An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation
Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substat...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 18; p. 7739 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component’s identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations. |
---|---|
AbstractList | Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component's identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component's identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations. Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component’s identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations. |
Audience | Academic |
Author | Deng, Xuhui Chen, Zhong Li, Tiecheng Wu, Congying Cao, Weiguo |
AuthorAffiliation | 1 School of Electrical Engineering, Southeast University, Nanjing 210096, China; caoweiguo_seu@163.com 2 Fuzhou Power Supply Branch, State Grid Fujian Power Company, Fuzhou 350001, China; 220202893@seu.edu.cn 4 Power Science and Research Institute of State Grid Hebei Power Co., Beijing 430024, China; ltc8086@163.com 3 State Grid Economic and Technological Research Institute Co., Ltd., Biejing 100005, China; wucongying@chinasperi.sgcc.com.cn |
AuthorAffiliation_xml | – name: 1 School of Electrical Engineering, Southeast University, Nanjing 210096, China; caoweiguo_seu@163.com – name: 3 State Grid Economic and Technological Research Institute Co., Ltd., Biejing 100005, China; wucongying@chinasperi.sgcc.com.cn – name: 4 Power Science and Research Institute of State Grid Hebei Power Co., Beijing 430024, China; ltc8086@163.com – name: 2 Fuzhou Power Supply Branch, State Grid Fujian Power Company, Fuzhou 350001, China; 220202893@seu.edu.cn |
Author_xml | – sequence: 1 givenname: Weiguo surname: Cao fullname: Cao, Weiguo – sequence: 2 givenname: Zhong surname: Chen fullname: Chen, Zhong – sequence: 3 givenname: Xuhui surname: Deng fullname: Deng, Xuhui – sequence: 4 givenname: Congying surname: Wu fullname: Wu, Congying – sequence: 5 givenname: Tiecheng surname: Li fullname: Li, Tiecheng |
BookMark | eNptkl1vFCEUhiemxn7ohf-AxBu92JaPAYYrs91U3aRGo_WaMMxhyzoDW2A0_ntpt2lsY7iAHJ7zvhzOOW4OQgzQNK8JPmVM4bNMGemkZOpZc0Ra2i46SvHBP-fD5jjnLcaUMda9aA6ZlIJLJY6aeRnQeoBQvPPWFB8D-gzlOg7IxYTWKcFmHk1CqzjtqmkoGX2D0RQYUInoCtLkgxnR-Rjtz4x8QBc3s99NFUQr0_sABUWHvsbfkND3uc_lzuNl89yZMcOr-_2k-fHh4mr1aXH55eN6tbxc2LYTZWGtGqhiTlrWgaOYQ88JYYbLWknniCHMtsCsIqzlykjSOtJDB5wSMrSMsJNmvdcdotnqXfKTSX90NF7fBWLaaJOKtyNoIYzq-6EzoretkFwpC0r2BhPjsOtN1Xq_19rN_QSDrSUmMz4SfXwT_LXexF-aYM64EqoqvL1XSPFmhlz05LOFcTQB4pw17SQmLeeKVfTNE3Qb51R_-pYSSjBMqajU6Z7amFqBDy5WY1vXAJO3tV3O1_hSStJVnsua8G6fYFPMOYF7eD7B-naU9MMoVfbsCWv9vnvVxI__yfgL0C7Lmw |
CitedBy_id | crossref_primary_10_3390_app14051904 crossref_primary_10_3390_info15030153 |
Cites_doi | 10.1109/MIM.2020.9200875 10.3389/fenrg.2022.1000459 10.1016/j.energy.2023.127902 10.1109/ICACI55529.2022.9837529 10.1016/j.renene.2022.12.065 10.1109/TPWRD.2020.3038880 10.1007/978-3-319-46448-0_2 10.1109/TPAMI.2022.3155612 10.1016/j.est.2022.104596 10.1049/gtd2.12387 10.1109/ICCV.2019.00059 10.1109/TIM.2019.2963732 10.1016/j.measurement.2023.113403 10.3390/s18041284 10.3390/app13116817 10.1016/j.cosrev.2023.100568 10.1007/978-3-030-12767-1 10.1109/ACCESS.2021.3104731 10.1109/TITS.2022.3146338 10.1109/ACCESS.2021.3054468 10.1109/TPWRD.2021.3071971 10.1109/JSTARS.2021.3140101 10.3390/app10196653 10.1109/CVPR.2016.91 10.3390/s22187090 10.1109/ICCVW54120.2021.00312 10.1016/j.measurement.2019.107333 10.1016/j.apenergy.2022.120493 10.1109/TPWRD.2022.3158818 10.1109/TPAMI.2016.2577031 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23187739 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_66a9bbd8a6bc467599ce97ba01af0fba PMC10535969 A771802257 10_3390_s23187739 |
GrantInformation_xml | – fundername: State Grid Headquarters grantid: SGHEDK00JYJS2200012 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-cc9d293f7c38ef205eb5113a570238f1a13c4e3c913459a714f1be8e5211d4313 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:50 EDT 2025 Thu Aug 21 18:36:23 EDT 2025 Thu Jul 10 16:52:16 EDT 2025 Fri Jul 25 05:09:46 EDT 2025 Tue Jun 10 21:20:02 EDT 2025 Tue Jul 01 01:20:23 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-cc9d293f7c38ef205eb5113a570238f1a13c4e3c913459a714f1be8e5211d4313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23187739 |
PMID | 37765796 |
PQID | 2869630226 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66a9bbd8a6bc467599ce97ba01af0fba pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535969 proquest_miscellaneous_2870145593 proquest_journals_2869630226 gale_infotracacademiconefile_A771802257 crossref_primary_10_3390_s23187739 crossref_citationtrail_10_3390_s23187739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cai (ref_15) 2021; 70 Nassu (ref_18) 2021; 37 Lu (ref_16) 2022; 23 ref_13 ref_12 ref_11 ref_32 ref_31 ref_30 Zhao (ref_9) 2021; 9 Liu (ref_23) 2020; 152 Folgado (ref_4) 2022; 51 Khanafer (ref_6) 2020; 23 Zheng (ref_19) 2020; 36 Huang (ref_17) 2020; 69 Tan (ref_2) 2023; 203 Zheng (ref_21) 2022; 37 Yan (ref_10) 2022; 16 Huang (ref_14) 2022; 10 Wu (ref_1) 2023; 278 Ren (ref_24) 2017; 39 Ahmad (ref_7) 2023; 49 ref_25 ref_22 Oliveira (ref_8) 2021; 9 ref_20 Pinheiro (ref_3) 2023; 332 Dai (ref_29) 2023; 20 Daisy (ref_5) 2023; 220 Yu (ref_26) 2022; 15 ref_28 Fan (ref_27) 2022; 71 Liao (ref_33) 2022; 45 |
References_xml | – volume: 23 start-page: 10 year: 2020 ident: ref_6 article-title: Applied AI in instrumentation and measurement: The deep learning revolution publication-title: IEEE Instrum. Meas. Mag. doi: 10.1109/MIM.2020.9200875 – volume: 10 start-page: 1000459 year: 2022 ident: ref_14 article-title: State identification of transfer learning based Yolov4 network for isolation switches used in substations publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.1000459 – volume: 278 start-page: 127902 year: 2023 ident: ref_1 article-title: Low carbon economic dispatch of integrated energy system considering extended electric heating demand response publication-title: Energy doi: 10.1016/j.energy.2023.127902 – ident: ref_32 doi: 10.1109/ICACI55529.2022.9837529 – volume: 203 start-page: 177 year: 2023 ident: ref_2 article-title: Study on grid price mechanism of new energy power stations considering market environment publication-title: Renew. Energy doi: 10.1016/j.renene.2022.12.065 – volume: 36 start-page: 3351 year: 2020 ident: ref_19 article-title: Infrared Image Detection of Substation Insulators Using an Improved Fusion Single Shot Multibox Detector publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2020.3038880 – ident: ref_20 doi: 10.1007/978-3-319-46448-0_2 – volume: 45 start-page: 919 year: 2022 ident: ref_33 article-title: Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3155612 – volume: 51 start-page: 104596 year: 2022 ident: ref_4 article-title: IoT real time system for monitoring lithium-ion battery long-term operation in microgrids publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104596 – volume: 16 start-page: 1714 year: 2022 ident: ref_10 article-title: Deep learning-based substation remote construction management and AI automatic violation detection system publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.12387 – volume: 70 start-page: 1 year: 2021 ident: ref_15 article-title: YOLOv4-5D: An Effective and Efficient Object Detector for Autonomous Driving publication-title: IEEE Trans. Instrum. Meas. – ident: ref_12 doi: 10.1109/ICCV.2019.00059 – volume: 69 start-page: 5407 year: 2020 ident: ref_17 article-title: A Method of Identifying Rust Status of Dampers Based on Image Processing publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2963732 – volume: 220 start-page: 113403 year: 2023 ident: ref_5 article-title: Fault location in power grids using substation voltage magnitude differences: A comprehensive technique for transmission lines, distribution networks, and AC/DC microgrids publication-title: Measurement doi: 10.1016/j.measurement.2023.113403 – volume: 71 start-page: 1 year: 2022 ident: ref_27 article-title: Real Time Power Equipment Meter Recognition Based on Deep Learning publication-title: IEEE Trans. Instrum. Meas. – ident: ref_22 doi: 10.3390/s18041284 – ident: ref_28 doi: 10.3390/app13116817 – volume: 49 start-page: 100568 year: 2023 ident: ref_7 article-title: Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100568 – ident: ref_31 doi: 10.1007/978-3-030-12767-1 – volume: 9 start-page: 125540 year: 2021 ident: ref_9 article-title: Detection and Location of Safety Protective Wear in Power Substation Operation Using Wear-Enhanced YOLOv3 Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3104731 – volume: 23 start-page: 15922 year: 2022 ident: ref_16 article-title: A Segmentation-Based Multitask Learning Approach for Isolating Switch State Recognition in High-Speed Railway Traction Substation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3146338 – volume: 9 start-page: 19195 year: 2021 ident: ref_8 article-title: Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054468 – volume: 20 start-page: 1 year: 2023 ident: ref_29 article-title: Mvit-pcd: A lightweight vit-based network for martian surface topographic change detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 37 start-page: 833 year: 2021 ident: ref_18 article-title: A Computer Vision System for Monitoring Disconnect Switches in Distribution Substations publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2021.3071971 – volume: 15 start-page: 930 year: 2022 ident: ref_26 article-title: A Lightweight Complex-Valued DeepLabv3+ for Semantic Segmentation of PolSAR Image publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3140101 – ident: ref_30 doi: 10.3390/app10196653 – ident: ref_11 doi: 10.1109/CVPR.2016.91 – ident: ref_25 doi: 10.3390/s22187090 – ident: ref_13 doi: 10.1109/ICCVW54120.2021.00312 – volume: 152 start-page: 107333 year: 2020 ident: ref_23 article-title: A detection and recognition system of pointer meters in substations based on computer vision publication-title: Measurement doi: 10.1016/j.measurement.2019.107333 – volume: 332 start-page: 120493 year: 2023 ident: ref_3 article-title: Short-term electricity load forecasting—A systematic approach from system level to secondary substations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120493 – volume: 37 start-page: 4757 year: 2022 ident: ref_21 article-title: An Infrared Image Detection Method of Substation Equipment Combining Iresgroup Structure and CenterNet publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2022.3158818 – volume: 39 start-page: 1137 year: 2017 ident: ref_24 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 |
SSID | ssj0023338 |
Score | 2.4086223 |
Snippet | Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7739 |
SubjectTerms | Algorithms Automation Datasets Deep learning differentiable binarization electrical cabinet Fault diagnosis Methods Monitoring systems power substation Regions small target detection YOLOv7 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEA7SJ30QtYprq4wi6MvSyyWbbB6vpaUVKj600LeQZBM8LHt6t_f_O5PsHXcq-OLrJgvJzkzmm53JN4x9dHTkSW9qF0RHV3JijSGYr1E7EPwL6aeZJOn6q7q8lV_umrudVl9UE1bogcuHO1HKGe-71ikf0KgbY0I02rsJd2mSfIZG6PM2wdQYagmMvAqPkMCg_mSFKKbVmjqC73ifTNL_51H8e3nkjr-5eMaejkARZmWBz9mj2L9gT3boAw_ZetZDuWibxj9vcJ0bQgMiUbhaLnOf-SWQzS96qpiAXPsWOxgWcFPKYO7hFP3ZjxXMezj_tZ7n-iE4cxgxxwEWCb5RHzWgA6Zk7V-y24vzm7PLemyjUAfZqqEOwXTo1JMOoo1pOmmiR5QlXKPJXyfuuAgyikA5-MY4zWXiPrYRHTvvEF-IV-ygx1W-ZhBbExGOe6UnUfKgDG-0kDK1-I5A9FSxz5vPa8PIMU6tLu4txhokCbuVRMU-bKf-LMQaf5t0SjLaTiAu7PwANcSOGmL_pSEV-0QStmSxuJjgxosHuCXivrIzrYkGD7WzYscbJbCjKa8sKiseUjiuKvZ-O4xGSJkV18fFmuZoSs82RlSs3VOevaXvj_Tz75nOmxPFjlHmzf_Y7BF7PEWxliq4Y3YwLNfxLcKmwb_LFvIAyNAYUQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgXOCA-BSBgQxCgku0enb8cULdtDKQhjhs0m6W7TisYkq2NP3_ec9xQwuIa-Oobt-33_PvR8h7hy5PeFO6wGu8khNLKMF8CdoByT8X_jCBJJ19k6cX4utldZkP3FZ5rHLjE5OjrruAZ-QH8A7oCkQc-enmtkTWKOyuZgqNu-Qeg0iDI1168XkquDjUXyOaEIfS_mAFuYxWCnnBt2JQgur_2yH_OSS5FXUWj8jDnC7S-Sjfx-RObJ-QB1sggk_Jet7S8bptk8_f6FmihaaQj9IvfZ_Y5nuKlt-1ODdB0wRcrOnQ0fNxGOaaHkFU-7miy5ae3K6XaYqIHjuom-NAu4Z-RzY1im5m7N0_IxeLk_Pj0zKTKZRBaDmUIZgaQnujAtexOZxV0UOuxV2lMGo3zDEeROQBO_GVcYqJhvmoI4R3VkOWwZ-TvRZ2-YLQqE2EpNxLNYuCBWlYpbgQjYZ3QEJVQT5u_l4bMtI4El5cW6g4UBJ2kkRB3k1Lb0Z4jX8tOkIZTQsQETt90PU_bDYwK6Uz3tfaSR_A-VfGhGiUdzPmmlnjXUE-oIQt2i1sJrh8_QB-EiJg2blSCIYHOlqQ_Y0S2GzQK_tb_QrydnoMpoj9FdfGbo1rFDZpK8MLoneUZ2fru0_a5VUC9WYItGOkefn_b39F7iPh_Tjltk_2hn4dX0NaNPg3Sfd_AYWEDjU priority: 102 providerName: ProQuest |
Title | An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation |
URI | https://www.proquest.com/docview/2869630226 https://www.proquest.com/docview/2870145593 https://pubmed.ncbi.nlm.nih.gov/PMC10535969 https://doaj.org/article/66a9bbd8a6bc467599ce97ba01af0fba |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFU8RWCqDkOASSOokjg8ItauWBamrFdpKvUW240BFleymqQT_nhknjTawBy45xI7kZMbzyIy_D-CNIpMXaekrw3M6kmN9TMG0j9qBwT-P9NiBJC0ukvNl9HUVrw5gz7HZfcDtnakd8Ukt6837Xze_P-GG_0gZJ6bsH7YYo6RCcHkIx-iQBBEZLKK-mDDm3BFa05kuH_1h0AIMDR8duCWH3v-vjf67b_KWI5o_gJMugmSTVuQP4cCWj-D-LVzBx7CblKw9gVt0v-TYwjFFMwxR2Ze6dgT0NSNjUJXUSsFcU5zNWVOxq7Y_ZsOm6Oh-btm6ZLOb3do1FrEzham0bVhVsEsiWGNkedpy_hNYzmdXZ-d-x6_gmyhNGt8YmaO3L4ThqS3GQWw1hl9cxYIceRGqkJvIckPF-VgqEUZFqG1q0eOHOQYe_CkclbjKZ8BsKi3G6ToRgY1Ck8gwFjyKihSf4RhWefBu_3kz04GPEwfGJsMkhCSR9ZLw4HU_9bpF3Lhr0pRk1E8gkGx3o6q_Z92ey5JESa3zVCXaoD-IpTRWCq2CUBVBoZUHb0nCGSkXLsao7kQCvhKBYmUTIQgfD9XWg9O9EmR7Fc1Qi9F64Xjiwat-GHcnlVxUaasdzRFUt40l9yAdKM9g6cORcv3D4XyHhL0jE_n8v9f5Au6NUXZtD9wpHDX1zr7EoKnRIzgUK4HXdP55BMfT2cXlt5H7ATFym-UPCq0Z9Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDAIBJeoeTs-ILQtXXZpt-KwlXpzbceBFVXSZrNC_Cl-IzN5sQuIW69rJ-tkHt9MPP4G4JUilxdp4SoTZnQkx7qYgmkXtQOD_zDSQUOSNDtOJifRp9P4dAt-9mdhqKyy94mNo85KQ9_Id_Ea1BVEnOT9xaVLXaNod7VvodGqxaH98R1TtuW76QeU7-sgGB_M9ydu11XANVGa1K4xIkOMy7kJU5sHXmw1Bh2hijnBV-4rPzSRDQ1tScdCcT_KfW1TizjnZwi3Id73GlzHxxKU7KXjj0OCF2K-17IX4aC3u8TYKeWc-pCvYV7TGuBvAPizKHMN5cZ34HYXnrJRq093YcsW9-DWGmnhfViNCtYe7827731s1rShZhj_smlVNd3tK0aepiyoToM1FXc2Y3XJ5m3xzTnbQxT9tmSLgh1crhZN1RLbV5in25qVOftM3dsYubW2VuABnFzJa34I2wWu8hEwmwqLSYBOuGcj3yTCj3kYRXmK16BGxA687V-vNB2zOTXYOJeY4ZAk5CAJB14OUy9aOo9_TdojGQ0TiIG7-aGsvsjOoGWSKKF1lqpEGwSbWAhjBdfK81Xu5Vo58IYkLMlP4GKM6o474CMR45YccU7ke2gTDuz0SiA7B7KUv9XdgRfDMJo-7eeowpYrmsNpUzgWoQPphvJsLH1zpFh8bUjEfSL2EYl4_P9_fw43JvPZkTyaHh8-gZsBCq-tsNuB7bpa2acYktX6WWMHDM6u2vB-AT2kSak |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocCCQHCxEmdtr_eAUNImaiiNItRKvbm7612IqOw2DyH-Gr-OGb9IAHHr1V7ba8_jm_HOfgPwWpHLC7X0leEZbcmxPqZg2kftwOCfh7pfkiQdT-PD0_DjWXS2Az-bvTBUVtn4xNJRZ4Whf-RdvAZ1BREn7rq6LGJ2MP5weeVTBylaaW3aaVQqcmR_fMf0bfl-coCyftPvj0cn-4d-3WHAN2ESr3xjZIZ454ThiXX9XmQ1BiBcRYKgzAUq4Ca03NDydCSVCEIXaJtYxLwgQ-jleN8bsCsoK-rA7nA0nX1u0z2O2V_FZcS57HWXGEklQlBX8g0ELBsF_A0Hf5ZobmDe-C7cqYNVNqi06x7s2Pw-3N6gMHwA60HOqs2-rv77x47LptQMo2E2WSzKXvcLRn6nyKlqg5X1dzZjq4KdVKU4F2yImPptyeY5G12t52UNE9tXmLXbFSscm1EvN0ZOrqoceAin1_KhH0Enx1k-BmYTaTEl0LHo2TAwsQwiwcPQJXgN6kfkwbvm86am5jmndhsXKeY7JIm0lYQHr9qhlxW5x78GDUlG7QDi4y4PFIsvaW3eaRwrqXWWqFgbhJ5ISmOl0KoXKNdzWnnwliScktfAyRhVb37AVyL-rXQgBFHxoYV4sNcoQVq7k2X6W_k9eNmeRkdAqzsqt8WaxghaIo4k9yDZUp6tqW-fyedfS0rxgGh-ZCyf_P_pL-AmGl36aTI9egq3-ii7qtxuDzqrxdo-w_hspZ_XhsDg_Lpt7xf4fE87 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Identification+Method+for+Irregular+Components+Related+to+Terminal+Blocks+in+Equipment+Cabinet+of+Power+Substation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Weiguo&rft.au=Chen%2C+Zhong&rft.au=Deng%2C+Xuhui&rft.au=Wu%2C+Congying&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft_id=info:doi/10.3390%2Fs23187739&rft.externalDocID=A771802257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |