Application of Multiple-Optimization Filtering Algorithm in Remote Sensing Image Denoising
Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we propos...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 18; p. 7813 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics. |
---|---|
AbstractList | Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics. Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics.Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics. |
Audience | Academic |
Author | Li, Yuan Zhang, Xuelin Yue, Dong Wang, Jianxiong Feng, Xiang Hua, Jian |
AuthorAffiliation | University Research Center of Agricultural Remote Sensing and Precision Agriculture Engineering in Yunnan Provincial, School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China; zxl1947253858@163.com (X.Z.); ly1006527@163.com (Y.L.); fengxiang_mys@163.com (X.F.); 15614106896@163.com (J.H.); 18391917875@163.com (D.Y.) |
AuthorAffiliation_xml | – name: University Research Center of Agricultural Remote Sensing and Precision Agriculture Engineering in Yunnan Provincial, School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China; zxl1947253858@163.com (X.Z.); ly1006527@163.com (Y.L.); fengxiang_mys@163.com (X.F.); 15614106896@163.com (J.H.); 18391917875@163.com (D.Y.) |
Author_xml | – sequence: 1 givenname: Xuelin orcidid: 0009-0009-8209-3792 surname: Zhang fullname: Zhang, Xuelin – sequence: 2 givenname: Yuan surname: Li fullname: Li, Yuan – sequence: 3 givenname: Xiang surname: Feng fullname: Feng, Xiang – sequence: 4 givenname: Jian surname: Hua fullname: Hua, Jian – sequence: 5 givenname: Dong surname: Yue fullname: Yue, Dong – sequence: 6 givenname: Jianxiong surname: Wang fullname: Wang, Jianxiong |
BookMark | eNplUstu1TAQtVARfcCCP4jEBhZp_YydFbpqKVypqBKPDRvLcezUV44dHAeJfn19m4JokRe2Z8454xmfY3AQYjAAvEbwlJAWns2YIMEFIs_AEaKY1gJjePDP-RAcz_MOQkwIES_AIeG8YYLDI_BjM03eaZVdDFW01efFZzd5U19P2Y3udk1cOp9NcmGoNn6IyeWbsXKh-mLGmE311YR5n9uOajDVhQnR7e8vwXOr_GxePewn4Pvlh2_nn-qr64_b881Vraloct1r1jdUqI5Qq6hoYd9BzFqteiW6DiKOTNtbxnnX6kZxphlUzAohqIDWYEtOwHbV7aPaySm5UaXfMion7wMxDVKl7LQ3srEtphr1SFlGG8pbYaHpiVVCISwoLVrvV61p6UbTaxNyUv6R6ONMcDdyiL8kgowwyvcKbx8UUvy5mDnL0c3aeK-CicsscRk7KpVIU6BvnkB3cUmhzKqgmrYhiDJYUKcralClAxdsLIV1Wb0ZnS5GsK7EN5yjYgBMRSGcrQSd4jwnY6V2-f4fC9H58lS5d43865rCePeE8afh_7F3o9nCOA |
CitedBy_id | crossref_primary_10_12677_ORF_2024_141004 |
Cites_doi | 10.1109/34.276126 10.1109/InfoSEEE.2014.6948089 10.1109/83.941855 10.1117/3.353798 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23187813 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844 PMC10535474 A771813248 10_3390_s23187813 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-dc5d648ab34fa4890db0259cada8bb0171e9df577b9c6a75c50a5f888480fe2f3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:40 EDT 2025 Thu Aug 21 18:36:15 EDT 2025 Mon Jul 21 11:24:41 EDT 2025 Fri Jul 25 08:29:12 EDT 2025 Tue Jun 10 21:17:45 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Tue Jul 01 01:20:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-dc5d648ab34fa4890db0259cada8bb0171e9df577b9c6a75c50a5f888480fe2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-8209-3792 |
OpenAccessLink | https://doaj.org/article/6f924c1d1af5464798f0ed3fa8a12844 |
PMID | 37765870 |
PQID | 2869631450 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535474 proquest_miscellaneous_2870144336 proquest_journals_2869631450 gale_infotracacademiconefile_A771813248 crossref_citationtrail_10_3390_s23187813 crossref_primary_10_3390_s23187813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Geng (ref_24) 2010; 19 Zhang (ref_15) 2022; 34 Su (ref_23) 2019; 4 Fang (ref_7) 2010; 23 Chen (ref_26) 2012; 3 Healey (ref_2) 1994; 16 Zhang (ref_19) 2018; 1 Zhang (ref_12) 2022; 22 Deng (ref_10) 2023; 40 ref_17 Choi (ref_5) 2001; 10 Ding (ref_18) 2019; 35 Liu (ref_13) 2022; 17 Jia (ref_16) 2022; 30 Li (ref_14) 2019; 34 ref_25 ref_21 Deng (ref_22) 2022; 29 Chen (ref_9) 2022; 45 ref_1 ref_3 Lin (ref_11) 2022; 2022 ref_8 Feng (ref_20) 2019; 41 ref_4 Liu (ref_6) 2012; 2 |
References_xml | – volume: 3 start-page: 1 year: 2012 ident: ref_26 article-title: Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI publication-title: Int. J. Sci. Eng. Res. – ident: ref_3 – volume: 23 start-page: 73 year: 2010 ident: ref_7 article-title: Overveiw on Some Arithmetics for Image Denoising publication-title: Ind. Control Comput. – volume: 30 start-page: 144 year: 2022 ident: ref_16 article-title: Based on noise detection and adaptive variance of bilateral filtering algorithm publication-title: J. Electr. Design Eng. – volume: 29 start-page: 60 year: 2022 ident: ref_22 article-title: Based on the strategy of three species evolved adaptive differential evolution algorithm publication-title: J. Dongguan Instit. Technol. – volume: 4 start-page: 30 year: 2019 ident: ref_23 article-title: Improved adaptive restraint differential evolution algorithm publication-title: J. Microelectr. Comput. – volume: 40 start-page: 205 year: 2023 ident: ref_10 article-title: Image retrieval method based on adaptive parameter bilateral filtering and wavelet transform publication-title: J. Comput. Appl. Software – volume: 16 start-page: 267 year: 1994 ident: ref_2 article-title: Radiometric CCD camera calibration and noise estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.276126 – ident: ref_1 – ident: ref_4 doi: 10.1109/InfoSEEE.2014.6948089 – volume: 2 start-page: 146 year: 2012 ident: ref_6 article-title: Modern digital image noise filter technology and its evaluation publication-title: Autom. Instrum. – volume: 35 start-page: 176 year: 2019 ident: ref_18 article-title: Edge detection algorithm based on improved Canny operator and adaptive threshold publication-title: Inform. Comput. – ident: ref_21 – volume: 45 start-page: 114 year: 2022 ident: ref_9 article-title: Combined with wavelet transform and bilateral filtering SICM image noise reduction algorithm publication-title: J. Electr. Meas. Technol. – volume: 2022 start-page: 9392648 year: 2022 ident: ref_11 article-title: An image noise reduction algorithm based on adaptive bilateral filtering publication-title: Electr. Technol. Software Eng. – ident: ref_8 – volume: 19 start-page: 503 year: 2010 ident: ref_24 article-title: Robust design for generalized vector precoding by minimizing mse with imperfect channel state information publication-title: Chin. J. Electr. – volume: 22 start-page: 13219 year: 2022 ident: ref_12 article-title: A second-order noise removal method for remote sensing image publication-title: Sci. Technol. Eng. – volume: 34 start-page: 65 year: 2019 ident: ref_14 article-title: Improvement and Study of Image Denoising Algorithm Based on Bilateral Filtering and Thresholding publication-title: J. Jiujiang Univ. – volume: 1 start-page: 60 year: 2018 ident: ref_19 article-title: An improved algorithm for adaptive Canny edge detection based on otsu algorithm publication-title: Inf. Technol. – volume: 41 start-page: 1106 year: 2019 ident: ref_20 article-title: Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information publication-title: J. Electron. Inf. Technol. – volume: 10 start-page: 1309 year: 2001 ident: ref_5 article-title: Multiscale image segmentation using wavelet-domain hidden Markov models publication-title: IEEE Trans. Image Process. doi: 10.1109/83.941855 – ident: ref_17 – volume: 17 start-page: 952 year: 2022 ident: ref_13 article-title: Remote sensing image denoising algorithm based on filter method publication-title: J. Chin. Acad. Electr. – volume: 34 start-page: 354 year: 2022 ident: ref_15 article-title: Improved rough set bilateral filtering image denoising algorithm publication-title: J. Shenyang Univ. – ident: ref_25 doi: 10.1117/3.353798 |
SSID | ssj0023338 |
Score | 2.402855 |
Snippet | Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7813 |
SubjectTerms | Algorithms bilateral filtering differential evolution algorithm edge detection operator Gaussian noise Image retrieval Optimization algorithms Remote sensing remote sensing imagery Standard deviation Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8RQpBRmEBJeoyfqZE1oeq4JUkIBKKy6W40e7Ujcp3e3_Zybr3e0C4pjYUWyPPZ7PM_4G4JWP0kUtQ2m8IDejU2UruCgbHTQ5HVXlCCgef1FHJ-LzVE7zgdsih1WudeKgqEPv6Yz8cGQUzpVayOrtxa-SskaRdzWn0LgJt4i6jEK69HQLuDjirxWbEEdof7hAW8ZoU_OdPWig6v9bIf8ZJHlt15ncg7vZXGTjlXzvw43YPYA710gEH8LP8dYHzfrEjnOIYPkVtcE8X7Nkkxm5xfEDNj4_xX4tz-Zs1rFvEUUV2XcKY8eyT3NUL-xD7PoZPT-Ck8nHH--PypwxofTCqGUZvAxKGNdykZwwTRVatGka74IzbUvUOLEJSWrdNl45Lb2snEwIgoWpUhwl_hj2ur6LT4ClkU-xcgQn0GJqEZZ5HxtlUkOOT5MKeLMeQ-sznThltTi3CCtouO1muAt4ual6seLQ-FeldySITQWivR5e9JenNq8iqxLCRV-H2iUplNCNSVUMPDnjaJ8VBbwmMVpanNgY7_IdA-wS0VzZscatGPG3MAUcrCVt86pd2O0cK-DFphjXGzlRXBf7K6qjCYRyrgowOzNkp-m7Jd3sbGDurolNR2ix__-_P4XblNV-Fcp2AHvLy6v4DG2fZft8mOC_AeR7BhQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9KfdEH8RNTa9mKoC_RXLJfeRC5Wo8qnIJ6UHxZNvvRBu4SvV5B_3tn7nKx0T76mOwENjs7O_NjZn8D8MwFYYMSPtWOU5rRyrTiBU9L5RUlHWVmCShOP8qTGf9wKk53YNtjs1vAi2uhHfWTmi3nL3_--PUGDf41IU6E7K8uMEbRSlPv2hvokBTZ55T3yYS8QBi2IRUaig9c0Zqx_99z-e9aySvOZ3IHbndRIxtv1HwXdkJzD25d4RK8D9_Gf1LRrI1s2lUKpp_wUFh0ty3ZpKbsOH7AxvOzdlmvzhesbtjngBoL7AtVs-PY-wWeMuw4NG1Nzw9gNnn39e1J2jVOSB3XcpV6J7zk2lYFj5brMvMVhjals97qqiKGnFD6KJSqSietEk5kVkTEwlxnMeSxeAi7TduER8Bi7mLILKEKDJwqRGfOhVLqWFL-U8cEXmzX0LiOVZyaW8wNogtabtMvdwJPe9HvGyqN64SOSBG9ALFfr1-0yzPTGZOREVGjG_mRjYJLrkods-CLaLUld8sTeE5qNLRrcDLOdlcN8JeI7cqMFXpkhOFcJ7C_1bTZ7j2Ta4nH0oiLLIHDfhjNjnIptgntJckowqJFIRPQgx0ymPpwpKnP1wTeIyLV4Yrv_Y-ffQw3c9zjm7q3fdhdLS_DEwyUVtXB2gx-A1J3FGE priority: 102 providerName: Scholars Portal |
Title | Application of Multiple-Optimization Filtering Algorithm in Remote Sensing Image Denoising |
URI | https://www.proquest.com/docview/2869631450 https://www.proquest.com/docview/2870144336 https://pubmed.ncbi.nlm.nih.gov/PMC10535474 https://doaj.org/article/6f924c1d1af5464798f0ed3fa8a12844 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucABtTxEoF0ZhASXqMnGrxy3tEtB2oIKlVZcLMcPGqmboHb7_5lJsssuIHHhEimxI9kz4_F8mvFngNcuCBuU8Kl2nNKMVqYVL3haKq8o6SgzS0BxdiZPL_jHuZhvXPVFNWE9PXAvuEMZESG43Oc2Ci65KnXMgi-i1ZZca8cEinveCkwNUKtA5NXzCBUI6g9vMIrRSufF1u7TkfT_6Yp_L4_c2G-mu_BwCBTZpB_gHtwJzSN4sEEf-Bi-TX5ln1kb2WwoDkw_oR9YDAcs2bSmhDj-wCZX39vrenm5YHXDzgMqKbAvVMCObR8W6FjYcWjamt6fwMX05Ou703S4KyF1XMtl6p3wkmtbFTxarsvMVxjNlM56q6uKSHFC6aNQqiqdtEo4kVkREf5yncUwjsVT2GnaJjwDFscuhswSkMBYqUJA5lwopY4lpTx1TODtSobGDUTidJ_FlUFAQeI2a3En8Grd9UfPnvG3TkekiHUHIrzuPqAZmMEMzL_MIIE3pEZDyxIH4-xwugCnRARXZqJwE0bkzXUC-ytNm2G93pixluiJci6yBF6um3GlUfrENqG9pT6K4GdRyAT0loVsDX27pakvO87unHh0uOLP_8dkX8B9uvW-L3Xbh53l9W04wNhoWY3grporfOrp-xHcOzo5-3w-6pYGPmdc_wT0oxKY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcwFFgQCC5W_diXDwgFSpTQpkjQShEXs17vtpEauzSpEH-K38hMbCcNIG492rt-zc7O7OeZ_QbghXXCOCXKUFtOYUYjw4KnPMxUqSjoKCNDQHG0LweH_ONYjDfgV7cXhtIqO5u4MNRlbekf-XaiJepKzEX09vR7SFWjKLraldBo1GLX_fyBkG32ZriD4_sySfofDt4PwraqQGi5lvOwtKKUXJsi5d5wnUVlgX4_s6Y0uiiIPsZlpRdKFZmVRgkrIiM8AkWuI-8Sn-J9r8BVdLwRzSg1XgG8FPFew16Uplm0PcO1k1Y6Ttd83qI0wN8O4M-kzAtern8LbrbLU9Zr9Ok2bLjqDty4QFp4F772VjFvVns2alMSw09ofabttk7Wn1AYHi9gvZMjlOP8eMomFfvsUDUc-0Jp89g2nKI5Yzuuqid0fA8OL0WW92Gzqiv3AJhPrHeRIfiCK7QCYaC1LpPaZxRo1T6A150Mc9vSl1MVjZMcYQyJO1-KO4Dny66nDWfHvzq9o4FYdiCa7cWJ-uwob2dtLj3CUxuXsfGCS64y7SNXpt5oQ36dB_CKhjEnY4AvY027pwE_iWi18p5C1494n-sAtrqRzlsrMctXOh3As2Uzzm8K2pjK1efURxHoTVMZgF7TkLVXX2-pJscLpvCY2Hu44g____SncG1wMNrL94b7u4_geoKa3KTRbcHm_OzcPcZ117x4slB2Bt8ue3b9BkxhQ_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IJ7CUGBBILhYsb1PHxAKhKihtCCgUtSLWa9320iNXZpUiL_Gr2MmcZIGELce4904zuzM7Hye2W8Anjkvrdeyio0TlGa0Ki4FF3GuK01JR5VYAoq7e2p7X7wfyuEG_FqchaGyyoVPnDnqqnH0jryTGYW6kgqZdEJbFvGp13998j2mDlKUaV2005iryI7_-QPh2-TVoIdr_TzL-u--vt2O2w4DsRNGTePKyUoJY0sughUmT6oSY4Dc2cqasiQqGZ9XQWpd5k5ZLZ1MrAwIGoVJgs8Cx_tegsuay5RsTA9XYI8j9pszGXGeJ50JxlFGm5Sv7X-zNgF_bwZ_Fmie2_H6N-B6G6qy7ly3bsKGr2_BtXMEhrfhoLvKf7MmsN22PDH-iJ5o3B7xZP0RpeTxC6x7fIhynB6N2ahmnz2qiWdfqIQexwZjdG2s5-tmRJ_vwP6FyPIubNZN7e8BC5kLPrEEZTBaKxESOudzZUJOSVcTIni5kGHhWipz6qhxXCCkIXEXS3FH8HQ59WTO3_GvSW9oIZYTiHJ7dqE5PSxaCy5UQKjq0iq1QQoldG5C4iserLG0x4sIXtAyFuQY8GGcbc834F8iiq2iqzEMQOwvTARbi5UuWo8xKVb6HcGT5TDaOiVwbO2bM5qjCQBzriIwaxqy9ujrI_XoaMYanhKTj9Di_v9__TFcQbsqPgz2dh7A1QwVeV5RtwWb09Mz_xBDsGn5aKbrDL5dtHH9BhfVSDE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Multiple-Optimization+Filtering+Algorithm+in+Remote+Sensing+Image+Denoising&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xuelin+Zhang&rft.au=Yuan+Li&rft.au=Xiang+Feng&rft.au=Jian+Hua&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft.spage=7813&rft_id=info:doi/10.3390%2Fs23187813&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |