A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth

The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of...

Full description

Saved in:
Bibliographic Details
Published inNeuro-oncology (Charlottesville, Va.) Vol. 18; no. 8; pp. 1079 - 1087
Main Authors De Feyter, Henk M., Behar, Kevin L., Rao, Jyotsna U., Madden-Hennessey, Kirby, Ip, Kevan L., Hyder, Fahmeed, Drewes, Lester R., Geschwind, Jean-François, de Graaf, Robin A., Rothman, Douglas L.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.
AbstractList BackgroundThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.MethodsKetone body oxidation was studied using 13C MR spectroscopy in combination with infusion of a 13C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.ResultsThe level of 13C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.ConclusionsThese results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.
The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.BACKGROUNDThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models.Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.METHODSKetone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue.The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.RESULTSThe level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas.These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.CONCLUSIONSThese results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.
The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.
Author De Feyter, Henk M.
Drewes, Lester R.
Hyder, Fahmeed
Ip, Kevan L.
de Graaf, Robin A.
Rao, Jyotsna U.
Madden-Hennessey, Kirby
Rothman, Douglas L.
Behar, Kevin L.
Geschwind, Jean-François
Author_xml – sequence: 1
  givenname: Henk M.
  surname: De Feyter
  fullname: De Feyter, Henk M.
– sequence: 2
  givenname: Kevin L.
  surname: Behar
  fullname: Behar, Kevin L.
– sequence: 3
  givenname: Jyotsna U.
  surname: Rao
  fullname: Rao, Jyotsna U.
– sequence: 4
  givenname: Kirby
  surname: Madden-Hennessey
  fullname: Madden-Hennessey, Kirby
– sequence: 5
  givenname: Kevan L.
  surname: Ip
  fullname: Ip, Kevan L.
– sequence: 6
  givenname: Fahmeed
  surname: Hyder
  fullname: Hyder, Fahmeed
– sequence: 7
  givenname: Lester R.
  surname: Drewes
  fullname: Drewes, Lester R.
– sequence: 8
  givenname: Jean-François
  surname: Geschwind
  fullname: Geschwind, Jean-François
– sequence: 9
  givenname: Robin A.
  surname: de Graaf
  fullname: de Graaf, Robin A.
– sequence: 10
  givenname: Douglas L.
  surname: Rothman
  fullname: Rothman, Douglas L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27142056$$D View this record in MEDLINE/PubMed
BookMark eNqNkc-L1DAYhoOsuD_06FVy9FI3Sds0vQjLoqswIIieQ5p-6UTbfGOS7qz_vXFmV1Q8eEohz_Pypu85OQkYgJDnnL3irK8vA6wY7GXAPVPqETnjrairVkl5cvgWlWp5d0rOU_rCmOCt5E_Iqeh4I1grz8jdFf0KGScI3tLRQ6Y-2AgmQaI5mpB2GDM1YaR450eTPQaK7uAEoAMWJRWFfrwRB6rf0Gn2uJhE9z5vcS2yc2CzDxPN64KRThH3efuUPHZmTvDs_rwgn9---XT9rtp8uHl_fbWpbKNkruxgOslNN5TCppYwOgFcCDcaC1L0oPpuUK20A7hBgm0cjHXXDly2SonONfUFeX3M3a3DAqOFUJ416130i4nfNRqv_7wJfqsnvNVNX9eNUiXg5X1AxG8rpKwXnyzMswmAa9JcMSWV6gv_H6hoOqGYLOiL32v96vOwTAHqI2AjphTBaevz4f-Xln7WnOmf--vj_vq4f7Gqv6yH4H_zPwBtVbiY
CitedBy_id crossref_primary_10_1016_j_canlet_2022_215713
crossref_primary_10_1002_nbm_4172
crossref_primary_10_1016_j_trecan_2017_09_007
crossref_primary_10_15252_embj_2021110466
crossref_primary_10_3390_nu14183851
crossref_primary_10_1038_s41419_023_05813_0
crossref_primary_10_3390_cancers12123549
crossref_primary_10_1002_mrm_30501
crossref_primary_10_1186_s13578_022_00826_2
crossref_primary_10_1155_2022_3411123
crossref_primary_10_1021_acschemneuro_0c00711
crossref_primary_10_3390_nu11081903
crossref_primary_10_3390_cells10020202
crossref_primary_10_1016_j_isci_2020_101453
crossref_primary_10_3389_fnut_2023_1091067
crossref_primary_10_3390_jpm14090929
crossref_primary_10_3390_nu14224932
crossref_primary_10_1016_j_cmet_2016_12_022
crossref_primary_10_1016_j_pnmrs_2020_11_001
crossref_primary_10_1093_neuonc_now291
crossref_primary_10_1016_j_clnu_2018_10_024
crossref_primary_10_1007_s11064_019_02795_4
crossref_primary_10_1038_s41598_021_02849_0
crossref_primary_10_1016_j_heliyon_2024_e40414
crossref_primary_10_1371_journal_pone_0257725
crossref_primary_10_1007_s00018_020_03569_w
crossref_primary_10_1016_j_mvr_2023_104585
crossref_primary_10_1080_01635581_2020_1822423
crossref_primary_10_3389_fnut_2021_594408
crossref_primary_10_1007_s11060_021_03786_8
crossref_primary_10_1016_j_bbagen_2022_130301
crossref_primary_10_3390_brainsci13091307
crossref_primary_10_1002_nbm_4845
crossref_primary_10_1002_jmri_29486
crossref_primary_10_1002_mrm_27003
crossref_primary_10_3390_nu11102497
crossref_primary_10_1186_s12885_016_2811_2
crossref_primary_10_1186_s12976_018_0084_y
crossref_primary_10_3390_neuroglia5020005
crossref_primary_10_1016_j_tem_2018_01_008
crossref_primary_10_1093_neuonc_now284
crossref_primary_10_1152_ajpcell_00441_2023
crossref_primary_10_1007_s11060_016_2364_x
crossref_primary_10_1021_acs_analchem_4c06235
crossref_primary_10_1038_s41598_020_79465_x
crossref_primary_10_3389_fcell_2021_693215
crossref_primary_10_1007_s00259_023_06162_y
crossref_primary_10_1186_s12986_022_00695_z
crossref_primary_10_1016_j_ijrobp_2020_06_021
crossref_primary_10_1016_j_slasd_2025_100213
crossref_primary_10_3389_fnut_2021_703392
crossref_primary_10_1016_j_cobme_2021_100278
crossref_primary_10_3390_ijms17122093
crossref_primary_10_1016_j_wneu_2018_04_022
crossref_primary_10_3389_fnins_2017_00747
crossref_primary_10_1111_acer_13560
crossref_primary_10_3390_cancers12071797
crossref_primary_10_3174_ajnr_A6287
crossref_primary_10_1155_2019_8348967
crossref_primary_10_1016_j_nut_2024_112427
crossref_primary_10_3389_fncel_2023_1130816
crossref_primary_10_1007_s13668_020_00332_2
crossref_primary_10_1016_j_molmet_2019_06_026
crossref_primary_10_1016_j_semcancer_2017_12_011
crossref_primary_10_1007_s11306_017_1183_1
crossref_primary_10_1126_sciadv_aat7314
crossref_primary_10_1002_jmri_29422
crossref_primary_10_1007_s12032_017_0991_5
crossref_primary_10_1016_j_clnu_2024_09_044
crossref_primary_10_3389_fnut_2023_1110291
crossref_primary_10_31067_acusaglik_1221155
Cites_doi 10.1016/j.cell.2014.11.025
10.1016/S0197-0186(00)00102-9
10.1186/1743-7075-5-33
10.1371/journal.pone.0130357
10.1093/carcin/bgu147
10.1126/science.1227166
10.1194/jlr.R046797
10.1186/1743-7075-8-75
10.1186/s40170-015-0129-1
10.1158/1538-7445.AM2011-4484
10.1038/sj.bjc.6600298
10.2967/jnumed.114.137034
10.1038/sj.bjc.6601269
10.1186/1743-7075-8-54
10.1097/00004647-200207000-00014
10.1186/1743-7075-7-33
10.1038/bjc.1983.38
10.1080/07315724.1995.10718495
10.1007/s11060-009-9875-7
10.1038/ncomms4944
10.2337/db13-0313
10.1016/j.canlet.2014.07.015
10.1002/ijc.28809
10.1007/s11064-011-0485-3
10.1371/journal.pone.0065522
10.1002/iub.573
10.1158/1078-0432.CCR-12-0287
10.1002/pros.22586
10.1172/JCI105650
10.1186/1743-7075-2-30
10.1186/1471-2407-11-315
10.1097/00001756-200103260-00030
10.3892/ijo.2014.2382
10.1007/s11060-014-1362-0
10.1111/j.1471-4159.2009.05967.x
10.1038/onc.2013.454
10.1056/NEJMra1215228
10.1186/1743-7075-10-47
10.1002/iub.572
10.1016/j.jpedsurg.2008.10.042
10.1186/1743-7075-4-5
10.1186/1743-7075-7-74
10.1371/journal.pone.0133633
10.1002/nbm.1761
10.1016/j.cmet.2012.05.001
10.1371/journal.pone.0036197
ContentType Journal Article
Copyright The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2016
Copyright_xml – notice: The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1093/neuonc/now088
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-5866
EndPage 1087
ExternalDocumentID PMC4933488
27142056
10_1093_neuonc_now088
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016359
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCI NIH HHS
  grantid: R01 CA140102
– fundername: NINDS NIH HHS
  grantid: P30 NS052519
– fundername: NIBIB NIH HHS
  grantid: R01 EB011968
– fundername: ;
GroupedDBID ---
.2P
.I3
.XZ
.ZR
0R~
123
18M
1TH
29N
2WC
36B
4.4
48X
53G
5VS
5WD
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMB
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
MHKGH
N9A
NGC
NOMLY
NOYVH
NU-
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
Q1.
Q5Y
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJX
TR2
UDS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
~91
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c486t-cba761a7b142a36edf2e122fdace629e897b856cbefb6ec4fed375b1658827f43
ISSN 1522-8517
1523-5866
IngestDate Thu Aug 21 18:33:09 EDT 2025
Fri Jul 11 02:57:27 EDT 2025
Thu Jul 10 18:50:33 EDT 2025
Thu Apr 03 07:05:44 EDT 2025
Tue Jul 01 00:42:32 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords glioma
metabolism
ketogenic diet
13C MRS
MCT1
Language English
License The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-cba761a7b142a36edf2e122fdace629e897b856cbefb6ec4fed375b1658827f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
See the editorial by Rieger and Steinbach, on pages 1035–1036.
OpenAccessLink https://academic.oup.com/neuro-oncology/article-pdf/18/8/1079/17430916/now088.pdf
PMID 27142056
PQID 1802472806
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933488
proquest_miscellaneous_1808688949
proquest_miscellaneous_1802472806
pubmed_primary_27142056
crossref_citationtrail_10_1093_neuonc_now088
crossref_primary_10_1093_neuonc_now088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuro-oncology (Charlottesville, Va.)
PublicationTitleAlternate Neuro Oncol
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016070509282934000_18.8.1079.2
2016070509282934000_18.8.1079.1
2016070509282934000_18.8.1079.4
2016070509282934000_18.8.1079.3
2016070509282934000_18.8.1079.30
2016070509282934000_18.8.1079.31
2016070509282934000_18.8.1079.12
2016070509282934000_18.8.1079.34
2016070509282934000_18.8.1079.13
2016070509282934000_18.8.1079.35
2016070509282934000_18.8.1079.10
2016070509282934000_18.8.1079.32
2016070509282934000_18.8.1079.11
2016070509282934000_18.8.1079.33
2016070509282934000_18.8.1079.6
2016070509282934000_18.8.1079.16
2016070509282934000_18.8.1079.38
2016070509282934000_18.8.1079.5
2016070509282934000_18.8.1079.17
2016070509282934000_18.8.1079.39
2016070509282934000_18.8.1079.8
2016070509282934000_18.8.1079.14
2016070509282934000_18.8.1079.36
2016070509282934000_18.8.1079.7
2016070509282934000_18.8.1079.37
2016070509282934000_18.8.1079.9
2016070509282934000_18.8.1079.18
2016070509282934000_18.8.1079.19
Rahman (2016070509282934000_18.8.1079.46) 2014; 5
Rieger (2016070509282934000_18.8.1079.15) 2014; 44
2016070509282934000_18.8.1079.41
2016070509282934000_18.8.1079.20
2016070509282934000_18.8.1079.42
2016070509282934000_18.8.1079.40
2016070509282934000_18.8.1079.23
2016070509282934000_18.8.1079.45
2016070509282934000_18.8.1079.24
2016070509282934000_18.8.1079.21
2016070509282934000_18.8.1079.43
2016070509282934000_18.8.1079.22
2016070509282934000_18.8.1079.44
2016070509282934000_18.8.1079.27
2016070509282934000_18.8.1079.28
2016070509282934000_18.8.1079.25
2016070509282934000_18.8.1079.26
2016070509282934000_18.8.1079.29
27382118 - Neuro Oncol. 2016 Aug;18(8):1035-6
References_xml – ident: 2016070509282934000_18.8.1079.29
  doi: 10.1016/j.cell.2014.11.025
– ident: 2016070509282934000_18.8.1079.37
  doi: 10.1016/S0197-0186(00)00102-9
– ident: 2016070509282934000_18.8.1079.10
  doi: 10.1186/1743-7075-5-33
– ident: 2016070509282934000_18.8.1079.41
  doi: 10.1371/journal.pone.0130357
– ident: 2016070509282934000_18.8.1079.24
  doi: 10.1093/carcin/bgu147
– ident: 2016070509282934000_18.8.1079.45
  doi: 10.1126/science.1227166
– ident: 2016070509282934000_18.8.1079.12
  doi: 10.1194/jlr.R046797
– ident: 2016070509282934000_18.8.1079.9
  doi: 10.1186/1743-7075-8-75
– ident: 2016070509282934000_18.8.1079.18
  doi: 10.1186/s40170-015-0129-1
– ident: 2016070509282934000_18.8.1079.23
  doi: 10.1158/1538-7445.AM2011-4484
– ident: 2016070509282934000_18.8.1079.8
  doi: 10.1038/sj.bjc.6600298
– ident: 2016070509282934000_18.8.1079.34
  doi: 10.2967/jnumed.114.137034
– ident: 2016070509282934000_18.8.1079.4
  doi: 10.1038/sj.bjc.6601269
– ident: 2016070509282934000_18.8.1079.13
  doi: 10.1186/1743-7075-8-54
– ident: 2016070509282934000_18.8.1079.1
  doi: 10.1097/00004647-200207000-00014
– ident: 2016070509282934000_18.8.1079.17
  doi: 10.1186/1743-7075-7-33
– ident: 2016070509282934000_18.8.1079.11
  doi: 10.1038/bjc.1983.38
– ident: 2016070509282934000_18.8.1079.16
  doi: 10.1080/07315724.1995.10718495
– ident: 2016070509282934000_18.8.1079.31
  doi: 10.1007/s11060-009-9875-7
– volume: 5
  start-page: 3944
  year: 2014
  ident: 2016070509282934000_18.8.1079.46
  article-title: The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages
  publication-title: Nat Commun
  doi: 10.1038/ncomms4944
– ident: 2016070509282934000_18.8.1079.42
  doi: 10.2337/db13-0313
– ident: 2016070509282934000_18.8.1079.7
  doi: 10.1016/j.canlet.2014.07.015
– ident: 2016070509282934000_18.8.1079.21
  doi: 10.1002/ijc.28809
– ident: 2016070509282934000_18.8.1079.35
  doi: 10.1007/s11064-011-0485-3
– ident: 2016070509282934000_18.8.1079.20
  doi: 10.1371/journal.pone.0065522
– ident: 2016070509282934000_18.8.1079.39
  doi: 10.1002/iub.573
– ident: 2016070509282934000_18.8.1079.19
  doi: 10.1158/1078-0432.CCR-12-0287
– ident: 2016070509282934000_18.8.1079.22
  doi: 10.1002/pros.22586
– ident: 2016070509282934000_18.8.1079.2
  doi: 10.1172/JCI105650
– ident: 2016070509282934000_18.8.1079.5
  doi: 10.1186/1743-7075-2-30
– ident: 2016070509282934000_18.8.1079.26
  doi: 10.1186/1471-2407-11-315
– ident: 2016070509282934000_18.8.1079.44
  doi: 10.1097/00001756-200103260-00030
– volume: 44
  start-page: 1843
  issue: (6)
  year: 2014
  ident: 2016070509282934000_18.8.1079.15
  article-title: ERGO: A pilot study of ketogenic diet in recurrent glioblastoma
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2014.2382
– ident: 2016070509282934000_18.8.1079.14
  doi: 10.1007/s11060-014-1362-0
– ident: 2016070509282934000_18.8.1079.33
  doi: 10.1111/j.1471-4159.2009.05967.x
– ident: 2016070509282934000_18.8.1079.38
  doi: 10.1038/onc.2013.454
– ident: 2016070509282934000_18.8.1079.43
  doi: 10.1056/NEJMra1215228
– ident: 2016070509282934000_18.8.1079.27
  doi: 10.1186/1743-7075-10-47
– ident: 2016070509282934000_18.8.1079.36
  doi: 10.1002/iub.572
– ident: 2016070509282934000_18.8.1079.3
  doi: 10.1016/j.jpedsurg.2008.10.042
– ident: 2016070509282934000_18.8.1079.6
  doi: 10.1186/1743-7075-4-5
– ident: 2016070509282934000_18.8.1079.32
  doi: 10.1186/1743-7075-7-74
– ident: 2016070509282934000_18.8.1079.40
  doi: 10.1371/journal.pone.0133633
– ident: 2016070509282934000_18.8.1079.30
  doi: 10.1002/nbm.1761
– ident: 2016070509282934000_18.8.1079.28
  doi: 10.1016/j.cmet.2012.05.001
– ident: 2016070509282934000_18.8.1079.25
  doi: 10.1371/journal.pone.0036197
– reference: 27382118 - Neuro Oncol. 2016 Aug;18(8):1035-6
SSID ssj0021561
Score 2.4345834
Snippet The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient...
BackgroundThe dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1079
SubjectTerms 3-Hydroxybutyric Acid - metabolism
Animals
Basic and Translational Investigations
Brain Neoplasms - drug therapy
Brain Neoplasms - metabolism
Cell Line, Tumor
Diet, Ketogenic
Disease Models, Animal
Glioma - diet therapy
Glioma - metabolism
Ketone Bodies - metabolism
Male
Monocarboxylic Acid Transporters - metabolism
Rats, Inbred F344
Survival Analysis
Symporters - metabolism
Tumor Burden
Title A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth
URI https://www.ncbi.nlm.nih.gov/pubmed/27142056
https://www.proquest.com/docview/1802472806
https://www.proquest.com/docview/1808688949
https://pubmed.ncbi.nlm.nih.gov/PMC4933488
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDvlJiMhXkK2xbk5jxUwCtt4mDZpb5GdOFu0LZnaBFZ-DL-Vc-zETXdBwEsUxXbc9nz1ufj4O4S89QpfgVos3JwnhRskrHA58zO3EIkvA5-rSNdP2f0WTQ-Cr4fh4Wj0a5C11DZyPft57bmS_5EqPAO54inZf5CsfSk8gHuQL1xBwnD9KxlPnBPV1NBcZk5eKmT7RyNwjrQNPWm53h2oL8rc2oY4BkxLWWMCIcY79j4z3SvZcY5OS0wY0uFZzFgWOt1DH6lqz-qZcwRee3M8tGg1u4dbV5khc8JNYdzBrxuwYb_jQUOdSSvWByGHj8rZUouuIshUVSfLkCzSNZosD1DYlWMj03vC7BAt6mZeCedgGUjHhdOdorqYd3tg2-VMLobRDC-yuXSgjLoVmPluyE0plqtLdNun-Jr1FpzX5FpFYEiyKtXC98eb-semKR84gMX5mcYFi72AbYaXCLm1iu-bbpHbDNwQ7bJ_2bYOPfi-XsfbCvNtmNk2zFzIMt2NXjV5rvgxl9NxB_bN_n1yr3NM6MSg7AEZqeohubPbpV48IhcTasFGEWzUgo1asFGAEbVgo3VBDdioARsMoQA23SvZoR3YaAc2asFGNdioAdtjcrD1af_D1O3KdrhZwKPGzaSII0_EGF4UfqTygimPsSIXmYpYongSSx5GmVSFjFQWFCr341B6YAtzWDUC_wlZq-CjPSM0lDKWSggwYxUoF8bzzMulH4UJF9IP4jF53_-yadZx2mNpldPU5Fb4qZFJamQyJu9s93ND5nJTxze9mFJYbnEPTVSqbucpEiYGWNIt-mMfHnGeBMmYPDWitdP1mBiTeEXotgPSva-2VOWxpn0PEjw1z5_f-M4X5O7yL_WSrDWzVr0Ck7mRrzVufwNwCcto
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ketogenic+diet+increases+transport+and+oxidation+of+ketone+bodies+in+RG2+and+9L+gliomas+without+affecting+tumor+growth&rft.jtitle=Neuro-oncology+%28Charlottesville%2C+Va.%29&rft.au=De+Feyter%2C+Henk+M&rft.au=Behar%2C+Kevin+L&rft.au=Rao%2C+Jyotsna+U&rft.au=Madden-Hennessey%2C+Kirby&rft.date=2016-08-01&rft.eissn=1523-5866&rft.volume=18&rft.issue=8&rft.spage=1079&rft_id=info:doi/10.1093%2Fneuonc%2Fnow088&rft_id=info%3Apmid%2F27142056&rft.externalDocID=27142056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-8517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-8517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-8517&client=summon