Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms
Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expan...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 30; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
26.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil. |
---|---|
AbstractList | Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil. Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil. Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8 . Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil. Intensive agriculture and changing tillage practices are causing soils to become increasingly compacted. Hard soils cause roots to accumulate the hormone ethylene, triggering reduced root elongation and increased radial swelling. We demonstrate that ethylene regulates these distinct root growth responses using different downstream signals, auxin, and abscisic acid (ABA). Auxin is primarily required to reduce cell elongation during a root compaction response, whereas ABA promotes radial cell expansion. Radial swelling was originally thought to aid root penetration in hard soil, yet rice ABA-deficient mutants disrupted in radial swelling of root tips penetrate compacted soil better than wild-type plants. The combined growth responses to auxin and ABA function to reduce the ability of roots to penetrate compacted soil. Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8 . Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil. |
Author | Pandey, Bipin K. Kilic, Azad Sharp, Robert E. Hartman, Sjon Zhang, Jiao Mehra, Poonam Zhu, Wanwan Sturrock, Craig J. Huang, Rongfeng Dodd, Ian C. Liang, Wanqi Song, Xiaoyun Qin, Hua Mooney, Sacha J. Karady, Michal Schneider, Hannah M. Zhang, Dabing Bennett, Malcolm J. Huang, Guoqiang Bhosale, Rahul |
Author_xml | – sequence: 1 givenname: Guoqiang surname: Huang fullname: Huang, Guoqiang – sequence: 2 givenname: Azad surname: Kilic fullname: Kilic, Azad – sequence: 3 givenname: Michal surname: Karady fullname: Karady, Michal – sequence: 4 givenname: Jiao surname: Zhang fullname: Zhang, Jiao – sequence: 5 givenname: Poonam surname: Mehra fullname: Mehra, Poonam – sequence: 6 givenname: Xiaoyun surname: Song fullname: Song, Xiaoyun – sequence: 7 givenname: Craig J. surname: Sturrock fullname: Sturrock, Craig J. – sequence: 8 givenname: Wanwan surname: Zhu fullname: Zhu, Wanwan – sequence: 9 givenname: Hua surname: Qin fullname: Qin, Hua – sequence: 10 givenname: Sjon surname: Hartman fullname: Hartman, Sjon – sequence: 11 givenname: Hannah M. surname: Schneider fullname: Schneider, Hannah M. – sequence: 12 givenname: Rahul surname: Bhosale fullname: Bhosale, Rahul – sequence: 13 givenname: Ian C. surname: Dodd fullname: Dodd, Ian C. – sequence: 14 givenname: Robert E. surname: Sharp fullname: Sharp, Robert E. – sequence: 15 givenname: Rongfeng surname: Huang fullname: Huang, Rongfeng – sequence: 16 givenname: Sacha J. surname: Mooney fullname: Mooney, Sacha J. – sequence: 17 givenname: Wanqi surname: Liang fullname: Liang, Wanqi – sequence: 18 givenname: Malcolm J. surname: Bennett fullname: Bennett, Malcolm J. – sequence: 19 givenname: Dabing surname: Zhang fullname: Zhang, Dabing – sequence: 20 givenname: Bipin K. surname: Pandey fullname: Pandey, Bipin K. |
BookMark | eNp1kc1vFSEUxYmpsa_VtSsTEjdupr3AMAMbk2dTP5ImbnRNgGH6eJmBJzBN-9_L-KrGJm4gcH_nwL3nDJ2EGBxCrwlcEOjZ5SHofEEp1AMlRD5DGwKSNF0r4QRtAGjfiJa2p-gs5z0ASC7gBTplXPD1foPUddk9TC447MPOG18yTt46nGIs2E0x3OriY6hVbON80La4AefoJ3znNd5-2DZYhwHr5d6HZnaD1yswO7vTwec5v0TPRz1l9-pxP0ffP15_u_rc3Hz99OVqe9PYVnSlrhLA9IaJwfSDsCCt6ZwboTNSE25GQQwnrtOSk55qAC6GkQ6GcdMaEJSdo_dH38Ni6jesCyXpSR2Sn3V6UFF79W8l-J26jXdKMsYpEdXg3aNBij8Wl4uafbZumnRwccmKdpL2nEspK_r2CbqPSwq1vZXqmeyIXA35kbIp5pzcqKwvv4ZZ3_eTIqDWCNUaofobYdVdPtH9buL_ijdHxT6XmP7gtK-jgh7YT5nwqfY |
CitedBy_id | crossref_primary_10_1093_jxb_erad389 crossref_primary_10_1111_nph_19004 crossref_primary_10_1016_j_cj_2025_02_006 crossref_primary_10_1016_j_cub_2024_12_003 crossref_primary_10_1007_s00425_025_04624_1 crossref_primary_10_1016_j_still_2024_106400 crossref_primary_10_1111_mpp_70048 crossref_primary_10_1126_science_add3771 crossref_primary_10_1007_s00425_023_04294_x crossref_primary_10_1016_j_agwat_2024_108688 crossref_primary_10_3390_plants13060774 crossref_primary_10_1007_s11104_023_06333_8 crossref_primary_10_1093_plphys_kiac586 crossref_primary_10_3390_ijms241512345 crossref_primary_10_3389_fpls_2024_1501533 crossref_primary_10_1007_s11104_023_06046_y crossref_primary_10_1016_j_chemosphere_2024_142322 crossref_primary_10_1093_plcell_koae083 crossref_primary_10_3390_plants13070953 crossref_primary_10_1002_jsfa_13191 crossref_primary_10_1111_nph_18824 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1007_s00299_023_03132_4 crossref_primary_10_3390_su16135729 crossref_primary_10_1016_j_pbi_2023_102405 crossref_primary_10_1111_nph_18733 crossref_primary_10_1021_acs_jafc_4c04334 crossref_primary_10_1007_s11104_024_06490_4 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1093_jxb_eraf063 crossref_primary_10_1016_j_cub_2024_03_064 crossref_primary_10_1093_jmicro_dfad026 crossref_primary_10_1111_ppl_14625 crossref_primary_10_3390_ijms25031497 crossref_primary_10_1016_j_hpj_2022_11_011 crossref_primary_10_1111_pce_15462 crossref_primary_10_1021_acsabm_4c00416 crossref_primary_10_1186_s12284_023_00626_3 crossref_primary_10_1111_pce_14492 crossref_primary_10_1016_j_jplph_2024_154190 crossref_primary_10_1016_j_plantsci_2025_112461 crossref_primary_10_1017_S0014479725000018 crossref_primary_10_3390_grasses4010004 crossref_primary_10_1016_j_tplants_2024_01_003 crossref_primary_10_1093_plphys_kiae134 crossref_primary_10_1111_nph_18600 crossref_primary_10_3390_plants13243525 crossref_primary_10_1016_j_devcel_2024_01_028 crossref_primary_10_3390_plants12030606 crossref_primary_10_3390_plants13030432 crossref_primary_10_1038_s41467_023_40366_y crossref_primary_10_1016_j_tplants_2024_10_014 crossref_primary_10_1007_s42729_023_01171_0 crossref_primary_10_1007_s11104_024_06573_2 crossref_primary_10_1007_s00425_023_04262_5 |
Cites_doi | 10.1371/journal.pgen.1006955 10.1038/s41467-018-04710-x 10.1111/j.1365-3040.2006.01576.x 10.1111/j.1365-313X.2007.03094.x 10.1046/j.0016-8025.2001.00802.x 10.1104/pp.125.3.1248 10.21769/BioProtoc.4252 10.1016/j.phytochem.2014.05.015 10.3389/fpls.2017.01493 10.1080/02571862.2001.10634410 10.1105/tpc.15.00080 10.1111/j.1365-2389.2007.00956.x 10.1016/0167-1987(95)00475-8 10.1093/mp/sst087 10.1093/jxb/erz383 10.1007/s11103-007-9203-6 10.1105/tpc.107.052126 10.1111/nph.17180 10.4141/S04-055 10.3389/fpls.2018.00405 10.1371/journal.pgen.1004701 10.3390/ijms19113656 10.1105/tpc.107.052068 10.1007/s00425-021-03657-6 10.1016/j.still.2004.08.009 10.1111/j.1365-313X.2007.03272.x 10.1626/pps.3.316 10.1126/science.abf3013 10.1105/tpc.107.052100 10.1073/pnas.2012087118 10.1126/sciadv.abd4113 10.1023/A:1004484518652 10.1111/pce.12467 10.1093/jxb/47.4.539 10.1038/s41467-018-03850-4 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Jul 26, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Jul 26, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2201072119 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10 |
ExternalDocumentID | PMC9335218 10_1073_pnas_2201072119 27172070 |
GrantInformation_xml | – fundername: EC | European Research Council (ERC) grantid: 294729 – fundername: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/V00557X/1 – fundername: Czech Science Foundation grantid: 25948Y – fundername: National Natural Science Foundation of China (NSFC) grantid: 3210165 – fundername: Royal Society (The Royal Society) grantid: CHG\R1\170040 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: 2189 – fundername: National Natural Science Foundation of China (NSFC) grantid: 32130006 – fundername: European Molecular Biology Organization (EMBO) grantid: ALTF 1140-2019 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 2AX 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD ABBHK AEUPB AEXZC C1K DCCCD FR3 H94 IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM M7N P64 RC3 SA0 7X8 5PM |
ID | FETCH-LOGICAL-c486t-c4900b7b38db7d8c09cb6eef06b9a15bf81b51e6a95172a0058df2db35b4b0823 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:32:04 EDT 2025 Tue Aug 05 11:08:36 EDT 2025 Sat Aug 23 13:08:22 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Tue Jul 01 01:03:20 EDT 2025 Thu May 29 08:48:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-c4900b7b38db7d8c09cb6eef06b9a15bf81b51e6a95172a0058df2db35b4b0823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Sean Cutler, University of California Riverside, Riverside, CA; received January 21, 2022; accepted May 27, 2022 Author contributions: M.J.B., D.Z., and B.K.P. designed research; G.H., A.K., M.K., J.Z., P.M., X.S., C.J.S., W.Z., H.Q., S.H., H.M.S., W.L., and B.K.P. performed research; G.H., R.B., I.C.D., R.E.S., R.H., S.J.M., W.L., M.J.B., D.Z., and B.K.P. analyzed data; and G.H., I.C.D., R.E.S., M.J.B., D.Z., and B.K.P. wrote the paper. 1G.H. and B.K.P. contributed equally to this work. |
ORCID | 0000-0002-5333-8502 0000-0001-9788-7290 0000-0002-6103-5704 0000-0002-6915-0424 0000-0002-9106-2156 0000-0002-3545-0090 0000-0002-6709-6436 0000-0001-8214-4419 0000-0001-6515-4922 0000-0003-0475-390X 0000-0002-9614-1347 0000-0003-2725-859X 0000-0002-9314-8113 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9335218 |
PMID | 35858424 |
PQID | 2697396198 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9335218 proquest_miscellaneous_2692755999 proquest_journals_2697396198 crossref_citationtrail_10_1073_pnas_2201072119 crossref_primary_10_1073_pnas_2201072119 jstor_primary_27172070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-26 |
PublicationDateYYYYMMDD | 2022-07-26 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 Yang J. (e_1_3_4_27_2) 2017; 8 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_29_2 doi: 10.1371/journal.pgen.1006955 – ident: e_1_3_4_28_2 doi: 10.1038/s41467-018-04710-x – ident: e_1_3_4_18_2 doi: 10.1111/j.1365-3040.2006.01576.x – ident: e_1_3_4_25_2 doi: 10.1111/j.1365-313X.2007.03094.x – ident: e_1_3_4_9_2 doi: 10.1046/j.0016-8025.2001.00802.x – ident: e_1_3_4_22_2 doi: 10.1104/pp.125.3.1248 – ident: e_1_3_4_21_2 doi: 10.21769/BioProtoc.4252 – ident: e_1_3_4_36_2 doi: 10.1016/j.phytochem.2014.05.015 – ident: e_1_3_4_6_2 – ident: e_1_3_4_15_2 doi: 10.3389/fpls.2017.01493 – ident: e_1_3_4_33_2 doi: 10.1080/02571862.2001.10634410 – ident: e_1_3_4_20_2 doi: 10.1105/tpc.15.00080 – ident: e_1_3_4_2_2 doi: 10.1111/j.1365-2389.2007.00956.x – ident: e_1_3_4_5_2 doi: 10.1016/0167-1987(95)00475-8 – ident: e_1_3_4_19_2 doi: 10.1093/mp/sst087 – ident: e_1_3_4_8_2 doi: 10.1093/jxb/erz383 – ident: e_1_3_4_34_2 doi: 10.1007/s11103-007-9203-6 – ident: e_1_3_4_11_2 doi: 10.1105/tpc.107.052126 – ident: e_1_3_4_14_2 doi: 10.1111/nph.17180 – ident: e_1_3_4_32_2 doi: 10.4141/S04-055 – ident: e_1_3_4_23_2 doi: 10.3389/fpls.2018.00405 – ident: e_1_3_4_24_2 doi: 10.1371/journal.pgen.1004701 – ident: e_1_3_4_12_2 doi: 10.3390/ijms19113656 – ident: e_1_3_4_26_2 doi: 10.1105/tpc.107.052068 – ident: e_1_3_4_35_2 doi: 10.1007/s00425-021-03657-6 – ident: e_1_3_4_1_2 doi: 10.1016/j.still.2004.08.009 – ident: e_1_3_4_37_2 doi: 10.1111/j.1365-313X.2007.03272.x – ident: e_1_3_4_4_2 doi: 10.1626/pps.3.316 – ident: e_1_3_4_10_2 doi: 10.1126/science.abf3013 – ident: e_1_3_4_13_2 doi: 10.1105/tpc.107.052100 – ident: e_1_3_4_7_2 doi: 10.1073/pnas.2012087118 – ident: e_1_3_4_16_2 doi: 10.1126/sciadv.abd4113 – ident: e_1_3_4_3_2 doi: 10.1023/A:1004484518652 – ident: e_1_3_4_30_2 doi: 10.1111/pce.12467 – ident: e_1_3_4_17_2 doi: 10.1093/jxb/47.4.539 – volume: 8 start-page: 256 year: 2017 ident: e_1_3_4_27_2 article-title: Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers publication-title: Front. Plant Sci. – ident: e_1_3_4_31_2 doi: 10.1038/s41467-018-03850-4 |
SSID | ssj0009580 |
Score | 2.6159134 |
Snippet | Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as... Intensive agriculture and changing tillage practices are causing soils to become increasingly compacted. Hard soils cause roots to accumulate the hormone... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abscisic acid Auxins Biological Sciences Biosynthesis Compacted soils Crop yield Elongation Ethylene Mutants Rice Roots Soil compaction Tips Weeds |
Title | Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms |
URI | https://www.jstor.org/stable/27172070 https://www.proquest.com/docview/2697396198 https://www.proquest.com/docview/2692755999 https://pubmed.ncbi.nlm.nih.gov/PMC9335218 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBGzBRGMhIHIailObTzrGgjmoaZYdW6i2yE2eL1CWwNhPaiT-dZ8d2GlSkwcWqHMeN_H5-fs_vC6H3MQflPwyIKzjJ3bAIcpcKaHgYjoVXRJRzadH9Oo9ny_B8Fa0Gg187XkvNlo-y-71xJf9DVegDusoo2X-grJ0UOuA30BdaoDC0D6LxFFYZTg2Z9-O65MoEAPveAWF464h1XV0x48qoXM0zKV1u6nLt3JXMmXyauG2q1uZnWbkqhEQOuBEyGLjc6DTmWnC9tAfdxrgVzM094qSLStGsYuO4zuW8q3E8a_S19Jem_gGAvNox_ZeqxvrknuW2k92ylvcrp37rA2Ivt89LVu9eV_jKtbWNidccFgQUNw7bGqEjsafPsGXNSlv8aeNNy2WFL234UndN9p4CwLZk6eKKbUb9kf182_Nv6dny4iJdTFeLR-ixD4pGYO57bNpm2uaz0B9okkOR4OMf0_fkmta1tae09F1ud2SYxSF6qpUPPGmRdIQGonqGjgzN8KnOQf7hOUoNtLCBFpbQwhJauIMWPMUWWlhCCwO0sIQWBmjhPrRwB60XaHk2XXyeuboWh5uFNN5Cm4zHnPCA5rCpaTZOMh4LUYxjnjAv4gWoP5EnYgYSO_GZrFaZF37Og4iHXFpzj9FBVVfiJcIRDPKiHGRLmgBzSHgUFYRTkod-nlORDNHIrGSa6UT1sl7KOlUOEyRI5dKn3dIP0al94Xubo-XvQ48Vaew4n8DnwrE3RCeGVqne4fBenJAgib2EDtE7-xj4rzSqsUrUjRrjE5m2D-YmPRrb_5AZ3PtPqvJaZXJPZMSjR189YPbX6Em3nU7Qwfa2EW9AHt7ytwqyvwHE-rf5 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene+inhibits+rice+root+elongation+in+compacted+soil+via+ABA-+and+auxin-mediated+mechanisms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Huang%2C+Guoqiang&rft.au=Kilic%2C+Azad&rft.au=Karady%2C+Michal&rft.au=Zhang%2C+Jiao&rft.date=2022-07-26&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=30&rft.spage=e2201072119&rft_id=info:doi/10.1073%2Fpnas.2201072119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |