Application of Multiple-Optimization Filtering Algorithm in Remote Sensing Image Denoising

Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we propos...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 18; p. 7813
Main Authors Zhang, Xuelin, Li, Yuan, Feng, Xiang, Hua, Jian, Yue, Dong, Wang, Jianxiong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics.
AbstractList Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics.
Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics.Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor characteristics, signal transmission, and environmental conditions, among which Gaussian noise is the most common type. In this paper, we proposed a multiple-optimization bilateral filtering (MOBF) algorithm based on edge detection and differential evolution (DE) methods. The proposed algorithm optimizes the spatial domain filtering kernel and the spatial domain Gaussian kernel by using the standard deviation and width of the edge response. By employing the DE algorithm, the individuals in the population based on the standard deviation of the gray value domain are subjected to iterative mutation, crossover, and selection operations to refine the latent solution vectors and determine the optimal color space for optimizing the standard deviation of the pixel range domain kernel. As a result, the MOBF algorithm, which does not require any parameter input, is realized. To verify the feasibility and effectiveness of the proposed algorithm, denoising experiments were conducted on remote sensing images by using evaluation metrics such as the mean squared error, peak signal-to-noise ratio, and structural similarity index. The experimental results revealed that the MOBF algorithm outperforms traditional algorithms for all three evaluation metrics.
Audience Academic
Author Li, Yuan
Zhang, Xuelin
Yue, Dong
Wang, Jianxiong
Feng, Xiang
Hua, Jian
AuthorAffiliation University Research Center of Agricultural Remote Sensing and Precision Agriculture Engineering in Yunnan Provincial, School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China; zxl1947253858@163.com (X.Z.); ly1006527@163.com (Y.L.); fengxiang_mys@163.com (X.F.); 15614106896@163.com (J.H.); 18391917875@163.com (D.Y.)
AuthorAffiliation_xml – name: University Research Center of Agricultural Remote Sensing and Precision Agriculture Engineering in Yunnan Provincial, School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China; zxl1947253858@163.com (X.Z.); ly1006527@163.com (Y.L.); fengxiang_mys@163.com (X.F.); 15614106896@163.com (J.H.); 18391917875@163.com (D.Y.)
Author_xml – sequence: 1
  givenname: Xuelin
  orcidid: 0009-0009-8209-3792
  surname: Zhang
  fullname: Zhang, Xuelin
– sequence: 2
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
– sequence: 3
  givenname: Xiang
  surname: Feng
  fullname: Feng, Xiang
– sequence: 4
  givenname: Jian
  surname: Hua
  fullname: Hua, Jian
– sequence: 5
  givenname: Dong
  surname: Yue
  fullname: Yue, Dong
– sequence: 6
  givenname: Jianxiong
  surname: Wang
  fullname: Wang, Jianxiong
BookMark eNplUstu1TAQtVARfcCCP4jEBhZp_YydFbpqKVypqBKPDRvLcezUV44dHAeJfn19m4JokRe2Z8454xmfY3AQYjAAvEbwlJAWns2YIMEFIs_AEaKY1gJjePDP-RAcz_MOQkwIES_AIeG8YYLDI_BjM03eaZVdDFW01efFZzd5U19P2Y3udk1cOp9NcmGoNn6IyeWbsXKh-mLGmE311YR5n9uOajDVhQnR7e8vwXOr_GxePewn4Pvlh2_nn-qr64_b881Vraloct1r1jdUqI5Qq6hoYd9BzFqteiW6DiKOTNtbxnnX6kZxphlUzAohqIDWYEtOwHbV7aPaySm5UaXfMion7wMxDVKl7LQ3srEtphr1SFlGG8pbYaHpiVVCISwoLVrvV61p6UbTaxNyUv6R6ONMcDdyiL8kgowwyvcKbx8UUvy5mDnL0c3aeK-CicsscRk7KpVIU6BvnkB3cUmhzKqgmrYhiDJYUKcralClAxdsLIV1Wb0ZnS5GsK7EN5yjYgBMRSGcrQSd4jwnY6V2-f4fC9H58lS5d43865rCePeE8afh_7F3o9nCOA
CitedBy_id crossref_primary_10_12677_ORF_2024_141004
Cites_doi 10.1109/34.276126
10.1109/InfoSEEE.2014.6948089
10.1109/83.941855
10.1117/3.353798
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23187813
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844
PMC10535474
A771813248
10_3390_s23187813
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c486t-dc5d648ab34fa4890db0259cada8bb0171e9df577b9c6a75c50a5f888480fe2f3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:40 EDT 2025
Thu Aug 21 18:36:15 EDT 2025
Mon Jul 21 11:24:41 EDT 2025
Fri Jul 25 08:29:12 EDT 2025
Tue Jun 10 21:17:45 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Tue Jul 01 01:20:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-dc5d648ab34fa4890db0259cada8bb0171e9df577b9c6a75c50a5f888480fe2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-8209-3792
OpenAccessLink https://doaj.org/article/6f924c1d1af5464798f0ed3fa8a12844
PMID 37765870
PQID 2869631450
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535474
proquest_miscellaneous_2870144336
proquest_journals_2869631450
gale_infotracacademiconefile_A771813248
crossref_citationtrail_10_3390_s23187813
crossref_primary_10_3390_s23187813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Geng (ref_24) 2010; 19
Zhang (ref_15) 2022; 34
Su (ref_23) 2019; 4
Fang (ref_7) 2010; 23
Chen (ref_26) 2012; 3
Healey (ref_2) 1994; 16
Zhang (ref_19) 2018; 1
Zhang (ref_12) 2022; 22
Deng (ref_10) 2023; 40
ref_17
Choi (ref_5) 2001; 10
Ding (ref_18) 2019; 35
Liu (ref_13) 2022; 17
Jia (ref_16) 2022; 30
Li (ref_14) 2019; 34
ref_25
ref_21
Deng (ref_22) 2022; 29
Chen (ref_9) 2022; 45
ref_1
ref_3
Lin (ref_11) 2022; 2022
ref_8
Feng (ref_20) 2019; 41
ref_4
Liu (ref_6) 2012; 2
References_xml – volume: 3
  start-page: 1
  year: 2012
  ident: ref_26
  article-title: Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI
  publication-title: Int. J. Sci. Eng. Res.
– ident: ref_3
– volume: 23
  start-page: 73
  year: 2010
  ident: ref_7
  article-title: Overveiw on Some Arithmetics for Image Denoising
  publication-title: Ind. Control Comput.
– volume: 30
  start-page: 144
  year: 2022
  ident: ref_16
  article-title: Based on noise detection and adaptive variance of bilateral filtering algorithm
  publication-title: J. Electr. Design Eng.
– volume: 29
  start-page: 60
  year: 2022
  ident: ref_22
  article-title: Based on the strategy of three species evolved adaptive differential evolution algorithm
  publication-title: J. Dongguan Instit. Technol.
– volume: 4
  start-page: 30
  year: 2019
  ident: ref_23
  article-title: Improved adaptive restraint differential evolution algorithm
  publication-title: J. Microelectr. Comput.
– volume: 40
  start-page: 205
  year: 2023
  ident: ref_10
  article-title: Image retrieval method based on adaptive parameter bilateral filtering and wavelet transform
  publication-title: J. Comput. Appl. Software
– volume: 16
  start-page: 267
  year: 1994
  ident: ref_2
  article-title: Radiometric CCD camera calibration and noise estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.276126
– ident: ref_1
– ident: ref_4
  doi: 10.1109/InfoSEEE.2014.6948089
– volume: 2
  start-page: 146
  year: 2012
  ident: ref_6
  article-title: Modern digital image noise filter technology and its evaluation
  publication-title: Autom. Instrum.
– volume: 35
  start-page: 176
  year: 2019
  ident: ref_18
  article-title: Edge detection algorithm based on improved Canny operator and adaptive threshold
  publication-title: Inform. Comput.
– ident: ref_21
– volume: 45
  start-page: 114
  year: 2022
  ident: ref_9
  article-title: Combined with wavelet transform and bilateral filtering SICM image noise reduction algorithm
  publication-title: J. Electr. Meas. Technol.
– volume: 2022
  start-page: 9392648
  year: 2022
  ident: ref_11
  article-title: An image noise reduction algorithm based on adaptive bilateral filtering
  publication-title: Electr. Technol. Software Eng.
– ident: ref_8
– volume: 19
  start-page: 503
  year: 2010
  ident: ref_24
  article-title: Robust design for generalized vector precoding by minimizing mse with imperfect channel state information
  publication-title: Chin. J. Electr.
– volume: 22
  start-page: 13219
  year: 2022
  ident: ref_12
  article-title: A second-order noise removal method for remote sensing image
  publication-title: Sci. Technol. Eng.
– volume: 34
  start-page: 65
  year: 2019
  ident: ref_14
  article-title: Improvement and Study of Image Denoising Algorithm Based on Bilateral Filtering and Thresholding
  publication-title: J. Jiujiang Univ.
– volume: 1
  start-page: 60
  year: 2018
  ident: ref_19
  article-title: An improved algorithm for adaptive Canny edge detection based on otsu algorithm
  publication-title: Inf. Technol.
– volume: 41
  start-page: 1106
  year: 2019
  ident: ref_20
  article-title: Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information
  publication-title: J. Electron. Inf. Technol.
– volume: 10
  start-page: 1309
  year: 2001
  ident: ref_5
  article-title: Multiscale image segmentation using wavelet-domain hidden Markov models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.941855
– ident: ref_17
– volume: 17
  start-page: 952
  year: 2022
  ident: ref_13
  article-title: Remote sensing image denoising algorithm based on filter method
  publication-title: J. Chin. Acad. Electr.
– volume: 34
  start-page: 354
  year: 2022
  ident: ref_15
  article-title: Improved rough set bilateral filtering image denoising algorithm
  publication-title: J. Shenyang Univ.
– ident: ref_25
  doi: 10.1117/3.353798
SSID ssj0023338
Score 2.402855
Snippet Denoising remote sensing images is crucial in the application and research of remote sensing imagery. Noise in remote sensing images originates from sensor...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7813
SubjectTerms Algorithms
bilateral filtering
differential evolution algorithm
edge detection operator
Gaussian noise
Image retrieval
Optimization algorithms
Remote sensing
remote sensing imagery
Standard deviation
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8RQpBRmEBJeoyfqZE1oeq4JUkIBKKy6W40e7Ujcp3e3_Zybr3e0C4pjYUWyPPZ7PM_4G4JWP0kUtQ2m8IDejU2UruCgbHTQ5HVXlCCgef1FHJ-LzVE7zgdsih1WudeKgqEPv6Yz8cGQUzpVayOrtxa-SskaRdzWn0LgJt4i6jEK69HQLuDjirxWbEEdof7hAW8ZoU_OdPWig6v9bIf8ZJHlt15ncg7vZXGTjlXzvw43YPYA710gEH8LP8dYHzfrEjnOIYPkVtcE8X7Nkkxm5xfEDNj4_xX4tz-Zs1rFvEUUV2XcKY8eyT3NUL-xD7PoZPT-Ck8nHH--PypwxofTCqGUZvAxKGNdykZwwTRVatGka74IzbUvUOLEJSWrdNl45Lb2snEwIgoWpUhwl_hj2ur6LT4ClkU-xcgQn0GJqEZZ5HxtlUkOOT5MKeLMeQ-sznThltTi3CCtouO1muAt4ual6seLQ-FeldySITQWivR5e9JenNq8iqxLCRV-H2iUplNCNSVUMPDnjaJ8VBbwmMVpanNgY7_IdA-wS0VzZscatGPG3MAUcrCVt86pd2O0cK-DFphjXGzlRXBf7K6qjCYRyrgowOzNkp-m7Jd3sbGDurolNR2ix__-_P4XblNV-Fcp2AHvLy6v4DG2fZft8mOC_AeR7BhQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9KfdEH8RNTa9mKoC_RXLJfeRC5Wo8qnIJ6UHxZNvvRBu4SvV5B_3tn7nKx0T76mOwENjs7O_NjZn8D8MwFYYMSPtWOU5rRyrTiBU9L5RUlHWVmCShOP8qTGf9wKk53YNtjs1vAi2uhHfWTmi3nL3_--PUGDf41IU6E7K8uMEbRSlPv2hvokBTZ55T3yYS8QBi2IRUaig9c0Zqx_99z-e9aySvOZ3IHbndRIxtv1HwXdkJzD25d4RK8D9_Gf1LRrI1s2lUKpp_wUFh0ty3ZpKbsOH7AxvOzdlmvzhesbtjngBoL7AtVs-PY-wWeMuw4NG1Nzw9gNnn39e1J2jVOSB3XcpV6J7zk2lYFj5brMvMVhjals97qqiKGnFD6KJSqSietEk5kVkTEwlxnMeSxeAi7TduER8Bi7mLILKEKDJwqRGfOhVLqWFL-U8cEXmzX0LiOVZyaW8wNogtabtMvdwJPe9HvGyqN64SOSBG9ALFfr1-0yzPTGZOREVGjG_mRjYJLrkods-CLaLUld8sTeE5qNLRrcDLOdlcN8JeI7cqMFXpkhOFcJ7C_1bTZ7j2Ta4nH0oiLLIHDfhjNjnIptgntJckowqJFIRPQgx0ymPpwpKnP1wTeIyLV4Yrv_Y-ffQw3c9zjm7q3fdhdLS_DEwyUVtXB2gx-A1J3FGE
  priority: 102
  providerName: Scholars Portal
Title Application of Multiple-Optimization Filtering Algorithm in Remote Sensing Image Denoising
URI https://www.proquest.com/docview/2869631450
https://www.proquest.com/docview/2870144336
https://pubmed.ncbi.nlm.nih.gov/PMC10535474
https://doaj.org/article/6f924c1d1af5464798f0ed3fa8a12844
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucABtTxEoF0ZhASXqMnGrxy3tEtB2oIKlVZcLMcPGqmboHb7_5lJsssuIHHhEimxI9kz4_F8mvFngNcuCBuU8Kl2nNKMVqYVL3haKq8o6SgzS0BxdiZPL_jHuZhvXPVFNWE9PXAvuEMZESG43Oc2Ci65KnXMgi-i1ZZca8cEinveCkwNUKtA5NXzCBUI6g9vMIrRSufF1u7TkfT_6Yp_L4_c2G-mu_BwCBTZpB_gHtwJzSN4sEEf-Bi-TX5ln1kb2WwoDkw_oR9YDAcs2bSmhDj-wCZX39vrenm5YHXDzgMqKbAvVMCObR8W6FjYcWjamt6fwMX05Ou703S4KyF1XMtl6p3wkmtbFTxarsvMVxjNlM56q6uKSHFC6aNQqiqdtEo4kVkREf5yncUwjsVT2GnaJjwDFscuhswSkMBYqUJA5lwopY4lpTx1TODtSobGDUTidJ_FlUFAQeI2a3En8Grd9UfPnvG3TkekiHUHIrzuPqAZmMEMzL_MIIE3pEZDyxIH4-xwugCnRARXZqJwE0bkzXUC-ytNm2G93pixluiJci6yBF6um3GlUfrENqG9pT6K4GdRyAT0loVsDX27pakvO87unHh0uOLP_8dkX8B9uvW-L3Xbh53l9W04wNhoWY3grporfOrp-xHcOzo5-3w-6pYGPmdc_wT0oxKY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcwFFgQCC5W_diXDwgFSpTQpkjQShEXs17vtpEauzSpEH-K38hMbCcNIG492rt-zc7O7OeZ_QbghXXCOCXKUFtOYUYjw4KnPMxUqSjoKCNDQHG0LweH_ONYjDfgV7cXhtIqO5u4MNRlbekf-XaiJepKzEX09vR7SFWjKLraldBo1GLX_fyBkG32ZriD4_sySfofDt4PwraqQGi5lvOwtKKUXJsi5d5wnUVlgX4_s6Y0uiiIPsZlpRdKFZmVRgkrIiM8AkWuI-8Sn-J9r8BVdLwRzSg1XgG8FPFew16Uplm0PcO1k1Y6Ttd83qI0wN8O4M-kzAtern8LbrbLU9Zr9Ok2bLjqDty4QFp4F772VjFvVns2alMSw09ofabttk7Wn1AYHi9gvZMjlOP8eMomFfvsUDUc-0Jp89g2nKI5Yzuuqid0fA8OL0WW92Gzqiv3AJhPrHeRIfiCK7QCYaC1LpPaZxRo1T6A150Mc9vSl1MVjZMcYQyJO1-KO4Dny66nDWfHvzq9o4FYdiCa7cWJ-uwob2dtLj3CUxuXsfGCS64y7SNXpt5oQ36dB_CKhjEnY4AvY027pwE_iWi18p5C1494n-sAtrqRzlsrMctXOh3As2Uzzm8K2pjK1efURxHoTVMZgF7TkLVXX2-pJscLpvCY2Hu44g____SncG1wMNrL94b7u4_geoKa3KTRbcHm_OzcPcZ117x4slB2Bt8ue3b9BkxhQ_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IJ7CUGBBILhYsb1PHxAKhKihtCCgUtSLWa9320iNXZpUiL_Gr2MmcZIGELce4904zuzM7Hye2W8Anjkvrdeyio0TlGa0Ki4FF3GuK01JR5VYAoq7e2p7X7wfyuEG_FqchaGyyoVPnDnqqnH0jryTGYW6kgqZdEJbFvGp13998j2mDlKUaV2005iryI7_-QPh2-TVoIdr_TzL-u--vt2O2w4DsRNGTePKyUoJY0sughUmT6oSY4Dc2cqasiQqGZ9XQWpd5k5ZLZ1MrAwIGoVJgs8Cx_tegsuay5RsTA9XYI8j9pszGXGeJ50JxlFGm5Sv7X-zNgF_bwZ_Fmie2_H6N-B6G6qy7ly3bsKGr2_BtXMEhrfhoLvKf7MmsN22PDH-iJ5o3B7xZP0RpeTxC6x7fIhynB6N2ahmnz2qiWdfqIQexwZjdG2s5-tmRJ_vwP6FyPIubNZN7e8BC5kLPrEEZTBaKxESOudzZUJOSVcTIni5kGHhWipz6qhxXCCkIXEXS3FH8HQ59WTO3_GvSW9oIZYTiHJ7dqE5PSxaCy5UQKjq0iq1QQoldG5C4iserLG0x4sIXtAyFuQY8GGcbc834F8iiq2iqzEMQOwvTARbi5UuWo8xKVb6HcGT5TDaOiVwbO2bM5qjCQBzriIwaxqy9ujrI_XoaMYanhKTj9Di_v9__TFcQbsqPgz2dh7A1QwVeV5RtwWb09Mz_xBDsGn5aKbrDL5dtHH9BhfVSDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Multiple-Optimization+Filtering+Algorithm+in+Remote+Sensing+Image+Denoising&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xuelin+Zhang&rft.au=Yuan+Li&rft.au=Xiang+Feng&rft.au=Jian+Hua&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft.spage=7813&rft_id=info:doi/10.3390%2Fs23187813&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f924c1d1af5464798f0ed3fa8a12844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon