Topographic uncertainty quantification for flow-like landslide models via stochastic simulations
Digital elevation models (DEMs) representing topography are an essential input for computational models capable of simulating the run-out of flow-like landslides. Yet, DEMs are often subject to error, a fact that is mostly overlooked in landslide modeling. We address this research gap and investigat...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 20; no. 5; pp. 1441 - 1461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
26.05.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1684-9981 1561-8633 1684-9981 |
DOI | 10.5194/nhess-20-1441-2020 |
Cover
Abstract | Digital elevation models (DEMs) representing topography are an essential input for computational models capable of simulating the run-out of flow-like landslides. Yet, DEMs are often subject to error, a fact that is mostly overlooked in landslide modeling. We address this research gap and investigate the impact of topographic uncertainty on landslide run-out models. In particular, we will describe two different approaches to account for DEM uncertainty, namely unconditional and conditional stochastic simulation methods. We investigate and discuss their feasibility, as well as whether DEM uncertainty represented by stochastic simulations critically affects landslide run-out simulations. Based upon a historic flow-like landslide event in Hong Kong, we present a series of computational scenarios to compare both methods using our modular Python-based workflow. Our results show that DEM uncertainty can significantly affect simulation-based landslide run-out analyses, depending on how well the underlying flow path is captured by the DEM, as well as on further topographic characteristics and the DEM error's variability. We further find that, in the absence of systematic bias in the DEM, a performant root-mean-square-error-based unconditional stochastic simulation yields similar results to a computationally intensive conditional stochastic simulation that takes actual DEM error values at reference locations into account. In all other cases the unconditional stochastic simulation overestimates the variability in the DEM error, which leads to an increase in the potential hazard area as well as extreme values of dynamic flow properties. |
---|---|
AbstractList | Digital elevation models (DEMs) representing topography are an essential input for computational models capable of simulating the run-out of flow-like landslides. Yet, DEMs are often subject to error, a fact that is mostly overlooked in landslide modeling. We address this research gap and investigate the impact of topographic uncertainty on landslide run-out models. In particular, we will describe two different approaches to account for DEM uncertainty, namely unconditional and conditional stochastic simulation methods. We investigate and discuss their feasibility, as well as whether DEM uncertainty represented by stochastic simulations critically affects landslide run-out simulations. Based upon a historic flow-like landslide event in Hong Kong, we present a series of computational scenarios to compare both methods using our modular Python-based workflow. Our results show that DEM uncertainty can significantly affect simulation-based landslide run-out analyses, depending on how well the underlying flow path is captured by the DEM, as well as on further topographic characteristics and the DEM error's variability. We further find that, in the absence of systematic bias in the DEM, a performant root-mean-square-error-based unconditional stochastic simulation yields similar results to a computationally intensive conditional stochastic simulation that takes actual DEM error values at reference locations into account. In all other cases the unconditional stochastic simulation overestimates the variability in the DEM error, which leads to an increase in the potential hazard area as well as extreme values of dynamic flow properties. |
Audience | Academic |
Author | Zhao, Hu Kowalski, Julia |
Author_xml | – sequence: 1 givenname: Hu surname: Zhao fullname: Zhao, Hu – sequence: 2 givenname: Julia surname: Kowalski fullname: Kowalski, Julia |
BookMark | eNp9UstuFDEQHKEgkQc_wGkkThwm2F6Pxz5GEY-VIiFBOJseP3a9eOyN7QHy93h3iWBRFPnQVqmqutVdZ81JiME0zSuMLnss6NuwNjl3BHWYUlwrQc-aU8w47YTg-OSf_4vmLOcNQkT0FJ02327jNq4SbNdOtXNQJhVwody3dzOE4qxTUFwMrY2ptT7-7Lz7bloPQWfvtGmnqI3P7Q8HbS5RrSGXapTdNPu9MF80zy34bF7-qefN1_fvbq8_djefPiyvr246RTkrnRaCUA4L6C3TRHDFKywoE4qNWFMxWDpWaNC9ZotRCcDcaj2OBhEGpmeL82Z58NURNnKb3ATpXkZwcg_EtJKQ6mzeyJHogVMClldnZhQXwzBorZXuLaoNqtfrg9c2xbvZ5CI3cU6hji8JxbRnhPPhL2sF1dQFG0sCNbms5BUjVCzQwHllXT7Cqk-byal6ResqfiR4cySonGJ-lRXMOcvll8_HXH7gqhRzTsZK5cp-77WJ8xIjuYuH3MdDEiR38ZC7eFQp-U_6sLMnRL8BFC3BhQ |
CitedBy_id | crossref_primary_10_5194_nhess_22_2673_2022 crossref_primary_10_5194_tc_17_4751_2023 crossref_primary_10_1016_j_compgeo_2024_106946 crossref_primary_10_3389_feart_2022_1032438 crossref_primary_10_1007_s10346_021_01690_w crossref_primary_10_1007_s10346_022_01939_y crossref_primary_10_3390_earth3010020 |
Cites_doi | 10.1016/j.geomorph.2011.03.012 10.1007/s40808-015-0069-3 10.1016/j.jhydrol.2015.08.046 10.1017/S002214300000174X 10.1063/1.1614253 10.1016/j.enggeo.2018.01.011 10.1016/j.coldregions.2010.04.005 10.4236/ars.2018.72010 10.1016/j.gsf.2018.05.004 10.13031/2013.41514 10.14358/PERS.72.3.279 10.1016/j.ejrs.2015.12.004 10.1007/s11440-011-0140-9 10.3389/feart.2018.00233 10.1016/j.asej.2017.01.007 10.1016/S0022-1694(00)00229-8 10.3390/ijgi8030108 10.5194/nhess-18-2161-2018 10.14358/PERS.72.9.1081 10.5194/nhess-15-2569-2015 10.1080/13658816.2013.770515 10.1191/0309133306pp492ra 10.1016/j.rse.2006.07.011 10.1061/(ASCE)SU.1943-5428.0000169 10.1201/9781439833711 10.1016/S0166-2481(08)00005-6 10.5194/hess-11-1481-2007 10.1098/rspa.2011.0711 10.5194/nhess-12-3075-2012 10.3390/w10101308 10.1007/s10596-014-9428-9 10.1029/2007JF000867 10.1016/j.cageo.2007.12.003 10.5194/nhess-6-155-2006 10.1177/0309133311409086 10.14358/PERS.72.3.249 10.1111/jfr3.12550 10.1093/oso/9780195115383.001.0001 10.3189/S0260305500011551 10.1017/CBO9781139150019 10.1002/nag.705 10.1016/j.envsoft.2005.02.003 10.1016/j.isprsjprs.2018.02.017 10.1007/s12205-009-0281-7 10.1016/j.jag.2004.01.006 10.1145/1999320.1999327 10.1139/cgj-2016-0104 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/nhess-20-1441-2020 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection (via ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1684-9981 |
EndPage | 1461 |
ExternalDocumentID | oai_doaj_org_article_b2d7842af81d46ec89777dddcd5f0d5d A624930788 10_5194_nhess_20_1441_2020 |
GroupedDBID | 123 29M 2WC 2XV 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c486t-d99248a3a5f6d298c84869469c6b1d497f4b8487d5d63bc9a18fddbbe026ae563 |
IEDL.DBID | DOA |
ISSN | 1684-9981 1561-8633 |
IngestDate | Wed Aug 27 01:22:40 EDT 2025 Fri Jul 25 19:02:04 EDT 2025 Tue Jun 17 21:28:27 EDT 2025 Tue Jun 10 20:48:29 EDT 2025 Fri Jun 27 03:43:15 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 02:46:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-d99248a3a5f6d298c84869469c6b1d497f4b8487d5d63bc9a18fddbbe026ae563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/b2d7842af81d46ec89777dddcd5f0d5d |
PQID | 2414562887 |
PQPubID | 105722 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b2d7842af81d46ec89777dddcd5f0d5d proquest_journals_2414562887 gale_infotracmisc_A624930788 gale_infotracacademiconefile_A624930788 gale_incontextgauss_ISR_A624930788 crossref_citationtrail_10_5194_nhess_20_1441_2020 crossref_primary_10_5194_nhess_20_1441_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-26 |
PublicationDateYYYYMMDD | 2020-05-26 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Natural hazards and earth system sciences |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref55 doi: 10.1016/j.geomorph.2011.03.012 – ident: ref1 – ident: ref37 doi: 10.1007/s40808-015-0069-3 – ident: ref51 doi: 10.1016/j.jhydrol.2015.08.046 – ident: ref3 doi: 10.1017/S002214300000174X – ident: ref41 doi: 10.1063/1.1614253 – ident: ref56 doi: 10.1016/j.enggeo.2018.01.011 – ident: ref6 doi: 10.1016/j.coldregions.2010.04.005 – ident: ref32 doi: 10.4236/ars.2018.72010 – ident: ref27 doi: 10.1016/j.gsf.2018.05.004 – ident: ref2 doi: 10.13031/2013.41514 – ident: ref18 doi: 10.14358/PERS.72.3.279 – ident: ref57 – ident: ref40 doi: 10.1016/j.ejrs.2015.12.004 – ident: ref36 – ident: ref49 doi: 10.1007/s11440-011-0140-9 – ident: ref16 doi: 10.3389/feart.2018.00233 – ident: ref10 doi: 10.1016/j.asej.2017.01.007 – ident: ref19 doi: 10.1016/S0022-1694(00)00229-8 – ident: ref33 doi: 10.3390/ijgi8030108 – ident: ref50 – ident: ref13 doi: 10.5194/nhess-18-2161-2018 – ident: ref53 doi: 10.14358/PERS.72.9.1081 – ident: ref12 doi: 10.5194/nhess-15-2569-2015 – ident: ref42 doi: 10.1080/13658816.2013.770515 – ident: ref11 doi: 10.1191/0309133306pp492ra – ident: ref39 – ident: ref4 doi: 10.1016/j.rse.2006.07.011 – ident: ref5 doi: 10.1061/(ASCE)SU.1943-5428.0000169 – ident: ref25 – ident: ref22 doi: 10.1201/9781439833711 – ident: ref48 doi: 10.1016/S0166-2481(08)00005-6 – ident: ref52 doi: 10.5194/hess-11-1481-2007 – ident: ref47 doi: 10.1098/rspa.2011.0711 – ident: ref23 doi: 10.5194/nhess-12-3075-2012 – ident: ref24 doi: 10.3390/w10101308 – ident: ref29 doi: 10.1007/s10596-014-9428-9 – ident: ref9 doi: 10.1029/2007JF000867 – ident: ref21 doi: 10.1016/j.cageo.2007.12.003 – ident: ref34 doi: 10.5194/nhess-6-155-2006 – ident: ref14 doi: 10.1177/0309133311409086 – ident: ref45 doi: 10.14358/PERS.72.3.249 – ident: ref7 doi: 10.1111/jfr3.12550 – ident: ref15 doi: 10.1093/oso/9780195115383.001.0001 – ident: ref46 doi: 10.3189/S0260305500011551 – ident: ref44 doi: 10.1017/CBO9781139150019 – ident: ref28 – ident: ref38 doi: 10.1002/nag.705 – ident: ref43 doi: 10.1016/j.envsoft.2005.02.003 – ident: ref8 – ident: ref54 doi: 10.1016/j.isprsjprs.2018.02.017 – ident: ref20 doi: 10.1007/s12205-009-0281-7 – ident: ref17 doi: 10.1016/j.jag.2004.01.006 – ident: ref26 doi: 10.1145/1999320.1999327 – ident: ref35 – ident: ref30 doi: 10.1139/cgj-2016-0104 – ident: ref31 |
SSID | ssj0029540 |
Score | 2.3086367 |
Snippet | Digital elevation models (DEMs) representing topography are an essential input for computational models capable of simulating the run-out of flow-like... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1441 |
SubjectTerms | Accuracy Analysis Computer applications Computer simulation Data processing Digital Elevation Models Earthquakes Errors Extreme values Feasibility studies Flow (Dynamics) Landslides Landslides & mudslides Mathematical models Methods Prejudice Propagation Random variables Rheology Simulation Topography Uncertainty Variability Workflow Workflow software |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELVKe4AL4lMECrIQEgdktdkPr_eAUItaFSQiVFqpN-O1182qYTdtElD_PW-83ogc6CmKd6JkxuPxvNgzj7F3PksVcM9YGK9KkVUGSyrPpEhzIin30phQJPZtIk_Os68X-cUWmwy1MHStcoiJIVC7ztJ_5HvYaShZx5r4NL8WxBpFp6sDhYaJ1AruY2gxdo_tICQr-P3O4dHk--kaguF3hBJJZA1CyTTty2iQxWR77RShBU4jCGLglRjA_9mqQkf__8XtsBkdP2IPYxbJD_ppf8y26vYJux8Jzae3T9nPs27ev2ksx9bVH_wvb_n1yvTXg8KMcKSs3M-6P2LWXNU81P3OGlfzQJCz4L8bw5Ed2qmhds580fyKbF-LZ-z8-Ojs84mIZArCZkouhSuBtJRJTe6lS0plFYZLgGMrq7HLysJnFYYKlzuZVrY0Y-Wdq6oaIM3UuUyfs-22a-sXjNcYBRAqfO5sNt73yHyTkhqKlnRsU5gRGw920zZ2GifCi5kG4iBb62BrnQB_wNaabD1iH9afmfd9Nu6UPqTpWEtSj-ww0N1c6rjkdJW4QmUJnBD6ydoqpLqFc8663O9DzRF7S5OpqQtGS9dsLs0K3_Plx6k-kECliH5Kjdj7KOQ76GBNrFqAJahx1obk7oYklqndfDz4jI5hAjqtnfrl3Y9fsQekN11bSOQu217erOrXyIaW1Zvo4n8B0Q0Ihg priority: 102 providerName: ProQuest |
Title | Topographic uncertainty quantification for flow-like landslide models via stochastic simulations |
URI | https://www.proquest.com/docview/2414562887 https://doaj.org/article/b2d7842af81d46ec89777dddcd5f0d5d |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIqFsrIQEgcUdZM4jnNsUZeCRIVKK_Vm_IjZiCVb2F1Q_z3fON6qewAunKI4k4c_j8fzKZ4Zxl4GUSrwnjwzQTWZsAZTqhIyKysqUh6kMTFI7MOxPDoT78-r82ulvmhP2JAeeABuzxa-VqLAo3IvZOsUHJbae-98FSa-8mR9J81kQ6YS1cL7YigkvINMybIcwmXgrYi9fgYTAuXIiErgSJW-ry1JMXP_n-xzXHSm99jd5C3y_eEr77Mbbf-A3U6Fy2eXD9nn08XFcNI5jiVq-MG_uuTf12bYBhSR53BNeZgvfmXz7mvLY3zvvPMtj4VwlvxnZzi8QDczlLaZL7tvqarX8hE7mx6evjnKUtGEzAklV5lvwKiUKU0VpC8a5RSaG5BgJy0QbOogLJpqQCdL6xqTq-C9tS3ImGkrWT5mO_2ib58w3qIVhKcOlXcin2AEbNFQ4tCGfs_UZsTyDW7apYziVNhirsEsCGsdsdYFeAaw1oT1iL2-uudiyKfxV-kDGo4rScqFHRugITppiP6XhozYCxpMTdkuetpO88Ws8Z53n070vgT7hJVTasReJaGwQB-cSdEJQIISZG1J7m5JYjq67csbndHJHKBPIiemCYP-9H_06Bm7Q-jQJoZC7rKd1Y91-xy-0cqO2U01fTtmtw4Ojz-ejOOk-A3vZw5F |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9MwGLbGdhgXvtEKAywE4oCyLV-Oc-CwAVXL1klAJ3bzHDteo5VkrC1T-Sv8FX4cjxOnokjsNolTVcdt9DrP-_G07wchL0wUcvAe35OGp16USahUHDEvjO2QcsOkrIvEBoesdxR9OI6PV8jPthbGplW2NrE21LpS9jfybXgaG6xDJ1wG5X4-vwQ_m7zpv8PDfBkE3ffDtz3PjRDwVMTZ1NMp-AWXoYwN00HKFcdyCkqoWObrKE1MlGEp0bFmYaZS6XOjdZbloCYyj1mI771B1gBqDiVa2-sOPn5Z8DkIVddbIgTxOAvDpiYHIVG0XY5gp4BAz_IVvNpx4n_4vXo8wL-cQO3ZurfJr_ZMmoSWs63ZNNtSP_5qF_mfHtodcstF1HS3UYG7ZCUv75F1N9x9NL9PTobVefOmUBRuvEmCmM7pt5lsUqVqdFKE79SMq0tvXJzltK6BHhc6p_WwoAn9XkiKSFmNpG1tTSfFVzf5bPKAHF2LgA_JalmV-QahOVZBChMTaxX5OwYsIEhtc9XU_oWVyA7x28culOu6bod_jAXYl4WKqKEiAnAxQEVYqHTI68VnzpueI1fu3rNoWuy0_cLrheriVDjzI7JAJzwKoJCQj-WKI-xPtNZKx2YHYnbIc4tFYTuClDbl6FTOcJ_-509il4GhwxNw3iGv3CZTQQYlXQUHTsI2EVvaubm0EyZLLV9u4SqcyYRMC6w-uvryM7LeGw4OxEH_cP8xuWnPwKZzBGyTrE4vZvkTRInT7KnTVkpOrhvrvwF7QHR5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVAIuvBGBUlYIxAG5afxYrw8ItZSoobTi0YretutdbxM12GnjUIWfxl_hz3TGXkcEid564BRlPYk1m29m54vnAfDChoFA3tP1lBWJF6YKTSoKuRdENKTccqWqIrHdPb59EH44jA6X4FdTC0NplY1PrBy1KTT9R97Bk4aCdbSJjnVpEZ-2em_Hpx5NkKInrc04jRoiO9nsHOnb5E1_C3_rl77fe7__bttzEwY8HQpeeiZB-iFUoCLLjZ8ILXA5Qcaoedo1YRLbMMWl2ESGB6lOVFdYY9I0Q-aisogH-L3XYFlwtIsWLG_2dj9_m9M91Lkqx8QIxRM8COqSHYyYwk4-QDeGAPWIzuArTRv_41ispgf864yoDr7ebfjdbFmd73KyNi3TNf3zr26S_-ee3oFbLh5nG7UB3YWlLL8HN9xo-MHsPhztF-P6zVAzDALqFIpyxk6nqk60qrDNMPhndlSce6PhScaqCurR0GSsGjU0YT-GimGcrQeKGmOzyfC7m5s2eQAHV6LgQ2jlRZ49ApbhKlLK2EZGh911ixzCT6g1a0IPwGLVhm6DCqldz3YaHTKSyN0ISbJCkvSRySGSJCGpDa_nnxnXHUsuld4ksM0lqdt4tVCcHUvnvGTqm1iEPpoz6sczLZA0xMYYbSK7jmq24TlBVVI_kZxQdKymeJ_-1y9ygyO_x3NEiDa8ckK2QB20cvUfuBPUgmxBcmVBEh2eXrzcoFk6h4s6zaH8-PLLz-A6Ylx-7O_tPIGbtAWUC-LzFWiVZ9PsKYaYZbrqbJnB0VVD_QJ-sIxK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topographic+uncertainty+quantification+for+flow-like+landslide+models+via+stochastic+simulations&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Zhao%2C+Hu&rft.au=Kowalski%2C+Julia&rft.date=2020-05-26&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.volume=20&rft.issue=5&rft.spage=1441&rft_id=info:doi/10.5194%2Fnhess-20-1441-2020&rft.externalDocID=A624930788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |