No-tillage practice enhances soil total carbon content in a sandy Cyperus esculentus L. field

Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively expl...

Full description

Saved in:
Bibliographic Details
Published inEcological processes Vol. 14; no. 1; p. 9
Main Authors Wang, Cong, Hu, Yuxiang, Wu, Hui, Wang, Zhirui, Cai, Jiangping, Liu, Heyong, Ren, Wei, Yang, Ning, Wang, Zhengwen, Jiang, Yong, Li, Hui
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. Methods We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. Results NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. Conclusions The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration.
AbstractList BackgroundNo-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied.MethodsWe estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2.ResultsNT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon.ConclusionsThe present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration.
BACKGROUND: No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. METHODS: We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. RESULTS: NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. CONCLUSIONS: The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration.
Abstract Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. Methods We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. Results NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. Conclusions The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration.
Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon (C) sequestration capacity. Nonetheless, the effects of NT on soil total carbon (TC) content in aeolian sandy soils are not extensively explored, and the underlying mechanisms are not clear. In our field experiments, the influence of NT and conventional tillage (CT) on sandy soil was studied. Methods We estimated the changes in soil TC in response to NT practice in a Cyperus esculentus L. field located at semi-arid Horqin sandy land, China. To unravel the underlying mechanisms, plant traits, soil properties and soil microbial characteristics were measured in parallel. The variations in soil bacterial community structure were investigated by 16S rRNA amplicon sequencing. The functionality of soil bacterial community was predicted based on OTU tables by using PICRUSt2. Results NT increased soil TC content in this sandy agroecosystem within a short-term experimental period, compared to CT. The underlying mechanisms might rely on three aspects. First, NT increased soil TC content through increasing photosynthesis and plant biomass, and thus, the plant-derived dissolved organic C. Second, NT increased the C immobilized in soil microbial biomass by increasing microbial C demands and C use efficiency. Third, NT increased the dominance of oligotrophic members in bacterial communities by decreasing available nutrient levels, which is associated with the recalcitrance and stability of the soil organic carbon. Conclusions The present study enriched our knowledge on the changes in the plant-soil-microbe continuum in response to NT in a semi-arid sandy agroecosystem. Still, this study provides a reference for modifying tillage practices to benefit crop yield as well as soil C sequestration.
ArticleNumber 9
Author Jiang, Yong
Cai, Jiangping
Wang, Cong
Wang, Zhengwen
Liu, Heyong
Hu, Yuxiang
Li, Hui
Wu, Hui
Wang, Zhirui
Ren, Wei
Yang, Ning
Author_xml – sequence: 1
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yuxiang
  surname: Hu
  fullname: Hu, Yuxiang
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Hui
  surname: Wu
  fullname: Wu, Hui
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Zhirui
  surname: Wang
  fullname: Wang, Zhirui
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 5
  givenname: Jiangping
  surname: Cai
  fullname: Cai, Jiangping
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 6
  givenname: Heyong
  surname: Liu
  fullname: Liu, Heyong
  organization: College of Life Sciences, Hebei University
– sequence: 7
  givenname: Wei
  surname: Ren
  fullname: Ren, Wei
  organization: Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)
– sequence: 8
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  organization: College of Plant Protection, Shenyang Agricultural University
– sequence: 9
  givenname: Zhengwen
  surname: Wang
  fullname: Wang, Zhengwen
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 10
  givenname: Yong
  surname: Jiang
  fullname: Jiang, Yong
  organization: College of Life Sciences, Hebei University
– sequence: 11
  givenname: Hui
  orcidid: 0000-0002-7205-0838
  surname: Li
  fullname: Li, Hui
  email: huili@iae.ac.cn
  organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences
BookMark eNp9kc2OFCEUhYkZE8dxXsAViRs3NQLFXy1NR8dJOrrRpSEXuNVWpwZaqEqm316cMmpcyIYb-M4Jh_OcXKSckJCXnN1wbvWbynvDTceE7BhTpu8enpBLwQfRccOGi7_mZ-S61iNra5BcDuaSfP2Yu2WaZzggPRUIyxSQYvoGKWClNU8zXfICMw1QfE405LRgWuiUKNAKKZ7p7nzCslaKNaxzu2vj_oaOE87xBXk6wlzx-td-Rb68f_d596Hbf7q9273dd0FavXQxWK8kjBBGj76lEVpLbSVnDEDYUQuPYFCg1iZCHNCaaL3x2ltkI5P9FbnbfGOGozuV6R7K2WWY3ONBLgcHpUWb0SnJIh95LwYQEsXobVS9Au5D0MyG0Lxeb16nkr-vWBd3P9WA7YsS5rW6nmtlNVdWNfTVP-gxryW1pI1S3FhlB90osVGh5FoLjr8fyJn7WaDbCnStQPdYoHtoon4T1QanA5Y_1v9R_QD4caAw
Cites_doi 10.3390/agronomy13030785
10.1016/j.agee.2023.108791
10.1128/Aem.00062-07
10.1890/15-2110.1
10.1038/s41598-020-65388-0
10.1371/journal.pone.0099949
10.1016/j.soilbio.2019.107581
10.1016/j.soilbio.2018.04.026
10.1016/j.geoderma.2019.01.003
10.1016/j.catena.2018.11.021
10.1016/j.agee.2022.108080
10.1038/nmeth.2604
10.1016/j.soilbio.2022.108758
10.1126/science.1097396
10.1111/gcb.15593
10.1016/s0167-1987(01)00176-3
10.1002/ecm.1258
10.1016/j.geoderma.2003.09.010
10.1016/j.soilbio.2021.108362
10.1016/j.still.2019.104339
10.1093/nar/gkr988
10.1890/05-1839
10.1111/j.1469-8137.2012.04225.x
10.1080/07352680902776358
10.1073/pnas.0611508104
10.3389/fmicb.2023.1102682
10.1099/00207713-44-4-846
10.1016/0038-0717(87)90052-6
10.1128/mSystems.00009-15
10.1093/bioinformatics/btr507
10.5194/bg-17-3099-2020
10.1094/pbiomes-09-16-0008-r
10.1016/j.spc.2023.11.022
10.1016/j.micres.2023.127435
10.1097/00010694-195408000-00008
10.1038/s41467-023-44647-4
10.3389/fpls.2024.1345189
10.1016/j.soilbio.2016.03.011
10.1016/j.apsoil.2023.104957
10.1016/j.still.2008.05.006
10.1016/s0038-0717(00)00179-6
10.1093/bioinformatics/bty560
10.1155/2020/7232591
10.1016/j.catena.2023.107509
10.1038/s41587-020-0548-6
10.1016/j.agee.2013.10.008
10.1016/S0003-2670(00)88444-5
10.1007/s00374-021-01569-x
10.1080/00103620701879117
10.3389/fmicb.2017.01127
10.1038/s41586-023-06042-3
10.7717/peerj.6712
10.1016/j.agee.2006.11.011
10.1111/gcbb.12713
10.1016/j.soilbio.2012.01.009
10.1016/j.scitotenv.2020.143116
10.1016/j.catena.2023.107317
10.1016/j.catena.2022.106590
10.1002/ldr.4318
10.3389/fenvs.2018.00018
10.1016/j.jenvman.2021.114403
10.1016/j.still.2020.104721
10.1890/04-1724
10.1016/j.still.2019.104419
10.1016/j.still.2017.09.002
10.1016/j.pedobi.2019.150612
10.3390/ijms22052569
10.3390/microorganisms8111773
10.1016/j.apsoil.2015.09.009
10.1111/j.1439-037X.2004.00112.x
10.1186/s12870-020-02707-7
10.1002/ldr.4279
10.1016/j.geoderma.2023.116424
10.1016/j.still.2013.10.002
10.1016/j.still.2023.105660
10.1016/j.still.2008.10.024
10.2136/sssaj2000.641190x
10.1016/0003-2697(81)90321-3
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOA
DOI 10.1186/s13717-024-00573-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Biological Science Collection
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2192-1709
EndPage 9
ExternalDocumentID oai_doaj_org_article_540d1f1329a24e2fb8d535a1bcc608cc
10_1186_s13717_024_00573_x
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFC0507601-03
– fundername: Applied Basic Research Programs of Liaoning Province
  grantid: 2023JH2/101700353
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA 28060300
GroupedDBID -A0
0R~
4.4
40G
5VS
7XC
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFO
ACGFS
ACPRK
ACULB
ADBBV
ADINQ
AEGXH
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BBNVY
BCNDV
BENPR
BHPHI
C24
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEP
ISR
ITC
KQ8
LK8
M7P
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
RNS
RSV
SEV
SOJ
-SB
-S~
AASML
AAXDM
AAYXX
CAJEB
CITATION
PHGZM
PHGZT
U1G
U5L
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c486t-dc8b54afacfbeb1372664684100aa28f62bea7e2e667dad9e87d8b7b6b8e0f043
IEDL.DBID C24
ISSN 2192-1709
IngestDate Wed Aug 27 01:27:21 EDT 2025
Fri Aug 22 20:23:16 EDT 2025
Sat Aug 23 14:58:34 EDT 2025
Tue Jul 01 00:51:53 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aeolian sandy soil
No-tillage
Bacterial community composition
L
Bacterial function prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-dc8b54afacfbeb1372664684100aa28f62bea7e2e667dad9e87d8b7b6b8e0f043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7205-0838
OpenAccessLink https://link.springer.com/10.1186/s13717-024-00573-x
PQID 3151785896
PQPubID 2034775
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_540d1f1329a24e2fb8d535a1bcc608cc
proquest_miscellaneous_3165861585
proquest_journals_3151785896
crossref_primary_10_1186_s13717_024_00573_x
springer_journals_10_1186_s13717_024_00573_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Ecological processes
PublicationTitleAbbrev Ecol Process
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References X Bai (573_CR4) 2021; 22
RL Sinsabaugh (573_CR53) 2016; 86
LFC Leite (573_CR29) 2004; 120
CJ Ren (573_CR49) 2021; 160
AK Patra (573_CR45) 2004; 190
B Govaerts (573_CR23) 2009; 28
SS Malhi (573_CR37) 2001; 60
B Carbonetto (573_CR6) 2014; 9
YQ Li (573_CR30) 2019; 174
SM Read (573_CR48) 1981; 116
MN Zhang (573_CR73) 2024; 44
JKM Chagas (573_CR7) 2022; 305
T Magoc (573_CR36) 2011; 27
W Walters (573_CR61) 2016; 1
JF Hou (573_CR24) 2019; 7
YZ Li (573_CR31) 2020; 204
SS Elyasi (573_CR17) 2023; 229
UM Sainju (573_CR51) 2009; 103
S García-Gutiérrez (573_CR21) 2023; 432
R Lal (573_CR28) 2004; 304
ER Waring (573_CR65) 2024; 360
LM Yin (573_CR71) 2024; 15
SE Crow (573_CR11) 2020; 12
GM Douglas (573_CR14) 2020; 38
J Six (573_CR54) 2000; 32
ZR Wang (573_CR64) 2020; 78
E Stackebrandt (573_CR56) 1994; 44
F Tao (573_CR57) 2023; 618
PA Asare (573_CR2) 2020; 2020
S Manzoni (573_CR38) 2012; 196
YH Niu (573_CR42) 2019; 195
N Kim (573_CR27) 2020; 8
YQ Luo (573_CR35) 2006; 87
P Liebmann (573_CR34) 2020; 17
M Kanehisa (573_CR26) 2012; 40
Y Li (573_CR33) 2023; 189
B Du (573_CR15) 2020; 10
C Cheng (573_CR9) 2020; 20
Z Bai (573_CR3) 2016; 98
ED Vance (573_CR59) 1987; 19
FM Vezzani (573_CR60) 2018; 175
F Degrune (573_CR12) 2017; 8
X Yang (573_CR69) 2023; 231
G Pratibha (573_CR46) 2023; 14
SE Crow (573_CR10) 2018; 6
J Murphy (573_CR41) 1962; 26
N Fierer (573_CR18) 2007; 88
MH Rahman (573_CR47) 2008; 101
XF Xu (573_CR67) 2017; 87
AL Wright (573_CR66) 2007; 121
TT Hurisso (573_CR25) 2013; 181
T Ge (573_CR22) 2012; 48
SM Zuber (573_CR77) 2016; 97
RC Edgar (573_CR16) 2013; 10
H Li (573_CR32) 2021; 27
SI Pathan (573_CR44) 2021; 57
FF Araujo (573_CR1) 2023; 274
J Tian (573_CR58) 2024; 15
CT Yin (573_CR70) 2017; 1
DR Montgomery (573_CR40) 2007; 104
SG Zulu (573_CR78) 2023; 13
PS Bottomley (573_CR5) 1994
LAT Rodrigues (573_CR50) 2022; 219
Q Wang (573_CR62) 2007; 73
SR Olsen (573_CR43) 1954; 78
M Sauvadet (573_CR52) 2018; 123
MN Zhang (573_CR72) 2022; 33
XJ Song (573_CR55) 2022; 33
FJ Zheng (573_CR74) 2023; 233
QQ Gao (573_CR20) 2021; 762
R Derpsch (573_CR79) 2014; 137
X Wang (573_CR63) 2019; 194
XY Zhu (573_CR75) 2019; 340
SF Chen (573_CR8) 2018; 34
WJ Gale (573_CR19) 2000; 64
F Mo (573_CR39) 2019; 138
S Yang (573_CR68) 2022; 172
F Dou (573_CR13) 2008; 39
K Zhu (573_CR76) 2022; 337
References_xml – volume: 13
  start-page: 785
  year: 2023
  ident: 573_CR78
  publication-title: Agronomy
  doi: 10.3390/agronomy13030785
– volume: 360
  start-page: 108791
  year: 2024
  ident: 573_CR65
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2023.108791
– volume: 73
  start-page: 5261
  year: 2007
  ident: 573_CR62
  publication-title: Appl Environ Microb
  doi: 10.1128/Aem.00062-07
– volume: 86
  start-page: 172
  year: 2016
  ident: 573_CR53
  publication-title: Ecol Monogr
  doi: 10.1890/15-2110.1
– volume: 10
  start-page: 8326
  year: 2020
  ident: 573_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-65388-0
– volume: 9
  start-page: e99949
  year: 2014
  ident: 573_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099949
– volume: 138
  start-page: 107581
  year: 2019
  ident: 573_CR39
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107581
– volume: 123
  start-page: 64
  year: 2018
  ident: 573_CR52
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.04.026
– volume: 340
  start-page: 124
  year: 2019
  ident: 573_CR75
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.003
– volume: 174
  start-page: 217
  year: 2019
  ident: 573_CR30
  publication-title: CATENA
  doi: 10.1016/j.catena.2018.11.021
– volume: 337
  start-page: 108080
  year: 2022
  ident: 573_CR76
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2022.108080
– volume: 10
  start-page: 996
  year: 2013
  ident: 573_CR16
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 172
  start-page: 108758
  year: 2022
  ident: 573_CR68
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2022.108758
– volume: 304
  start-page: 1623
  year: 2004
  ident: 573_CR28
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 27
  start-page: 2763
  year: 2021
  ident: 573_CR32
  publication-title: Global Change Biol
  doi: 10.1111/gcb.15593
– volume: 60
  start-page: 101
  year: 2001
  ident: 573_CR37
  publication-title: Soil Tillage Res
  doi: 10.1016/s0167-1987(01)00176-3
– volume: 87
  start-page: 429
  year: 2017
  ident: 573_CR67
  publication-title: Ecol Monogr
  doi: 10.1002/ecm.1258
– volume: 120
  start-page: 283
  year: 2004
  ident: 573_CR29
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.09.010
– volume: 160
  start-page: 108362
  year: 2021
  ident: 573_CR49
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108362
– volume: 194
  start-page: 104339
  year: 2019
  ident: 573_CR63
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2019.104339
– volume: 40
  start-page: D109
  year: 2012
  ident: 573_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr988
– volume: 88
  start-page: 1354
  year: 2007
  ident: 573_CR18
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 196
  start-page: 79
  year: 2012
  ident: 573_CR38
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 28
  start-page: 97
  year: 2009
  ident: 573_CR23
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352680902776358
– volume: 104
  start-page: 13268
  year: 2007
  ident: 573_CR40
  publication-title: PNAS
  doi: 10.1073/pnas.0611508104
– volume: 14
  start-page: 1102682
  year: 2023
  ident: 573_CR46
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1102682
– volume: 44
  start-page: 846
  year: 1994
  ident: 573_CR56
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-44-4-846
– volume: 19
  start-page: 703
  year: 1987
  ident: 573_CR59
  publication-title: S Soil Biol Biochem
  doi: 10.1016/0038-0717(87)90052-6
– volume: 1
  start-page: e00009
  year: 2016
  ident: 573_CR61
  publication-title: Msystems
  doi: 10.1128/mSystems.00009-15
– volume: 27
  start-page: 2957
  year: 2011
  ident: 573_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 17
  start-page: 3099
  year: 2020
  ident: 573_CR34
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-3099-2020
– volume: 1
  start-page: 83
  year: 2017
  ident: 573_CR70
  publication-title: Phytobiomes J
  doi: 10.1094/pbiomes-09-16-0008-r
– volume: 44
  start-page: 74
  year: 2024
  ident: 573_CR73
  publication-title: Sustain Prod and Consum
  doi: 10.1016/j.spc.2023.11.022
– volume: 274
  start-page: 127435
  year: 2023
  ident: 573_CR1
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2023.127435
– volume: 78
  start-page: 141
  year: 1954
  ident: 573_CR43
  publication-title: Soil Sci
  doi: 10.1097/00010694-195408000-00008
– volume: 15
  start-page: 377
  year: 2024
  ident: 573_CR58
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-44647-4
– volume: 15
  start-page: 1345189
  year: 2024
  ident: 573_CR71
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2024.1345189
– volume: 97
  start-page: 176
  year: 2016
  ident: 573_CR77
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.03.011
– volume: 189
  start-page: 104957
  year: 2023
  ident: 573_CR33
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2023.104957
– volume: 101
  start-page: 10
  year: 2008
  ident: 573_CR47
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2008.05.006
– volume: 32
  start-page: 2099
  year: 2000
  ident: 573_CR54
  publication-title: Soil Biol Biochem
  doi: 10.1016/s0038-0717(00)00179-6
– volume: 34
  start-page: 884
  year: 2018
  ident: 573_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 2020
  start-page: 7232591
  year: 2020
  ident: 573_CR2
  publication-title: Sci World J
  doi: 10.1155/2020/7232591
– volume: 233
  start-page: 107509
  year: 2023
  ident: 573_CR74
  publication-title: CATENA
  doi: 10.1016/j.catena.2023.107509
– volume: 38
  start-page: 685
  year: 2020
  ident: 573_CR14
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0548-6
– volume: 181
  start-page: 179
  year: 2013
  ident: 573_CR25
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.10.008
– volume: 26
  start-page: 31
  year: 1962
  ident: 573_CR41
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 57
  start-page: 837
  year: 2021
  ident: 573_CR44
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-021-01569-x
– volume: 39
  start-page: 667
  year: 2008
  ident: 573_CR13
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620701879117
– volume: 8
  start-page: 1127
  year: 2017
  ident: 573_CR12
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01127
– volume-title: Methods of soil analysis: part 2-microbiological and biochemical properties
  year: 1994
  ident: 573_CR5
– volume: 618
  start-page: 981
  year: 2023
  ident: 573_CR57
  publication-title: Nature
  doi: 10.1038/s41586-023-06042-3
– volume: 7
  year: 2019
  ident: 573_CR24
  publication-title: PeerJ
  doi: 10.7717/peerj.6712
– volume: 121
  start-page: 376
  year: 2007
  ident: 573_CR66
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2006.11.011
– volume: 12
  start-page: 806
  year: 2020
  ident: 573_CR11
  publication-title: Glob Change Biol Bioenergy
  doi: 10.1111/gcbb.12713
– volume: 48
  start-page: 39
  year: 2012
  ident: 573_CR22
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.01.009
– volume: 762
  start-page: 143116
  year: 2021
  ident: 573_CR20
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.143116
– volume: 231
  start-page: 107317
  year: 2023
  ident: 573_CR69
  publication-title: CATENA
  doi: 10.1016/j.catena.2023.107317
– volume: 219
  start-page: 106590
  year: 2022
  ident: 573_CR50
  publication-title: CATENA
  doi: 10.1016/j.catena.2022.106590
– volume: 33
  start-page: 2795
  year: 2022
  ident: 573_CR55
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.4318
– volume: 6
  start-page: 18
  year: 2018
  ident: 573_CR10
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2018.00018
– volume: 305
  start-page: 114403
  year: 2022
  ident: 573_CR7
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.114403
– volume: 204
  start-page: 104721
  year: 2020
  ident: 573_CR31
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2020.104721
– volume: 87
  start-page: 53
  year: 2006
  ident: 573_CR35
  publication-title: Ecology
  doi: 10.1890/04-1724
– volume: 195
  start-page: 104419
  year: 2019
  ident: 573_CR42
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2019.104419
– volume: 175
  start-page: 139
  year: 2018
  ident: 573_CR60
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2017.09.002
– volume: 78
  start-page: 150612
  year: 2020
  ident: 573_CR64
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2019.150612
– volume: 22
  start-page: 2569
  year: 2021
  ident: 573_CR4
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22052569
– volume: 8
  start-page: 1773
  year: 2020
  ident: 573_CR27
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111773
– volume: 98
  start-page: 65
  year: 2016
  ident: 573_CR3
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2015.09.009
– volume: 190
  start-page: 324
  year: 2004
  ident: 573_CR45
  publication-title: J Agron Crop Sci
  doi: 10.1111/j.1439-037X.2004.00112.x
– volume: 20
  start-page: 498
  year: 2020
  ident: 573_CR9
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-020-02707-7
– volume: 33
  start-page: 2258
  year: 2022
  ident: 573_CR72
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.4279
– volume: 432
  start-page: 116424
  year: 2023
  ident: 573_CR21
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116424
– volume: 137
  start-page: 16
  year: 2014
  ident: 573_CR79
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2013.10.002
– volume: 229
  start-page: 105660
  year: 2023
  ident: 573_CR17
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2023.105660
– volume: 103
  start-page: 332
  year: 2009
  ident: 573_CR51
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2008.10.024
– volume: 64
  start-page: 190
  year: 2000
  ident: 573_CR19
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.641190x
– volume: 116
  start-page: 53
  year: 1981
  ident: 573_CR48
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(81)90321-3
SSID ssj0000941497
Score 2.31062
Snippet Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon...
BackgroundNo-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil carbon...
BACKGROUND: No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing soil...
Abstract Background No-tillage (NT) is a widely used field management to reduce soil erosion and degradation and is suggested to be beneficial for enhancing...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9
SubjectTerms Aeolian sandy soil
Agricultural ecosystems
agroecosystems
Aridity
Bacterial community composition
Bacterial function prediction
Biomass
Carbon
Carbon content
carbon sequestration
China
Community structure
conventional tillage
Crop yield
Cyperus esculentus
Cyperus esculentus L
dissolved organic carbon
Earth and Environmental Science
Environment
Eolian soils
Field tests
microbial biomass
Microorganisms
No-till cropping
No-tillage
Nutrient availability
Organic carbon
Photosynthesis
phytomass
Plant biomass
Plants
rRNA 16S
Sandy soils
soil bacteria
Soil degradation
Soil erosion
Soil investigations
Soil microorganisms
soil organic carbon
Soil properties
Soil stability
Soil structure
Tillage
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA4iCL2Uqi3dViWCt5q6v5LMO6o8EbGeFLxIyM_WIrvl7T7Q_95J9u1TC-LF624I4ZvNfN9sJjOE7BXOTGyB3k9OHAYota6YRqJnpTYQUB_lYOP_jl8X4vSqPrvm189afcWcsKE88ADcASoKV4TYDl2XtS-DAccrrgtjrcCJbPS-yHnPgqm_Q74cSn853pIBcdAVFUYuDCmJpSKA7P4FE6WC_S9U5n8Ho4lvTj6RjwuhSA-HBa6TFd9skLVpKjL9sEluLlrWx45Bvz0dbzpR3_yJRuxo197e0b5FYU2tnpm2oTElHfmF3jZU00437oEeYwg6m3fUx1zUyD0dPf9JU0rbZ3J1Mr08PmWLVgnM1iB65iwYXuugbTDofSuJvFsLqIs817qEIErjtfSlF0I67SYepAMjjTDg85DX1Rey2rSN_0qoLENAjF2A2PObWwDPMWY0CD0XzsiM_BhhU_-GihgqRRIg1ACyQpBVAlndZ-QoIrscGatZpwdoY7WwsXrLxhnZGu2iFlusUxVqFQkcJiIju8vXuDniiYdufDuPY1BgoWYDnpH90Z5PU7y-7G_vsezv5EMZuwWn5JctstrP5n4bJUxvdtLX-giR1O0D
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96RfBFrB-4tpYUfNPY_Uoy-yS2XClFDxELfZGQz7Ygu_V2D9r_vpPc7pUK-robNstMMr_5TSYzhLwvnGlsgdZPNg4JSq0rphHoWakNBPSPcrAx3vFtIU7O6tNzfj4G3PoxrXKyiclQu87GGPlBhdAkgUMjPl__YbFrVDxdHVtoPCZbaIIBZmTrcL74_mMTZUHyghRATrdlQBz0RYUMhiE0sVQMkN08QKRUuP-Bt_nXAWnCnePn5NnoMNIvaw1vk0e-fUGezFOx6duX5NeiY0PsHHTh6XTjifr2Miqzp3139ZsOHTrY1Oql6VoaU9MRZ-hVSzXtdetu6RFS0eWqpz7mpEYM6unXTzSltr0iZ8fzn0cnbGyZwGwNYmDOguG1DtoGg1a4koi_tYC6yHOtSwiiNF5LX3ohpNOu8SAdGGmEAZ-HvK5ek1nbtf4NobIMARx3AWLvb24BPEfuaMpguHBGZuTDJDZ1va6MoRKjAKHWQlYoZJWErG4ychgluxkZq1qnB93yQo2bRKH36IqA_LjRZe1xIpy_4row1gpcNDYju5Ne1LjVenW_MDKyv3mNmySefOjWd6s4Bh0t9N2AZ-TjpM_7T_z7t9_-f8Yd8rSM_YBTessumQ3LlX-HTspg9saVeAe-9uWr
  priority: 102
  providerName: ProQuest
Title No-tillage practice enhances soil total carbon content in a sandy Cyperus esculentus L. field
URI https://link.springer.com/article/10.1186/s13717-024-00573-x
https://www.proquest.com/docview/3151785896
https://www.proquest.com/docview/3165861585
https://doaj.org/article/540d1f1329a24e2fb8d535a1bcc608cc
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0RfCl1C9MrccKvmk0H_sx93g9rpZDD1ELfZFlP2ulJOWSA_vfd3YvqVT0wZcEkk02zGR2frPzRcjr0pmpLXH1k1OHBgrTda5R0eeVNhAQHxVg437Hp5U4OWXLM342JIV1Y7T76JJMK3USaxDvu7JG0yNHnZKnKn45IsddHm336KIdchx-bmPlEPbLMUPmr4_e0UKpWP8dhPmHUzTpmuN9sjeARDrbcvURueebx-TBIhWYvn5Cvq_avI_dgs49HbOcqG9-RAZ2tGsvLmnfIqimVq9N29AYjo66hV40VNNON-6aztH8XG866mMcatQ7Hf34jqZwtqfk9HjxbX6SD20ScstA9LmzYDjTQdtgcOWtJepcJoCVRaF1BUFUxmvpKy-EdNpNPUgHRhphwBehYPUzstO0jX9OqKxCAMddgNjvm1sAz9FeNFUwXDgjM_JmJJu62lbDUMmKAKG2RFZIZJWIrH5l5ChS9nZkrGSdLrTrczUIhkLE6MoQ293rinmcCOevuS6NtQJ_FJuRw5EvahCvTtWIUyRwmIqMvLq9jYIRvR268e0mjkFwhXgNeEbejvz8_Yp_f_bB_w1_QR5WsSdwCnE5JDv9euNfIlDpzYTcZ8WHCdmdzZZfl3g-Wqw-f5mkvzUexXyStgBuAGib5zU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-RUsBIcILQxEkc54AQLVtt6XaFUCv1glw_SyWUtJus6P4pfiNj72arIsGt1yTyRON5fJ899gC8To2qdIrRr6wMEpRcZrHERB9TqbhDfJRw7dc7DiZsdJR_OS6O1-B3fxbGl1X2MTEEatNov0a-lWFqKnnBK_bx_CL2XaP87mrfQmNhFvt2_gspW_th7zPO7xtKd4eHO6N42VUg1jlnXWw0V0UundROYaDKSkxROeN5miRSUu4YVVaWllrGSiNNZXlpuCoVU9wmLskzHPcWrOcZS-gA1reHk6_fVqs6SJaQcpT96RzOtlqUgKrAVBiHywfjy2sZMDQKuIZu_9qQDXlu9z7cWwJU8mlhUQ9gzdYP4fYwXG49fwTfJ03c-U5Fp5b0J6yIrX9442lJ25z9JF2DgJ5oOVVNTXwpPOY1clYTSVpZmznZQeo7nbXE-hpYn_NaMn5PQindYzi6EWU-gUHd1PYpkJI6x01hHPe9xgvNuS2QqyrqVMGMKiN426tNnC9u4hCBwXAmFkoWqGQRlCwuI9j2ml196W_RDg-a6alYOqVAtGpSh3y8kjS3KAjlZ4VMldYMjVRHsNnPi1i6diuuDDGCV6vX6JR-p0XWtpn5bxDYIVbkRQTv-vm8GuLfv73xf4kv4c7o8GAsxnuT_Wdwl_pexKG0ZhMG3XRmnyNA6tSLpVUSOLlpR_gDiqIkTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIKwiZPY3gNCtN1VS8uqQlTqBbl-lkooaTdZ0f1r_DrG2WSrIsGt1yTyRON5fJ899gC8Tq0emRSjHx9ZJCi5ymKFiT6mSguP-CgRJqx3fJmy3aP883FxvAa_-7Mwoayyj4ltoLaVCWvkwwxTExeFGLGh78oiDncmH88v4tBBKuy09u00liay7xa_kL7VH_Z2cK7fUDoZf9vejbsOA7HJBWtia4QucuWV8RqDVsYxXeVM5GmSKEWFZ1Q7xR11jHGr7MgJboXmmmnhEp_kGY57C9Z5YEUDWN8aTw-_rlZ4kDgh_eD9SR3BhjVKQLVgWozbiwjjy2vZsG0acA3p_rU52-a8yX2414FV8mlpXQ9gzZUP4fa4veh68Qi-T6u4CV2LTh3pT1sRV_4IhlSTujr7SZoKwT0xaqarkoSyeMxx5KwkitSqtAuyjTR4Nq-JC_WwIf_V5OA9acvqHsPRjSjzCQzKqnRPgXDqvbCF9SL0HS-MEK5A3qqp1wWzmkfwtlebPF_eyiFbNiOYXCpZopJlq2R5GcFW0Ozqy3Cjdvugmp3KzkElIlebeuTmI0Vzh4JQflaoVBvD0GBNBJv9vMjOzWt5ZZQRvFq9RgcNuy6qdNU8fIMgD3GjKCJ418_n1RD__u2N_0t8CXfQAeTB3nT_GdyloS1xW2WzCYNmNnfPESs1-kVnlARObtoP_gDwwiiE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No-tillage+practice+enhances+soil+total+carbon+content+in+a+sandy+Cyperus+esculentus+L.+field&rft.jtitle=Ecological+processes&rft.au=Wang%2C+Cong&rft.au=Hu%2C+Yuxiang&rft.au=Wu%2C+Hui&rft.au=Wang%2C+Zhirui&rft.date=2025-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-1709&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-024-00573-x&rft.externalDocID=10_1186_s13717_024_00573_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon