An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation

Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substat...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 18; p. 7739
Main Authors Cao, Weiguo, Chen, Zhong, Deng, Xuhui, Wu, Congying, Li, Tiecheng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component’s identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.
AbstractList Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component's identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component's identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.
Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component’s identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.
Audience Academic
Author Deng, Xuhui
Chen, Zhong
Li, Tiecheng
Wu, Congying
Cao, Weiguo
AuthorAffiliation 1 School of Electrical Engineering, Southeast University, Nanjing 210096, China; caoweiguo_seu@163.com
2 Fuzhou Power Supply Branch, State Grid Fujian Power Company, Fuzhou 350001, China; 220202893@seu.edu.cn
4 Power Science and Research Institute of State Grid Hebei Power Co., Beijing 430024, China; ltc8086@163.com
3 State Grid Economic and Technological Research Institute Co., Ltd., Biejing 100005, China; wucongying@chinasperi.sgcc.com.cn
AuthorAffiliation_xml – name: 1 School of Electrical Engineering, Southeast University, Nanjing 210096, China; caoweiguo_seu@163.com
– name: 3 State Grid Economic and Technological Research Institute Co., Ltd., Biejing 100005, China; wucongying@chinasperi.sgcc.com.cn
– name: 4 Power Science and Research Institute of State Grid Hebei Power Co., Beijing 430024, China; ltc8086@163.com
– name: 2 Fuzhou Power Supply Branch, State Grid Fujian Power Company, Fuzhou 350001, China; 220202893@seu.edu.cn
Author_xml – sequence: 1
  givenname: Weiguo
  surname: Cao
  fullname: Cao, Weiguo
– sequence: 2
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
– sequence: 3
  givenname: Xuhui
  surname: Deng
  fullname: Deng, Xuhui
– sequence: 4
  givenname: Congying
  surname: Wu
  fullname: Wu, Congying
– sequence: 5
  givenname: Tiecheng
  surname: Li
  fullname: Li, Tiecheng
BookMark eNptkl1vFCEUhiemxn7ohf-AxBu92JaPAYYrs91U3aRGo_WaMMxhyzoDW2A0_ntpt2lsY7iAHJ7zvhzOOW4OQgzQNK8JPmVM4bNMGemkZOpZc0Ra2i46SvHBP-fD5jjnLcaUMda9aA6ZlIJLJY6aeRnQeoBQvPPWFB8D-gzlOg7IxYTWKcFmHk1CqzjtqmkoGX2D0RQYUInoCtLkgxnR-Rjtz4x8QBc3s99NFUQr0_sABUWHvsbfkND3uc_lzuNl89yZMcOr-_2k-fHh4mr1aXH55eN6tbxc2LYTZWGtGqhiTlrWgaOYQ88JYYbLWknniCHMtsCsIqzlykjSOtJDB5wSMrSMsJNmvdcdotnqXfKTSX90NF7fBWLaaJOKtyNoIYzq-6EzoretkFwpC0r2BhPjsOtN1Xq_19rN_QSDrSUmMz4SfXwT_LXexF-aYM64EqoqvL1XSPFmhlz05LOFcTQB4pw17SQmLeeKVfTNE3Qb51R_-pYSSjBMqajU6Z7amFqBDy5WY1vXAJO3tV3O1_hSStJVnsua8G6fYFPMOYF7eD7B-naU9MMoVfbsCWv9vnvVxI__yfgL0C7Lmw
CitedBy_id crossref_primary_10_3390_app14051904
crossref_primary_10_3390_info15030153
Cites_doi 10.1109/MIM.2020.9200875
10.3389/fenrg.2022.1000459
10.1016/j.energy.2023.127902
10.1109/ICACI55529.2022.9837529
10.1016/j.renene.2022.12.065
10.1109/TPWRD.2020.3038880
10.1007/978-3-319-46448-0_2
10.1109/TPAMI.2022.3155612
10.1016/j.est.2022.104596
10.1049/gtd2.12387
10.1109/ICCV.2019.00059
10.1109/TIM.2019.2963732
10.1016/j.measurement.2023.113403
10.3390/s18041284
10.3390/app13116817
10.1016/j.cosrev.2023.100568
10.1007/978-3-030-12767-1
10.1109/ACCESS.2021.3104731
10.1109/TITS.2022.3146338
10.1109/ACCESS.2021.3054468
10.1109/TPWRD.2021.3071971
10.1109/JSTARS.2021.3140101
10.3390/app10196653
10.1109/CVPR.2016.91
10.3390/s22187090
10.1109/ICCVW54120.2021.00312
10.1016/j.measurement.2019.107333
10.1016/j.apenergy.2022.120493
10.1109/TPWRD.2022.3158818
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23187739
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_66a9bbd8a6bc467599ce97ba01af0fba
PMC10535969
A771802257
10_3390_s23187739
GrantInformation_xml – fundername: State Grid Headquarters
  grantid: SGHEDK00JYJS2200012
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c486t-cc9d293f7c38ef205eb5113a570238f1a13c4e3c913459a714f1be8e5211d4313
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:50 EDT 2025
Thu Aug 21 18:36:23 EDT 2025
Thu Jul 10 16:52:16 EDT 2025
Fri Jul 25 05:09:46 EDT 2025
Tue Jun 10 21:20:02 EDT 2025
Tue Jul 01 01:20:23 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-cc9d293f7c38ef205eb5113a570238f1a13c4e3c913459a714f1be8e5211d4313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23187739
PMID 37765796
PQID 2869630226
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_66a9bbd8a6bc467599ce97ba01af0fba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535969
proquest_miscellaneous_2870145593
proquest_journals_2869630226
gale_infotracacademiconefile_A771802257
crossref_primary_10_3390_s23187739
crossref_citationtrail_10_3390_s23187739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cai (ref_15) 2021; 70
Nassu (ref_18) 2021; 37
Lu (ref_16) 2022; 23
ref_13
ref_12
ref_11
ref_32
ref_31
ref_30
Zhao (ref_9) 2021; 9
Liu (ref_23) 2020; 152
Folgado (ref_4) 2022; 51
Khanafer (ref_6) 2020; 23
Zheng (ref_19) 2020; 36
Huang (ref_17) 2020; 69
Tan (ref_2) 2023; 203
Zheng (ref_21) 2022; 37
Yan (ref_10) 2022; 16
Huang (ref_14) 2022; 10
Wu (ref_1) 2023; 278
Ren (ref_24) 2017; 39
Ahmad (ref_7) 2023; 49
ref_25
ref_22
Oliveira (ref_8) 2021; 9
ref_20
Pinheiro (ref_3) 2023; 332
Dai (ref_29) 2023; 20
Daisy (ref_5) 2023; 220
Yu (ref_26) 2022; 15
ref_28
Fan (ref_27) 2022; 71
Liao (ref_33) 2022; 45
References_xml – volume: 23
  start-page: 10
  year: 2020
  ident: ref_6
  article-title: Applied AI in instrumentation and measurement: The deep learning revolution
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2020.9200875
– volume: 10
  start-page: 1000459
  year: 2022
  ident: ref_14
  article-title: State identification of transfer learning based Yolov4 network for isolation switches used in substations
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.1000459
– volume: 278
  start-page: 127902
  year: 2023
  ident: ref_1
  article-title: Low carbon economic dispatch of integrated energy system considering extended electric heating demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127902
– ident: ref_32
  doi: 10.1109/ICACI55529.2022.9837529
– volume: 203
  start-page: 177
  year: 2023
  ident: ref_2
  article-title: Study on grid price mechanism of new energy power stations considering market environment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.12.065
– volume: 36
  start-page: 3351
  year: 2020
  ident: ref_19
  article-title: Infrared Image Detection of Substation Insulators Using an Improved Fusion Single Shot Multibox Detector
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2020.3038880
– ident: ref_20
  doi: 10.1007/978-3-319-46448-0_2
– volume: 45
  start-page: 919
  year: 2022
  ident: ref_33
  article-title: Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3155612
– volume: 51
  start-page: 104596
  year: 2022
  ident: ref_4
  article-title: IoT real time system for monitoring lithium-ion battery long-term operation in microgrids
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104596
– volume: 16
  start-page: 1714
  year: 2022
  ident: ref_10
  article-title: Deep learning-based substation remote construction management and AI automatic violation detection system
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12387
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: YOLOv4-5D: An Effective and Efficient Object Detector for Autonomous Driving
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_12
  doi: 10.1109/ICCV.2019.00059
– volume: 69
  start-page: 5407
  year: 2020
  ident: ref_17
  article-title: A Method of Identifying Rust Status of Dampers Based on Image Processing
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2963732
– volume: 220
  start-page: 113403
  year: 2023
  ident: ref_5
  article-title: Fault location in power grids using substation voltage magnitude differences: A comprehensive technique for transmission lines, distribution networks, and AC/DC microgrids
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113403
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_27
  article-title: Real Time Power Equipment Meter Recognition Based on Deep Learning
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_22
  doi: 10.3390/s18041284
– ident: ref_28
  doi: 10.3390/app13116817
– volume: 49
  start-page: 100568
  year: 2023
  ident: ref_7
  article-title: Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100568
– ident: ref_31
  doi: 10.1007/978-3-030-12767-1
– volume: 9
  start-page: 125540
  year: 2021
  ident: ref_9
  article-title: Detection and Location of Safety Protective Wear in Power Substation Operation Using Wear-Enhanced YOLOv3 Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3104731
– volume: 23
  start-page: 15922
  year: 2022
  ident: ref_16
  article-title: A Segmentation-Based Multitask Learning Approach for Isolating Switch State Recognition in High-Speed Railway Traction Substation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3146338
– volume: 9
  start-page: 19195
  year: 2021
  ident: ref_8
  article-title: Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054468
– volume: 20
  start-page: 1
  year: 2023
  ident: ref_29
  article-title: Mvit-pcd: A lightweight vit-based network for martian surface topographic change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 37
  start-page: 833
  year: 2021
  ident: ref_18
  article-title: A Computer Vision System for Monitoring Disconnect Switches in Distribution Substations
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2021.3071971
– volume: 15
  start-page: 930
  year: 2022
  ident: ref_26
  article-title: A Lightweight Complex-Valued DeepLabv3+ for Semantic Segmentation of PolSAR Image
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3140101
– ident: ref_30
  doi: 10.3390/app10196653
– ident: ref_11
  doi: 10.1109/CVPR.2016.91
– ident: ref_25
  doi: 10.3390/s22187090
– ident: ref_13
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 152
  start-page: 107333
  year: 2020
  ident: ref_23
  article-title: A detection and recognition system of pointer meters in substations based on computer vision
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107333
– volume: 332
  start-page: 120493
  year: 2023
  ident: ref_3
  article-title: Short-term electricity load forecasting—A systematic approach from system level to secondary substations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120493
– volume: 37
  start-page: 4757
  year: 2022
  ident: ref_21
  article-title: An Infrared Image Detection Method of Substation Equipment Combining Iresgroup Structure and CenterNet
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2022.3158818
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_24
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
SSID ssj0023338
Score 2.4086223
Snippet Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7739
SubjectTerms Algorithms
Automation
Datasets
Deep learning
differentiable binarization
electrical cabinet
Fault diagnosis
Methods
Monitoring systems
power substation
Regions
small target detection
YOLOv7
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEA7SJ30QtYprq4wi6MvSyyWbbB6vpaUVKj600LeQZBM8LHt6t_f_O5PsHXcq-OLrJgvJzkzmm53JN4x9dHTkSW9qF0RHV3JijSGYr1E7EPwL6aeZJOn6q7q8lV_umrudVl9UE1bogcuHO1HKGe-71ikf0KgbY0I02rsJd2mSfIZG6PM2wdQYagmMvAqPkMCg_mSFKKbVmjqC73ifTNL_51H8e3nkjr-5eMaejkARZmWBz9mj2L9gT3boAw_ZetZDuWibxj9vcJ0bQgMiUbhaLnOf-SWQzS96qpiAXPsWOxgWcFPKYO7hFP3ZjxXMezj_tZ7n-iE4cxgxxwEWCb5RHzWgA6Zk7V-y24vzm7PLemyjUAfZqqEOwXTo1JMOoo1pOmmiR5QlXKPJXyfuuAgyikA5-MY4zWXiPrYRHTvvEF-IV-ygx1W-ZhBbExGOe6UnUfKgDG-0kDK1-I5A9FSxz5vPa8PIMU6tLu4txhokCbuVRMU-bKf-LMQaf5t0SjLaTiAu7PwANcSOGmL_pSEV-0QStmSxuJjgxosHuCXivrIzrYkGD7WzYscbJbCjKa8sKiseUjiuKvZ-O4xGSJkV18fFmuZoSs82RlSs3VOevaXvj_Tz75nOmxPFjlHmzf_Y7BF7PEWxliq4Y3YwLNfxLcKmwb_LFvIAyNAYUQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgXOCA-BSBgQxCgku0enb8cULdtDKQhjhs0m6W7TisYkq2NP3_ec9xQwuIa-Oobt-33_PvR8h7hy5PeFO6wGu8khNLKMF8CdoByT8X_jCBJJ19k6cX4utldZkP3FZ5rHLjE5OjrruAZ-QH8A7oCkQc-enmtkTWKOyuZgqNu-Qeg0iDI1168XkquDjUXyOaEIfS_mAFuYxWCnnBt2JQgur_2yH_OSS5FXUWj8jDnC7S-Sjfx-RObJ-QB1sggk_Jet7S8bptk8_f6FmihaaQj9IvfZ_Y5nuKlt-1ODdB0wRcrOnQ0fNxGOaaHkFU-7miy5ae3K6XaYqIHjuom-NAu4Z-RzY1im5m7N0_IxeLk_Pj0zKTKZRBaDmUIZgaQnujAtexOZxV0UOuxV2lMGo3zDEeROQBO_GVcYqJhvmoI4R3VkOWwZ-TvRZ2-YLQqE2EpNxLNYuCBWlYpbgQjYZ3QEJVQT5u_l4bMtI4El5cW6g4UBJ2kkRB3k1Lb0Z4jX8tOkIZTQsQETt90PU_bDYwK6Uz3tfaSR_A-VfGhGiUdzPmmlnjXUE-oIQt2i1sJrh8_QB-EiJg2blSCIYHOlqQ_Y0S2GzQK_tb_QrydnoMpoj9FdfGbo1rFDZpK8MLoneUZ2fru0_a5VUC9WYItGOkefn_b39F7iPh_Tjltk_2hn4dX0NaNPg3Sfd_AYWEDjU
  priority: 102
  providerName: ProQuest
Title An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation
URI https://www.proquest.com/docview/2869630226
https://www.proquest.com/docview/2870145593
https://pubmed.ncbi.nlm.nih.gov/PMC10535969
https://doaj.org/article/66a9bbd8a6bc467599ce97ba01af0fba
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFU8RWCqDkOASSOokjg8ItauWBamrFdpKvUW240BFleymqQT_nhknjTawBy45xI7kZMbzyIy_D-CNIpMXaekrw3M6kmN9TMG0j9qBwT-P9NiBJC0ukvNl9HUVrw5gz7HZfcDtnakd8Ukt6837Xze_P-GG_0gZJ6bsH7YYo6RCcHkIx-iQBBEZLKK-mDDm3BFa05kuH_1h0AIMDR8duCWH3v-vjf67b_KWI5o_gJMugmSTVuQP4cCWj-D-LVzBx7CblKw9gVt0v-TYwjFFMwxR2Ze6dgT0NSNjUJXUSsFcU5zNWVOxq7Y_ZsOm6Oh-btm6ZLOb3do1FrEzham0bVhVsEsiWGNkedpy_hNYzmdXZ-d-x6_gmyhNGt8YmaO3L4ThqS3GQWw1hl9cxYIceRGqkJvIckPF-VgqEUZFqG1q0eOHOQYe_CkclbjKZ8BsKi3G6ToRgY1Ck8gwFjyKihSf4RhWefBu_3kz04GPEwfGJsMkhCSR9ZLw4HU_9bpF3Lhr0pRk1E8gkGx3o6q_Z92ey5JESa3zVCXaoD-IpTRWCq2CUBVBoZUHb0nCGSkXLsao7kQCvhKBYmUTIQgfD9XWg9O9EmR7Fc1Qi9F64Xjiwat-GHcnlVxUaasdzRFUt40l9yAdKM9g6cORcv3D4XyHhL0jE_n8v9f5Au6NUXZtD9wpHDX1zr7EoKnRIzgUK4HXdP55BMfT2cXlt5H7ATFym-UPCq0Z9Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDAIBJeoeTs-ILQtXXZpt-KwlXpzbceBFVXSZrNC_Cl-IzN5sQuIW69rJ-tkHt9MPP4G4JUilxdp4SoTZnQkx7qYgmkXtQOD_zDSQUOSNDtOJifRp9P4dAt-9mdhqKyy94mNo85KQ9_Id_Ea1BVEnOT9xaVLXaNod7VvodGqxaH98R1TtuW76QeU7-sgGB_M9ydu11XANVGa1K4xIkOMy7kJU5sHXmw1Bh2hijnBV-4rPzSRDQ1tScdCcT_KfW1TizjnZwi3Id73GlzHxxKU7KXjj0OCF2K-17IX4aC3u8TYKeWc-pCvYV7TGuBvAPizKHMN5cZ34HYXnrJRq093YcsW9-DWGmnhfViNCtYe7827731s1rShZhj_smlVNd3tK0aepiyoToM1FXc2Y3XJ5m3xzTnbQxT9tmSLgh1crhZN1RLbV5in25qVOftM3dsYubW2VuABnFzJa34I2wWu8hEwmwqLSYBOuGcj3yTCj3kYRXmK16BGxA687V-vNB2zOTXYOJeY4ZAk5CAJB14OUy9aOo9_TdojGQ0TiIG7-aGsvsjOoGWSKKF1lqpEGwSbWAhjBdfK81Xu5Vo58IYkLMlP4GKM6o474CMR45YccU7ke2gTDuz0SiA7B7KUv9XdgRfDMJo-7eeowpYrmsNpUzgWoQPphvJsLH1zpFh8bUjEfSL2EYl4_P9_fw43JvPZkTyaHh8-gZsBCq-tsNuB7bpa2acYktX6WWMHDM6u2vB-AT2kSak
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocCCQHCxEmdtr_eAUNImaiiNItRKvbm7612IqOw2DyH-Gr-OGb9IAHHr1V7ba8_jm_HOfgPwWpHLC7X0leEZbcmxPqZg2kftwOCfh7pfkiQdT-PD0_DjWXS2Az-bvTBUVtn4xNJRZ4Whf-RdvAZ1BREn7rq6LGJ2MP5weeVTBylaaW3aaVQqcmR_fMf0bfl-coCyftPvj0cn-4d-3WHAN2ESr3xjZIZ454ThiXX9XmQ1BiBcRYKgzAUq4Ca03NDydCSVCEIXaJtYxLwgQ-jleN8bsCsoK-rA7nA0nX1u0z2O2V_FZcS57HWXGEklQlBX8g0ELBsF_A0Hf5ZobmDe-C7cqYNVNqi06x7s2Pw-3N6gMHwA60HOqs2-rv77x47LptQMo2E2WSzKXvcLRn6nyKlqg5X1dzZjq4KdVKU4F2yImPptyeY5G12t52UNE9tXmLXbFSscm1EvN0ZOrqoceAin1_KhH0Enx1k-BmYTaTEl0LHo2TAwsQwiwcPQJXgN6kfkwbvm86am5jmndhsXKeY7JIm0lYQHr9qhlxW5x78GDUlG7QDi4y4PFIsvaW3eaRwrqXWWqFgbhJ5ISmOl0KoXKNdzWnnwliScktfAyRhVb37AVyL-rXQgBFHxoYV4sNcoQVq7k2X6W_k9eNmeRkdAqzsqt8WaxghaIo4k9yDZUp6tqW-fyedfS0rxgGh-ZCyf_P_pL-AmGl36aTI9egq3-ii7qtxuDzqrxdo-w_hspZ_XhsDg_Lpt7xf4fE87
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Identification+Method+for+Irregular+Components+Related+to+Terminal+Blocks+in+Equipment+Cabinet+of+Power+Substation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Weiguo&rft.au=Chen%2C+Zhong&rft.au=Deng%2C+Xuhui&rft.au=Wu%2C+Congying&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft_id=info:doi/10.3390%2Fs23187739&rft.externalDocID=A771802257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon