No-tillage practice enhances soil total carbon content in a sandy Cyperus esculentus L. field
Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively expl...
Saved in:
Published in | Ecological processes Vol. 14; no. 1; p. 9 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied.
Methods
We estimated the changes in soil TC in response to NT practice in a
Cyperus esculentus
L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2.
Results
NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon.
Conclusions
The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration. |
---|---|
AbstractList | BackgroundNo-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied.MethodsWe estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2.ResultsNT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon.ConclusionsThe present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration. BACKGROUND: No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. METHODS: We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. RESULTS: NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. CONCLUSIONS: The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration. Abstract Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. Methods We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. Results NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. Conclusions The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration. Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. Methods We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. Results NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. Conclusions The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration. |
ArticleNumber | 9 |
Author | Jiang, Yong Cai, Jiangping Wang, Cong Wang, Zhengwen Liu, Heyong Hu, Yuxiang Li, Hui Wu, Hui Wang, Zhirui Ren, Wei Yang, Ning |
Author_xml | – sequence: 1 givenname: Cong surname: Wang fullname: Wang, Cong organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Yuxiang surname: Hu fullname: Hu, Yuxiang organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Hui surname: Wu fullname: Wu, Hui organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Zhirui surname: Wang fullname: Wang, Zhirui organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 5 givenname: Jiangping surname: Cai fullname: Cai, Jiangping organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 6 givenname: Heyong surname: Liu fullname: Liu, Heyong organization: College of Life Sciences, Hebei University – sequence: 7 givenname: Wei surname: Ren fullname: Ren, Wei organization: Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China) – sequence: 8 givenname: Ning surname: Yang fullname: Yang, Ning organization: College of Plant Protection, Shenyang Agricultural University – sequence: 9 givenname: Zhengwen surname: Wang fullname: Wang, Zhengwen organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 10 givenname: Yong surname: Jiang fullname: Jiang, Yong organization: College of Life Sciences, Hebei University – sequence: 11 givenname: Hui orcidid: 0000-0002-7205-0838 surname: Li fullname: Li, Hui email: huili@iae.ac.cn organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences |
BookMark | eNp9kc2OFCEUhYkZE8dxXsAViRs3NQLFXy1NR8dJOrrRpSEXuNVWpwZaqEqm316cMmpcyIYb-M4Jh_OcXKSckJCXnN1wbvWbynvDTceE7BhTpu8enpBLwQfRccOGi7_mZ-S61iNra5BcDuaSfP2Yu2WaZzggPRUIyxSQYvoGKWClNU8zXfICMw1QfE405LRgWuiUKNAKKZ7p7nzCslaKNaxzu2vj_oaOE87xBXk6wlzx-td-Rb68f_d596Hbf7q9273dd0FavXQxWK8kjBBGj76lEVpLbSVnDEDYUQuPYFCg1iZCHNCaaL3x2ltkI5P9FbnbfGOGozuV6R7K2WWY3ONBLgcHpUWb0SnJIh95LwYQEsXobVS9Au5D0MyG0Lxeb16nkr-vWBd3P9WA7YsS5rW6nmtlNVdWNfTVP-gxryW1pI1S3FhlB90osVGh5FoLjr8fyJn7WaDbCnStQPdYoHtoon4T1QanA5Y_1v9R_QD4caAw |
Cites_doi | 10.3390/agronomy13030785 10.1016/j.agee.2023.108791 10.1128/Aem.00062-07 10.1890/15-2110.1 10.1038/s41598-020-65388-0 10.1371/journal.pone.0099949 10.1016/j.soilbio.2019.107581 10.1016/j.soilbio.2018.04.026 10.1016/j.geoderma.2019.01.003 10.1016/j.catena.2018.11.021 10.1016/j.agee.2022.108080 10.1038/nmeth.2604 10.1016/j.soilbio.2022.108758 10.1126/science.1097396 10.1111/gcb.15593 10.1016/s0167-1987(01)00176-3 10.1002/ecm.1258 10.1016/j.geoderma.2003.09.010 10.1016/j.soilbio.2021.108362 10.1016/j.still.2019.104339 10.1093/nar/gkr988 10.1890/05-1839 10.1111/j.1469-8137.2012.04225.x 10.1080/07352680902776358 10.1073/pnas.0611508104 10.3389/fmicb.2023.1102682 10.1099/00207713-44-4-846 10.1016/0038-0717(87)90052-6 10.1128/mSystems.00009-15 10.1093/bioinformatics/btr507 10.5194/bg-17-3099-2020 10.1094/pbiomes-09-16-0008-r 10.1016/j.spc.2023.11.022 10.1016/j.micres.2023.127435 10.1097/00010694-195408000-00008 10.1038/s41467-023-44647-4 10.3389/fpls.2024.1345189 10.1016/j.soilbio.2016.03.011 10.1016/j.apsoil.2023.104957 10.1016/j.still.2008.05.006 10.1016/s0038-0717(00)00179-6 10.1093/bioinformatics/bty560 10.1155/2020/7232591 10.1016/j.catena.2023.107509 10.1038/s41587-020-0548-6 10.1016/j.agee.2013.10.008 10.1016/S0003-2670(00)88444-5 10.1007/s00374-021-01569-x 10.1080/00103620701879117 10.3389/fmicb.2017.01127 10.1038/s41586-023-06042-3 10.7717/peerj.6712 10.1016/j.agee.2006.11.011 10.1111/gcbb.12713 10.1016/j.soilbio.2012.01.009 10.1016/j.scitotenv.2020.143116 10.1016/j.catena.2023.107317 10.1016/j.catena.2022.106590 10.1002/ldr.4318 10.3389/fenvs.2018.00018 10.1016/j.jenvman.2021.114403 10.1016/j.still.2020.104721 10.1890/04-1724 10.1016/j.still.2019.104419 10.1016/j.still.2017.09.002 10.1016/j.pedobi.2019.150612 10.3390/ijms22052569 10.3390/microorganisms8111773 10.1016/j.apsoil.2015.09.009 10.1111/j.1439-037X.2004.00112.x 10.1186/s12870-020-02707-7 10.1002/ldr.4279 10.1016/j.geoderma.2023.116424 10.1016/j.still.2013.10.002 10.1016/j.still.2023.105660 10.1016/j.still.2008.10.024 10.2136/sssaj2000.641190x 10.1016/0003-2697(81)90321-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-024-00573-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Biological Science Collection Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2192-1709 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_540d1f1329a24e2fb8d535a1bcc608cc 10_1186_s13717_024_00573_x |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFC0507601-03 – fundername: Applied Basic Research Programs of Liaoning Province grantid: 2023JH2/101700353 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA 28060300 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ -SB -S~ AASML AAXDM AAYXX CAJEB CITATION PHGZM PHGZT U1G U5L ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c486t-dc8b54afacfbeb1372664684100aa28f62bea7e2e667dad9e87d8b7b6b8e0f043 |
IEDL.DBID | C24 |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:27:21 EDT 2025 Fri Aug 22 20:23:16 EDT 2025 Sat Aug 23 14:58:34 EDT 2025 Tue Jul 01 00:51:53 EDT 2025 Fri Feb 21 02:35:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aeolian sandy soil No-tillage Bacterial community composition L Bacterial function prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-dc8b54afacfbeb1372664684100aa28f62bea7e2e667dad9e87d8b7b6b8e0f043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7205-0838 |
OpenAccessLink | https://link.springer.com/10.1186/s13717-024-00573-x |
PQID | 3151785896 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_540d1f1329a24e2fb8d535a1bcc608cc proquest_miscellaneous_3165861585 proquest_journals_3151785896 crossref_primary_10_1186_s13717_024_00573_x springer_journals_10_1186_s13717_024_00573_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | X Bai (573_CR4) 2021; 22 RL Sinsabaugh (573_CR53) 2016; 86 LFC Leite (573_CR29) 2004; 120 CJ Ren (573_CR49) 2021; 160 AK Patra (573_CR45) 2004; 190 B Govaerts (573_CR23) 2009; 28 SS Malhi (573_CR37) 2001; 60 B Carbonetto (573_CR6) 2014; 9 YQ Li (573_CR30) 2019; 174 SM Read (573_CR48) 1981; 116 MN Zhang (573_CR73) 2024; 44 JKM Chagas (573_CR7) 2022; 305 T Magoc (573_CR36) 2011; 27 W Walters (573_CR61) 2016; 1 JF Hou (573_CR24) 2019; 7 YZ Li (573_CR31) 2020; 204 SS Elyasi (573_CR17) 2023; 229 UM Sainju (573_CR51) 2009; 103 S García-Gutiérrez (573_CR21) 2023; 432 R Lal (573_CR28) 2004; 304 ER Waring (573_CR65) 2024; 360 LM Yin (573_CR71) 2024; 15 SE Crow (573_CR11) 2020; 12 GM Douglas (573_CR14) 2020; 38 J Six (573_CR54) 2000; 32 ZR Wang (573_CR64) 2020; 78 E Stackebrandt (573_CR56) 1994; 44 F Tao (573_CR57) 2023; 618 PA Asare (573_CR2) 2020; 2020 S Manzoni (573_CR38) 2012; 196 YH Niu (573_CR42) 2019; 195 N Kim (573_CR27) 2020; 8 YQ Luo (573_CR35) 2006; 87 P Liebmann (573_CR34) 2020; 17 M Kanehisa (573_CR26) 2012; 40 Y Li (573_CR33) 2023; 189 B Du (573_CR15) 2020; 10 C Cheng (573_CR9) 2020; 20 Z Bai (573_CR3) 2016; 98 ED Vance (573_CR59) 1987; 19 FM Vezzani (573_CR60) 2018; 175 F Degrune (573_CR12) 2017; 8 X Yang (573_CR69) 2023; 231 G Pratibha (573_CR46) 2023; 14 SE Crow (573_CR10) 2018; 6 J Murphy (573_CR41) 1962; 26 N Fierer (573_CR18) 2007; 88 MH Rahman (573_CR47) 2008; 101 XF Xu (573_CR67) 2017; 87 AL Wright (573_CR66) 2007; 121 TT Hurisso (573_CR25) 2013; 181 T Ge (573_CR22) 2012; 48 SM Zuber (573_CR77) 2016; 97 RC Edgar (573_CR16) 2013; 10 H Li (573_CR32) 2021; 27 SI Pathan (573_CR44) 2021; 57 FF Araujo (573_CR1) 2023; 274 J Tian (573_CR58) 2024; 15 CT Yin (573_CR70) 2017; 1 DR Montgomery (573_CR40) 2007; 104 SG Zulu (573_CR78) 2023; 13 PS Bottomley (573_CR5) 1994 LAT Rodrigues (573_CR50) 2022; 219 Q Wang (573_CR62) 2007; 73 SR Olsen (573_CR43) 1954; 78 M Sauvadet (573_CR52) 2018; 123 MN Zhang (573_CR72) 2022; 33 XJ Song (573_CR55) 2022; 33 FJ Zheng (573_CR74) 2023; 233 QQ Gao (573_CR20) 2021; 762 R Derpsch (573_CR79) 2014; 137 X Wang (573_CR63) 2019; 194 XY Zhu (573_CR75) 2019; 340 SF Chen (573_CR8) 2018; 34 WJ Gale (573_CR19) 2000; 64 F Mo (573_CR39) 2019; 138 S Yang (573_CR68) 2022; 172 F Dou (573_CR13) 2008; 39 K Zhu (573_CR76) 2022; 337 |
References_xml | – volume: 13 start-page: 785 year: 2023 ident: 573_CR78 publication-title: Agronomy doi: 10.3390/agronomy13030785 – volume: 360 start-page: 108791 year: 2024 ident: 573_CR65 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2023.108791 – volume: 73 start-page: 5261 year: 2007 ident: 573_CR62 publication-title: Appl Environ Microb doi: 10.1128/Aem.00062-07 – volume: 86 start-page: 172 year: 2016 ident: 573_CR53 publication-title: Ecol Monogr doi: 10.1890/15-2110.1 – volume: 10 start-page: 8326 year: 2020 ident: 573_CR15 publication-title: Sci Rep doi: 10.1038/s41598-020-65388-0 – volume: 9 start-page: e99949 year: 2014 ident: 573_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0099949 – volume: 138 start-page: 107581 year: 2019 ident: 573_CR39 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107581 – volume: 123 start-page: 64 year: 2018 ident: 573_CR52 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.026 – volume: 340 start-page: 124 year: 2019 ident: 573_CR75 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.003 – volume: 174 start-page: 217 year: 2019 ident: 573_CR30 publication-title: CATENA doi: 10.1016/j.catena.2018.11.021 – volume: 337 start-page: 108080 year: 2022 ident: 573_CR76 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2022.108080 – volume: 10 start-page: 996 year: 2013 ident: 573_CR16 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 172 start-page: 108758 year: 2022 ident: 573_CR68 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108758 – volume: 304 start-page: 1623 year: 2004 ident: 573_CR28 publication-title: Science doi: 10.1126/science.1097396 – volume: 27 start-page: 2763 year: 2021 ident: 573_CR32 publication-title: Global Change Biol doi: 10.1111/gcb.15593 – volume: 60 start-page: 101 year: 2001 ident: 573_CR37 publication-title: Soil Tillage Res doi: 10.1016/s0167-1987(01)00176-3 – volume: 87 start-page: 429 year: 2017 ident: 573_CR67 publication-title: Ecol Monogr doi: 10.1002/ecm.1258 – volume: 120 start-page: 283 year: 2004 ident: 573_CR29 publication-title: Geoderma doi: 10.1016/j.geoderma.2003.09.010 – volume: 160 start-page: 108362 year: 2021 ident: 573_CR49 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108362 – volume: 194 start-page: 104339 year: 2019 ident: 573_CR63 publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104339 – volume: 40 start-page: D109 year: 2012 ident: 573_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr988 – volume: 88 start-page: 1354 year: 2007 ident: 573_CR18 publication-title: Ecology doi: 10.1890/05-1839 – volume: 196 start-page: 79 year: 2012 ident: 573_CR38 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 28 start-page: 97 year: 2009 ident: 573_CR23 publication-title: Crit Rev Plant Sci doi: 10.1080/07352680902776358 – volume: 104 start-page: 13268 year: 2007 ident: 573_CR40 publication-title: PNAS doi: 10.1073/pnas.0611508104 – volume: 14 start-page: 1102682 year: 2023 ident: 573_CR46 publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1102682 – volume: 44 start-page: 846 year: 1994 ident: 573_CR56 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-44-4-846 – volume: 19 start-page: 703 year: 1987 ident: 573_CR59 publication-title: S Soil Biol Biochem doi: 10.1016/0038-0717(87)90052-6 – volume: 1 start-page: e00009 year: 2016 ident: 573_CR61 publication-title: Msystems doi: 10.1128/mSystems.00009-15 – volume: 27 start-page: 2957 year: 2011 ident: 573_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 17 start-page: 3099 year: 2020 ident: 573_CR34 publication-title: Biogeosciences doi: 10.5194/bg-17-3099-2020 – volume: 1 start-page: 83 year: 2017 ident: 573_CR70 publication-title: Phytobiomes J doi: 10.1094/pbiomes-09-16-0008-r – volume: 44 start-page: 74 year: 2024 ident: 573_CR73 publication-title: Sustain Prod and Consum doi: 10.1016/j.spc.2023.11.022 – volume: 274 start-page: 127435 year: 2023 ident: 573_CR1 publication-title: Microbiol Res doi: 10.1016/j.micres.2023.127435 – volume: 78 start-page: 141 year: 1954 ident: 573_CR43 publication-title: Soil Sci doi: 10.1097/00010694-195408000-00008 – volume: 15 start-page: 377 year: 2024 ident: 573_CR58 publication-title: Nat Commun doi: 10.1038/s41467-023-44647-4 – volume: 15 start-page: 1345189 year: 2024 ident: 573_CR71 publication-title: Front Plant Sci doi: 10.3389/fpls.2024.1345189 – volume: 97 start-page: 176 year: 2016 ident: 573_CR77 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.03.011 – volume: 189 start-page: 104957 year: 2023 ident: 573_CR33 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2023.104957 – volume: 101 start-page: 10 year: 2008 ident: 573_CR47 publication-title: Soil Tillage Res doi: 10.1016/j.still.2008.05.006 – volume: 32 start-page: 2099 year: 2000 ident: 573_CR54 publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(00)00179-6 – volume: 34 start-page: 884 year: 2018 ident: 573_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 2020 start-page: 7232591 year: 2020 ident: 573_CR2 publication-title: Sci World J doi: 10.1155/2020/7232591 – volume: 233 start-page: 107509 year: 2023 ident: 573_CR74 publication-title: CATENA doi: 10.1016/j.catena.2023.107509 – volume: 38 start-page: 685 year: 2020 ident: 573_CR14 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0548-6 – volume: 181 start-page: 179 year: 2013 ident: 573_CR25 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.10.008 – volume: 26 start-page: 31 year: 1962 ident: 573_CR41 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 57 start-page: 837 year: 2021 ident: 573_CR44 publication-title: Biol Fertil Soils doi: 10.1007/s00374-021-01569-x – volume: 39 start-page: 667 year: 2008 ident: 573_CR13 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103620701879117 – volume: 8 start-page: 1127 year: 2017 ident: 573_CR12 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01127 – volume-title: Methods of soil analysis: part 2-microbiological and biochemical properties year: 1994 ident: 573_CR5 – volume: 618 start-page: 981 year: 2023 ident: 573_CR57 publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 7 year: 2019 ident: 573_CR24 publication-title: PeerJ doi: 10.7717/peerj.6712 – volume: 121 start-page: 376 year: 2007 ident: 573_CR66 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2006.11.011 – volume: 12 start-page: 806 year: 2020 ident: 573_CR11 publication-title: Glob Change Biol Bioenergy doi: 10.1111/gcbb.12713 – volume: 48 start-page: 39 year: 2012 ident: 573_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.01.009 – volume: 762 start-page: 143116 year: 2021 ident: 573_CR20 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143116 – volume: 231 start-page: 107317 year: 2023 ident: 573_CR69 publication-title: CATENA doi: 10.1016/j.catena.2023.107317 – volume: 219 start-page: 106590 year: 2022 ident: 573_CR50 publication-title: CATENA doi: 10.1016/j.catena.2022.106590 – volume: 33 start-page: 2795 year: 2022 ident: 573_CR55 publication-title: Land Degrad Dev doi: 10.1002/ldr.4318 – volume: 6 start-page: 18 year: 2018 ident: 573_CR10 publication-title: Front Environ Sci doi: 10.3389/fenvs.2018.00018 – volume: 305 start-page: 114403 year: 2022 ident: 573_CR7 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.114403 – volume: 204 start-page: 104721 year: 2020 ident: 573_CR31 publication-title: Soil Tillage Res doi: 10.1016/j.still.2020.104721 – volume: 87 start-page: 53 year: 2006 ident: 573_CR35 publication-title: Ecology doi: 10.1890/04-1724 – volume: 195 start-page: 104419 year: 2019 ident: 573_CR42 publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104419 – volume: 175 start-page: 139 year: 2018 ident: 573_CR60 publication-title: Soil Tillage Res doi: 10.1016/j.still.2017.09.002 – volume: 78 start-page: 150612 year: 2020 ident: 573_CR64 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2019.150612 – volume: 22 start-page: 2569 year: 2021 ident: 573_CR4 publication-title: Int J Mol Sci doi: 10.3390/ijms22052569 – volume: 8 start-page: 1773 year: 2020 ident: 573_CR27 publication-title: Microorganisms doi: 10.3390/microorganisms8111773 – volume: 98 start-page: 65 year: 2016 ident: 573_CR3 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.09.009 – volume: 190 start-page: 324 year: 2004 ident: 573_CR45 publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2004.00112.x – volume: 20 start-page: 498 year: 2020 ident: 573_CR9 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02707-7 – volume: 33 start-page: 2258 year: 2022 ident: 573_CR72 publication-title: Land Degrad Dev doi: 10.1002/ldr.4279 – volume: 432 start-page: 116424 year: 2023 ident: 573_CR21 publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116424 – volume: 137 start-page: 16 year: 2014 ident: 573_CR79 publication-title: Soil Tillage Res doi: 10.1016/j.still.2013.10.002 – volume: 229 start-page: 105660 year: 2023 ident: 573_CR17 publication-title: Soil Tillage Res doi: 10.1016/j.still.2023.105660 – volume: 103 start-page: 332 year: 2009 ident: 573_CR51 publication-title: Soil Tillage Res doi: 10.1016/j.still.2008.10.024 – volume: 64 start-page: 190 year: 2000 ident: 573_CR19 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.641190x – volume: 116 start-page: 53 year: 1981 ident: 573_CR48 publication-title: Anal Biochem doi: 10.1016/0003-2697(81)90321-3 |
SSID | ssj0000941497 |
Score | 2.31062 |
Snippet | Background
No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon... BackgroundNo-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon... BACKGROUND: No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil... Abstract Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 9 |
SubjectTerms | Aeolian sandy soil Agricultural ecosystems agroecosystems Aridity Bacterial community composition Bacterial function prediction Biomass Carbon Carbon content carbon sequestration China Community structure conventional tillage Crop yield Cyperus esculentus Cyperus esculentus L dissolved organic carbon Earth and Environmental Science Environment Eolian soils Field tests microbial biomass Microorganisms No-till cropping No-tillage Nutrient availability Organic carbon Photosynthesis phytomass Plant biomass Plants rRNA 16S Sandy soils soil bacteria Soil degradation Soil erosion Soil investigations Soil microorganisms soil organic carbon Soil properties Soil stability Soil structure Tillage |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA4iCL2Uqi3dViWCt5q6v5LMO6o8EbGeFLxIyM_WIrvl7T7Q_95J9u1TC-LF624I4ZvNfN9sJjOE7BXOTGyB3k9OHAYota6YRqJnpTYQUB_lYOP_jl8X4vSqPrvm189afcWcsKE88ADcASoKV4TYDl2XtS-DAccrrgtjrcCJbPS-yHnPgqm_Q74cSn853pIBcdAVFUYuDCmJpSKA7P4FE6WC_S9U5n8Ho4lvTj6RjwuhSA-HBa6TFd9skLVpKjL9sEluLlrWx45Bvz0dbzpR3_yJRuxo197e0b5FYU2tnpm2oTElHfmF3jZU00437oEeYwg6m3fUx1zUyD0dPf9JU0rbZ3J1Mr08PmWLVgnM1iB65iwYXuugbTDofSuJvFsLqIs817qEIErjtfSlF0I67SYepAMjjTDg85DX1Rey2rSN_0qoLENAjF2A2PObWwDPMWY0CD0XzsiM_BhhU_-GihgqRRIg1ACyQpBVAlndZ-QoIrscGatZpwdoY7WwsXrLxhnZGu2iFlusUxVqFQkcJiIju8vXuDniiYdufDuPY1BgoWYDnpH90Z5PU7y-7G_vsezv5EMZuwWn5JctstrP5n4bJUxvdtLX-giR1O0D priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96RfBFrB-4tpYUfNPY_Uoy-yS2XClFDxELfZGQz7Ygu_V2D9r_vpPc7pUK-robNstMMr_5TSYzhLwvnGlsgdZPNg4JSq0rphHoWakNBPSPcrAx3vFtIU7O6tNzfj4G3PoxrXKyiclQu87GGPlBhdAkgUMjPl__YbFrVDxdHVtoPCZbaIIBZmTrcL74_mMTZUHyghRATrdlQBz0RYUMhiE0sVQMkN08QKRUuP-Bt_nXAWnCnePn5NnoMNIvaw1vk0e-fUGezFOx6duX5NeiY0PsHHTh6XTjifr2Miqzp3139ZsOHTrY1Oql6VoaU9MRZ-hVSzXtdetu6RFS0eWqpz7mpEYM6unXTzSltr0iZ8fzn0cnbGyZwGwNYmDOguG1DtoGg1a4koi_tYC6yHOtSwiiNF5LX3ohpNOu8SAdGGmEAZ-HvK5ek1nbtf4NobIMARx3AWLvb24BPEfuaMpguHBGZuTDJDZ1va6MoRKjAKHWQlYoZJWErG4ychgluxkZq1qnB93yQo2bRKH36IqA_LjRZe1xIpy_4row1gpcNDYju5Ne1LjVenW_MDKyv3mNmySefOjWd6s4Bh0t9N2AZ-TjpM_7T_z7t9_-f8Yd8rSM_YBTessumQ3LlX-HTspg9saVeAe-9uWr priority: 102 providerName: ProQuest |
Title | No-tillage practice enhances soil total carbon content in a sandy Cyperus esculentus L. field |
URI | https://link.springer.com/article/10.1186/s13717-024-00573-x https://www.proquest.com/docview/3151785896 https://www.proquest.com/docview/3165861585 https://doaj.org/article/540d1f1329a24e2fb8d535a1bcc608cc |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0RfCl1C9MrccKvmk0H_sx93g9rpZDD1ELfZFlP2ulJOWSA_vfd3YvqVT0wZcEkk02zGR2frPzRcjr0pmpLXH1k1OHBgrTda5R0eeVNhAQHxVg437Hp5U4OWXLM342JIV1Y7T76JJMK3USaxDvu7JG0yNHnZKnKn45IsddHm336KIdchx-bmPlEPbLMUPmr4_e0UKpWP8dhPmHUzTpmuN9sjeARDrbcvURueebx-TBIhWYvn5Cvq_avI_dgs49HbOcqG9-RAZ2tGsvLmnfIqimVq9N29AYjo66hV40VNNON-6aztH8XG866mMcatQ7Hf34jqZwtqfk9HjxbX6SD20ScstA9LmzYDjTQdtgcOWtJepcJoCVRaF1BUFUxmvpKy-EdNpNPUgHRhphwBehYPUzstO0jX9OqKxCAMddgNjvm1sAz9FeNFUwXDgjM_JmJJu62lbDUMmKAKG2RFZIZJWIrH5l5ChS9nZkrGSdLrTrczUIhkLE6MoQ293rinmcCOevuS6NtQJ_FJuRw5EvahCvTtWIUyRwmIqMvLq9jYIRvR268e0mjkFwhXgNeEbejvz8_Yp_f_bB_w1_QR5WsSdwCnE5JDv9euNfIlDpzYTcZ8WHCdmdzZZfl3g-Wqw-f5mkvzUexXyStgBuAGib5zU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-RUsBIcILQxEkc54AQLVtt6XaFUCv1glw_SyWUtJus6P4pfiNj72arIsGt1yTyRON5fJ899gC8To2qdIrRr6wMEpRcZrHERB9TqbhDfJRw7dc7DiZsdJR_OS6O1-B3fxbGl1X2MTEEatNov0a-lWFqKnnBK_bx_CL2XaP87mrfQmNhFvt2_gspW_th7zPO7xtKd4eHO6N42VUg1jlnXWw0V0UundROYaDKSkxROeN5miRSUu4YVVaWllrGSiNNZXlpuCoVU9wmLskzHPcWrOcZS-gA1reHk6_fVqs6SJaQcpT96RzOtlqUgKrAVBiHywfjy2sZMDQKuIZu_9qQDXlu9z7cWwJU8mlhUQ9gzdYP4fYwXG49fwTfJ03c-U5Fp5b0J6yIrX9442lJ25z9JF2DgJ5oOVVNTXwpPOY1clYTSVpZmznZQeo7nbXE-hpYn_NaMn5PQindYzi6EWU-gUHd1PYpkJI6x01hHPe9xgvNuS2QqyrqVMGMKiN426tNnC9u4hCBwXAmFkoWqGQRlCwuI9j2ml196W_RDg-a6alYOqVAtGpSh3y8kjS3KAjlZ4VMldYMjVRHsNnPi1i6diuuDDGCV6vX6JR-p0XWtpn5bxDYIVbkRQTv-vm8GuLfv73xf4kv4c7o8GAsxnuT_Wdwl_pexKG0ZhMG3XRmnyNA6tSLpVUSOLlpR_gDiqIkTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIKwiZPY3gNCtN1VS8uqQlTqBbl-lkooaTdZ0f1r_DrG2WSrIsGt1yTyRON5fJ899gC8Tq0emRSjHx9ZJCi5ymKFiT6mSguP-CgRJqx3fJmy3aP883FxvAa_-7Mwoayyj4ltoLaVCWvkwwxTExeFGLGh78oiDncmH88v4tBBKuy09u00liay7xa_kL7VH_Z2cK7fUDoZf9vejbsOA7HJBWtia4QucuWV8RqDVsYxXeVM5GmSKEWFZ1Q7xR11jHGr7MgJboXmmmnhEp_kGY57C9Z5YEUDWN8aTw-_rlZ4kDgh_eD9SR3BhjVKQLVgWozbiwjjy2vZsG0acA3p_rU52-a8yX2414FV8mlpXQ9gzZUP4fa4veh68Qi-T6u4CV2LTh3pT1sRV_4IhlSTujr7SZoKwT0xaqarkoSyeMxx5KwkitSqtAuyjTR4Nq-JC_WwIf_V5OA9acvqHsPRjSjzCQzKqnRPgXDqvbCF9SL0HS-MEK5A3qqp1wWzmkfwtlebPF_eyiFbNiOYXCpZopJlq2R5GcFW0Ozqy3Cjdvugmp3KzkElIlebeuTmI0Vzh4JQflaoVBvD0GBNBJv9vMjOzWt5ZZQRvFq9RgcNuy6qdNU8fIMgD3GjKCJ418_n1RD__u2N_0t8CXfQAeTB3nT_GdyloS1xW2WzCYNmNnfPESs1-kVnlARObtoP_gDwwiiE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No-tillage+practice+enhances+soil+total+carbon+content+in+a+sandy+Cyperus+esculentus+L.+field&rft.jtitle=Ecological+processes&rft.au=Wang%2C+Cong&rft.au=Hu%2C+Yuxiang&rft.au=Wu%2C+Hui&rft.au=Wang%2C+Zhirui&rft.date=2025-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-1709&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-024-00573-x&rft.externalDocID=10_1186_s13717_024_00573_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |