metaFlye: scalable long-read metagenome assembly using repeat graphs
Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye,...
Saved in:
Published in | Nature methods Vol. 17; no. 11; pp. 1103 - 1110 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.
Long-read metagenomics offers a valuable approach for profiling bacterial communities. This work presents a long-read assembler, metaFlye, that specifically addresses the challenges of assembling metagenomes. |
---|---|
AbstractList | Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products. Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.Long-read metagenomics offers a valuable approach for profiling bacterial communities. This work presents a long-read assembler, metaFlye, that specifically addresses the challenges of assembling metagenomes. Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products. Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products. Long-read metagenomics offers a valuable approach for profiling bacterial communities. This work presents a long-read assembler, metaFlye, that specifically addresses the challenges of assembling metagenomes. |
Audience | Academic |
Author | Behsaz, Bahar Pevzner, Pavel A. Gurevich, Alexey Shin, Sung Bong Kuhn, Kristen Bickhart, Derek M. Rayko, Mikhail Smith, Timothy P. L. Kolmogorov, Mikhail Yuan, Jeffrey Polevikov, Evgeny |
Author_xml | – sequence: 1 givenname: Mikhail orcidid: 0000-0002-5489-9045 surname: Kolmogorov fullname: Kolmogorov, Mikhail organization: Department of Computer Science and Engineering, University of California – sequence: 2 givenname: Derek M. surname: Bickhart fullname: Bickhart, Derek M. organization: Cell Wall Biology and Utilization Laboratory, Dairy Forage Research Center, USDA – sequence: 3 givenname: Bahar surname: Behsaz fullname: Behsaz, Bahar organization: Graduate Program in Bioinformatics and System Biology, University of California – sequence: 4 givenname: Alexey surname: Gurevich fullname: Gurevich, Alexey organization: Center for Algorithmic Biotechnology, St. Petersburg State University – sequence: 5 givenname: Mikhail orcidid: 0000-0002-3737-1521 surname: Rayko fullname: Rayko, Mikhail organization: Center for Algorithmic Biotechnology, St. Petersburg State University – sequence: 6 givenname: Sung Bong surname: Shin fullname: Shin, Sung Bong organization: USDA-ARS US Meat Animal Research Center – sequence: 7 givenname: Kristen surname: Kuhn fullname: Kuhn, Kristen organization: USDA-ARS US Meat Animal Research Center – sequence: 8 givenname: Jeffrey orcidid: 0000-0003-3855-1994 surname: Yuan fullname: Yuan, Jeffrey organization: Graduate Program in Bioinformatics and System Biology, University of California – sequence: 9 givenname: Evgeny surname: Polevikov fullname: Polevikov, Evgeny organization: Center for Algorithmic Biotechnology, St. Petersburg State University, Bioinformatics Institute – sequence: 10 givenname: Timothy P. L. orcidid: 0000-0003-1611-6828 surname: Smith fullname: Smith, Timothy P. L. organization: USDA-ARS US Meat Animal Research Center – sequence: 11 givenname: Pavel A. orcidid: 0000-0002-0418-165X surname: Pevzner fullname: Pevzner, Pavel A. email: ppevzner@ucsd.edu organization: Department of Computer Science and Engineering, University of California, Center for Microbiome Innovation, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33020656$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQRq2qqC_4AyxQJDbdpPidmF1VKCBVYgNra-KMQyrHudiJ1Pvv8e1tqahQ5YUt-5wZa75TchjniIS8ZfSCUdF-yJIpw2vKaU2paVh9d0BOmJJt3TCqDh_P1LBjcprzLaVCSK6OyLEQRdJKn5BPEy5wHbb4scoOAnQBqzDHoU4IfbV7HDDOE1aQM05d2FZrHuNQJdwgLNWQYPMrvyavPISMbx72M_Lz-vOPq6_1zfcv364ub2onW73UznRdazoPuulRKKd533uhodPOaK5QeSVB9hIYMyA6J8FzTz1TYHwjoRVn5Hxfd5Pm3yvmxU5jdhgCRJzXbLmUbSslY7qg75-ht_OaYvldoZoyGNpy9kQNENCO0c9LArcrai-1MIYbJXfUxX-osnqcRlcy8WO5_0d499B87Sbs7SaNE6StfRx7AfgecGnOOaH_izBqd9nafba28PY-W3tXpPaZ5MYFlnGO5TtjeFkVezWXPnHA9DSNF6w_5Y229w |
CitedBy_id | crossref_primary_10_1128_msystems_01188_23 crossref_primary_10_3390_microorganisms11010096 crossref_primary_10_1038_s42003_021_02809_4 crossref_primary_10_1038_s41597_022_01762_z crossref_primary_10_1016_j_cois_2023_101135 crossref_primary_10_3389_fmicb_2022_984832 crossref_primary_10_3389_fmicb_2024_1356208 crossref_primary_10_1038_s41467_024_53454_4 crossref_primary_10_1038_s41598_022_19022_w crossref_primary_10_1186_s40168_022_01340_w crossref_primary_10_3389_fmicb_2021_708782 crossref_primary_10_1080_19490976_2024_2410479 crossref_primary_10_1007_s00236_024_00467_7 crossref_primary_10_7717_peerj_17887 crossref_primary_10_1093_bioinformatics_btac827 crossref_primary_10_1128_mra_00912_24 crossref_primary_10_1186_s40168_024_01949_z crossref_primary_10_3390_ijms23158569 crossref_primary_10_1186_s12864_024_10582_x crossref_primary_10_1053_j_gastro_2021_06_077 crossref_primary_10_3390_toxins16020086 crossref_primary_10_1016_j_cej_2024_149592 crossref_primary_10_1073_pnas_2300465120 crossref_primary_10_1080_19490976_2023_2295891 crossref_primary_10_1016_j_isci_2022_104770 crossref_primary_10_1038_s42003_025_07724_6 crossref_primary_10_1093_bioinformatics_btac708 crossref_primary_10_1016_j_anscip_2023_09_062 crossref_primary_10_1099_mgen_0_000911 crossref_primary_10_1186_s12864_023_09729_z crossref_primary_10_1094_PHYTO_12_22_0477_SC crossref_primary_10_1128_spectrum_02504_23 crossref_primary_10_1038_s41576_024_00718_w crossref_primary_10_1186_s13059_022_02810_y crossref_primary_10_3390_microorganisms11061466 crossref_primary_10_1038_s42003_021_02510_6 crossref_primary_10_1093_nar_gkab831 crossref_primary_10_1038_s43705_023_00334_5 crossref_primary_10_1186_s12864_024_10594_7 crossref_primary_10_1186_s40793_024_00639_5 crossref_primary_10_1038_s41396_023_01372_6 crossref_primary_10_3390_vetsci9010024 crossref_primary_10_1016_j_jhazmat_2025_137559 crossref_primary_10_1038_s41592_022_01478_3 crossref_primary_10_1128_mra_00386_24 crossref_primary_10_1038_s41592_024_02424_1 crossref_primary_10_1007_s00239_023_10102_7 crossref_primary_10_1038_s41564_022_01089_w crossref_primary_10_1038_s43705_023_00224_w crossref_primary_10_1007_s00203_021_02724_6 crossref_primary_10_1038_s41467_024_48300_6 crossref_primary_10_1099_mgen_0_000802 crossref_primary_10_1111_1751_7915_14396 crossref_primary_10_1007_s00253_022_12111_w crossref_primary_10_1128_spectrum_00117_24 crossref_primary_10_1038_s41576_021_00367_3 crossref_primary_10_3390_antibiotics12111619 crossref_primary_10_1128_spectrum_02082_24 crossref_primary_10_3389_fhort_2024_1388028 crossref_primary_10_3389_fmicb_2023_1145315 crossref_primary_10_3389_fmicb_2021_695346 crossref_primary_10_1111_jfd_13767 crossref_primary_10_1016_j_jhazmat_2025_137852 crossref_primary_10_1016_j_algal_2024_103780 crossref_primary_10_1093_bib_bbab330 crossref_primary_10_1128_msystems_00388_23 crossref_primary_10_3389_fpls_2021_694859 crossref_primary_10_1002_imt2_258 crossref_primary_10_1038_s41592_022_01431_4 crossref_primary_10_1128_spectrum_04777_22 crossref_primary_10_1101_gr_278232_123 crossref_primary_10_1128_mra_00086_23 crossref_primary_10_1093_dnares_dsab019 crossref_primary_10_1186_s13059_024_03297_5 crossref_primary_10_3389_fmicb_2022_1045931 crossref_primary_10_1016_j_envres_2024_119116 crossref_primary_10_1128_mra_01013_24 crossref_primary_10_1038_s41467_024_53784_3 crossref_primary_10_1016_j_scitotenv_2024_177594 crossref_primary_10_1099_mgen_0_001197 crossref_primary_10_1186_s40168_023_01630_x crossref_primary_10_1089_hs_2022_0029 crossref_primary_10_1186_s40168_024_01981_z crossref_primary_10_1002_mbo3_1386 crossref_primary_10_3390_microorganisms11112819 crossref_primary_10_1186_s13059_021_02587_6 crossref_primary_10_3389_fmicb_2023_1118158 crossref_primary_10_1016_j_ibmb_2023_103991 crossref_primary_10_1016_j_jia_2024_05_011 crossref_primary_10_1093_bib_bbae620 crossref_primary_10_1038_s41522_021_00196_6 crossref_primary_10_1128_mra_00659_22 crossref_primary_10_1007_s10482_024_01948_y crossref_primary_10_1007_s40265_021_01572_4 crossref_primary_10_1038_s41587_021_01130_z crossref_primary_10_1111_tpj_15976 crossref_primary_10_1038_s41586_024_07728_y crossref_primary_10_1111_tpj_16705 crossref_primary_10_1128_mra_00911_22 crossref_primary_10_1128_spectrum_03969_23 crossref_primary_10_1038_s41467_024_50816_w crossref_primary_10_1128_spectrum_01501_23 crossref_primary_10_1080_23802359_2023_2268747 crossref_primary_10_1186_s40793_022_00424_2 crossref_primary_10_1016_j_isci_2024_111208 crossref_primary_10_1128_mra_00775_23 crossref_primary_10_3389_fmicb_2023_1248323 crossref_primary_10_1186_s12864_025_11423_1 crossref_primary_10_1038_s43705_022_00176_7 crossref_primary_10_1080_19490976_2021_2021790 crossref_primary_10_1038_s41564_022_01270_1 crossref_primary_10_1093_ismejo_wrae080 crossref_primary_10_1016_j_vetmic_2021_109246 crossref_primary_10_1128_mra_00087_23 crossref_primary_10_1186_s12870_023_04104_2 crossref_primary_10_1038_s42003_023_05605_4 crossref_primary_10_3390_pathogens14030234 crossref_primary_10_3389_fgene_2022_1012694 crossref_primary_10_1186_s13059_021_02566_x crossref_primary_10_1093_ismeco_ycae100 crossref_primary_10_1128_mra_00766_22 crossref_primary_10_1016_j_jfp_2024_100436 crossref_primary_10_1038_s41467_025_57088_y crossref_primary_10_1186_s13007_023_01010_4 crossref_primary_10_1038_s41467_023_41209_6 crossref_primary_10_1093_ismejo_wrae197 crossref_primary_10_1186_s12859_024_05760_3 crossref_primary_10_1038_s41467_022_34381_8 crossref_primary_10_1038_s42003_022_03114_4 crossref_primary_10_1111_1462_2920_16542 crossref_primary_10_1002_mbo3_1298 crossref_primary_10_1038_s42003_024_07376_y crossref_primary_10_1016_j_fm_2024_104646 crossref_primary_10_1186_s40168_024_01861_6 crossref_primary_10_1007_s13659_024_00460_0 crossref_primary_10_1186_s12864_021_08046_7 crossref_primary_10_1186_s13073_024_01380_x crossref_primary_10_1016_j_scitotenv_2023_164585 crossref_primary_10_1101_gr_279136_124 crossref_primary_10_1038_s41597_024_03747_6 crossref_primary_10_1038_s43586_024_00376_6 crossref_primary_10_1128_msystems_00491_22 crossref_primary_10_3389_fmicb_2022_1042437 crossref_primary_10_1093_bioinformatics_btac557 crossref_primary_10_3389_fmicb_2024_1485353 crossref_primary_10_1099_acmi_0_000656_v2 crossref_primary_10_1093_ismeco_ycae124 crossref_primary_10_1016_j_syapm_2023_126485 crossref_primary_10_1038_s41467_022_34149_0 crossref_primary_10_1038_s41467_024_51929_y crossref_primary_10_1111_1758_2229_12897 crossref_primary_10_1038_s41564_023_01425_8 crossref_primary_10_3390_biology14010069 crossref_primary_10_1038_s41467_024_54102_7 crossref_primary_10_3389_fbinf_2023_1157956 crossref_primary_10_1093_gbe_evae181 crossref_primary_10_1093_femsec_fiab127 crossref_primary_10_1186_s13015_021_00185_6 crossref_primary_10_3390_genes15081029 crossref_primary_10_1038_s41467_024_52464_6 crossref_primary_10_1128_mra_00765_22 crossref_primary_10_1128_mra_00910_24 crossref_primary_10_1186_s40168_022_01415_8 crossref_primary_10_1016_j_heliyon_2024_e34719 crossref_primary_10_1093_ismejo_wraf014 crossref_primary_10_1186_s40168_024_01751_x crossref_primary_10_1016_j_syapm_2024_126527 crossref_primary_10_3390_ijms231810779 crossref_primary_10_1002_pmic_202400208 crossref_primary_10_1093_ismejo_wraf017 crossref_primary_10_1111_1462_2920_16348 crossref_primary_10_1093_nar_gkae528 crossref_primary_10_1111_jph_13338 crossref_primary_10_1128_spectrum_00996_24 crossref_primary_10_1093_nargab_lqab034 crossref_primary_10_1038_s41592_023_02125_1 crossref_primary_10_2139_ssrn_4019082 crossref_primary_10_1038_s41467_024_51864_y crossref_primary_10_1016_j_chom_2021_12_002 crossref_primary_10_1128_msystems_00898_23 crossref_primary_10_1128_msystems_00595_22 crossref_primary_10_1186_s12917_022_03269_6 crossref_primary_10_1099_ijsem_0_006717 crossref_primary_10_1099_mgen_0_001236 crossref_primary_10_1093_biomethods_bpae057 crossref_primary_10_7717_peerj_18132 crossref_primary_10_1128_mra_00022_22 crossref_primary_10_1093_bioinformatics_btac468 crossref_primary_10_1007_s13353_022_00746_4 crossref_primary_10_3390_v16010134 crossref_primary_10_1002_imt2_46 crossref_primary_10_1093_jac_dkad346 crossref_primary_10_1016_j_medmic_2022_100053 crossref_primary_10_3389_fmicb_2023_1261261 crossref_primary_10_1038_s41587_022_01531_8 crossref_primary_10_1093_bioinformatics_btad209 crossref_primary_10_1093_mollus_eyad003 crossref_primary_10_1016_j_scitotenv_2024_174577 crossref_primary_10_3390_genes15010098 crossref_primary_10_1128_mra_00023_22 crossref_primary_10_1038_s42003_023_05587_3 crossref_primary_10_1099_mgen_0_001244 crossref_primary_10_1186_s40168_021_01155_1 crossref_primary_10_1038_s41598_022_23393_5 crossref_primary_10_1038_s41467_024_48459_y crossref_primary_10_1093_ismejo_wrae139 crossref_primary_10_1002_imt2_72 crossref_primary_10_1038_s41587_021_01108_x crossref_primary_10_1128_AEM_00626_21 crossref_primary_10_3389_fmicb_2025_1543079 crossref_primary_10_1016_j_scitotenv_2024_176886 crossref_primary_10_7717_peerj_11721 crossref_primary_10_1128_jcm_01631_22 crossref_primary_10_3389_fbinf_2022_846922 crossref_primary_10_1186_s40168_023_01657_0 crossref_primary_10_3389_fmicb_2023_1285791 crossref_primary_10_1093_gigascience_giae043 crossref_primary_10_1093_gbe_evae034 crossref_primary_10_1038_s41592_022_01726_6 crossref_primary_10_3389_fmicb_2022_988871 crossref_primary_10_1038_s41598_023_41879_8 crossref_primary_10_1128_aem_01654_23 crossref_primary_10_12688_wellcomeopenres_20730_1 crossref_primary_10_1007_s00203_022_03056_9 crossref_primary_10_3389_fmars_2022_867007 crossref_primary_10_1038_s41598_024_59279_x crossref_primary_10_1038_s41467_022_33782_z crossref_primary_10_1186_s40168_024_01853_6 crossref_primary_10_3389_frmbi_2024_1451735 crossref_primary_10_1016_j_cub_2024_07_022 crossref_primary_10_1016_j_csbj_2021_11_028 crossref_primary_10_1371_journal_pgen_1010683 crossref_primary_10_1186_s12864_021_08260_3 crossref_primary_10_1093_ismejo_wrae116 crossref_primary_10_1186_s12864_024_10062_2 crossref_primary_10_1016_j_cell_2024_08_028 crossref_primary_10_1073_pnas_2314383121 crossref_primary_10_1101_gr_277266_122 crossref_primary_10_1128_msystems_00578_23 crossref_primary_10_1007_s11259_024_10403_2 crossref_primary_10_1186_s40793_025_00671_z crossref_primary_10_1007_s00203_024_04057_6 crossref_primary_10_1080_02648725_2023_2197717 crossref_primary_10_4014_jmb_2211_11024 crossref_primary_10_1038_s41396_023_01542_6 crossref_primary_10_7717_peerj_18050 crossref_primary_10_1128_msystems_00945_23 crossref_primary_10_1128_MRA_00563_23 crossref_primary_10_1128_msphere_00470_23 crossref_primary_10_3389_fmars_2021_791101 crossref_primary_10_1093_g3journal_jkae070 crossref_primary_10_1186_s12866_021_02225_y crossref_primary_10_1093_gbe_evae251 crossref_primary_10_1038_s41587_022_01220_6 crossref_primary_10_1016_j_syapm_2024_126487 crossref_primary_10_1016_j_biortech_2023_129430 crossref_primary_10_1038_s41396_022_01209_8 crossref_primary_10_3390_v15020587 crossref_primary_10_1038_s41467_024_52037_7 crossref_primary_10_1128_mbio_02855_24 crossref_primary_10_3390_microorganisms10030513 crossref_primary_10_1186_s12864_023_09538_4 crossref_primary_10_3390_jof9050546 crossref_primary_10_3390_microorganisms10061134 crossref_primary_10_1093_ismejo_wrae211 crossref_primary_10_1139_gen_2022_0050 crossref_primary_10_1038_s41467_023_38521_6 crossref_primary_10_1093_gigascience_giac116 crossref_primary_10_1186_s12985_024_02554_0 crossref_primary_10_1186_s13059_021_02282_6 crossref_primary_10_1016_j_cej_2023_147658 crossref_primary_10_1080_23802359_2022_2098854 crossref_primary_10_1093_nar_gkae799 crossref_primary_10_1093_bioinformatics_btae224 crossref_primary_10_1186_s13015_022_00221_z crossref_primary_10_1111_vde_13256 crossref_primary_10_1038_s41586_021_04063_4 crossref_primary_10_1128_MRA_00699_21 crossref_primary_10_1038_s41592_022_01539_7 crossref_primary_10_1016_j_jhazmat_2024_135526 crossref_primary_10_1186_s13073_024_01416_2 crossref_primary_10_1128_Spectrum_00166_21 crossref_primary_10_1186_s12864_023_09853_w crossref_primary_10_1128_mra_00426_22 crossref_primary_10_1128_mbio_03926_24 crossref_primary_10_1007_s12275_021_0632_8 crossref_primary_10_1099_mgen_0_000895 crossref_primary_10_1093_g3journal_jkad192 crossref_primary_10_1007_s00122_024_04647_4 crossref_primary_10_1016_j_csbj_2021_02_020 crossref_primary_10_1371_journal_pone_0313515 crossref_primary_10_3390_antibiotics14020153 crossref_primary_10_3389_fbioe_2023_1274020 crossref_primary_10_1128_msystems_00359_22 crossref_primary_10_1186_s12864_024_10678_4 crossref_primary_10_1038_s41467_025_57435_z crossref_primary_10_3389_fgene_2024_1495657 crossref_primary_10_3389_fmicb_2024_1358257 crossref_primary_10_1016_j_isci_2023_108301 crossref_primary_10_1093_ismeco_ycae099 crossref_primary_10_1186_s40168_024_01757_5 crossref_primary_10_1186_s40168_025_02037_6 crossref_primary_10_1016_j_syapm_2024_126555 crossref_primary_10_1038_s42256_024_00908_5 crossref_primary_10_1016_j_margen_2024_101135 crossref_primary_10_1126_sciadv_adk1910 crossref_primary_10_12688_f1000research_149577_1 crossref_primary_10_1016_j_jhazmat_2023_132298 crossref_primary_10_1038_s41576_023_00649_y crossref_primary_10_1093_bioinformatics_btae252 crossref_primary_10_1093_gbe_evac034 crossref_primary_10_1093_gigascience_giad013 crossref_primary_10_1038_s41598_021_83081_8 crossref_primary_10_1038_s41467_021_24515_9 crossref_primary_10_1016_j_syapm_2024_126560 crossref_primary_10_1016_j_jff_2023_105420 crossref_primary_10_1038_s41598_024_80660_3 crossref_primary_10_1099_ijsem_0_006111 crossref_primary_10_1016_j_jenvman_2023_118737 crossref_primary_10_3390_v15122282 crossref_primary_10_3389_fmicb_2022_801587 crossref_primary_10_1128_mra_00311_24 crossref_primary_10_1016_j_virusres_2023_199110 crossref_primary_10_1038_s41589_021_00893_5 crossref_primary_10_1038_s41467_024_49872_z crossref_primary_10_1038_s41587_023_01983_6 crossref_primary_10_1111_mec_17708 crossref_primary_10_1016_j_rsma_2024_103728 crossref_primary_10_1128_mbio_02443_22 crossref_primary_10_1038_s41586_024_07631_6 crossref_primary_10_1093_bioinformatics_btac089 crossref_primary_10_1038_s41598_022_05656_3 crossref_primary_10_1128_mbio_03140_22 crossref_primary_10_1093_ve_veaf010 crossref_primary_10_1093_bib_bbad087 crossref_primary_10_1016_j_jhazmat_2024_136811 crossref_primary_10_1186_s12864_024_10950_7 crossref_primary_10_1038_s41467_024_49992_6 crossref_primary_10_1186_s12863_022_01049_7 crossref_primary_10_1186_s12864_024_11025_3 crossref_primary_10_1038_s41467_025_57957_6 crossref_primary_10_1093_femsec_fiaf010 crossref_primary_10_1186_s40793_023_00473_1 crossref_primary_10_1099_mic_0_001469 crossref_primary_10_1093_g3journal_jkab418 crossref_primary_10_1186_s13059_024_03320_9 crossref_primary_10_1128_spectrum_02663_23 crossref_primary_10_1038_s41564_023_01388_w crossref_primary_10_1186_s12864_021_07607_0 crossref_primary_10_12688_f1000research_145790_2 crossref_primary_10_3389_fmicb_2022_1035247 crossref_primary_10_12688_f1000research_145790_1 crossref_primary_10_1101_gr_276871_122 crossref_primary_10_3389_fmicb_2022_821808 crossref_primary_10_3389_fmicb_2022_856908 crossref_primary_10_1093_hr_uhae338 crossref_primary_10_1186_s13059_024_03234_6 crossref_primary_10_1038_s41467_025_56203_3 crossref_primary_10_1016_j_cub_2023_12_032 crossref_primary_10_1093_bib_bbae597 crossref_primary_10_1094_PHYTOFR_10_22_0117_A crossref_primary_10_1128_mra_00995_22 crossref_primary_10_1186_s13059_021_02483_z crossref_primary_10_1016_j_mimet_2025_107103 crossref_primary_10_1089_cmb_2022_0262 crossref_primary_10_1007_s12275_021_0652_4 crossref_primary_10_1111_jpy_13436 crossref_primary_10_1093_bib_bbad050 crossref_primary_10_1038_s41586_024_07955_3 crossref_primary_10_1093_femsre_fuad051 crossref_primary_10_1094_PHYTO_01_22_0025_A crossref_primary_10_3390_microorganisms13020260 crossref_primary_10_1093_jisesa_ieaf009 crossref_primary_10_1016_j_mcpro_2022_100197 crossref_primary_10_1038_s41467_024_49548_8 crossref_primary_10_1128_mra_00250_22 crossref_primary_10_1128_mra_00292_22 crossref_primary_10_3390_foods12142716 crossref_primary_10_1186_s40168_022_01368_y crossref_primary_10_1093_bib_bbad162 crossref_primary_10_1038_s41596_022_00747_x crossref_primary_10_3390_microorganisms11010121 crossref_primary_10_1038_s41586_022_05550_y crossref_primary_10_1093_fqsafe_fyad016 crossref_primary_10_3389_fpls_2023_1228551 crossref_primary_10_1038_s41467_024_49060_z crossref_primary_10_1093_jacamr_dlac090 crossref_primary_10_3390_genes15070922 crossref_primary_10_1093_bib_bbae372 crossref_primary_10_1128_MRA_00714_23 crossref_primary_10_24072_pcjournal_481 crossref_primary_10_1128_spectrum_03328_22 crossref_primary_10_1038_s41592_024_02262_1 crossref_primary_10_1101_gr_276917_122 crossref_primary_10_1186_s40168_025_02029_6 crossref_primary_10_3390_plants12234054 crossref_primary_10_1128_mmbr_00004_21 crossref_primary_10_1128_mra_00913_24 crossref_primary_10_1016_j_gpb_2021_09_001 crossref_primary_10_1128_MRA_00517_21 crossref_primary_10_1128_mra_00715_23 crossref_primary_10_1099_ijsem_0_006294 crossref_primary_10_1186_s12967_024_04917_1 crossref_primary_10_1128_msystems_00242_24 crossref_primary_10_1038_s41598_023_31626_4 crossref_primary_10_1099_mgen_0_000822 crossref_primary_10_3389_fmars_2023_1087447 crossref_primary_10_1007_s12088_024_01434_z crossref_primary_10_3390_microorganisms9040707 crossref_primary_10_3390_ijms252413328 crossref_primary_10_1016_j_scitotenv_2024_171530 crossref_primary_10_1093_jas_skab344 crossref_primary_10_1038_s41597_024_03875_z crossref_primary_10_1016_j_eng_2023_07_009 crossref_primary_10_1038_s43247_023_00796_4 crossref_primary_10_1038_s41467_024_52907_0 crossref_primary_10_1111_1462_2920_15824 crossref_primary_10_1128_msystems_00543_23 crossref_primary_10_1128_mra_00293_22 crossref_primary_10_3390_ijms24076342 crossref_primary_10_1128_MRA_00481_23 crossref_primary_10_1128_mra_01144_21 crossref_primary_10_31083_j_fbl2708236 crossref_primary_10_1128_mra_01121_22 crossref_primary_10_1128_mra_00447_22 crossref_primary_10_3390_d15050617 crossref_primary_10_1038_s41598_024_74830_6 crossref_primary_10_3389_fmicb_2024_1377965 crossref_primary_10_1094_PHYTOFR_04_23_0054_A crossref_primary_10_1186_s13068_023_02432_x crossref_primary_10_3389_fgene_2022_868280 crossref_primary_10_1186_s12864_021_07702_2 crossref_primary_10_1093_bioadv_vbac054 crossref_primary_10_3390_md22010005 crossref_primary_10_1021_acs_jafc_4c08303 crossref_primary_10_1128_aem_00759_22 crossref_primary_10_1109_ACCESS_2022_3144113 crossref_primary_10_1016_j_aquaculture_2023_740439 crossref_primary_10_1038_s43705_023_00324_7 crossref_primary_10_3390_microorganisms12050935 crossref_primary_10_1128_mra_01237_21 crossref_primary_10_1128_mra_01095_22 crossref_primary_10_1038_s41576_024_00746_6 crossref_primary_10_1038_s41467_025_56426_4 |
Cites_doi | 10.1038/s41587-020-0422-6 10.1101/gr.214270.116 10.12688/f1000research.12232.1 10.1038/nmeth.3176 10.1093/nar/gkl842 10.1038/s41587-019-0072-8 10.1038/nbt.4060 10.1109/NCA.2017.8171380 10.1093/bioinformatics/bty266 10.1038/ng.2007.9 10.1186/1471-2105-11-119 10.1038/s41467-018-08103-y 10.1093/bioinformatics/btz942 10.1186/s13059-019-1791-3 10.1093/gigascience/giz043 10.1186/s12866-019-1500-0 10.1038/s41592-019-0669-3 10.1093/nar/gku989 10.1038/nmeth.4035 10.7717/peerj.2584 10.1016/j.cels.2019.11.007 10.1126/science.aar7785 10.1109/MCSE.2007.55 10.1101/gr.215087.116 10.1093/bioinformatics/btt502 10.1038/s41587-019-0202-3 10.1038/s41586-020-2547-7 10.1101/2020.01.15.908285 10.1186/s13059-019-1760-x 10.5281/zenodo.3986210 10.21105/joss.01316 10.1145/2592798.2592820 10.1038/s41598-019-56847-4 10.1371/journal.pone.0112963 10.1101/gr.241299.118 10.1038/s41467-017-02088-w 10.1093/bioinformatics/btr520 10.1101/gr.074492.107 10.1186/s40168-019-0665-y 10.1093/bioinformatics/btv383 10.1016/j.tcs.2015.10.021 10.1038/nchembio.684 10.1101/gr.213959.116 10.1101/gr.216242.116 10.1101/548123 10.1101/gr.243477.118 10.1093/bioinformatics/bts565 10.1101/gr.236000.118 10.1093/bioinformatics/btv033 10.1186/s40168-019-0737-z 10.1038/nmeth.4458 10.1101/gr.186072.114 10.1038/s41587-019-0191-2 10.1093/nar/gks1219 10.1038/nature14098 10.1089/cmb.2017.0251 10.1089/cmb.2013.0084 10.1039/C5NP00050E 10.1093/bioinformatics/bty191 10.1093/bioinformatics/btw152 10.1007/978-3-642-40453-5_26 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
DOI | 10.1038/s41592-020-00971-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 1110 |
ExternalDocumentID | A639929541 33020656 10_1038_s41592_020_00971_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1715911; 1715911 funderid: https://doi.org/10.13039/100000001 – fundername: NIGMS NIH HHS grantid: P41 GM103484 – fundername: NHGRI NIH HHS grantid: R25 HG011022 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PMFND 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c486t-c9bb89bfa67de35c62ddf36ab6c9625e5f54a4d4a119a3bc4af2f0f15a9f74a83 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Fri Jul 11 05:33:20 EDT 2025 Sat Aug 23 12:22:42 EDT 2025 Tue Jun 17 20:59:53 EDT 2025 Tue Jun 10 20:50:44 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-c9bb89bfa67de35c62ddf36ab6c9625e5f54a4d4a119a3bc4af2f0f15a9f74a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0418-165X 0000-0002-3737-1521 0000-0002-5489-9045 0000-0003-1611-6828 0000-0003-3855-1994 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10699202 |
PMID | 33020656 |
PQID | 2471540821 |
PQPubID | 28015 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2448844116 proquest_journals_2471540821 gale_infotracmisc_A639929541 gale_infotracacademiconefile_A639929541 pubmed_primary_33020656 crossref_primary_10_1038_s41592_020_00971_x crossref_citationtrail_10_1038_s41592_020_00971_x springer_journals_10_1038_s41592_020_00971_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Arumugam (CR10) 2019; 7 Chin (CR13) 2016; 13 Nurk (CR62) 2013; 20 Ling (CR45) 2015; 517 Quast (CR50) 2012; 41 Bertrand (CR6) 2019; 37 Koren (CR15) 2017; 27 Wick, Schultz, Zobel, Holt (CR51) 2015; 31 Nicholls, Quick, Tang, Loman (CR5) 2019; 8 Bickhart (CR12) 2019; 20 Walker (CR42) 2014; 9 Sczyrba (CR30) 2017; 14 Parks, Imelfort, Skennerton, Hugenholtz, Tyson (CR37) 2015; 25 Truong, Tett, Pasolli, Huttenhower, Segata (CR20) 2017; 27 Antipov, Raiko, Lapidus, Pevzner (CR35) 2019; 29 Brankovic (CR63) 2016; 609 CR2 Zerbino, Birney (CR64) 2008; 18 Suzuki (CR25) 2019; 7 CR43 Hunter (CR52) 2007; 9 Nurk, Meleshko, Korobeynikov, Pevzner (CR19) 2017; 27 Eloe-Fadrosh (CR24) 2016; 7 Stewart (CR9) 2019; 37 Hiraoka (CR11) 2019; 10 Jiang (CR58) 2007; 39 Jain, Rodriguez-R, Phillippy, Konstantinidis, Aluru (CR31) 2018; 9 Kersten (CR44) 2011; 7 Latorre-Pérez, Villalba-Bermell, Pascual, Vilanova (CR36) 2020; 10 Goltsman (CR22) 2018; 28 Vaser, Sović, Nagarajan, Šikić (CR34) 2017; 27 Fu, Niu, Zhu, Wu, Li (CR54) 2012; 28 Pruitt, Tatusova, Maglott (CR56) 2007; 35 Wilson (CR48) 2019; 363 Moss, Maghini, Bhatt (CR8) 2020; 38 Guo (CR23) 2015; 16 Garg (CR29) 2020; 36 Behsaz (CR47) 2020; 10 Tsai (CR3) 2016; 7 Li, Liu, Luo, Sadakane, Lam (CR18) 2015; 31 CR59 Driscoll, Otten, Brown, Dreher (CR4) 2017; 12 Stevenson, Owen, Ackerley (CR26) 2019; 14 CR57 CR53 Mohimani, Pevzner (CR49) 2016; 33 Somerville (CR7) 2019; 19 Mikheenko, Prjibelski, Saveliev, Antipov, Gurevich (CR33) 2018; 34 Paten (CR65) 2018; 25 Koren, Treangen, Pop (CR60) 2011; 27 Wick (CR32) 2019; 4 Ruan, Li (CR17) 2020; 17 Ghurye, Treangen, Fedarko, Hervey, Pop (CR21) 2019; 20 Rognes, Flouri, Nichols, Quince, Mahé (CR55) 2016; 4 Buchfink, Xie, Huson (CR40) 2015; 12 (CR41) 2014; 43 Hyatt (CR38) 2010; 11 Nijkamp, Pop, Reinders, de Ridder (CR27) 2013; 29 CR28 Meleshko (CR46) 2019; 29 Laetsch, Blaxter (CR39) 2017; 6 CR66 Kolmogorov, Yuan, Lin, Pevzner (CR16) 2019; 37 Jain (CR1) 2018; 36 Li (CR14) 2016; 32 Li (CR61) 2018; 34 CS Chin (971_CR13) 2016; 13 A Sczyrba (971_CR30) 2017; 14 D Antipov (971_CR35) 2019; 29 C Quast (971_CR50) 2012; 41 A Mikheenko (971_CR33) 2018; 34 D Bertrand (971_CR6) 2019; 37 971_CR43 LL Ling (971_CR45) 2015; 517 CB Driscoll (971_CR4) 2017; 12 DT Truong (971_CR20) 2017; 27 SM Nicholls (971_CR5) 2019; 8 YC Tsai (971_CR3) 2016; 7 S Nurk (971_CR62) 2013; 20 DSA Goltsman (971_CR22) 2018; 28 L Brankovic (971_CR63) 2016; 609 Adriel Latorre-Pérez (971_CR36) 2020; 10 BJ Walker (971_CR42) 2014; 9 S Koren (971_CR60) 2011; 27 JF Nijkamp (971_CR27) 2013; 29 971_CR53 DR Laetsch (971_CR39) 2017; 6 EL Moss (971_CR8) 2020; 38 971_CR57 971_CR59 S Nurk (971_CR19) 2017; 27 EA Eloe-Fadrosh (971_CR24) 2016; 7 D Hyatt (971_CR38) 2010; 11 J Guo (971_CR23) 2015; 16 L Fu (971_CR54) 2012; 28 DH Parks (971_CR37) 2015; 25 Y Suzuki (971_CR25) 2019; 7 M Kolmogorov (971_CR16) 2019; 37 D Li (971_CR18) 2015; 31 T Rognes (971_CR55) 2016; 4 V Somerville (971_CR7) 2019; 19 UniProt Consortium. (971_CR41) 2014; 43 B Paten (971_CR65) 2018; 25 971_CR66 971_CR2 B Buchfink (971_CR40) 2015; 12 KD Pruitt (971_CR56) 2007; 35 S Koren (971_CR15) 2017; 27 M Jain (971_CR1) 2018; 36 R Wick (971_CR32) 2019; 4 RD Stewart (971_CR9) 2019; 37 C Jain (971_CR31) 2018; 9 K Arumugam (971_CR10) 2019; 7 H Mohimani (971_CR49) 2016; 33 DR Zerbino (971_CR64) 2008; 18 DM Bickhart (971_CR12) 2019; 20 LJ Stevenson (971_CR26) 2019; 14 JDMatplotlib Hunter (971_CR52) 2007; 9 B Behsaz (971_CR47) 2020; 10 MR Wilson (971_CR48) 2019; 363 S Garg (971_CR29) 2020; 36 R Vaser (971_CR34) 2017; 27 J Ruan (971_CR17) 2020; 17 J Ghurye (971_CR21) 2019; 20 D Meleshko (971_CR46) 2019; 29 RR Wick (971_CR51) 2015; 31 971_CR28 Z Jiang (971_CR58) 2007; 39 H Li (971_CR61) 2018; 34 RD Kersten (971_CR44) 2011; 7 H Li (971_CR14) 2016; 32 S Hiraoka (971_CR11) 2019; 10 |
References_xml | – volume: 20 start-page: 714 year: 2013 end-page: 737 ident: CR62 article-title: Assembling genomes and mini-metagenomes from highly chimeric reads publication-title: J. Comp. Biol. – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: CR36 article-title: Assembly methods for nanopore-based metagenomic sequencing: a comparative study publication-title: Sci. Rep. – volume: 9 start-page: e112963 year: 2014 ident: CR42 article-title: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement publication-title: PLoS ONE – volume: 14 start-page: 1063 year: 2017 end-page: 1071 ident: CR30 article-title: Critical assessment of metagenome interpretation - a benchmark of metagenomics software publication-title: Nat. Methods – volume: 4 start-page: 1316 year: 2019 ident: CR32 article-title: Badread: simulation of error-prone long reads publication-title: J. Open Source Softw. – volume: 41 start-page: D590 year: 2012 end-page: D596 ident: CR50 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 27 start-page: 722 year: 2017 end-page: 736 ident: CR15 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res. – volume: 20 start-page: 1 year: 2019 end-page: 18 ident: CR12 article-title: Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation publication-title: Genome Biol. – volume: 34 start-page: 3094 year: 2018 end-page: 3100 ident: CR61 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics – volume: 7 start-page: 794 year: 2011 end-page: 802 ident: CR44 article-title: A mass spectrometry-guided genome mining approach for natural product peptidogenomics publication-title: Nat. Chem. Biol. – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: CR31 article-title: High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries publication-title: Nat. Commun. – volume: 35 start-page: D61 year: 2007 end-page: D65 ident: CR56 article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins publication-title: Nucleic Acids Res. – volume: 7 year: 2016 ident: CR24 article-title: Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs publication-title: Nat. Commun. – volume: 11 start-page: 119 year: 2010 ident: CR38 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinf. – volume: 7 start-page: 61 year: 2019 ident: CR10 article-title: Annotated bacterial chromosomes from frame-shift-corrected long read metagenomic data publication-title: Microbiome – volume: 27 start-page: 2964 year: 2011 end-page: 2971 ident: CR60 article-title: Bambus 2: scaffolding metagenomes publication-title: Bioinformatics – volume: 27 start-page: 626 year: 2017 end-page: 638 ident: CR20 article-title: Microbial strain-level population structure and genetic diversity from metagenomes publication-title: Genome Res. – volume: 7 start-page: e01948 year: 2016 end-page: 15 ident: CR3 article-title: Resolving the complexity of human skin metagenomes using single-molecule sequencing publication-title: MBio – volume: 19 start-page: 143 year: 2019 ident: CR7 article-title: Long read-based de novo assembly of low complex metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system publication-title: BMC Microbiol. – volume: 36 start-page: 2385 year: 2020 end-page: 2392 ident: CR29 article-title: A haplotype-aware de novo assembly of related individuals using pedigree sequence graph publication-title: Bioinformatics – volume: 16 year: 2015 ident: CR23 article-title: Horizontal gene transfer in an acid mine drainage microbial community publication-title: BMC Genomics – volume: 37 start-page: 953 year: 2019 end-page: 961 ident: CR9 article-title: Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery publication-title: Nat. Biotechnol. – volume: 31 start-page: 3350 year: 2015 end-page: 3352 ident: CR51 article-title: Bandage: interactive visualization of de novo genome assemblies publication-title: Bioinformatics – volume: 28 start-page: 1467 year: 2018 end-page: 1480 ident: CR22 article-title: Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome publication-title: Genome Res. – volume: 29 start-page: 2826 year: 2013 end-page: 2834 ident: CR27 article-title: Exploring variation-aware contig graphs for (comparative) metagenomics using MaryGold publication-title: Bioinformatics – volume: 7 year: 2019 ident: CR25 article-title: Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut publication-title: Microbiome – volume: 6 start-page: 1287 year: 2017 ident: CR39 article-title: BlobTools: interrogation of genome assemblies publication-title: F1000Research – volume: 18 start-page: 821 year: 2008 end-page: 829 ident: CR64 article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs publication-title: Genome Res. – volume: 34 start-page: i142 year: 2018 end-page: i150 ident: CR33 article-title: Versatile genome assembly evaluation with QUAST-LG publication-title: Bioinformatics – ident: CR57 – volume: 43 start-page: D204 year: 2014 end-page: D212 ident: CR41 article-title: UniProt: a hub for protein information publication-title: Nucleic Acids Res. – volume: 27 start-page: 824 year: 2017 end-page: 834 ident: CR19 article-title: metaSPAdes: a new versatile metagenomic assembler publication-title: Genome Res. – volume: 517 start-page: 455 year: 2015 end-page: 459 ident: CR45 article-title: A new antibiotic kills pathogens without detectable resistance publication-title: Nature – volume: 9 start-page: 90 year: 2007 ident: CR52 article-title: A 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 29 start-page: 1352 year: 2019 end-page: 1362 ident: CR46 article-title: BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs publication-title: Genome Res. – volume: 10 year: 2019 ident: CR11 article-title: Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community publication-title: Nat. Commun. – volume: 25 start-page: 1043 year: 2015 end-page: 1055 ident: CR37 article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Res. – volume: 17 start-page: 155 year: 2020 end-page: 158 ident: CR17 article-title: Fast and accurate long-read assembly with wtdbg2 publication-title: Nat. Methods – volume: 31 start-page: 1674 year: 2015 end-page: 1676 ident: CR18 article-title: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics – ident: CR43 – ident: CR66 – volume: 25 start-page: 649 year: 2018 end-page: 663 ident: CR65 article-title: Superbubbles, ultrabubbles, and cacti publication-title: J. Computational Biol. – volume: 37 start-page: 937 year: 2019 end-page: 944 ident: CR6 article-title: Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes publication-title: Nat. Biotechnol. – ident: CR2 – volume: 363 start-page: eaar7785 year: 2019 ident: CR48 article-title: The human gut bacterial genotoxin colibactin alkylates DNA publication-title: Science – ident: CR53 – volume: 14 start-page: 2115 year: 2019 end-page: 2126 ident: CR26 article-title: Metagenome driven discovery of nonribosomal peptides publication-title: ACS Chem. Biol. – volume: 8 start-page: 1 year: 2019 end-page: 9 ident: CR5 article-title: Ultra-deep, long-read nanopore sequencing of mock microbial community standards publication-title: GigaScience – volume: 29 start-page: 961 year: 2019 end-page: 968 ident: CR35 article-title: Plasmid detection and assembly in genomic and metagenomic data sets publication-title: Genome Res. – volume: 27 start-page: 737 year: 2017 end-page: 746 ident: CR34 article-title: Fast and accurate de novo genome assembly from long uncorrected reads publication-title: Genome Res. – volume: 37 start-page: 540 year: 2019 end-page: 546 ident: CR16 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. – volume: 10 start-page: 99 year: 2020 end-page: 108 ident: CR47 article-title: De novo peptide sequencing reveals many cyclopeptides in the human gut and other environments publication-title: Cell Syst. – volume: 38 start-page: 701 year: 2020 end-page: 707 ident: CR8 article-title: Complete, closed bacterial genomes from microbiomes using nanopore sequencing publication-title: Nat. Biotechnol. – volume: 33 start-page: 73 year: 2016 end-page: 86 ident: CR49 article-title: Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks publication-title: Nat. Prod. Rep. – volume: 13 start-page: 1050 year: 2016 end-page: 1054 ident: CR13 article-title: Phased diploid genome assembly with single-molecule real-time sequencing publication-title: Nat. Methods – volume: 609 start-page: 374 year: 2016 end-page: 383 ident: CR63 article-title: Linear-time superbubble identification algorithm for genome assembly publication-title: Theor. Comput. Sci. – volume: 36 start-page: 338 year: 2018 ident: CR1 article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads publication-title: Nat. Biotechnol. – volume: 12 year: 2017 ident: CR4 article-title: Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture publication-title: Stand. Genom. Sci. – volume: 28 start-page: 3150 year: 2012 end-page: 3152 ident: CR54 article-title: CD-HIT: accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics – volume: 32 start-page: 2103 year: 2016 end-page: 2110 ident: CR14 article-title: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences publication-title: Bioinformatics – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: CR40 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods – ident: CR59 – volume: 4 start-page: e2584 year: 2016 ident: CR55 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ – volume: 39 start-page: 1361 year: 2007 end-page: 1368 ident: CR58 article-title: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution publication-title: Nat. Genet. – ident: CR28 – volume: 20 year: 2019 ident: CR21 article-title: MetaCarvel: linking assembly graph motifs to biological variants publication-title: Genome Biol. – volume: 38 start-page: 701 year: 2020 ident: 971_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0422-6 – volume: 27 start-page: 737 year: 2017 ident: 971_CR34 publication-title: Genome Res. doi: 10.1101/gr.214270.116 – volume: 6 start-page: 1287 year: 2017 ident: 971_CR39 publication-title: F1000Research doi: 10.12688/f1000research.12232.1 – volume: 12 start-page: 59 year: 2015 ident: 971_CR40 publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 35 start-page: D61 year: 2007 ident: 971_CR56 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl842 – volume: 37 start-page: 540 year: 2019 ident: 971_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 36 start-page: 338 year: 2018 ident: 971_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – ident: 971_CR53 doi: 10.1109/NCA.2017.8171380 – volume: 34 start-page: i142 year: 2018 ident: 971_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty266 – volume: 39 start-page: 1361 year: 2007 ident: 971_CR58 publication-title: Nat. Genet. doi: 10.1038/ng.2007.9 – volume: 11 start-page: 119 year: 2010 ident: 971_CR38 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-11-119 – volume: 10 year: 2019 ident: 971_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08103-y – volume: 14 start-page: 2115 year: 2019 ident: 971_CR26 publication-title: ACS Chem. Biol. – volume: 36 start-page: 2385 year: 2020 ident: 971_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz942 – volume: 20 year: 2019 ident: 971_CR21 publication-title: Genome Biol. doi: 10.1186/s13059-019-1791-3 – volume: 8 start-page: 1 year: 2019 ident: 971_CR5 publication-title: GigaScience doi: 10.1093/gigascience/giz043 – volume: 19 start-page: 143 year: 2019 ident: 971_CR7 publication-title: BMC Microbiol. doi: 10.1186/s12866-019-1500-0 – volume: 17 start-page: 155 year: 2020 ident: 971_CR17 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 43 start-page: D204 year: 2014 ident: 971_CR41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku989 – volume: 13 start-page: 1050 year: 2016 ident: 971_CR13 publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – volume: 4 start-page: e2584 year: 2016 ident: 971_CR55 publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 10 start-page: 99 year: 2020 ident: 971_CR47 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.11.007 – volume: 363 start-page: eaar7785 year: 2019 ident: 971_CR48 publication-title: Science doi: 10.1126/science.aar7785 – volume: 9 start-page: 90 year: 2007 ident: 971_CR52 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 27 start-page: 722 year: 2017 ident: 971_CR15 publication-title: Genome Res. doi: 10.1101/gr.215087.116 – volume: 29 start-page: 2826 year: 2013 ident: 971_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt502 – volume: 37 start-page: 953 year: 2019 ident: 971_CR9 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0202-3 – ident: 971_CR2 doi: 10.1038/s41586-020-2547-7 – ident: 971_CR59 doi: 10.1101/2020.01.15.908285 – volume: 20 start-page: 1 year: 2019 ident: 971_CR12 publication-title: Genome Biol. doi: 10.1186/s13059-019-1760-x – ident: 971_CR66 doi: 10.5281/zenodo.3986210 – volume: 4 start-page: 1316 year: 2019 ident: 971_CR32 publication-title: J. Open Source Softw. doi: 10.21105/joss.01316 – ident: 971_CR57 doi: 10.1145/2592798.2592820 – volume: 10 start-page: 1 year: 2020 ident: 971_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – volume: 9 start-page: e112963 year: 2014 ident: 971_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0112963 – volume: 29 start-page: 961 year: 2019 ident: 971_CR35 publication-title: Genome Res. doi: 10.1101/gr.241299.118 – volume: 9 start-page: 1 year: 2018 ident: 971_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 27 start-page: 2964 year: 2011 ident: 971_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr520 – volume: 18 start-page: 821 year: 2008 ident: 971_CR64 publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 7 start-page: 61 year: 2019 ident: 971_CR10 publication-title: Microbiome doi: 10.1186/s40168-019-0665-y – volume: 31 start-page: 3350 year: 2015 ident: 971_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv383 – volume: 609 start-page: 374 year: 2016 ident: 971_CR63 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2015.10.021 – volume: 7 year: 2016 ident: 971_CR24 publication-title: Nat. Commun. – volume: 7 start-page: 794 year: 2011 ident: 971_CR44 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.684 – volume: 27 start-page: 824 year: 2017 ident: 971_CR19 publication-title: Genome Res. doi: 10.1101/gr.213959.116 – volume: 27 start-page: 626 year: 2017 ident: 971_CR20 publication-title: Genome Res. doi: 10.1101/gr.216242.116 – ident: 971_CR43 doi: 10.1101/548123 – volume: 29 start-page: 1352 year: 2019 ident: 971_CR46 publication-title: Genome Res. doi: 10.1101/gr.243477.118 – volume: 28 start-page: 3150 year: 2012 ident: 971_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 7 start-page: e01948 year: 2016 ident: 971_CR3 publication-title: MBio – volume: 28 start-page: 1467 year: 2018 ident: 971_CR22 publication-title: Genome Res. doi: 10.1101/gr.236000.118 – volume: 31 start-page: 1674 year: 2015 ident: 971_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume: 12 year: 2017 ident: 971_CR4 publication-title: Stand. Genom. Sci. – volume: 7 year: 2019 ident: 971_CR25 publication-title: Microbiome doi: 10.1186/s40168-019-0737-z – volume: 14 start-page: 1063 year: 2017 ident: 971_CR30 publication-title: Nat. Methods doi: 10.1038/nmeth.4458 – volume: 25 start-page: 1043 year: 2015 ident: 971_CR37 publication-title: Genome Res. doi: 10.1101/gr.186072.114 – volume: 37 start-page: 937 year: 2019 ident: 971_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0191-2 – volume: 41 start-page: D590 year: 2012 ident: 971_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 517 start-page: 455 year: 2015 ident: 971_CR45 publication-title: Nature doi: 10.1038/nature14098 – volume: 25 start-page: 649 year: 2018 ident: 971_CR65 publication-title: J. Computational Biol. doi: 10.1089/cmb.2017.0251 – volume: 20 start-page: 714 year: 2013 ident: 971_CR62 publication-title: J. Comp. Biol. doi: 10.1089/cmb.2013.0084 – volume: 33 start-page: 73 year: 2016 ident: 971_CR49 publication-title: Nat. Prod. Rep. doi: 10.1039/C5NP00050E – volume: 34 start-page: 3094 year: 2018 ident: 971_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 32 start-page: 2103 year: 2016 ident: 971_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw152 – volume: 16 year: 2015 ident: 971_CR23 publication-title: BMC Genomics – ident: 971_CR28 doi: 10.1007/978-3-642-40453-5_26 |
SSID | ssj0033425 |
Score | 2.712049 |
Snippet | Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies.... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1103 |
SubjectTerms | 631/114/2785/2302 631/326/2565/2142 Algorithms Animals Assemblies Assembling Assembly Bacteria Benchmarking Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology DNA sequencing Gastrointestinal Microbiome - genetics Gene clusters Genetic aspects Genome, Bacterial - genetics Genome, Human - genetics Genomes Genomics Heterogeneity Humans Life Sciences Metagenome - genetics Metagenomics Metagenomics - methods Methods Microbial colonies Microbiomes Microbiota - genetics Natural products Nucleotide sequencing Proteomics Sequence Analysis, DNA - methods Sheep Software Species Specificity |
Title | metaFlye: scalable long-read metagenome assembly using repeat graphs |
URI | https://link.springer.com/article/10.1038/s41592-020-00971-x https://www.ncbi.nlm.nih.gov/pubmed/33020656 https://www.proquest.com/docview/2471540821 https://www.proquest.com/docview/2448844116 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFexr7rriseDPawicaWZFt7GUlbrwwWxlghb0KW5L4kTlan0Pz3vZOdtCm0L_aDJHM-ne5-ku4D4DNXIuPcGTbIvWPC54YZKSumvPSpMrzKw0bx9zg7Oxe_JnLSH7i1vVvlWicGRe3mls7Ij1LUopKqIyc_Fv8ZVY2i29W-hMZT2KXUZSTV-WSz4eJchKKrhMpZjoaxD5oZ8OKoRcNFfpcpxVWrPGHXW4bpvnq-Y5_uXZgGO1S-hBc9gIyH3Yy_gie-eQ3PupKSqzdwMvNLU05X_nvcIvspMCqezpsLhuDQxdRIWVlnPkbQ7GfVdBWT5_tFfOkXqJXjkL-6fQvn5em_4zPWV0pgVhTZkllVVYWqapPlznNps9S5mmemyqzCDY6XtRRGOGGQS8h_K0yd1oM6kUbVuTAFfwc7zbzxexCjxaddok9rmwgvvKoHhUukQxjlClmlESRrNmnbpxGnahZTHa6zeaE71mpkrQ6s1dcRfN2MWXRJNB7t_YW4r2mF4Zet6QMFkD7KVaWHBKroejKJ4GCrJ64Mu928nj_dr8xW38pRBJ82zTSSvM0aP7-iPqjWECcmWQTvu3nf0M05koogOIJva0G4_fjDP7X_OC0f4HlKshiCHA9gZ3l55T8i2llWh0Gk8VmUPw9hd1iORmN8j07Hf_7eAEDk_BM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKEYIL4s1AgSCBOEDUzWseSAhVlGVLH6dW6i3NTDK97M4una3o_il-I_Y8tmwleus5D3kcx_48jm2AdyrTsVLe8UESPNchcdwZk_MsmCAzp_KkcRT3D-LRkf55bI7X4E-fC0PPKnud2ChqPy3oH_mmRC1qqDuy-Dr7xalrFEVX-xYarVjshsVvdNnqLzvbeL7vpRx-P_w24l1XAV7oNJ7zIsvzNMtLFyc-KFPE0vtSxS6PiwydgWBKo5322glBtBbalbIclMK4rEy0SxXuewtua4WWnDLThz96za-Ubpq8khfAEzTEXZLOQKWbNRpKeucpKY87SwS_WDGEV83BP_bwSoC2sXvDB3C_A6xsq5Wwh7AWqkdwp21huXgM25Mwd8PxInxmNR43JWKx8bQ65QhGPaNBqgI7CQxBepjk4wWjl_an7CzM0Aqwpl52_QSOboSHT2G9mlbhOTBEGOSVBlkWQgcdsnKQemE8wjafmlxGIHo22aIrW07dM8a2CZ-r1Lastcha27DWXkTwcblm1hbtuHb2B-K-pRuNOxeuS0xA-qg2lt0iEEfhUBHBxspMvInF6nB_frbTBLW9lNsI3i6HaSW9bqvC9JzmoBpFXCriCJ61576kWykkFUF3BJ96Qbjc_P8f9eJ6Wt7A3dHh_p7d2znYfQn3JMllk2C5Aevzs_PwCpHWPH_diDeDk5u-T38Bj4M3JA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VVCBeEDcLBRYJxANYya7tPZAQKqRRSyGqEJX65np99CXZhG4qmr_Gr2Nmj5RUom999qHZ8Xjmm_UcAK95LhLOrWaD1FkmXKqZlrJguZMuzjUv0tpR_D5Odg_F1yN5tAF_ulwYCqvsdGKtqO3M0D_yfoxaVFJ35Kjv27CIg-Ho0_wXow5S9NLatdNoRGTfLX-j-1Z93BviWb-J49HOzy-7rO0wwIzIkgUzeVFkeeF1klrHpUliaz1PdJGYHB0DJ70UWliho4joNkL72A98JHXuU6EzjvvegM2UvKIebH7eGR_86OwA56Ju-Uo-AUvRLLcpOwOe9Ss0mxT1GVNWd55G7HzNLF42Dv9Yx0vPtbUVHN2FOy18DbcbebsHG668DzebhpbLBzCcuoUeTZbuQ1jh4VNaVjiZlScMoakNaZBqwk5diJDdTYvJMqS4-5Pw1M3RJoR19ezqIRxeCxcfQa-cle4JhIg3yEd1sTeRcMLlfpDZSFoEcTaTRRxA1LFJmbaIOfXSmKj6MZ1nqmGtQtaqmrXqPIB3qzXzpoTHlbPfEvcV3W_c2eg2TQHpo0pZapsgHT2ORgFsrc3Ee2nWh7vzU61eqNSFFAfwajVMKynWrXSzM5qDShVRapQE8Lg59xXdnCOpCMEDeN8JwsXm__-op1fT8hJu4V1S3_bG-8_gdkxiWWdbbkFvcXrmniPsWhQvWvkO4fi6r9RfbZE8tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=metaFlye%3A+scalable+long-read+metagenome+assembly+using+repeat+graphs&rft.jtitle=Nature+methods&rft.au=Kolmogorov+Mikhail&rft.au=Bickhart%2C+Derek+M&rft.au=Behsaz+Bahar&rft.au=Gurevich+Alexey&rft.date=2020-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=17&rft.issue=11&rft.spage=1103&rft.epage=1110&rft_id=info:doi/10.1038%2Fs41592-020-00971-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |