_10_1016_j_eurpsy_2016_01_2426
crossref_primary_10_1093_brain_awy222
crossref_primary_10_1016_j_neurobiolaging_2014_07_010
crossref_primary_10_1093_brain_awab367
crossref_primary_10_1111_ane_13320
crossref_primary_10_1093_scan_nsz024
crossref_primary_10_1038_s41467_019_08922_7
crossref_primary_10_1002_mds_27641
crossref_primary_10_3389_fnhum_2022_997131
crossref_primary_10_1186_s13195_022_01157_7
crossref_primary_10_1093_cercor_bhad057
crossref_primary_10_1016_j_neubiorev_2015_09_007
crossref_primary_10_1371_journal_pone_0112075
crossref_primary_10_1007_s11910_019_1006_z
crossref_primary_10_1016_j_nicl_2025_103750
crossref_primary_10_3390_brainsci11050560
crossref_primary_10_1002_hbm_23817
crossref_primary_10_1038_s41591_020_0793_8
crossref_primary_10_1007_s00221_022_06484_7
crossref_primary_10_1007_s00702_017_1747_2
crossref_primary_10_1016_j_pneurobio_2023_102510
crossref_primary_10_1007_s00415_020_09806_3
crossref_primary_10_1162_jocn_a_01830
crossref_primary_10_1002_hbm_24349
crossref_primary_10_1007_s00213_016_4464_x
crossref_primary_10_1007_s40336_020_00386_w
crossref_primary_10_1007_s00234_016_1721_y
crossref_primary_10_1111_gbb_12386
crossref_primary_10_1016_j_neuroimage_2017_07_042
crossref_primary_10_3389_fnins_2019_00623
crossref_primary_10_3390_nu15122671
crossref_primary_10_1016_j_tins_2018_12_004
crossref_primary_10_3389_fpsyt_2014_00176
crossref_primary_10_1007_s00429_019_01938_1
crossref_primary_10_1177_2398212818771822
crossref_primary_10_1177_1545968316675429
crossref_primary_10_3758_s13415_021_00937_2
crossref_primary_10_1523_ENEURO_0200_17_2017
crossref_primary_10_1038_s41380_022_01588_6
crossref_primary_10_1093_brain_awab064
crossref_primary_10_1093_braincomms_fcac250
crossref_primary_10_1093_scan_nsad035
crossref_primary_10_1002_hbm_26390
crossref_primary_10_1038_mp_2015_147
crossref_primary_10_1093_cercor_bhw157
crossref_primary_10_1038_s41386_021_00993_9
crossref_primary_10_1038_s41380_019_0570_6
crossref_primary_10_1038_s41598_018_26382_9
crossref_primary_10_1093_brain_awz164
crossref_primary_10_1016_j_exger_2024_112388
crossref_primary_10_1111_adb_13257
crossref_primary_10_1016_j_neuroimage_2018_10_045
crossref_primary_10_1016_j_pscychresns_2020_111089
crossref_primary_10_1016_j_neuroimage_2021_118006
crossref_primary_10_1002_hbm_25733
crossref_primary_10_1016_j_neuron_2014_08_031
crossref_primary_10_1007_s11682_019_00061_3
crossref_primary_10_1371_journal_pone_0317566
crossref_primary_10_3389_fpsyt_2020_00013
crossref_primary_10_1212_WNL_0000000000004680
crossref_primary_10_1007_s00429_016_1250_9
crossref_primary_10_1177_02698811231189441
crossref_primary_10_1016_j_pscychresns_2021_111273
crossref_primary_10_1111_add_16144
crossref_primary_10_4081_ejh_2021_3284
crossref_primary_10_1016_j_bbr_2023_114525
crossref_primary_10_1002_hbm_23466
crossref_primary_10_1016_j_media_2025_103482
crossref_primary_10_1177_0271678X231168687
crossref_primary_10_1002_jnr_25051
crossref_primary_10_1016_j_neuroimage_2016_11_050
crossref_primary_10_3389_fncom_2016_00100
crossref_primary_10_1002_jnr_24760
crossref_primary_10_1093_brain_awab280
crossref_primary_10_1016_j_cortex_2015_01_003
crossref_primary_10_1186_s13550_019_0547_0
crossref_primary_10_1016_j_drugalcdep_2021_109010
crossref_primary_10_1016_j_nsa_2023_101134
crossref_primary_10_1016_j_jad_2024_08_028
crossref_primary_10_1893_BIOS_D_15_00013_1
crossref_primary_10_1002_jmri_27682
crossref_primary_10_1111_ner_13376
crossref_primary_10_1371_journal_pone_0162160
crossref_primary_10_1016_j_parkreldis_2024_106031
crossref_primary_10_1080_13546805_2021_1899906
crossref_primary_10_1016_j_nicl_2018_11_007
crossref_primary_10_1016_j_nicl_2021_102825
crossref_primary_10_1177_0271678X16654497
crossref_primary_10_1016_j_bpsc_2021_05_002
crossref_primary_10_1038_s41531_024_00731_0
crossref_primary_10_1089_brain_2020_0781
crossref_primary_10_1097_QAD_0000000000000680
crossref_primary_10_1002_mds_26137
crossref_primary_10_1016_j_yebeh_2018_06_038
crossref_primary_10_1007_s11604_021_01152_2
crossref_primary_10_1093_brain_awv214
crossref_primary_10_1093_brain_awad043
crossref_primary_10_1016_j_parkreldis_2019_02_003
crossref_primary_10_1002_hbm_25147
crossref_primary_10_1038_s41398_021_01548_8
crossref_primary_10_1093_cercor_bhy259
crossref_primary_10_1002_nbm_3752
crossref_primary_10_1038_s41531_020_00133_y
crossref_primary_10_1097_MNM_0000000000000559
crossref_primary_10_1016_j_nicl_2020_102410
crossref_primary_10_7554_eLife_53680
crossref_primary_10_1038_s41598_020_69923_x
crossref_primary_10_7554_eLife_64694
crossref_primary_10_3389_fnins_2019_00709
crossref_primary_10_1038_s41398_022_02080_z
crossref_primary_10_1007_s11682_021_00485_w
crossref_primary_10_1016_j_dcn_2019_100749
crossref_primary_10_1002_hbm_23636
crossref_primary_10_1002_brb3_886
crossref_primary_10_1016_j_bbr_2019_03_036
crossref_primary_10_1007_s00259_024_06954_w
crossref_primary_10_1016_j_neuroimage_2019_03_002
crossref_primary_10_1016_j_nicl_2021_102927
crossref_primary_10_1097_RLU_0000000000003609
crossref_primary_10_1002_jnr_24798
crossref_primary_10_1007_s13365_022_01097_w
crossref_primary_10_1016_j_neuroimage_2018_02_035
crossref_primary_10_1002_mds_26956
crossref_primary_10_1111_adb_70008
crossref_primary_10_1016_j_pscychresns_2024_111918
crossref_primary_10_1016_j_neuroimage_2017_12_005
crossref_primary_10_1093_cercor_bhab387
crossref_primary_10_1016_j_nbd_2022_105668
crossref_primary_10_1038_s41398_023_02537_9
crossref_primary_10_1016_j_brs_2021_03_010
crossref_primary_10_1016_j_euroneuro_2022_01_003
crossref_primary_10_1111_pcn_13650
crossref_primary_10_1007_s00702_019_02131_8
crossref_primary_10_1111_jon_12949
crossref_primary_10_1016_j_parkreldis_2019_02_027
crossref_primary_10_1038_s41398_020_01174_w
crossref_primary_10_1097_RLU_0000000000002869
crossref_primary_10_3233_JAD_190954
crossref_primary_10_1007_s12149_025_02038_3
crossref_primary_10_1016_j_neuroimage_2018_03_076
crossref_primary_10_1111_nyas_12271
crossref_primary_10_1016_j_neuroimage_2022_118959
crossref_primary_10_1007_s00213_022_06138_0
crossref_primary_10_1371_journal_pone_0174219
crossref_primary_10_1016_j_cortex_2022_07_015
crossref_primary_10_1016_j_neuroimage_2020_117154
crossref_primary_10_1093_cercor_bhac487
crossref_primary_10_1038_jcbfm_2015_53
crossref_primary_10_1177_02698811221092506
crossref_primary_10_1371_journal_pone_0106768
crossref_primary_10_3758_s13415_019_00689_0
crossref_primary_10_1016_j_schres_2017_05_017
crossref_primary_10_1016_j_neuropsychologia_2023_108524
crossref_primary_10_3389_fnhum_2017_00421
crossref_primary_10_1111_adb_12457
crossref_primary_10_1016_j_neuroimage_2018_02_054
crossref_primary_10_3389_fneur_2020_00982
crossref_primary_10_1089_brain_2020_0868
crossref_primary_10_1016_j_jneuroling_2024_101243
crossref_primary_10_3389_fnagi_2022_830602
crossref_primary_10_1016_j_neuroimage_2022_119553
crossref_primary_10_1038_mp_2016_21
crossref_primary_10_3389_fpsyt_2019_00756
crossref_primary_10_1017_S1355617715000879
crossref_primary_10_1172_JCI149722
crossref_primary_10_1002_brb3_1987
crossref_primary_10_3389_fnagi_2017_00151
crossref_primary_10_1016_j_cortex_2021_05_022
crossref_primary_10_3988_jcn_2022_0147
crossref_primary_10_1016_j_nlm_2024_107930
crossref_primary_10_1016_j_parkreldis_2017_12_024
crossref_primary_10_1016_j_neuroimage_2020_117252
crossref_primary_10_1038_s41386_024_01891_6
crossref_primary_10_1089_brain_2014_0323
crossref_primary_10_1016_j_biopsych_2023_05_023
crossref_primary_10_1016_j_brs_2017_07_002
crossref_primary_10_1016_j_neuroimage_2019_116044
crossref_primary_10_1089_aid_2022_0069
crossref_primary_10_1155_2015_123636
crossref_primary_10_7554_eLife_29088
crossref_primary_10_1016_j_pscychresns_2015_10_004
crossref_primary_10_1002_hipo_23608
crossref_primary_10_1093_schbul_sbac181
crossref_primary_10_1002_mds_28818
crossref_primary_10_1093_ijnp_pyaa056
crossref_primary_10_1073_pnas_1423095112
crossref_primary_10_1093_scan_nsaa065
crossref_primary_10_1016_j_addbeh_2020_106786
crossref_primary_10_1007_s00702_023_02628_3
crossref_primary_10_1038_s41386_017_0005_5
crossref_primary_10_1016_j_neuroimage_2021_118744
crossref_primary_10_1016_j_parkreldis_2023_105288
crossref_primary_10_1093_cercor_bhac328
crossref_primary_10_1523_ENEURO_0392_17_2017
crossref_primary_10_3390_medicina56120686
crossref_primary_10_1002_hbm_23855
Cites_doi 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5
10.1016/0165-0173(94)00007-C
10.1038/jcbfm.1993.39
10.1523/JNEUROSCI.20-06-02369.2000
10.1016/j.neuroimage.2008.09.012
10.1016/j.jchemneu.2003.10.003
10.1523/JNEUROSCI.1311-05.2005
10.1002/ana.20030
10.1016/S0306-4522(01)00546-2
10.1016/j.neubiorev.2009.05.005
10.1523/JNEUROSCI.0271-06.2006
10.1006/nimg.1996.0066
10.1016/j.biopsych.2010.04.038
10.1016/j.neurobiolaging.2010.02.009
10.1016/j.neuroimage.2010.06.044
10.1097/01.WCB.0000048520.34839.1A
10.1016/j.pneurobio.2004.03.006
10.1006/nimg.1997.0303
10.1016/S0893-133X(98)00066-9
10.1093/brain/93.3.525
10.1016/j.biopsych.2011.10.009
10.1002/syn.21535
10.1118/1.3608907
10.1093/biomet/52.3-4.591
10.1002/cne.902870403
10.1097/00004647-200003000-00001
10.1006/nimg.2002.1132
10.1038/jcbfm.2011.115
10.1016/j.neulet.2007.04.049
10.1109/42.158935
10.1002/cne.901990205
10.1523/JNEUROSCI.16-19-06100.1996
10.1016/j.nbd.2011.02.010
10.1088/0031-9155/57/10/3107
10.1523/JNEUROSCI.1486-08.2008
10.1016/0306-4522(91)90037-O
10.1097/00004647-200208000-00014
10.1002/mrm.10609
10.1016/j.neuroimage.2006.09.018
10.1098/rstb.2005.1631
10.1016/S0893-133X(99)00079-2
10.1038/nn.2228
10.1002/syn.20013
10.1088/1742-6596/317/1/012005
10.1111/j.1460-9568.2007.05825.x
10.1002/(SICI)1096-9861(20000619)422:1<35::AID-CNE3>3.0.CO;2-E
10.1016/S1053-8119(03)00336-7
10.1093/brain/awn337
10.1001/archgenpsychiatry.2010.10
10.1523/JNEUROSCI.4371-11.2012
10.1093/cercor/bhh105
10.1097/00004647-200109000-00002
10.1523/JNEUROSCI.05-03-00776.1985
10.1146/annurev.neuro.30.051606.094334
10.2174/092986712802002518
10.1016/j.schres.2011.05.005
10.1038/nn1075
ContentType Journal Article
Copyright The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012
Copyright_xml – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
DOI 10.1093/cercor/bhs397
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
EndPage 1177
ExternalDocumentID PMC3977617
23283687
10_1093_cercor_bhs397
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G53035X/1
– fundername: NIMH NIH HHS
  grantid: MH045573
– fundername: Medical Research Council
  grantid: G0800578
– fundername: NIMH NIH HHS
  grantid: MH086400
– fundername: Medical Research Council
  grantid: MR/K006673/1
– fundername: Medical Research Council
  grantid: MR/L009013/1
GroupedDBID ---
-E4
.2P
.GJ
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
MBLQV
MBTAY
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TEORI
TJX
TLC
TMA
TR2
UQL
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
ID FETCH-LOGICAL-c486t-e8ae9dae16fc97d4c5350ef75c8c693e5e921740415a2d3158c7d4bc96cdf5e53
ISSN 1047-3211
1460-2199
IngestDate Thu Aug 21 13:17:24 EDT 2025
Fri Jul 11 12:12:59 EDT 2025
Fri Jul 11 06:50:35 EDT 2025
Mon Jul 21 05:29:45 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 02:59:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords probabilistic tractography
diffusion-weighted image
dopamine receptors
striatum
positron emission tomography
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-e8ae9dae16fc97d4c5350ef75c8c693e5e921740415a2d3158c7d4bc96cdf5e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.J. and R.N.G. contributed equally to this work.
OpenAccessLink https://kclpure.kcl.ac.uk/portal/en/publications/705ff72c-cf69-47c6-8836-746e0d51e580
PMID 23283687
PQID 1514430925
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977617
proquest_miscellaneous_1534806903
proquest_miscellaneous_1514430925
pubmed_primary_23283687
crossref_citationtrail_10_1093_cercor_bhs397
crossref_primary_10_1093_cercor_bhs397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Shapiro ( key 20170503063616_BHS397C46) 1965; 52
Staley ( key 20170503063616_BHS397C51) 1996; 16
Holt ( key 20170503063616_BHS397C26) 1997; 384
Shidahara ( key 20170503063616_BHS397C48) 2012; 57
Chang ( key 20170503063616_BHS397C12) 1992; 11
Haber ( key 20170503063616_BHS397C24) 2000; 20
Behrens ( key 20170503063616_BHS397C4) 2003; 6
Haber ( key 20170503063616_BHS397C23) 2003; 26
Lammertsma ( key 20170503063616_BHS397C32) 1996; 4
Suridjan ( key 20170503063616_BHS397C52) 2012; 37
Cavada ( key 20170503063616_BHS397C10) 1989; 287
Bohanna ( key 20170503063616_BHS397C7) 2011; 42
Boileau ( key 20170503063616_BHS397C58) 2009; 132
Voineskos ( key 20170503063616_BHS397C56) 2012; 33
Tziortzi ( key 20170503063616_BHS397C53) 2011; 317
Boileau ( key 20170503063616_BHS397C8) 2012; 32
Laruelle ( key 20170503063616_BHS397C33) 2000; 20
Egerton ( key 20170503063616_BHS397C18) 2009; 33
Haber ( key 20170503063616_BHS397C25) 2006; 26
Fudge ( key 20170503063616_BHS397C19) 2002; 110
Parent ( key 20170503063616_BHS397C42) 1995; 20
Tziortzi ( key 20170503063616_BHS397C54) 2011; 54
Cohen ( key 20170503063616_BHS397C14) 2009; 12
Kringelbach ( key 20170503063616_BHS397C31) 2004; 72
Draganski ( key 20170503063616_BHS397C16) 2008; 28
Gunn ( key 20170503063616_BHS397C21) 1997; 6
Shotbolt ( key 20170503063616_BHS397C50) 2012; 32
Behrens ( key 20170503063616_BHS397C5) 2007; 34
Kegeles ( key 20170503063616_BHS397C29) 2010; 67
Kemp ( key 20170503063616_BHS397C30) 1970; 93
Martinez ( key 20170503063616_BHS397C37) 2003; 23
Leh ( key 20170503063616_BHS397C35) 2007; 419
Laruelle ( key 20170503063616_BHS397C34) 2012
Gurevich ( key 20170503063616_BHS397C22) 1999; 20
Banerjee ( key 20170503063616_BHS397C3) 2012; 19
Calzavara ( key 20170503063616_BHS397C9) 2007; 26
Croxson ( key 20170503063616_BHS397C15) 2005; 25
Selemon ( key 20170503063616_BHS397C45) 1985; 5
Shidahara ( key 20170503063616_BHS397C47) 2009; 44
Cavada ( key 20170503063616_BHS397C11) 1991; 42
Drevets ( key 20170503063616_BHS397C17) 1999; 21
Andersson ( key 20170503063616_BHS397C1) 2003; 20
Lehéricy ( key 20170503063616_BHS397C36) 2004; 55
Searle ( key 20170503063616_BHS397C60) 2010; 68
Van Hoesen ( key 20170503063616_BHS397C55) 1981; 199
Mizrahi ( key 20170503063616_BHS397C39) 2012; 71
Wallis ( key 20170503063616_BHS397C57) 2007; 30
Le Pogam ( key 20170503063616_BHS397C59) 2011; 38
Behrens ( key 20170503063616_BHS397C6) 2003; 50
Chiavaras ( key 20170503063616_BHS397C13) 2000; 422
Petrides ( key 20170503063616_BHS397C43) 2005; 360
Jenkinson ( key 20170503063616_BHS397C27) 2002; 17
Mawlawi ( key 20170503063616_BHS397C38) 2001; 21
Gallezot ( key 20170503063616_BHS397C20) 2012; 66
Mizrahi ( key 20170503063616_BHS397C40) 2011; 131
Narendran ( key 20170503063616_BHS397C41) 2004; 52
Aston ( key 20170503063616_BHS397C2) 2002; 22
Johansen-Berg ( key 20170503063616_BHS397C28) 2005; 15
Rinne ( key 20170503063616_BHS397C44) 1993; 13
References_xml – volume: 384
  start-page: 1
  year: 1997
  ident: key 20170503063616_BHS397C26
  article-title: Neurochemical architecture of the human striatum
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5
– volume: 20
  start-page: 91
  year: 1995
  ident: key 20170503063616_BHS397C42
  article-title: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop
  publication-title: Brain Res Rev
  doi: 10.1016/0165-0173(94)00007-C
– volume: 13
  start-page: 310
  year: 1993
  ident: key 20170503063616_BHS397C44
  article-title: Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1993.39
– volume: 20
  start-page: 2369
  year: 2000
  ident: key 20170503063616_BHS397C24
  article-title: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-06-02369.2000
– volume: 44
  start-page: 340
  year: 2009
  ident: key 20170503063616_BHS397C47
  article-title: Functional and structural synergy for resolution recovery and partial volume correction in brain PET
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.012
– volume: 26
  start-page: 317
  year: 2003
  ident: key 20170503063616_BHS397C23
  article-title: The primate basal ganglia: parallel and integrative networks
  publication-title: J Chem Neuroanat
  doi: 10.1016/j.jchemneu.2003.10.003
– volume: 25
  start-page: 8854
  year: 2005
  ident: key 20170503063616_BHS397C15
  article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1311-05.2005
– volume: 55
  start-page: 522
  year: 2004
  ident: key 20170503063616_BHS397C36
  article-title: Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.20030
– volume: 110
  start-page: 257
  year: 2002
  ident: key 20170503063616_BHS397C19
  article-title: Amygdaloid projections to ventromedial striatal subterritories in the primate
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00546-2
– volume: 33
  start-page: 1109
  year: 2009
  ident: key 20170503063616_BHS397C18
  article-title: The dopaminergic basis of human behaviors: a review of molecular imaging studies
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2009.05.005
– start-page: 163
  year: 2012
  ident: key 20170503063616_BHS397C34
  article-title: Measuring dopamine synaptic transmission with molecular imaging and pharmacological challenges: the state of the art molecular imaging in the clinical neurosciences
– volume: 26
  start-page: 8368
  year: 2006
  ident: key 20170503063616_BHS397C25
  article-title: Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0271-06.2006
– volume: 4
  start-page: 153
  year: 1996
  ident: key 20170503063616_BHS397C32
  article-title: Simplified reference tissue model for PET receptor studies
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0066
– volume: 68
  start-page: 392
  year: 2010
  ident: key 20170503063616_BHS397C60
  article-title: Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.04.038
– volume: 33
  start-page: 21
  year: 2012
  ident: key 20170503063616_BHS397C56
  article-title: Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.02.009
– volume: 54
  start-page: 264
  year: 2011
  ident: key 20170503063616_BHS397C54
  article-title: Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.044
– volume: 23
  start-page: 285
  year: 2003
  ident: key 20170503063616_BHS397C37
  article-title: Imaging human mesolimbic dopamine transmission with positron emission tomography. part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/01.WCB.0000048520.34839.1A
– volume: 72
  start-page: 341
  year: 2004
  ident: key 20170503063616_BHS397C31
  article-title: The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology
  publication-title: Progr Neurobiol
  doi: 10.1016/j.pneurobio.2004.03.006
– volume: 6
  start-page: 279
  year: 1997
  ident: key 20170503063616_BHS397C21
  article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0303
– volume: 20
  start-page: 60
  year: 1999
  ident: key 20170503063616_BHS397C22
  article-title: Distribution of dopamine D3 receptor expressing neurons in the human forebrain comparison with D2 receptor expressing neurons
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(98)00066-9
– volume: 93
  start-page: 525
  year: 1970
  ident: key 20170503063616_BHS397C30
  article-title: The cortico-striate projection in the monkey
  publication-title: Brain
  doi: 10.1093/brain/93.3.525
– volume: 37
  start-page: 110181
  year: 2012
  ident: key 20170503063616_BHS397C52
  article-title: Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task
  publication-title: J Psychiatry Neurosci
– volume: 71
  start-page: 561
  year: 2012
  ident: key 20170503063616_BHS397C39
  article-title: Increased stress-induced dopamine release in psychosis
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2011.10.009
– volume: 66
  start-page: 489
  year: 2012
  ident: key 20170503063616_BHS397C20
  article-title: Affinity and selectivity of [(1)(1)C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo
  publication-title: Synapse
  doi: 10.1002/syn.21535
– volume: 38
  start-page: 4920
  year: 2011
  ident: key 20170503063616_BHS397C59
  article-title: Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography
  publication-title: Med Phys
  doi: 10.1118/1.3608907
– volume: 52
  start-page: 591
  year: 1965
  ident: key 20170503063616_BHS397C46
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 287
  start-page: 422
  year: 1989
  ident: key 20170503063616_BHS397C10
  article-title: Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902870403
– volume: 20
  start-page: 423
  year: 2000
  ident: key 20170503063616_BHS397C33
  article-title: Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200003000-00001
– volume: 17
  start-page: 825
  year: 2002
  ident: key 20170503063616_BHS397C27
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 32
  start-page: 127
  year: 2012
  ident: key 20170503063616_BHS397C50
  article-title: Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.115
– volume: 419
  start-page: 113
  year: 2007
  ident: key 20170503063616_BHS397C35
  article-title: Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2007.04.049
– volume: 11
  start-page: 319
  year: 1992
  ident: key 20170503063616_BHS397C12
  article-title: A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.158935
– volume: 199
  start-page: 205
  year: 1981
  ident: key 20170503063616_BHS397C55
  article-title: Widespread corticostriate projections from temporal cortex of the rhesus monkey
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901990205
– volume: 16
  start-page: 6100
  year: 1996
  ident: key 20170503063616_BHS397C51
  article-title: Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-19-06100.1996
– volume: 42
  start-page: 475
  year: 2011
  ident: key 20170503063616_BHS397C7
  article-title: Connectivity-based segmentation of the striatum in Huntington's disease: vulnerability of motor pathways
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.02.010
– volume: 57
  start-page: 3107
  year: 2012
  ident: key 20170503063616_BHS397C48
  article-title: Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [(1)(1)C]raclopride data
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/10/3107
– volume: 28
  start-page: 7143
  year: 2008
  ident: key 20170503063616_BHS397C16
  article-title: Evidence for segregated and integrative connectivity patterns in the human basal ganglia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1486-08.2008
– volume: 42
  start-page: 683
  year: 1991
  ident: key 20170503063616_BHS397C11
  article-title: Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(91)90037-O
– volume: 22
  start-page: 1019
  year: 2002
  ident: key 20170503063616_BHS397C2
  article-title: Positron emission tomography partial volume correction: estimation and algorithms
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200208000-00014
– volume: 50
  start-page: 1077
  year: 2003
  ident: key 20170503063616_BHS397C6
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10609
– volume: 34
  start-page: 144
  year: 2007
  ident: key 20170503063616_BHS397C5
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 360
  start-page: 781
  year: 2005
  ident: key 20170503063616_BHS397C43
  article-title: Lateral prefrontal cortex: architectonic and functional organization
  publication-title: Philos Trans Roy Soc B Biol Sci
  doi: 10.1098/rstb.2005.1631
– volume: 21
  start-page: 694
  year: 1999
  ident: key 20170503063616_BHS397C17
  article-title: PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(99)00079-2
– volume: 12
  start-page: 32
  year: 2009
  ident: key 20170503063616_BHS397C14
  article-title: Connectivity-based segregation of the human striatum predicts personality characteristics
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2228
– volume: 52
  start-page: 188
  year: 2004
  ident: key 20170503063616_BHS397C41
  article-title: In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (−)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride
  publication-title: Synapse
  doi: 10.1002/syn.20013
– volume: 317
  year: 2011
  ident: key 20170503063616_BHS397C53
  article-title: MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/317/1/012005
– volume: 26
  start-page: 2005
  year: 2007
  ident: key 20170503063616_BHS397C9
  article-title: Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05825.x
– volume: 422
  start-page: 35
  year: 2000
  ident: key 20170503063616_BHS397C13
  article-title: Orbitofrontal sulci of the human and macaque monkey brain
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(20000619)422:1<35::AID-CNE3>3.0.CO;2-E
– volume: 20
  start-page: 870
  year: 2003
  ident: key 20170503063616_BHS397C1
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 132
  start-page: 1336
  year: 2009
  ident: key 20170503063616_BHS397C58
  article-title: Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awn337
– volume: 67
  start-page: 231
  year: 2010
  ident: key 20170503063616_BHS397C29
  article-title: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.10
– volume: 32
  start-page: 1353
  year: 2012
  ident: key 20170503063616_BHS397C8
  article-title: Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4371-11.2012
– volume: 15
  start-page: 31
  year: 2005
  ident: key 20170503063616_BHS397C28
  article-title: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh105
– volume: 21
  start-page: 1034
  year: 2001
  ident: key 20170503063616_BHS397C38
  article-title: Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D2 receptor parameter measurements in ventral striatum
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200109000-00002
– volume: 5
  start-page: 776
  year: 1985
  ident: key 20170503063616_BHS397C45
  article-title: Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.05-03-00776.1985
– volume: 30
  start-page: 31
  year: 2007
  ident: key 20170503063616_BHS397C57
  article-title: Orbitofrontal cortex and its contribution to decision-making
  publication-title: Ann Rev Neurosci
  doi: 10.1146/annurev.neuro.30.051606.094334
– volume: 19
  start-page: 3957
  year: 2012
  ident: key 20170503063616_BHS397C3
  article-title: Subtype-selective dopamine receptor radioligands for PET imaging: current status and recent developments
  publication-title: Curr Med Chem
  doi: 10.2174/092986712802002518
– volume: 131
  start-page: 63
  year: 2011
  ident: key 20170503063616_BHS397C40
  article-title: Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2011.05.005
– volume: 6
  start-page: 750
  year: 2003
  ident: key 20170503063616_BHS397C4
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat Neurosci
  doi: 10.1038/nn1075
SSID ssj0017252
Score 2.5602322
Snippet The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1165
SubjectTerms Adult
Brain Mapping
Corpus Striatum - diagnostic imaging
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Diffusion Tensor Imaging
Dopamine - metabolism
Dopamine Antagonists - pharmacokinetics
Dopamine Antagonists - pharmacology
Executive Function - physiology
Humans
Male
Middle Aged
Nerve Net - diagnostic imaging
Nerve Net - drug effects
Nerve Net - metabolism
Positron-Emission Tomography
Primates
Probability
Raclopride - pharmacokinetics
Raclopride - pharmacology
Title Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/23283687
https://www.proquest.com/docview/1514430925
https://www.proquest.com/docview/1534806903
https://pubmed.ncbi.nlm.nih.gov/PMC3977617
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkBAvCDZg5UtGQnspYU0cp8kj0FYdrEMaqehblDiOFokmU5tI0F_AP-LvcW8cNyktaPASVemVneie2L7X5x4T8iqKWSgcKQzXTLhhW2ZoeLaXwGCYJCF8fJEjsBp5euFMZvaHOZ93Oj9brKWyiN6I9d66kv_xKtwDv2KV7D94dtMo3IDf4F-4gofheiMfVywVoc5_MN7BfBT3xjBP1em9tt7IEGLjBS4oL2GaAUNNb_yMp3YU5aKnqAPDNElKzJ8ZX6qUKTQ4vTxTFQXI7loCVkaADDTp-fmirXet5Q7kEveiUXVkWchv-0776SERqpWC8Ncp2K5TTbBMm9TtJIzqk8HKdQgv29o5ksgTUGU2WOzdlFT4qxwwGq40myAE0F_nW_kN027YhPWQjFoSzKqHZKnu2U7fgLHWa4_jqha7xitvDcqoMNSa4HGbeu_koYS1hFwKzJSMo6sVU9zhbZnui0_BeHZ-HvijuX-L3LYgPsEZYXj2cbN9NbC4pWUw8NFrcVfo4FQ1f6oa314M7UQ4vxN1Wysf_z65V4cs9K3C3wPSkdkhOQJ0FfniOz2hFYm42p05JHemNVfjiPzYRSdt0Ek1OmmeUI1OWqOTphkFdFKNTlqhk-6ikwI6KaCTanRSjU7aoPMhmY1H_vuJUZ_7YQjbdQpDuqH04lCaTiK8QWwLznhfJgMuXOF4THLpYSCN4hKhFTOTuwKsIuE5Ik645OwROcjyTB4T6sSx24-lK73EBsxAc7AAFxB29yPowjW75LV2QCBqUXw8m-VroMgZLFD-CpS_uuRkY36t1GD-ZPhSezOA98ZNuDCTebkKYIVt26zvWfxvNsx2UUKcdcljhYBNdxABucxxoYfBFjY2BqgXv_1Pll5VuvEY60HA8uQG_T4ld5tv8Rk5KJalfA6r7yJ6USH9F2E95Tg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity-Based+Functional+Analysis+of+Dopamine+Release+in+the+Striatum+Using+Diffusion-Weighted+MRI+and+Positron+Emission+Tomography&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Tziortzi%2C+Andri+C&rft.au=Haber%2C+Suzanne+N&rft.au=Searle%2C+Graham+E&rft.au=Tsoumpas%2C+Charalampos&rft.date=2014-05-01&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=24&rft.issue=5&rft.spage=1165&rft.epage=1177&rft_id=info:doi/10.1093%2Fcercor%2Fbhs397&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon