Differential Recruitment of WOX Transcription Factors for Lateral Development and Organ Fusion in Petunia and Arabidopsis

Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 21; no. 8; pp. 2269 - 2283
Main Authors Vandenbussche, Michiel, Horstman, Anneke, Zethof, Jan, Koes, Ronald, Rijpkema, Anneke S, Gerats, Tom
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.08.2009
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
DOI10.1105/tpc.109.065862

Cover

Loading…
Abstract Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
AbstractList Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Petal fusion in petunia (Petunia × hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-reiaXed homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Petal fusion in petunia (Petunia × hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis  wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Petal fusion in petunia ( Petunia × hybrida ) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST ( MAW ) and CHORIPETALA SUZANNE ( CHSU ) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX ( WUSCHEL -related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER ( PRS ) in Arabidopsis thaliana , indicating a conserved role for MAW / WOX1 / PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Author Vandenbussche, Michiel
Rijpkema, Anneke S
Koes, Ronald
Horstman, Anneke
Gerats, Tom
Zethof, Jan
AuthorAffiliation a Department of Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 ED, Nijmegen, The Netherlands
b Department of Genetics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
AuthorAffiliation_xml – name: b Department of Genetics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
– name: a Department of Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 ED, Nijmegen, The Netherlands
Author_xml – sequence: 1
  fullname: Vandenbussche, Michiel
– sequence: 2
  fullname: Horstman, Anneke
– sequence: 3
  fullname: Zethof, Jan
– sequence: 4
  fullname: Koes, Ronald
– sequence: 5
  fullname: Rijpkema, Anneke S
– sequence: 6
  fullname: Gerats, Tom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19717616$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEi-gFXbsCKA5wS_O31BalqKSBFCoJW9GZNbG9wtLEXe7dS_z1Ot0RQCU4e6703ejPzjquDEIOrqucYzTFG_N3QmzlGao4EbwR5VB1hTsmMqOb6oNSIoRkTHB9WxzlvEEJYYvWkOsRKYimwOKpuz33buuTC4KGrvzqTRj9sy7eObf19eV1fJgjZJN8PPob6AswQU67bmOoFDC4V0bm7cV3s70QQbL1MayjMMe8EPtRf3DAGD3fYaYKVt7HPPj-tHrfQZffs_j2pri4-XJ59mi2WHz-fnS5mhjVimFlCDAHkMHdkhaG1VgCyDq8YSCOkpaCIbYVqKAVRZqdWlhVYQ5TiwraMnlTvp779uNo6a4rN4lr3yW8h3eoIXv-NBP9Dr-ONJpJjxWVp8Pa-QYo_R5cHvfXZuK6D4OKYtaQMScZxU5hv_stkgiGF-M7T6wfETRxTKGvQBDey4ZSrQnr5p_G949_HKwQ2EUyKOSfXauMH2N2pzOE7jZHeZUSXjJRa6SkjRTZ_INt3_pfgxSTY5HL8PZshTmXJVMFfTXgLUcM6-ayvvhGEKcKiEZwQ-gvdwNLT
CitedBy_id crossref_primary_10_1016_j_cub_2017_08_042
crossref_primary_10_3390_plants8070243
crossref_primary_10_1007_s11103_019_00861_7
crossref_primary_10_17660_ActaHortic_2017_1155_5
crossref_primary_10_3390_ijms25126643
crossref_primary_10_1270_jsbbs_16019
crossref_primary_10_1111_ppl_12349
crossref_primary_10_1016_j_semcdb_2017_09_028
crossref_primary_10_1093_aob_mcu123
crossref_primary_10_1134_S002689332102031X
crossref_primary_10_1093_jxb_erw073
crossref_primary_10_1111_tpj_14982
crossref_primary_10_1111_nph_16934
crossref_primary_10_3389_fgene_2022_878554
crossref_primary_10_1139_gen_2020_0029
crossref_primary_10_1093_plcell_koac188
crossref_primary_10_1038_ncomms7450
crossref_primary_10_1093_jxb_eraa543
crossref_primary_10_1080_07352689_2014_917531
crossref_primary_10_1186_s12870_023_04099_w
crossref_primary_10_1016_j_pbi_2013_11_005
crossref_primary_10_1093_aobpla_plac019
crossref_primary_10_1093_jxb_erad251
crossref_primary_10_1186_s12870_019_1892_x
crossref_primary_10_1016_j_cj_2024_08_005
crossref_primary_10_2503_jjshs1_CH_030
crossref_primary_10_1093_hr_uhae163
crossref_primary_10_1155_2014_534140
crossref_primary_10_1111_jipb_13084
crossref_primary_10_1016_j_plantsci_2024_112379
crossref_primary_10_1016_j_plantsci_2024_112259
crossref_primary_10_1186_1471_2229_13_89
crossref_primary_10_3389_fpls_2020_01243
crossref_primary_10_5511_plantbiotechnology_18_0427a
crossref_primary_10_1016_j_molp_2018_06_006
crossref_primary_10_1098_rsob_190057
crossref_primary_10_1093_jxb_erz354
crossref_primary_10_1016_j_plaphy_2017_12_031
crossref_primary_10_1107_S205979832100632X
crossref_primary_10_1007_s00427_015_0506_3
crossref_primary_10_48130_vegres_0024_0038
crossref_primary_10_3389_fpls_2022_1081280
crossref_primary_10_3390_ijms18081782
crossref_primary_10_1093_jxb_eraa574
crossref_primary_10_1007_s11738_022_03504_5
crossref_primary_10_1007_s00468_019_01847_0
crossref_primary_10_2503_jjshs1_81_72
crossref_primary_10_7717_peerj_12348
crossref_primary_10_1016_j_pbi_2018_08_002
crossref_primary_10_1093_jxb_ery346
crossref_primary_10_3390_biom10050739
crossref_primary_10_1016_j_plantsci_2020_110523
crossref_primary_10_1016_j_plgene_2018_04_004
crossref_primary_10_1093_aob_mcv119
crossref_primary_10_1111_pbi_12759
crossref_primary_10_3390_plants2020174
crossref_primary_10_1093_jxb_erq349
crossref_primary_10_3389_fpls_2016_00094
crossref_primary_10_3390_plants8100433
crossref_primary_10_1111_ppl_13734
crossref_primary_10_3390_ijms241512326
crossref_primary_10_1016_j_jare_2022_12_010
crossref_primary_10_1111_j_1469_8137_2010_03336_x
crossref_primary_10_1590_1678_4685_gmb_2016_0073
crossref_primary_10_1134_S2079059717070085
crossref_primary_10_1093_pcp_pcs074
crossref_primary_10_1104_pp_109_149641
crossref_primary_10_1111_nph_14282
crossref_primary_10_1126_science_aay5433
crossref_primary_10_4161_psb_21959
crossref_primary_10_1111_nph_15371
crossref_primary_10_1038_s41438_020_00404_y
crossref_primary_10_1093_jxb_eru153
crossref_primary_10_1093_plcell_koad258
crossref_primary_10_1111_nph_13198
crossref_primary_10_1371_journal_pone_0178424
crossref_primary_10_1126_science_abf9407
crossref_primary_10_3390_ijms24043352
crossref_primary_10_1016_j_cub_2020_09_037
crossref_primary_10_3389_fpls_2024_1356750
crossref_primary_10_1016_j_plaphy_2022_10_027
crossref_primary_10_1111_nph_13517
crossref_primary_10_1007_s11240_016_1071_9
crossref_primary_10_1016_j_gene_2020_144942
crossref_primary_10_1242_dev_193623
crossref_primary_10_1126_sciadv_abn0368
crossref_primary_10_1002_dvg_22728
crossref_primary_10_1093_pcp_pcx196
crossref_primary_10_1111_jipb_12853
crossref_primary_10_1111_nph_17955
crossref_primary_10_3390_plants13213108
crossref_primary_10_1186_s12864_025_11271_z
crossref_primary_10_1042_BST20220678
crossref_primary_10_1093_jxb_eraa599
crossref_primary_10_1007_s00709_022_01790_x
crossref_primary_10_1093_jxb_erac092
crossref_primary_10_1016_j_scienta_2011_11_013
crossref_primary_10_1111_jse_12259
crossref_primary_10_1093_jxb_ery329
crossref_primary_10_1007_s12155_014_9565_y
crossref_primary_10_3389_fpls_2016_00072
crossref_primary_10_5897_AJB2014_14313
crossref_primary_10_1134_S1022795415030084
crossref_primary_10_1016_j_plgene_2025_100497
crossref_primary_10_3390_ijms23105843
crossref_primary_10_4161_psb_6_11_17761
crossref_primary_10_3390_ijms252313031
crossref_primary_10_1111_nph_17702
crossref_primary_10_3389_fpls_2022_1024515
crossref_primary_10_1105_tpc_111_085340
crossref_primary_10_1111_nph_15921
crossref_primary_10_1371_journal_pgen_1007913
crossref_primary_10_3390_f13010122
crossref_primary_10_1146_annurev_ecolsys_011720_124511
crossref_primary_10_1242_dev_161646
crossref_primary_10_1371_journal_pone_0071562
crossref_primary_10_1105_tpc_110_076083
crossref_primary_10_1111_tpj_16333
crossref_primary_10_3390_ijms20061276
crossref_primary_10_1105_tpc_18_00471
crossref_primary_10_1186_2041_9139_5_47
crossref_primary_10_1016_j_cub_2022_09_055
crossref_primary_10_1073_pnas_1406446111
crossref_primary_10_4161_15592324_2014_993291
crossref_primary_10_3390_plants13050720
crossref_primary_10_1007_s12298_022_01208_1
crossref_primary_10_1186_s12870_023_04476_5
crossref_primary_10_3390_f15030442
crossref_primary_10_3389_fpls_2020_568730
crossref_primary_10_1093_mp_sss067
crossref_primary_10_1002_fedr_201400050
crossref_primary_10_3389_fgene_2020_00773
crossref_primary_10_1007_s13562_021_00723_8
crossref_primary_10_1105_tpc_110_076927
crossref_primary_10_1146_annurev_arplant_080720_101613
crossref_primary_10_3390_ijms241814216
crossref_primary_10_1111_tpj_12010
crossref_primary_10_1007_s12042_017_9192_9
crossref_primary_10_1111_ppl_14212
crossref_primary_10_1105_tpc_113_121947
crossref_primary_10_1016_j_gene_2022_146691
crossref_primary_10_1007_s44281_023_00023_2
crossref_primary_10_1134_S1021443718010156
crossref_primary_10_3390_ijms19113470
crossref_primary_10_1111_j_1744_7909_2011_01054_x
crossref_primary_10_1111_nph_12231
crossref_primary_10_1073_pnas_1215376110
crossref_primary_10_1105_tpc_112_103432
crossref_primary_10_1111_tpj_12743
crossref_primary_10_1093_aob_mcu224
crossref_primary_10_3390_ijms140713796
crossref_primary_10_1111_tpj_13670
crossref_primary_10_1371_journal_pgen_1006649
crossref_primary_10_3390_genes12030438
crossref_primary_10_1186_s13227_021_00184_z
crossref_primary_10_1007_s10681_018_2323_z
crossref_primary_10_3389_fpls_2021_749989
crossref_primary_10_1016_j_cub_2020_10_041
crossref_primary_10_1186_1939_8433_5_30
crossref_primary_10_1146_annurev_phyto_082718_100228
crossref_primary_10_1111_plb_12493
crossref_primary_10_1111_tpj_16558
crossref_primary_10_1186_s12864_024_10708_1
crossref_primary_10_4161_psb_24464
crossref_primary_10_1105_tpc_110_075853
crossref_primary_10_1186_s12864_023_09772_w
crossref_primary_10_7554_eLife_15023
crossref_primary_10_4161_psb_5_7_12104
crossref_primary_10_1016_j_compeleceng_2011_03_007
crossref_primary_10_1111_nph_12343
crossref_primary_10_1093_plcell_koac118
crossref_primary_10_3390_genes13071203
crossref_primary_10_1038_srep45670
crossref_primary_10_1371_journal_pone_0223521
Cites_doi 10.1242/dev.016469
10.1242/dev.125.15.2935
10.1093/pcp/pcf077
10.1016/S0092-8674(00)81703-1
10.1101/gad.230702
10.1093/nar/gki937
10.1242/dev.01654
10.1105/tpc.106.042937
10.1101/gad.931001
10.1186/1471-2148-8-291
10.1038/35079629
10.1016/j.cub.2006.03.064
10.1023/A:1006440221718
10.1105/tpc.104.026161
10.1073/pnas.92.18.8149
10.1105/tpc.105.033449
10.1006/anbo.2001.1485
10.1093/nar/22.22.4673
10.1242/dev.126.18.4117
10.1105/tpc.105.034876
10.1038/nature06148
10.1105/tpc.105.039107
10.1126/science.1086391
10.1038/35079635
10.1105/tpc.106.048694
10.1016/j.ydbio.2007.07.019
10.1242/dev.01164
10.1105/tpc.019166
10.1111/j.1365-313X.2008.03482.x
10.1038/nature03895
10.1371/journal.pone.0001326
10.1016/S1360-1385(02)02251-3
10.1038/nature05703
10.1093/nar/gkg642
10.1186/gb-2004-5-7-r46
10.1016/j.cub.2004.12.079
10.1242/dev.00963
10.1093/genetics/155.3.1379
10.1038/nature07723
10.1104/pp.010708
10.1016/j.cub.2003.09.035
10.1242/dev.017913
10.1242/dev.122.1.87
10.1093/molbev/msm182
10.1016/j.devcel.2008.08.007
10.1534/genetics.104.031138
10.1073/pnas.0803997105
10.1016/j.pbi.2006.11.013
10.1093/molbev/msl125
10.1055/s-2001-16468
10.1098/rspb.2003.2544
10.1101/gad.13.9.1079
10.1111/j.1438-8677.1983.tb01681.x
10.1016/j.devcel.2008.03.008
10.1046/j.1365-313X.1998.00004.x
10.1242/dev.01186
10.1105/tpc.014969
10.1046/j.1365-313X.1994.6040597.x
10.1105/tpc.017376
10.1093/pcp/pcj057
ContentType Journal Article
Copyright Copyright 2009 American Society of Plant Biologists
Copyright American Society of Plant Biologists Aug 2009
Copyright © 2009, American Society of Plant Biologists
Copyright_xml – notice: Copyright 2009 American Society of Plant Biologists
– notice: Copyright American Society of Plant Biologists Aug 2009
– notice: Copyright © 2009, American Society of Plant Biologists
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7QO
7TM
7X2
7X7
7XB
88A
88E
88I
8AF
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
S0X
7S9
L.6
7X8
5PM
DOI 10.1105/tpc.109.065862
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
SIRS Editorial
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
AGRICOLA
Agricultural Science Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2283
ExternalDocumentID PMC2751957
1878338031
19717616
10_1105_tpc_109_065862
40537000
US201301686522
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2FS
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFFDN
AFFNX
AFFZL
AFGWE
AFKRA
AFMIJ
AFRAH
AFYAG
AGCDD
AGUYK
AHMBA
AICQM
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
F8P
F9R
FBQ
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GTFYD
GX1
HCIFZ
HGD
HMCUK
HTVGU
H~9
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJBYB
AJDVS
APJGH
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
4T-
7QO
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7S9
L.6
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c486t-d22c2a0e15e2b1afdd6a0de1b4a7c67d3a92df69833a65323d7153dc29956df43
IEDL.DBID 7X7
ISSN 1040-4651
IngestDate Thu Aug 21 18:05:39 EDT 2025
Thu Jul 10 22:59:52 EDT 2025
Sun Aug 24 03:30:46 EDT 2025
Sat Aug 23 13:01:22 EDT 2025
Mon Jul 21 05:50:09 EDT 2025
Tue Jul 01 02:52:47 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Fri Jun 20 02:31:13 EDT 2025
Wed Dec 27 19:17:00 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-d22c2a0e15e2b1afdd6a0de1b4a7c67d3a92df69833a65323d7153dc29956df43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
www.plantcell.org/cgi/doi/10.1105/tpc.109.065862
Online version contains Web-only data.
Address correspondence to m.vandenbussche@science.ru.nl.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Michiel Vandenbussche (m.vandenbussche@science.ru.nl).
PMID 19717616
PQID 218785359
PQPubID 37014
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2751957
proquest_miscellaneous_734074518
proquest_miscellaneous_46409054
proquest_journals_218785359
pubmed_primary_19717616
crossref_citationtrail_10_1105_tpc_109_065862
crossref_primary_10_1105_tpc_109_065862
jstor_primary_40537000
fao_agris_US201301686522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rockville
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2009
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References (2021040621043104500_b19) 2001; 411
(2021040621043104500_b41) 2006; 18
(2021040621043104500_b37) 2005; 17
(2021040621043104500_b40) 2008; 15
(2021040621043104500_b59) 2008; 105
(2021040621043104500_b1) 2003; 301
(2021040621043104500_b51) 1998; 13
(2021040621043104500_b49) 1994; 22
(2021040621043104500_b28) 1998; 95
(2021040621043104500_b15) 2002; 43
(2021040621043104500_b35) 2005; 132
(2021040621043104500_b14) 2005; 436
(2021040621043104500_b31) 2006; 23
(2021040621043104500_b32) 2004; 131
(2021040621043104500_b43) 1999; 13
(2021040621043104500_b12) 1999; 41
(2021040621043104500_b13) 2007; 19
(2021040621043104500_b42) 2007; 446
(2021040621043104500_b47) 2002; 16
(2021040621043104500_b8) 2006; 16
(2021040621043104500_b30) 2001; 411
(2021040621043104500_b6) 2003; 13
(2021040621043104500_b48) 2004; 168
(2021040621043104500_b34) 2004; 271
(2021040621043104500_b62) 2006; 47
(2021040621043104500_b11) 2004; 131
(2021040621043104500_b18) 2002; 7
(2021040621043104500_b52) 2000; 43
(2021040621043104500_b57) 2007; 2
(2021040621043104500_b53) 2003; 31
(2021040621043104500_b24) 2005; 17
(2021040621043104500_b55) 2003; 15
(2021040621043104500_b23) 1996; 122
(2021040621043104500_b36) 2009; 457
(2021040621043104500_b4) 1994; 6
(2021040621043104500_b3) 2008; 14
(2021040621043104500_b20) 2007; 10
(2021040621043104500_b50) 1994; 10
(2021040621043104500_b63) 2008; 135
(2021040621043104500_b26) 2005; 33
(2021040621043104500_b25) 2003; 15
(2021040621043104500_b29) 1998; 125
(2021040621043104500_b38) 2008; 135
(2021040621043104500_b39) 2005; 17
(2021040621043104500_b7) 2004; 131
(2021040621043104500_b9) 2001; 127
(2021040621043104500_b21) 2006; 18
(2021040621043104500_b5) 2008; 8
(2021040621043104500_b54) 2004; 16
(2021040621043104500_b22) 1995; 92
(2021040621043104500_b17) 2004; 5
(2021040621043104500_b46) 2001; 3
(2021040621043104500_b58) 1983; 32
(2021040621043104500_b27) 2001; 15
(2021040621043104500_b33) 2007; 24
(2021040621043104500_b56) 2008; 54
(2021040621043104500_b61) 2007; 309
(2021040621043104500_b45) 1999; 126
(2021040621043104500_b2) 2001; 88
(2021040621043104500_b10) 1990; 2
(2021040621043104500_b16) 2007; 449
(2021040621043104500_b44) 2000; 155
(2021040621043104500_b60) 2005; 15
12040093 - Plant Cell Physiol. 2002 May;43(5):467-78
15659481 - Development. 2005 Feb;132(4):841-9
11743076 - Plant Physiol. 2001 Dec;127(4):1375-9
10880496 - Genetics. 2000 Jul;155(3):1379-89
14508003 - Plant Cell. 2003 Oct;15(10):2241-52
16314312 - Nucleic Acids Res. 2005;33(20):6494-506
17721507 - Nature. 2007 Sep 27;449(7161):463-7
16699177 - Plant Cell Physiol. 2006 Jul;47(7):853-63
10323860 - Genes Dev. 1999 May 1;13(9):1079-88
18950478 - BMC Evol Biol. 2008;8:291
12893945 - Science. 2003 Aug 1;301(5633):653-7
18804438 - Dev Cell. 2008 Sep;15(3):437-47
16987950 - Mol Biol Evol. 2006 Dec;23(12):2492-504
11395775 - Nature. 2001 Jun 7;411(6838):706-9
18094749 - PLoS One. 2007;2(12):e1326
17429400 - Nature. 2007 Apr 12;446(7137):811-4
14711878 - Development. 2004 Feb;131(3):657-68
1967052 - Plant Cell. 1990 Nov;2(11):1121-8
16006579 - Plant Cell. 2005 Aug;17(8):2157-71
15579709 - Genetics. 2004 Nov;168(3):1585-99
16682355 - Curr Biol. 2006 May 9;16(9):933-8
8565856 - Development. 1996 Jan;122(1):87-96
14576291 - Plant Cell. 2003 Nov;15(11):2680-93
19189423 - Nature. 2009 Jan 29;457(7229):551-6
16844905 - Plant Cell. 2006 Aug;18(8):1819-32
11395776 - Nature. 2001 Jun 7;411(6838):709-13
17768306 - Mol Biol Evol. 2007 Nov;24(11):2474-84
15753038 - Curr Biol. 2005 Mar 8;15(5):436-40
18305007 - Development. 2008 Apr;135(7):1325-34
9655815 - Development. 1998 Aug;125(15):2935-42
17337627 - Plant Cell. 2007 Mar;19(3):779-90
11052201 - Plant Mol Biol. 2000 Jul;43(4):495-502
9865698 - Cell. 1998 Dec 11;95(6):805-15
10457020 - Development. 1999 Sep;126(18):4117-28
15169755 - Development. 2004 Jun;131(12):2827-39
15058443 - Proc Biol Sci. 2004 Feb 7;271(1536):311-6
14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74
15169760 - Development. 2004 Jun;131(12):2997-3006
18849474 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16392-7
12208843 - Genes Dev. 2002 Sep 1;16(17):2213-8
16461579 - Plant Cell. 2006 Mar;18(3):560-73
18305008 - Development. 2008 Apr;135(7):1315-24
18539115 - Dev Cell. 2008 Jun;14(6):867-76
16199616 - Plant Cell. 2005 Nov;17(11):2899-910
11992820 - Trends Plant Sci. 2002 May;7(5):193-5
18346192 - Plant J. 2008 Jun;54(6):1105-14
7828077 - Comput Appl Biosci. 1994 Sep;10(5):569-70
17655648 - Plant J. 1998 Jan;13(1):121-9
7667260 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8149-53
15598805 - Plant Cell. 2005 Jan;17(1):61-76
15239831 - Genome Biol. 2004;5(7):R46
14973163 - Plant Cell. 2004 Mar;16(3):741-54
12888499 - Nucleic Acids Res. 2003 Aug 1;31(15):4401-9
17140842 - Curr Opin Plant Biol. 2007 Feb;10(1):13-20
11751640 - Genes Dev. 2001 Dec 15;15(24):3355-64
17706632 - Dev Biol. 2007 Sep 15;309(2):306-16
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
16100779 - Nature. 2005 Aug 11;436(7052):793-800
References_xml – volume: 41
  start-page: 95
  year: 1999
  ident: 2021040621043104500_b12
  publication-title: Nucleic Acids Symp. Ser.
– volume: 135
  start-page: 1315
  year: 2008
  ident: 2021040621043104500_b38
  publication-title: Development
  doi: 10.1242/dev.016469
– volume: 125
  start-page: 2935
  year: 1998
  ident: 2021040621043104500_b29
  publication-title: Development
  doi: 10.1242/dev.125.15.2935
– volume: 43
  start-page: 467
  year: 2002
  ident: 2021040621043104500_b15
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcf077
– volume: 95
  start-page: 805
  year: 1998
  ident: 2021040621043104500_b28
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81703-1
– volume: 16
  start-page: 2213
  year: 2002
  ident: 2021040621043104500_b47
  publication-title: Genes Dev.
  doi: 10.1101/gad.230702
– volume: 33
  start-page: 6494
  year: 2005
  ident: 2021040621043104500_b26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki937
– volume: 132
  start-page: 841
  year: 2005
  ident: 2021040621043104500_b35
  publication-title: Development
  doi: 10.1242/dev.01654
– volume: 18
  start-page: 1819
  year: 2006
  ident: 2021040621043104500_b41
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.042937
– volume: 15
  start-page: 3355
  year: 2001
  ident: 2021040621043104500_b27
  publication-title: Genes Dev.
  doi: 10.1101/gad.931001
– volume: 8
  start-page: 291
  year: 2008
  ident: 2021040621043104500_b5
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-8-291
– volume: 411
  start-page: 706
  year: 2001
  ident: 2021040621043104500_b19
  publication-title: Nature
  doi: 10.1038/35079629
– volume: 16
  start-page: 933
  year: 2006
  ident: 2021040621043104500_b8
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.03.064
– volume: 43
  start-page: 495
  year: 2000
  ident: 2021040621043104500_b52
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1006440221718
– volume: 2
  start-page: 1121
  year: 1990
  ident: 2021040621043104500_b10
  publication-title: Plant Cell
– volume: 17
  start-page: 61
  year: 2005
  ident: 2021040621043104500_b39
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026161
– volume: 92
  start-page: 8149
  year: 1995
  ident: 2021040621043104500_b22
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.18.8149
– volume: 17
  start-page: 2157
  year: 2005
  ident: 2021040621043104500_b24
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033449
– volume: 88
  start-page: 403
  year: 2001
  ident: 2021040621043104500_b2
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1006/anbo.2001.1485
– volume: 22
  start-page: 4673
  year: 1994
  ident: 2021040621043104500_b49
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 126
  start-page: 4117
  year: 1999
  ident: 2021040621043104500_b45
  publication-title: Development
  doi: 10.1242/dev.126.18.4117
– volume: 17
  start-page: 2899
  year: 2005
  ident: 2021040621043104500_b37
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.034876
– volume: 449
  start-page: 463
  year: 2007
  ident: 2021040621043104500_b16
  publication-title: Nature
  doi: 10.1038/nature06148
– volume: 18
  start-page: 560
  year: 2006
  ident: 2021040621043104500_b21
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039107
– volume: 301
  start-page: 653
  year: 2003
  ident: 2021040621043104500_b1
  publication-title: Science
  doi: 10.1126/science.1086391
– volume: 411
  start-page: 709
  year: 2001
  ident: 2021040621043104500_b30
  publication-title: Nature
  doi: 10.1038/35079635
– volume: 19
  start-page: 779
  year: 2007
  ident: 2021040621043104500_b13
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048694
– volume: 309
  start-page: 306
  year: 2007
  ident: 2021040621043104500_b61
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.07.019
– volume: 131
  start-page: 2827
  year: 2004
  ident: 2021040621043104500_b32
  publication-title: Development
  doi: 10.1242/dev.01164
– volume: 16
  start-page: 741
  year: 2004
  ident: 2021040621043104500_b54
  publication-title: Plant Cell
  doi: 10.1105/tpc.019166
– volume: 54
  start-page: 1105
  year: 2008
  ident: 2021040621043104500_b56
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03482.x
– volume: 436
  start-page: 793
  year: 2005
  ident: 2021040621043104500_b14
  publication-title: Nature
  doi: 10.1038/nature03895
– volume: 2
  start-page: e1326
  year: 2007
  ident: 2021040621043104500_b57
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001326
– volume: 7
  start-page: 193
  year: 2002
  ident: 2021040621043104500_b18
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02251-3
– volume: 446
  start-page: 811
  year: 2007
  ident: 2021040621043104500_b42
  publication-title: Nature
  doi: 10.1038/nature05703
– volume: 31
  start-page: 4401
  year: 2003
  ident: 2021040621043104500_b53
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg642
– volume: 5
  start-page: R46
  year: 2004
  ident: 2021040621043104500_b17
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-7-r46
– volume: 15
  start-page: 436
  year: 2005
  ident: 2021040621043104500_b60
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.12.079
– volume: 131
  start-page: 657
  year: 2004
  ident: 2021040621043104500_b11
  publication-title: Development
  doi: 10.1242/dev.00963
– volume: 155
  start-page: 1379
  year: 2000
  ident: 2021040621043104500_b44
  publication-title: Genetics
  doi: 10.1093/genetics/155.3.1379
– volume: 457
  start-page: 551
  year: 2009
  ident: 2021040621043104500_b36
  publication-title: Nature
  doi: 10.1038/nature07723
– volume: 127
  start-page: 1375
  year: 2001
  ident: 2021040621043104500_b9
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010708
– volume: 13
  start-page: 1768
  year: 2003
  ident: 2021040621043104500_b6
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.09.035
– volume: 135
  start-page: 1325
  year: 2008
  ident: 2021040621043104500_b63
  publication-title: Development
  doi: 10.1242/dev.017913
– volume: 122
  start-page: 87
  year: 1996
  ident: 2021040621043104500_b23
  publication-title: Development
  doi: 10.1242/dev.122.1.87
– volume: 24
  start-page: 2474
  year: 2007
  ident: 2021040621043104500_b33
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msm182
– volume: 15
  start-page: 437
  year: 2008
  ident: 2021040621043104500_b40
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.08.007
– volume: 168
  start-page: 1585
  year: 2004
  ident: 2021040621043104500_b48
  publication-title: Genetics
  doi: 10.1534/genetics.104.031138
– volume: 105
  start-page: 16392
  year: 2008
  ident: 2021040621043104500_b59
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803997105
– volume: 10
  start-page: 13
  year: 2007
  ident: 2021040621043104500_b20
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.11.013
– volume: 23
  start-page: 2492
  year: 2006
  ident: 2021040621043104500_b31
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl125
– volume: 3
  start-page: 391
  year: 2001
  ident: 2021040621043104500_b46
  publication-title: Plant Biol.
  doi: 10.1055/s-2001-16468
– volume: 271
  start-page: 311
  year: 2004
  ident: 2021040621043104500_b34
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2003.2544
– volume: 13
  start-page: 1079
  year: 1999
  ident: 2021040621043104500_b43
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.9.1079
– volume: 32
  start-page: 97
  year: 1983
  ident: 2021040621043104500_b58
  publication-title: Act. Bot. Neerl.
  doi: 10.1111/j.1438-8677.1983.tb01681.x
– volume: 14
  start-page: 867
  year: 2008
  ident: 2021040621043104500_b3
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.03.008
– volume: 13
  start-page: 121
  year: 1998
  ident: 2021040621043104500_b51
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1998.00004.x
– volume: 131
  start-page: 2997
  year: 2004
  ident: 2021040621043104500_b7
  publication-title: Development
  doi: 10.1242/dev.01186
– volume: 15
  start-page: 2241
  year: 2003
  ident: 2021040621043104500_b25
  publication-title: Plant Cell
  doi: 10.1105/tpc.014969
– volume: 6
  start-page: 597
  year: 1994
  ident: 2021040621043104500_b4
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1994.6040597.x
– volume: 15
  start-page: 2680
  year: 2003
  ident: 2021040621043104500_b55
  publication-title: Plant Cell
  doi: 10.1105/tpc.017376
– volume: 47
  start-page: 853
  year: 2006
  ident: 2021040621043104500_b62
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcj057
– volume: 10
  start-page: 569
  year: 1994
  ident: 2021040621043104500_b50
  publication-title: Comput. Appl. Biosci.
– reference: 15753038 - Curr Biol. 2005 Mar 8;15(5):436-40
– reference: 14561401 - Curr Biol. 2003 Oct 14;13(20):1768-74
– reference: 18950478 - BMC Evol Biol. 2008;8:291
– reference: 12893945 - Science. 2003 Aug 1;301(5633):653-7
– reference: 11992820 - Trends Plant Sci. 2002 May;7(5):193-5
– reference: 17337627 - Plant Cell. 2007 Mar;19(3):779-90
– reference: 1967052 - Plant Cell. 1990 Nov;2(11):1121-8
– reference: 16682355 - Curr Biol. 2006 May 9;16(9):933-8
– reference: 15169755 - Development. 2004 Jun;131(12):2827-39
– reference: 18305007 - Development. 2008 Apr;135(7):1325-34
– reference: 12040093 - Plant Cell Physiol. 2002 May;43(5):467-78
– reference: 15579709 - Genetics. 2004 Nov;168(3):1585-99
– reference: 15659481 - Development. 2005 Feb;132(4):841-9
– reference: 15169760 - Development. 2004 Jun;131(12):2997-3006
– reference: 19189423 - Nature. 2009 Jan 29;457(7229):551-6
– reference: 14973163 - Plant Cell. 2004 Mar;16(3):741-54
– reference: 15598805 - Plant Cell. 2005 Jan;17(1):61-76
– reference: 17706632 - Dev Biol. 2007 Sep 15;309(2):306-16
– reference: 7828077 - Comput Appl Biosci. 1994 Sep;10(5):569-70
– reference: 16100779 - Nature. 2005 Aug 11;436(7052):793-800
– reference: 11743076 - Plant Physiol. 2001 Dec;127(4):1375-9
– reference: 16844905 - Plant Cell. 2006 Aug;18(8):1819-32
– reference: 16314312 - Nucleic Acids Res. 2005;33(20):6494-506
– reference: 9865698 - Cell. 1998 Dec 11;95(6):805-15
– reference: 18094749 - PLoS One. 2007;2(12):e1326
– reference: 17140842 - Curr Opin Plant Biol. 2007 Feb;10(1):13-20
– reference: 8565856 - Development. 1996 Jan;122(1):87-96
– reference: 18849474 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16392-7
– reference: 9655815 - Development. 1998 Aug;125(15):2935-42
– reference: 14711878 - Development. 2004 Feb;131(3):657-68
– reference: 17721507 - Nature. 2007 Sep 27;449(7161):463-7
– reference: 17768306 - Mol Biol Evol. 2007 Nov;24(11):2474-84
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 15058443 - Proc Biol Sci. 2004 Feb 7;271(1536):311-6
– reference: 18305008 - Development. 2008 Apr;135(7):1315-24
– reference: 11751640 - Genes Dev. 2001 Dec 15;15(24):3355-64
– reference: 12888499 - Nucleic Acids Res. 2003 Aug 1;31(15):4401-9
– reference: 17429400 - Nature. 2007 Apr 12;446(7137):811-4
– reference: 11395775 - Nature. 2001 Jun 7;411(6838):706-9
– reference: 11052201 - Plant Mol Biol. 2000 Jul;43(4):495-502
– reference: 16987950 - Mol Biol Evol. 2006 Dec;23(12):2492-504
– reference: 7667260 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8149-53
– reference: 17655648 - Plant J. 1998 Jan;13(1):121-9
– reference: 10323860 - Genes Dev. 1999 May 1;13(9):1079-88
– reference: 12208843 - Genes Dev. 2002 Sep 1;16(17):2213-8
– reference: 16006579 - Plant Cell. 2005 Aug;17(8):2157-71
– reference: 16699177 - Plant Cell Physiol. 2006 Jul;47(7):853-63
– reference: 14576291 - Plant Cell. 2003 Nov;15(11):2680-93
– reference: 14508003 - Plant Cell. 2003 Oct;15(10):2241-52
– reference: 10457020 - Development. 1999 Sep;126(18):4117-28
– reference: 16199616 - Plant Cell. 2005 Nov;17(11):2899-910
– reference: 16461579 - Plant Cell. 2006 Mar;18(3):560-73
– reference: 18346192 - Plant J. 2008 Jun;54(6):1105-14
– reference: 11395776 - Nature. 2001 Jun 7;411(6838):709-13
– reference: 10880496 - Genetics. 2000 Jul;155(3):1379-89
– reference: 15239831 - Genome Biol. 2004;5(7):R46
– reference: 18539115 - Dev Cell. 2008 Jun;14(6):867-76
– reference: 18804438 - Dev Cell. 2008 Sep;15(3):437-47
SSID ssj0001719
Score 2.4115462
Snippet Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that...
Petal fusion in petunia (Petunia × hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that...
Petal fusion in petunia ( Petunia × hybrida ) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2269
SubjectTerms Alleles
Amino Acid Sequence
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - ultrastructure
Arabidopsis Proteins
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Carpels
chemistry
corolla
Cryoelectron Microscopy
Flowers
Flowers - genetics
Flowers - growth & development
Flowers - metabolism
Flowers - ultrastructure
Genes
genetics
growth & development
In Situ Hybridization
Leaf blade
Leaves
metabolism
Molecular Sequence Data
mutants
Petals
Petunia
Petunia - genetics
Petunia - growth & development
Petunia - metabolism
Petunia - ultrastructure
Petunia hybrida
Phenotypes
Phylogeny
Plant cells
Plant Leaves
Plant Leaves - genetics
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant Leaves - ultrastructure
Plant Proteins
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Reverse Transcriptase Polymerase Chain Reaction
transcription factors
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Transposons
ultrastructure
Title Differential Recruitment of WOX Transcription Factors for Lateral Development and Organ Fusion in Petunia and Arabidopsis
URI https://www.jstor.org/stable/40537000
https://www.ncbi.nlm.nih.gov/pubmed/19717616
https://www.proquest.com/docview/218785359
https://www.proquest.com/docview/46409054
https://www.proquest.com/docview/734074518
https://pubmed.ncbi.nlm.nih.gov/PMC2751957
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RFgkuCAqloVB8QAIOpomT2MkJtaWrikcpj1X3FjlxDJFWydIkByR-PDN50UWUY2TLsjLjmW88428AnhGrucmE5daGOUcXYLk2ccrTyKZpHBkvD-k18oczeToP3i7CxVCbUw9llaNN7Ay1qTK6Iz9AV6TQtYTx69UPTk2jKLk6dNDYgC1iLqOKLrWY4i1igol7MgKXU8vvgbMREcVBs8qISOkVOWAp1nzShtXVWJz4L9j5d_XkFXc0uwt3BhzJDnvB34MbebkNN48qxHo_t-HW8djH7T78ejP0QMGzvGQEE9uiKy1nlWUXHxesc1ej8WCzvgEPQzDL3mt6n7xkVyqLmC4N6x5wsllLN22sKNl53rRlobuxw0udFqZa1UX94uLlA5jPTr4en_Kh5wLPgkg23AiRCe3mXpiL1NPWGKldk3tpoFUmlfF1LIyVceT7Woa-8I1Cm4nSpheyxgb-DmyWVZnvAosRtyPaCXERFbi0XKq0zYwNrRvo2HeAj389yQZCcuqLsUy6wMQNE5QSZciTXkoOPJ_mr3oqjmtn7qIQE_0N7WQy_yIoO-vJSCLWdGCnk-y0QkCENqgsDuyNok6GY1wnk9I58HQaRfFRUkWXedXWSSAxQkbc6wC7ZobyMWgOQi9y4GGvOX-2H2M0LT3pgFrTqWkCkX-vj5TF944EXCjiBVKP_rvtPbjdZ7-oYPExbDaXbf4EQVST7ndHZR-2jk7Ozj_j17tP0W-GDB3l
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71gVQuCAqloUB9AAGH0MRJnOSAUF-rLd2WCrrq3oIT2xBplSzdXaFK_CX-IzN50UWUW8-2rCQznvkm8_gAXtBUc5VxYxsTaBtdgLGlilM7jUyaxpFydUDdyCenoj_0P4yC0RL8anthqKyytYmVoVZlRv_Id9AVhehagvj95LtNpFGUXG0ZNGqtONZXPzBim747OkDxvuS8d3i-37cbUgE78yMxsxXnGZeOdgPNU1capYR0lHZTX4aZCJUnY66MiCPPkyLwuKdCNAr4OtQCqozv4bnLsIqv6KAdWN07PD371Jl-N6yYRFwq0yOS8WZKJGKYndkko9FNb8nlC77gBZeNLNtyyH8B3b_rNa85wN59uNcgV7Zbq9oDWNLFOtzZKxFdXq3D2n7LHPcQfh40rCtoPcaMgOk8r4rZWWnYxccRqxxka65Yr6b8YQif2UBSR_SYXatlYrJQrGoZZb05_dtjecHO9Gxe5LJa272Uaa7KyTSfvr548wiGtyKQDVgpykJvAosxUkB8FeAhoe_QcWkoTaZMYBxfxp4FdvvVk6wZgU5MHOOkCoWcIEEpUU4-qaVkwatu_6Qe_nHjzk0UYiK_omVOhp855YNdEQlEtxZsVJLtTvBphA4qiwVbraiTxnBMk07NLdjuVlF8lMaRhS7n08QXGJMj0raA3bAj9DBM9wM3suBxrTl_Hj_G-F24woJwQae6DTRufHGlyL9VY8d5SJOIwif_fextWOufnwySwdHp8RbcrXNvVC75FFZml3P9DCHcLH3eXBwGX277rv4GQIJaCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Recruitment+of+WOX+Transcription+Factors+for+Lateral+Development+and+Organ+Fusion+in+Petunia+and+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=Vandenbussche%2C+Michiel&rft.au=Horstman%2C+Anneke&rft.au=Zethof%2C+Jan&rft.au=Koes%2C+Ronald&rft.date=2009-08-01&rft.issn=1040-4651&rft.volume=21&rft.issue=8+p.2269-2283&rft.spage=2269&rft.epage=2283&rft_id=info:doi/10.1105%2Ftpc.109.065862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon