A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth
The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of...
Saved in:
Published in | Neuro-oncology (Charlottesville, Va.) Vol. 18; no. 8; pp. 1079 - 1087 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.
Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.
The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.
These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. |
---|---|
AbstractList | BackgroundThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.MethodsKetone body oxidation was studied using 13C MR spectroscopy in combination with infusion of a 13C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.ResultsThe level of 13C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.ConclusionsThese results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.BACKGROUNDThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.METHODSKetone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.RESULTSThe level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.CONCLUSIONSThese results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. |
Author | De Feyter, Henk M. Drewes, Lester R. Hyder, Fahmeed Ip, Kevan L. de Graaf, Robin A. Rao, Jyotsna U. Madden-Hennessey, Kirby Rothman, Douglas L. Behar, Kevin L. Geschwind, Jean-François |
Author_xml | – sequence: 1 givenname: Henk M. surname: De Feyter fullname: De Feyter, Henk M. – sequence: 2 givenname: Kevin L. surname: Behar fullname: Behar, Kevin L. – sequence: 3 givenname: Jyotsna U. surname: Rao fullname: Rao, Jyotsna U. – sequence: 4 givenname: Kirby surname: Madden-Hennessey fullname: Madden-Hennessey, Kirby – sequence: 5 givenname: Kevan L. surname: Ip fullname: Ip, Kevan L. – sequence: 6 givenname: Fahmeed surname: Hyder fullname: Hyder, Fahmeed – sequence: 7 givenname: Lester R. surname: Drewes fullname: Drewes, Lester R. – sequence: 8 givenname: Jean-François surname: Geschwind fullname: Geschwind, Jean-François – sequence: 9 givenname: Robin A. surname: de Graaf fullname: de Graaf, Robin A. – sequence: 10 givenname: Douglas L. surname: Rothman fullname: Rothman, Douglas L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27142056$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc-L1DAYhoOsuD_06FVy9FI3Sds0vQjLoqswIIieQ5p-6UTbfGOS7qz_vXFmV1Q8eEohz_Pypu85OQkYgJDnnL3irK8vA6wY7GXAPVPqETnjrairVkl5cvgWlWp5d0rOU_rCmOCt5E_Iqeh4I1grz8jdFf0KGScI3tLRQ6Y-2AgmQaI5mpB2GDM1YaR450eTPQaK7uAEoAMWJRWFfrwRB6rf0Gn2uJhE9z5vcS2yc2CzDxPN64KRThH3efuUPHZmTvDs_rwgn9---XT9rtp8uHl_fbWpbKNkruxgOslNN5TCppYwOgFcCDcaC1L0oPpuUK20A7hBgm0cjHXXDly2SonONfUFeX3M3a3DAqOFUJ416130i4nfNRqv_7wJfqsnvNVNX9eNUiXg5X1AxG8rpKwXnyzMswmAa9JcMSWV6gv_H6hoOqGYLOiL32v96vOwTAHqI2AjphTBaevz4f-Xln7WnOmf--vj_vq4f7Gqv6yH4H_zPwBtVbiY |
CitedBy_id | crossref_primary_10_1016_j_canlet_2022_215713 crossref_primary_10_1002_nbm_4172 crossref_primary_10_1016_j_trecan_2017_09_007 crossref_primary_10_15252_embj_2021110466 crossref_primary_10_3390_nu14183851 crossref_primary_10_1038_s41419_023_05813_0 crossref_primary_10_3390_cancers12123549 crossref_primary_10_1002_mrm_30501 crossref_primary_10_1186_s13578_022_00826_2 crossref_primary_10_1155_2022_3411123 crossref_primary_10_1021_acschemneuro_0c00711 crossref_primary_10_3390_nu11081903 crossref_primary_10_3390_cells10020202 crossref_primary_10_1016_j_isci_2020_101453 crossref_primary_10_3389_fnut_2023_1091067 crossref_primary_10_3390_jpm14090929 crossref_primary_10_3390_nu14224932 crossref_primary_10_1016_j_cmet_2016_12_022 crossref_primary_10_1016_j_pnmrs_2020_11_001 crossref_primary_10_1093_neuonc_now291 crossref_primary_10_1016_j_clnu_2018_10_024 crossref_primary_10_1007_s11064_019_02795_4 crossref_primary_10_1038_s41598_021_02849_0 crossref_primary_10_1016_j_heliyon_2024_e40414 crossref_primary_10_1371_journal_pone_0257725 crossref_primary_10_1007_s00018_020_03569_w crossref_primary_10_1016_j_mvr_2023_104585 crossref_primary_10_1080_01635581_2020_1822423 crossref_primary_10_3389_fnut_2021_594408 crossref_primary_10_1007_s11060_021_03786_8 crossref_primary_10_1016_j_bbagen_2022_130301 crossref_primary_10_3390_brainsci13091307 crossref_primary_10_1002_nbm_4845 crossref_primary_10_1002_jmri_29486 crossref_primary_10_1002_mrm_27003 crossref_primary_10_3390_nu11102497 crossref_primary_10_1186_s12885_016_2811_2 crossref_primary_10_1186_s12976_018_0084_y crossref_primary_10_3390_neuroglia5020005 crossref_primary_10_1016_j_tem_2018_01_008 crossref_primary_10_1093_neuonc_now284 crossref_primary_10_1152_ajpcell_00441_2023 crossref_primary_10_1007_s11060_016_2364_x crossref_primary_10_1021_acs_analchem_4c06235 crossref_primary_10_1038_s41598_020_79465_x crossref_primary_10_3389_fcell_2021_693215 crossref_primary_10_1007_s00259_023_06162_y crossref_primary_10_1186_s12986_022_00695_z crossref_primary_10_1016_j_ijrobp_2020_06_021 crossref_primary_10_1016_j_slasd_2025_100213 crossref_primary_10_3389_fnut_2021_703392 crossref_primary_10_1016_j_cobme_2021_100278 crossref_primary_10_3390_ijms17122093 crossref_primary_10_1016_j_wneu_2018_04_022 crossref_primary_10_3389_fnins_2017_00747 crossref_primary_10_1111_acer_13560 crossref_primary_10_3390_cancers12071797 crossref_primary_10_3174_ajnr_A6287 crossref_primary_10_1155_2019_8348967 crossref_primary_10_1016_j_nut_2024_112427 crossref_primary_10_3389_fncel_2023_1130816 crossref_primary_10_1007_s13668_020_00332_2 crossref_primary_10_1016_j_molmet_2019_06_026 crossref_primary_10_1016_j_semcancer_2017_12_011 crossref_primary_10_1007_s11306_017_1183_1 crossref_primary_10_1126_sciadv_aat7314 crossref_primary_10_1002_jmri_29422 crossref_primary_10_1007_s12032_017_0991_5 crossref_primary_10_1016_j_clnu_2024_09_044 crossref_primary_10_3389_fnut_2023_1110291 crossref_primary_10_31067_acusaglik_1221155 |
Cites_doi | 10.1016/j.cell.2014.11.025 10.1016/S0197-0186(00)00102-9 10.1186/1743-7075-5-33 10.1371/journal.pone.0130357 10.1093/carcin/bgu147 10.1126/science.1227166 10.1194/jlr.R046797 10.1186/1743-7075-8-75 10.1186/s40170-015-0129-1 10.1158/1538-7445.AM2011-4484 10.1038/sj.bjc.6600298 10.2967/jnumed.114.137034 10.1038/sj.bjc.6601269 10.1186/1743-7075-8-54 10.1097/00004647-200207000-00014 10.1186/1743-7075-7-33 10.1038/bjc.1983.38 10.1080/07315724.1995.10718495 10.1007/s11060-009-9875-7 10.1038/ncomms4944 10.2337/db13-0313 10.1016/j.canlet.2014.07.015 10.1002/ijc.28809 10.1007/s11064-011-0485-3 10.1371/journal.pone.0065522 10.1002/iub.573 10.1158/1078-0432.CCR-12-0287 10.1002/pros.22586 10.1172/JCI105650 10.1186/1743-7075-2-30 10.1186/1471-2407-11-315 10.1097/00001756-200103260-00030 10.3892/ijo.2014.2382 10.1007/s11060-014-1362-0 10.1111/j.1471-4159.2009.05967.x 10.1038/onc.2013.454 10.1056/NEJMra1215228 10.1186/1743-7075-10-47 10.1002/iub.572 10.1016/j.jpedsurg.2008.10.042 10.1186/1743-7075-4-5 10.1186/1743-7075-7-74 10.1371/journal.pone.0133633 10.1002/nbm.1761 10.1016/j.cmet.2012.05.001 10.1371/journal.pone.0036197 |
ContentType | Journal Article |
Copyright | The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2016 |
Copyright_xml | – notice: The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/neuonc/now088 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1523-5866 |
EndPage | 1087 |
ExternalDocumentID | PMC4933488 27142056 10_1093_neuonc_now088 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016359 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NCI NIH HHS grantid: R01 CA140102 – fundername: NINDS NIH HHS grantid: P30 NS052519 – fundername: NIBIB NIH HHS grantid: R01 EB011968 – fundername: ; |
GroupedDBID | --- .2P .I3 .XZ .ZR 0R~ 123 18M 1TH 29N 2WC 36B 4.4 48X 53G 5VS 5WD 70D AABZA AACZT AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACUFI ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMB EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN MHKGH N9A NGC NOMLY NOYVH NU- O0~ O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM Q1. Q5Y RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TJX TR2 UDS W8F WOQ X7H YAYTL YKOAZ YXANX ~91 CGR CUY CVF ECM EIF M49 NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c486t-cba761a7b142a36edf2e122fdace629e897b856cbefb6ec4fed375b1658827f43 |
ISSN | 1522-8517 1523-5866 |
IngestDate | Thu Aug 21 18:33:09 EDT 2025 Fri Jul 11 02:57:27 EDT 2025 Thu Jul 10 18:50:33 EDT 2025 Thu Apr 03 07:05:44 EDT 2025 Tue Jul 01 00:42:32 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | glioma metabolism ketogenic diet 13C MRS MCT1 |
Language | English |
License | The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-cba761a7b142a36edf2e122fdace629e897b856cbefb6ec4fed375b1658827f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 See the editorial by Rieger and Steinbach, on pages 1035–1036. |
OpenAccessLink | https://academic.oup.com/neuro-oncology/article-pdf/18/8/1079/17430916/now088.pdf |
PMID | 27142056 |
PQID | 1802472806 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933488 proquest_miscellaneous_1808688949 proquest_miscellaneous_1802472806 pubmed_primary_27142056 crossref_citationtrail_10_1093_neuonc_now088 crossref_primary_10_1093_neuonc_now088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuro-oncology (Charlottesville, Va.) |
PublicationTitleAlternate | Neuro Oncol |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016070509282934000_18.8.1079.2 2016070509282934000_18.8.1079.1 2016070509282934000_18.8.1079.4 2016070509282934000_18.8.1079.3 2016070509282934000_18.8.1079.30 2016070509282934000_18.8.1079.31 2016070509282934000_18.8.1079.12 2016070509282934000_18.8.1079.34 2016070509282934000_18.8.1079.13 2016070509282934000_18.8.1079.35 2016070509282934000_18.8.1079.10 2016070509282934000_18.8.1079.32 2016070509282934000_18.8.1079.11 2016070509282934000_18.8.1079.33 2016070509282934000_18.8.1079.6 2016070509282934000_18.8.1079.16 2016070509282934000_18.8.1079.38 2016070509282934000_18.8.1079.5 2016070509282934000_18.8.1079.17 2016070509282934000_18.8.1079.39 2016070509282934000_18.8.1079.8 2016070509282934000_18.8.1079.14 2016070509282934000_18.8.1079.36 2016070509282934000_18.8.1079.7 2016070509282934000_18.8.1079.37 2016070509282934000_18.8.1079.9 2016070509282934000_18.8.1079.18 2016070509282934000_18.8.1079.19 Rahman (2016070509282934000_18.8.1079.46) 2014; 5 Rieger (2016070509282934000_18.8.1079.15) 2014; 44 2016070509282934000_18.8.1079.41 2016070509282934000_18.8.1079.20 2016070509282934000_18.8.1079.42 2016070509282934000_18.8.1079.40 2016070509282934000_18.8.1079.23 2016070509282934000_18.8.1079.45 2016070509282934000_18.8.1079.24 2016070509282934000_18.8.1079.21 2016070509282934000_18.8.1079.43 2016070509282934000_18.8.1079.22 2016070509282934000_18.8.1079.44 2016070509282934000_18.8.1079.27 2016070509282934000_18.8.1079.28 2016070509282934000_18.8.1079.25 2016070509282934000_18.8.1079.26 2016070509282934000_18.8.1079.29 27382118 - Neuro Oncol. 2016 Aug;18(8):1035-6 |
References_xml | – ident: 2016070509282934000_18.8.1079.29 doi: 10.1016/j.cell.2014.11.025 – ident: 2016070509282934000_18.8.1079.37 doi: 10.1016/S0197-0186(00)00102-9 – ident: 2016070509282934000_18.8.1079.10 doi: 10.1186/1743-7075-5-33 – ident: 2016070509282934000_18.8.1079.41 doi: 10.1371/journal.pone.0130357 – ident: 2016070509282934000_18.8.1079.24 doi: 10.1093/carcin/bgu147 – ident: 2016070509282934000_18.8.1079.45 doi: 10.1126/science.1227166 – ident: 2016070509282934000_18.8.1079.12 doi: 10.1194/jlr.R046797 – ident: 2016070509282934000_18.8.1079.9 doi: 10.1186/1743-7075-8-75 – ident: 2016070509282934000_18.8.1079.18 doi: 10.1186/s40170-015-0129-1 – ident: 2016070509282934000_18.8.1079.23 doi: 10.1158/1538-7445.AM2011-4484 – ident: 2016070509282934000_18.8.1079.8 doi: 10.1038/sj.bjc.6600298 – ident: 2016070509282934000_18.8.1079.34 doi: 10.2967/jnumed.114.137034 – ident: 2016070509282934000_18.8.1079.4 doi: 10.1038/sj.bjc.6601269 – ident: 2016070509282934000_18.8.1079.13 doi: 10.1186/1743-7075-8-54 – ident: 2016070509282934000_18.8.1079.1 doi: 10.1097/00004647-200207000-00014 – ident: 2016070509282934000_18.8.1079.17 doi: 10.1186/1743-7075-7-33 – ident: 2016070509282934000_18.8.1079.11 doi: 10.1038/bjc.1983.38 – ident: 2016070509282934000_18.8.1079.16 doi: 10.1080/07315724.1995.10718495 – ident: 2016070509282934000_18.8.1079.31 doi: 10.1007/s11060-009-9875-7 – volume: 5 start-page: 3944 year: 2014 ident: 2016070509282934000_18.8.1079.46 article-title: The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages publication-title: Nat Commun doi: 10.1038/ncomms4944 – ident: 2016070509282934000_18.8.1079.42 doi: 10.2337/db13-0313 – ident: 2016070509282934000_18.8.1079.7 doi: 10.1016/j.canlet.2014.07.015 – ident: 2016070509282934000_18.8.1079.21 doi: 10.1002/ijc.28809 – ident: 2016070509282934000_18.8.1079.35 doi: 10.1007/s11064-011-0485-3 – ident: 2016070509282934000_18.8.1079.20 doi: 10.1371/journal.pone.0065522 – ident: 2016070509282934000_18.8.1079.39 doi: 10.1002/iub.573 – ident: 2016070509282934000_18.8.1079.19 doi: 10.1158/1078-0432.CCR-12-0287 – ident: 2016070509282934000_18.8.1079.22 doi: 10.1002/pros.22586 – ident: 2016070509282934000_18.8.1079.2 doi: 10.1172/JCI105650 – ident: 2016070509282934000_18.8.1079.5 doi: 10.1186/1743-7075-2-30 – ident: 2016070509282934000_18.8.1079.26 doi: 10.1186/1471-2407-11-315 – ident: 2016070509282934000_18.8.1079.44 doi: 10.1097/00001756-200103260-00030 – volume: 44 start-page: 1843 issue: (6) year: 2014 ident: 2016070509282934000_18.8.1079.15 article-title: ERGO: A pilot study of ketogenic diet in recurrent glioblastoma publication-title: Int J Oncol doi: 10.3892/ijo.2014.2382 – ident: 2016070509282934000_18.8.1079.14 doi: 10.1007/s11060-014-1362-0 – ident: 2016070509282934000_18.8.1079.33 doi: 10.1111/j.1471-4159.2009.05967.x – ident: 2016070509282934000_18.8.1079.38 doi: 10.1038/onc.2013.454 – ident: 2016070509282934000_18.8.1079.43 doi: 10.1056/NEJMra1215228 – ident: 2016070509282934000_18.8.1079.27 doi: 10.1186/1743-7075-10-47 – ident: 2016070509282934000_18.8.1079.36 doi: 10.1002/iub.572 – ident: 2016070509282934000_18.8.1079.3 doi: 10.1016/j.jpedsurg.2008.10.042 – ident: 2016070509282934000_18.8.1079.6 doi: 10.1186/1743-7075-4-5 – ident: 2016070509282934000_18.8.1079.32 doi: 10.1186/1743-7075-7-74 – ident: 2016070509282934000_18.8.1079.40 doi: 10.1371/journal.pone.0133633 – ident: 2016070509282934000_18.8.1079.30 doi: 10.1002/nbm.1761 – ident: 2016070509282934000_18.8.1079.28 doi: 10.1016/j.cmet.2012.05.001 – ident: 2016070509282934000_18.8.1079.25 doi: 10.1371/journal.pone.0036197 – reference: 27382118 - Neuro Oncol. 2016 Aug;18(8):1035-6 |
SSID | ssj0021561 |
Score | 2.4345834 |
Snippet | The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient... BackgroundThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1079 |
SubjectTerms | 3-Hydroxybutyric Acid - metabolism Animals Basic and Translational Investigations Brain Neoplasms - drug therapy Brain Neoplasms - metabolism Cell Line, Tumor Diet, Ketogenic Disease Models, Animal Glioma - diet therapy Glioma - metabolism Ketone Bodies - metabolism Male Monocarboxylic Acid Transporters - metabolism Rats, Inbred F344 Survival Analysis Symporters - metabolism Tumor Burden |
Title | A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27142056 https://www.proquest.com/docview/1802472806 https://www.proquest.com/docview/1808688949 https://pubmed.ncbi.nlm.nih.gov/PMC4933488 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDvlJiMhXkK2xbk5jxUwCtt4mDZpb5GdOFu0LZnaBFZ-DL-Vc-zETXdBwEsUxXbc9nz1ufj4O4S89QpfgVos3JwnhRskrHA58zO3EIkvA5-rSNdP2f0WTQ-Cr4fh4Wj0a5C11DZyPft57bmS_5EqPAO54inZf5CsfSk8gHuQL1xBwnD9KxlPnBPV1NBcZk5eKmT7RyNwjrQNPWm53h2oL8rc2oY4BkxLWWMCIcY79j4z3SvZcY5OS0wY0uFZzFgWOt1DH6lqz-qZcwRee3M8tGg1u4dbV5khc8JNYdzBrxuwYb_jQUOdSSvWByGHj8rZUouuIshUVSfLkCzSNZosD1DYlWMj03vC7BAt6mZeCedgGUjHhdOdorqYd3tg2-VMLobRDC-yuXSgjLoVmPluyE0plqtLdNun-Jr1FpzX5FpFYEiyKtXC98eb-semKR84gMX5mcYFi72AbYaXCLm1iu-bbpHbDNwQ7bJ_2bYOPfi-XsfbCvNtmNk2zFzIMt2NXjV5rvgxl9NxB_bN_n1yr3NM6MSg7AEZqeohubPbpV48IhcTasFGEWzUgo1asFGAEbVgo3VBDdioARsMoQA23SvZoR3YaAc2asFGNdioAdtjcrD1af_D1O3KdrhZwKPGzaSII0_EGF4UfqTygimPsSIXmYpYongSSx5GmVSFjFQWFCr341B6YAtzWDUC_wlZq-CjPSM0lDKWSggwYxUoF8bzzMulH4UJF9IP4jF53_-yadZx2mNpldPU5Fb4qZFJamQyJu9s93ND5nJTxze9mFJYbnEPTVSqbucpEiYGWNIt-mMfHnGeBMmYPDWitdP1mBiTeEXotgPSva-2VOWxpn0PEjw1z5_f-M4X5O7yL_WSrDWzVr0Ck7mRrzVufwNwCcto |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ketogenic+diet+increases+transport+and+oxidation+of+ketone+bodies+in+RG2+and+9L+gliomas+without+affecting+tumor+growth&rft.jtitle=Neuro-oncology+%28Charlottesville%2C+Va.%29&rft.au=De+Feyter%2C+Henk+M&rft.au=Behar%2C+Kevin+L&rft.au=Rao%2C+Jyotsna+U&rft.au=Madden-Hennessey%2C+Kirby&rft.date=2016-08-01&rft.eissn=1523-5866&rft.volume=18&rft.issue=8&rft.spage=1079&rft_id=info:doi/10.1093%2Fneuonc%2Fnow088&rft_id=info%3Apmid%2F27142056&rft.externalDocID=27142056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-8517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-8517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-8517&client=summon |