A mouse tissue atlas of small noncoding RNA
Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically prof...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 41; pp. 25634 - 25645 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
13.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2002277117 |
Cover
Loading…
Abstract | Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease. |
---|---|
AbstractList | We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing.
Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to "arm switching" between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to "arm switching" between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to "arm switching" between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease. |
Author | Keller, Andreas Fehlmann, Tobias Isakova, Alina Quake, Stephen R. |
Author_xml | – sequence: 1 givenname: Alina surname: Isakova fullname: Isakova, Alina – sequence: 2 givenname: Tobias surname: Fehlmann fullname: Fehlmann, Tobias – sequence: 3 givenname: Andreas surname: Keller fullname: Keller, Andreas – sequence: 4 givenname: Stephen R. surname: Quake fullname: Quake, Stephen R. |
BookMark | eNp9UU1LwzAYDqLoNj17EgpeBKnLR5s0F2EMv2AoiJ5DmqUzI01m0gr-ezM2Ju4gOQTe9_l6eYbg0HmnAThH8AZBRsYrJ-MNhhBjxhBiB2CAIEc5LTg8BIM0Z3lV4OIEDGNcQgh5WcFjcEIwZxXmdACuJ1nr-6izzsTY60x2VsbMN1lspbVZslN-btwie32enIKjRtqoz7b_CLzf371NH_PZy8PTdDLLVVHRLlesIbjhZXKoa1ZpWdeE1ESVBcIKK8ZTogYypCtNGOE8jWUDsZZzVEpZKzICtxvdVV-3eq6064K0YhVMK8O38NKIvxtnPsTCfwlW0gpTlASutgLBf_Y6dqI1UWlrpdPpWIGLglIGaUkT9HIPuvR9cOm8hCoJhjxlTKjxBqWCjzHoZhcGQbEuQqyLEL9FJEa5x1Cmk53x68TG_sO72PCWsfNhZ4MpT49U5Afan5Yj |
CitedBy_id | crossref_primary_10_1111_epi_18219 crossref_primary_10_7555_JBR_35_20200197 crossref_primary_10_3390_nu14050962 crossref_primary_10_1128_mSystems_00081_21 crossref_primary_10_3389_fimmu_2022_799733 crossref_primary_10_3390_epigenomes6040035 crossref_primary_10_1038_s41587_022_01517_6 crossref_primary_10_1097_BS9_0000000000000123 crossref_primary_10_1016_j_isci_2024_108815 crossref_primary_10_1016_j_psj_2025_104986 crossref_primary_10_1007_s00114_021_01782_6 crossref_primary_10_1080_21655979_2021_2003667 crossref_primary_10_3389_fnmol_2024_1365978 crossref_primary_10_1177_11779322211062722 crossref_primary_10_1016_j_molcel_2024_11_014 crossref_primary_10_1016_j_gene_2022_146998 crossref_primary_10_1007_s12035_024_04128_1 crossref_primary_10_1111_cpr_13416 crossref_primary_10_1002_1873_3468_14948 crossref_primary_10_3390_epigenomes6020011 crossref_primary_10_1093_nar_gkab268 crossref_primary_10_3389_fcell_2021_687748 crossref_primary_10_1021_acs_analchem_2c00557 crossref_primary_10_3389_fvets_2022_1042445 crossref_primary_10_3390_v16030442 crossref_primary_10_3390_ph15020261 crossref_primary_10_1038_s41421_021_00265_2 crossref_primary_10_1038_s41598_023_41696_z crossref_primary_10_3390_biom14050541 crossref_primary_10_1101_gr_278128_123 crossref_primary_10_3390_genes12122005 crossref_primary_10_1016_j_ydbio_2023_12_005 crossref_primary_10_1038_s44319_024_00148_z crossref_primary_10_3389_fcvm_2023_1060719 crossref_primary_10_1016_j_pneurobio_2023_102500 crossref_primary_10_1016_j_devcel_2023_10_014 crossref_primary_10_1093_nar_gkae1036 crossref_primary_10_1016_j_gene_2024_148233 crossref_primary_10_1242_dmm_050870 crossref_primary_10_4103_1673_5374_320974 crossref_primary_10_1371_journal_pone_0293644 crossref_primary_10_1038_s41467_023_38582_7 crossref_primary_10_1038_s41388_020_01630_3 crossref_primary_10_1016_j_bbadis_2025_167748 crossref_primary_10_1146_annurev_neuro_111020_100834 crossref_primary_10_1016_j_isci_2023_108525 crossref_primary_10_1080_15476286_2021_2000792 crossref_primary_10_1093_nar_gkab808 crossref_primary_10_1073_pnas_2220532121 crossref_primary_10_1038_s41597_024_03604_6 crossref_primary_10_1038_s41573_022_00633_x crossref_primary_10_7554_eLife_70948 crossref_primary_10_1038_s41587_022_01648_w crossref_primary_10_1186_s12864_021_07757_1 |
Cites_doi | 10.1093/bioinformatics/bts635 10.1093/nar/gkw116 10.1126/science.337.6099.1159 10.1016/j.cell.2019.10.017 10.1038/ni888 10.1038/nature11247 10.1101/gad.203786.112 10.1093/nar/gkl1172 10.1261/rna.073395.119 10.18632/aging.100540 10.1186/s12864-017-4031-9 10.1101/430561 10.1126/science.aad6780 10.1093/nar/gkv1335 10.1016/j.celrep.2012.10.021 10.1242/jcs.01487 10.1038/srep39812 10.1126/science.aar3819 10.1186/1471-2164-14-298 10.1093/nar/gkv007 10.18632/oncotarget.2405 10.1080/15476286.2016.1257470 10.1016/j.cell.2007.04.040 10.1016/j.molcel.2018.06.044 10.7554/eLife.05005 10.1093/nar/gkaa323 10.1093/nar/gkt393 10.1038/nrg3074 10.1038/s41580-018-0045-7 10.1086/342408 10.1155/2014/328935 10.1261/rna.064493.117 10.1038/nrm3838 10.1016/j.cell.2018.06.052 10.3390/cells8020083 10.1093/nar/gkx851 10.1016/j.canlet.2018.02.002 10.1038/nrm3742 10.1182/blood-2012-01-153486 10.1101/gr.106849.110 10.1016/j.celrep.2019.05.031 10.1101/gr.222067.117 10.1186/s12859-018-2287-y 10.1371/journal.pone.0042248 10.1016/j.biocel.2015.07.003 10.1038/nature05453 10.1038/nbt.3947 10.15252/embj.201490493 10.1530/ERC-14-0208 10.1093/nar/gkz584 10.1016/j.cell.2018.03.006 10.1093/bioinformatics/btx814 10.1007/BF00994018 10.1093/nar/gkr688 10.3324/haematol.2011.051730 10.3389/fgene.2013.00020 10.18632/oncotarget.4695 10.1093/nar/gkz097 10.1186/1472-6750-8-69 10.1261/rna.065516.117 10.1093/bioinformatics/btt656 10.1186/s13059-014-0550-8 10.1056/NEJMoa1209026 10.1038/nature09267 10.1371/journal.pone.0124877 10.1186/s12915-014-0078-0 10.1093/nar/gkv1309 10.1038/nbt.3701 10.1101/gad.1837609 10.1074/jbc.RA118.003410 10.1016/j.gene.2018.07.057 10.1093/nar/gks1268 10.1186/1471-2164-8-166 10.1016/j.cell.2014.03.008 10.1038/s41598-017-02632-0 10.1093/nar/gky955 10.1016/S1074-7613(00)80316-7 10.1038/nrm2124 10.1038/nmeth.1682 10.1038/s41571-018-0035-x 10.1016/j.ebiom.2018.11.003 10.1093/nar/gkt1181 10.2174/138920209788185289 10.1101/gr.190595.115 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Oct 13, 2020 Copyright © 2020 the Author(s). Published by PNAS. Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Oct 13, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2002277117 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 25645 |
ExternalDocumentID | PMC7568261 10_1073_pnas_2002277117 26969638 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c486t-c7f32f95782bb78eabb33b3c5412c2c79842f071e8e37399412af02ead15aabc3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:34:01 EDT 2025 Fri Jul 11 10:18:24 EDT 2025 Mon Jun 30 10:11:42 EDT 2025 Tue Jul 01 03:40:32 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Thu May 29 09:12:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-c7f32f95782bb78eabb33b3c5412c2c79842f071e8e37399412af02ead15aabc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewers: J.C.M., European Molecular Biology Laboratory–European Bioinformatics Institute; and I.U., Weizmann Institute of Science. Author contributions: A.I. and S.R.Q. designed research; A.I. performed research; A.I., T.F., and A.K. analyzed data; and A.I. and S.R.Q. wrote the paper. Contributed by Stephen R. Quake, July 29, 2020 (sent for review February 10, 2020; reviewed by John C. Marioni and Igor Ulitsky) |
ORCID | 0000-0003-1113-6889 0000-0003-1967-2918 0000-0002-5361-0895 0000-0002-1613-0809 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7568261 |
PMID | 32978296 |
PQID | 2453209373 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7568261 proquest_miscellaneous_2446670656 proquest_journals_2453209373 crossref_primary_10_1073_pnas_2002277117 crossref_citationtrail_10_1073_pnas_2002277117 jstor_primary_26969638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-13 |
PublicationDateYYYYMMDD | 2020-10-13 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 Lin M. (e_1_3_4_67_2) 2018; 15 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_75_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_4_33_2 doi: 10.1093/nar/gkw116 – ident: e_1_3_4_84_2 doi: 10.1126/science.337.6099.1159 – ident: e_1_3_4_20_2 doi: 10.1016/j.cell.2019.10.017 – ident: e_1_3_4_56_2 doi: 10.1038/ni888 – ident: e_1_3_4_63_2 doi: 10.1038/nature11247 – ident: e_1_3_4_14_2 doi: 10.1101/gad.203786.112 – ident: e_1_3_4_8_2 doi: 10.1093/nar/gkl1172 – ident: e_1_3_4_26_2 doi: 10.1261/rna.073395.119 – ident: e_1_3_4_48_2 doi: 10.18632/aging.100540 – volume: 15 start-page: 9818 year: 2018 ident: e_1_3_4_67_2 article-title: Comprehensive identification of microRNA arm selection preference in lung cancer: miR-324-5p and -3p serve oncogenic functions in lung cancer publication-title: Oncol. Lett. – ident: e_1_3_4_78_2 doi: 10.1186/s12864-017-4031-9 – ident: e_1_3_4_88_2 doi: 10.1101/430561 – ident: e_1_3_4_69_2 doi: 10.1126/science.aad6780 – ident: e_1_3_4_70_2 doi: 10.1093/nar/gkv1335 – ident: e_1_3_4_36_2 doi: 10.1016/j.celrep.2012.10.021 – ident: e_1_3_4_13_2 doi: 10.1242/jcs.01487 – ident: e_1_3_4_57_2 doi: 10.1038/srep39812 – ident: e_1_3_4_73_2 doi: 10.1126/science.aar3819 – ident: e_1_3_4_68_2 doi: 10.1186/1471-2164-14-298 – ident: e_1_3_4_79_2 doi: 10.1093/nar/gkv007 – ident: e_1_3_4_58_2 doi: 10.18632/oncotarget.2405 – ident: e_1_3_4_4_2 doi: 10.1080/15476286.2016.1257470 – ident: e_1_3_4_16_2 doi: 10.1016/j.cell.2007.04.040 – ident: e_1_3_4_87_2 doi: 10.1016/j.molcel.2018.06.044 – ident: e_1_3_4_82_2 doi: 10.7554/eLife.05005 – ident: e_1_3_4_52_2 – ident: e_1_3_4_45_2 doi: 10.1093/nar/gkaa323 – ident: e_1_3_4_83_2 doi: 10.1093/nar/gkt393 – ident: e_1_3_4_3_2 doi: 10.1038/nrg3074 – ident: e_1_3_4_6_2 doi: 10.1038/s41580-018-0045-7 – ident: e_1_3_4_34_2 doi: 10.1086/342408 – ident: e_1_3_4_50_2 doi: 10.1155/2014/328935 – ident: e_1_3_4_32_2 doi: 10.1261/rna.064493.117 – ident: e_1_3_4_11_2 doi: 10.1038/nrm3838 – ident: e_1_3_4_28_2 doi: 10.1016/j.cell.2018.06.052 – ident: e_1_3_4_44_2 doi: 10.3390/cells8020083 – ident: e_1_3_4_85_2 doi: 10.1093/nar/gkx851 – ident: e_1_3_4_72_2 doi: 10.1016/j.canlet.2018.02.002 – ident: e_1_3_4_41_2 doi: 10.1038/nrm3742 – ident: e_1_3_4_64_2 doi: 10.1182/blood-2012-01-153486 – ident: e_1_3_4_10_2 doi: 10.1101/gr.106849.110 – ident: e_1_3_4_5_2 doi: 10.1016/j.celrep.2019.05.031 – ident: e_1_3_4_24_2 doi: 10.1101/gr.222067.117 – ident: e_1_3_4_77_2 doi: 10.1186/s12859-018-2287-y – ident: e_1_3_4_55_2 doi: 10.1371/journal.pone.0042248 – ident: e_1_3_4_38_2 doi: 10.1016/j.biocel.2015.07.003 – ident: e_1_3_4_66_2 doi: 10.1038/nature05453 – ident: e_1_3_4_25_2 doi: 10.1038/nbt.3947 – ident: e_1_3_4_37_2 doi: 10.15252/embj.201490493 – ident: e_1_3_4_60_2 doi: 10.1530/ERC-14-0208 – ident: e_1_3_4_40_2 doi: 10.1093/nar/gkz584 – ident: e_1_3_4_1_2 doi: 10.1016/j.cell.2018.03.006 – ident: e_1_3_4_49_2 doi: 10.1093/bioinformatics/btx814 – ident: e_1_3_4_62_2 doi: 10.1007/BF00994018 – ident: e_1_3_4_47_2 doi: 10.1093/nar/gkr688 – ident: e_1_3_4_65_2 doi: 10.3324/haematol.2011.051730 – ident: e_1_3_4_51_2 doi: 10.3389/fgene.2013.00020 – ident: e_1_3_4_7_2 doi: 10.18632/oncotarget.4695 – ident: e_1_3_4_46_2 doi: 10.1093/nar/gkz097 – ident: e_1_3_4_22_2 doi: 10.1186/1472-6750-8-69 – ident: e_1_3_4_54_2 doi: 10.1261/rna.065516.117 – ident: e_1_3_4_76_2 doi: 10.1093/bioinformatics/btt656 – ident: e_1_3_4_80_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_4_21_2 doi: 10.1056/NEJMoa1209026 – ident: e_1_3_4_61_2 doi: 10.1038/nature09267 – ident: e_1_3_4_35_2 doi: 10.1371/journal.pone.0124877 – ident: e_1_3_4_86_2 – ident: e_1_3_4_15_2 doi: 10.1186/s12915-014-0078-0 – ident: e_1_3_4_30_2 doi: 10.1093/nar/gkv1309 – ident: e_1_3_4_17_2 doi: 10.1038/nbt.3701 – ident: e_1_3_4_53_2 doi: 10.1101/gad.1837609 – ident: e_1_3_4_27_2 doi: 10.1074/jbc.RA118.003410 – ident: e_1_3_4_71_2 doi: 10.1016/j.gene.2018.07.057 – ident: e_1_3_4_42_2 doi: 10.1093/nar/gks1268 – ident: e_1_3_4_23_2 doi: 10.1186/1471-2164-8-166 – ident: e_1_3_4_2_2 doi: 10.1016/j.cell.2014.03.008 – ident: e_1_3_4_18_2 doi: 10.1038/s41598-017-02632-0 – ident: e_1_3_4_29_2 doi: 10.1093/nar/gky955 – ident: e_1_3_4_39_2 doi: 10.1016/S1074-7613(00)80316-7 – ident: e_1_3_4_12_2 doi: 10.1038/nrm2124 – ident: e_1_3_4_9_2 doi: 10.1038/nmeth.1682 – ident: e_1_3_4_81_2 – ident: e_1_3_4_19_2 doi: 10.1038/s41571-018-0035-x – ident: e_1_3_4_43_2 doi: 10.1016/j.ebiom.2018.11.003 – ident: e_1_3_4_31_2 doi: 10.1093/nar/gkt1181 – ident: e_1_3_4_59_2 doi: 10.2174/138920209788185289 – ident: e_1_3_4_74_2 doi: 10.1101/gr.190595.115 |
SSID | ssj0009580 |
Score | 2.5477393 |
Snippet | Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of... We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25634 |
SubjectTerms | Biological activity Biological Sciences Brain Chromatin Fragments MicroRNAs miRNA Non-coding RNA Nucleoli Ribonucleic acid RNA Sexual dimorphism snoRNA snRNA Tissues Transfer RNA tRNA |
Title | A mouse tissue atlas of small noncoding RNA |
URI | https://www.jstor.org/stable/26969638 https://www.proquest.com/docview/2453209373 https://www.proquest.com/docview/2446670656 https://pubmed.ncbi.nlm.nih.gov/PMC7568261 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWRUK9IApUBAoKEoeiKEvWduzkGFVAQepqqbbS3iLbOGrVfVRslgN_hz_K-JFXeQh6iXbjJE5mxuMZe-YbhF5XGa_AjNWxVlzGNE2-xGLCkljJTBOWZzqhJt_5bMpOL-inRboYjX70opZ2tRyr77_NK7kLV-Ec8NVkyf4HZ9uHwgn4DfyFI3AYjv_E4yIyjruOaku9SNRLYSMztiuz4QyOvdrYnJXzadE3QmftpLVtQgSmzZpg0WWY-GG_jeJoNu3qFX_ciuvNN7ccu_TFt50xeblc-ZLL8428Et02kW7yDW34ZNfweSd8bJCLNYvOx_1VCHA5TVAH6YI0_vKWffWLYUqkLml6rJ3GBYMlZtTVDG1Vssvn9LLnkLEaDZsyv_qpm_8Oj_KXuQCUlylgvBYWlR1jzv1je5Jxs7KiQTA40zi_hcltZ_nZ2QlPGThh4GLfg2dgUybjw2LSQ3bOXJ6T_7YGP4qTt7f63kf3m44GVpALhB24OMMA3Z7FM3-IHnhXJSyc3B2gkV4_QgcNvcNjj1j-5jGKitAKYugEMbSCGG6q0Api2ApiCIL4BF28fzc_OY19FY5Y0YzVseIVwVVuyh5IyTMtpCREEpXSCVZY8Rw-ugJDVcPg5mDuwmlRJRg01CQVQipyiPagH_0UhbhSlFUKiKC0wfET6YTpzJRMk4moZB6gcUOVUnmIelMpZVnaUAlOSkPRsqNogI7bG24cOsufLz20ZG6vw8wAQ5EsQEcN3Us_tuE-agqmgOlOAvSqbQbNa7bTxFoDTeEaypiJEmAB4gN-tX0Y7PZhy_rq0mK4e5l6duc7n6P9bhweob36606_APu4li-tfP4EAyG5HA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mouse+tissue+atlas+of+small+noncoding+RNA&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Isakova%2C+Alina&rft.au=Fehlmann%2C+Tobias&rft.au=Keller%2C+Andreas&rft.au=Quake%2C+Stephen+R.&rft.date=2020-10-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=41&rft.spage=25634&rft.epage=25645&rft_id=info:doi/10.1073%2Fpnas.2002277117&rft_id=info%3Apmid%2F32978296&rft.externalDocID=PMC7568261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |