Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expan...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 30; pp. 1 - 10
Main Authors Huang, Guoqiang, Kilic, Azad, Karady, Michal, Zhang, Jiao, Mehra, Poonam, Song, Xiaoyun, Sturrock, Craig J., Zhu, Wanwan, Qin, Hua, Hartman, Sjon, Schneider, Hannah M., Bhosale, Rahul, Dodd, Ian C., Sharp, Robert E., Huang, Rongfeng, Mooney, Sacha J., Liang, Wanqi, Bennett, Malcolm J., Zhang, Dabing, Pandey, Bipin K.
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 26.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
AbstractList Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8 . Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Intensive agriculture and changing tillage practices are causing soils to become increasingly compacted. Hard soils cause roots to accumulate the hormone ethylene, triggering reduced root elongation and increased radial swelling. We demonstrate that ethylene regulates these distinct root growth responses using different downstream signals, auxin, and abscisic acid (ABA). Auxin is primarily required to reduce cell elongation during a root compaction response, whereas ABA promotes radial cell expansion. Radial swelling was originally thought to aid root penetration in hard soil, yet rice ABA-deficient mutants disrupted in radial swelling of root tips penetrate compacted soil better than wild-type plants. The combined growth responses to auxin and ABA function to reduce the ability of roots to penetrate compacted soil. Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8 . Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Author Pandey, Bipin K.
Kilic, Azad
Sharp, Robert E.
Hartman, Sjon
Zhang, Jiao
Mehra, Poonam
Zhu, Wanwan
Sturrock, Craig J.
Huang, Rongfeng
Dodd, Ian C.
Liang, Wanqi
Song, Xiaoyun
Qin, Hua
Mooney, Sacha J.
Karady, Michal
Schneider, Hannah M.
Zhang, Dabing
Bennett, Malcolm J.
Huang, Guoqiang
Bhosale, Rahul
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Huang
  fullname: Huang, Guoqiang
– sequence: 2
  givenname: Azad
  surname: Kilic
  fullname: Kilic, Azad
– sequence: 3
  givenname: Michal
  surname: Karady
  fullname: Karady, Michal
– sequence: 4
  givenname: Jiao
  surname: Zhang
  fullname: Zhang, Jiao
– sequence: 5
  givenname: Poonam
  surname: Mehra
  fullname: Mehra, Poonam
– sequence: 6
  givenname: Xiaoyun
  surname: Song
  fullname: Song, Xiaoyun
– sequence: 7
  givenname: Craig J.
  surname: Sturrock
  fullname: Sturrock, Craig J.
– sequence: 8
  givenname: Wanwan
  surname: Zhu
  fullname: Zhu, Wanwan
– sequence: 9
  givenname: Hua
  surname: Qin
  fullname: Qin, Hua
– sequence: 10
  givenname: Sjon
  surname: Hartman
  fullname: Hartman, Sjon
– sequence: 11
  givenname: Hannah M.
  surname: Schneider
  fullname: Schneider, Hannah M.
– sequence: 12
  givenname: Rahul
  surname: Bhosale
  fullname: Bhosale, Rahul
– sequence: 13
  givenname: Ian C.
  surname: Dodd
  fullname: Dodd, Ian C.
– sequence: 14
  givenname: Robert E.
  surname: Sharp
  fullname: Sharp, Robert E.
– sequence: 15
  givenname: Rongfeng
  surname: Huang
  fullname: Huang, Rongfeng
– sequence: 16
  givenname: Sacha J.
  surname: Mooney
  fullname: Mooney, Sacha J.
– sequence: 17
  givenname: Wanqi
  surname: Liang
  fullname: Liang, Wanqi
– sequence: 18
  givenname: Malcolm J.
  surname: Bennett
  fullname: Bennett, Malcolm J.
– sequence: 19
  givenname: Dabing
  surname: Zhang
  fullname: Zhang, Dabing
– sequence: 20
  givenname: Bipin K.
  surname: Pandey
  fullname: Pandey, Bipin K.
BookMark eNp1kc1vFSEUxYmpsa_VtSsTEjdupr3AMAMbk2dTP5ImbnRNgGH6eJmBJzBN-9_L-KrGJm4gcH_nwL3nDJ2EGBxCrwlcEOjZ5SHofEEp1AMlRD5DGwKSNF0r4QRtAGjfiJa2p-gs5z0ASC7gBTplXPD1foPUddk9TC447MPOG18yTt46nGIs2E0x3OriY6hVbON80La4AefoJ3znNd5-2DZYhwHr5d6HZnaD1yswO7vTwec5v0TPRz1l9-pxP0ffP15_u_rc3Hz99OVqe9PYVnSlrhLA9IaJwfSDsCCt6ZwboTNSE25GQQwnrtOSk55qAC6GkQ6GcdMaEJSdo_dH38Ni6jesCyXpSR2Sn3V6UFF79W8l-J26jXdKMsYpEdXg3aNBij8Wl4uafbZumnRwccmKdpL2nEspK_r2CbqPSwq1vZXqmeyIXA35kbIp5pzcqKwvv4ZZ3_eTIqDWCNUaofobYdVdPtH9buL_ijdHxT6XmP7gtK-jgh7YT5nwqfY
CitedBy_id crossref_primary_10_1093_jxb_erad389
crossref_primary_10_1111_nph_19004
crossref_primary_10_1016_j_cj_2025_02_006
crossref_primary_10_1016_j_cub_2024_12_003
crossref_primary_10_1007_s00425_025_04624_1
crossref_primary_10_1016_j_still_2024_106400
crossref_primary_10_1111_mpp_70048
crossref_primary_10_1126_science_add3771
crossref_primary_10_1007_s00425_023_04294_x
crossref_primary_10_1016_j_agwat_2024_108688
crossref_primary_10_3390_plants13060774
crossref_primary_10_1007_s11104_023_06333_8
crossref_primary_10_1093_plphys_kiac586
crossref_primary_10_3390_ijms241512345
crossref_primary_10_3389_fpls_2024_1501533
crossref_primary_10_1007_s11104_023_06046_y
crossref_primary_10_1016_j_chemosphere_2024_142322
crossref_primary_10_1093_plcell_koae083
crossref_primary_10_3390_plants13070953
crossref_primary_10_1002_jsfa_13191
crossref_primary_10_1111_nph_18824
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1007_s00299_023_03132_4
crossref_primary_10_3390_su16135729
crossref_primary_10_1016_j_pbi_2023_102405
crossref_primary_10_1111_nph_18733
crossref_primary_10_1021_acs_jafc_4c04334
crossref_primary_10_1007_s11104_024_06490_4
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1093_jxb_eraf063
crossref_primary_10_1016_j_cub_2024_03_064
crossref_primary_10_1093_jmicro_dfad026
crossref_primary_10_1111_ppl_14625
crossref_primary_10_3390_ijms25031497
crossref_primary_10_1016_j_hpj_2022_11_011
crossref_primary_10_1111_pce_15462
crossref_primary_10_1021_acsabm_4c00416
crossref_primary_10_1186_s12284_023_00626_3
crossref_primary_10_1111_pce_14492
crossref_primary_10_1016_j_jplph_2024_154190
crossref_primary_10_1016_j_plantsci_2025_112461
crossref_primary_10_1017_S0014479725000018
crossref_primary_10_3390_grasses4010004
crossref_primary_10_1016_j_tplants_2024_01_003
crossref_primary_10_1093_plphys_kiae134
crossref_primary_10_1111_nph_18600
crossref_primary_10_3390_plants13243525
crossref_primary_10_1016_j_devcel_2024_01_028
crossref_primary_10_3390_plants12030606
crossref_primary_10_3390_plants13030432
crossref_primary_10_1038_s41467_023_40366_y
crossref_primary_10_1016_j_tplants_2024_10_014
crossref_primary_10_1007_s42729_023_01171_0
crossref_primary_10_1007_s11104_024_06573_2
crossref_primary_10_1007_s00425_023_04262_5
Cites_doi 10.1371/journal.pgen.1006955
10.1038/s41467-018-04710-x
10.1111/j.1365-3040.2006.01576.x
10.1111/j.1365-313X.2007.03094.x
10.1046/j.0016-8025.2001.00802.x
10.1104/pp.125.3.1248
10.21769/BioProtoc.4252
10.1016/j.phytochem.2014.05.015
10.3389/fpls.2017.01493
10.1080/02571862.2001.10634410
10.1105/tpc.15.00080
10.1111/j.1365-2389.2007.00956.x
10.1016/0167-1987(95)00475-8
10.1093/mp/sst087
10.1093/jxb/erz383
10.1007/s11103-007-9203-6
10.1105/tpc.107.052126
10.1111/nph.17180
10.4141/S04-055
10.3389/fpls.2018.00405
10.1371/journal.pgen.1004701
10.3390/ijms19113656
10.1105/tpc.107.052068
10.1007/s00425-021-03657-6
10.1016/j.still.2004.08.009
10.1111/j.1365-313X.2007.03272.x
10.1626/pps.3.316
10.1126/science.abf3013
10.1105/tpc.107.052100
10.1073/pnas.2012087118
10.1126/sciadv.abd4113
10.1023/A:1004484518652
10.1111/pce.12467
10.1093/jxb/47.4.539
10.1038/s41467-018-03850-4
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Jul 26, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Jul 26, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2201072119
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10
ExternalDocumentID PMC9335218
10_1073_pnas_2201072119
27172070
GrantInformation_xml – fundername: EC | European Research Council (ERC)
  grantid: 294729
– fundername: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/V00557X/1
– fundername: Czech Science Foundation
  grantid: 25948Y
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 3210165
– fundername: Royal Society (The Royal Society)
  grantid: CHG\R1\170040
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 2189
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 32130006
– fundername: European Molecular Biology Organization (EMBO)
  grantid: ALTF 1140-2019
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
2AX
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
ABBHK
AEUPB
AEXZC
C1K
DCCCD
FR3
H94
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
M7N
P64
RC3
SA0
7X8
5PM
ID FETCH-LOGICAL-c486t-c4900b7b38db7d8c09cb6eef06b9a15bf81b51e6a95172a0058df2db35b4b0823
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:32:04 EDT 2025
Tue Aug 05 11:08:36 EDT 2025
Sat Aug 23 13:08:22 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Tue Jul 01 01:03:20 EDT 2025
Thu May 29 08:48:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-c4900b7b38db7d8c09cb6eef06b9a15bf81b51e6a95172a0058df2db35b4b0823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Sean Cutler, University of California Riverside, Riverside, CA; received January 21, 2022; accepted May 27, 2022
Author contributions: M.J.B., D.Z., and B.K.P. designed research; G.H., A.K., M.K., J.Z., P.M., X.S., C.J.S., W.Z., H.Q., S.H., H.M.S., W.L., and B.K.P. performed research; G.H., R.B., I.C.D., R.E.S., R.H., S.J.M., W.L., M.J.B., D.Z., and B.K.P. analyzed data; and G.H., I.C.D., R.E.S., M.J.B., D.Z., and B.K.P. wrote the paper.
1G.H. and B.K.P. contributed equally to this work.
ORCID 0000-0002-5333-8502
0000-0001-9788-7290
0000-0002-6103-5704
0000-0002-6915-0424
0000-0002-9106-2156
0000-0002-3545-0090
0000-0002-6709-6436
0000-0001-8214-4419
0000-0001-6515-4922
0000-0003-0475-390X
0000-0002-9614-1347
0000-0003-2725-859X
0000-0002-9314-8113
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9335218
PMID 35858424
PQID 2697396198
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9335218
proquest_miscellaneous_2692755999
proquest_journals_2697396198
crossref_citationtrail_10_1073_pnas_2201072119
crossref_primary_10_1073_pnas_2201072119
jstor_primary_27172070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-26
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-26
  day: 26
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
Yang J. (e_1_3_4_27_2) 2017; 8
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_29_2
  doi: 10.1371/journal.pgen.1006955
– ident: e_1_3_4_28_2
  doi: 10.1038/s41467-018-04710-x
– ident: e_1_3_4_18_2
  doi: 10.1111/j.1365-3040.2006.01576.x
– ident: e_1_3_4_25_2
  doi: 10.1111/j.1365-313X.2007.03094.x
– ident: e_1_3_4_9_2
  doi: 10.1046/j.0016-8025.2001.00802.x
– ident: e_1_3_4_22_2
  doi: 10.1104/pp.125.3.1248
– ident: e_1_3_4_21_2
  doi: 10.21769/BioProtoc.4252
– ident: e_1_3_4_36_2
  doi: 10.1016/j.phytochem.2014.05.015
– ident: e_1_3_4_6_2
– ident: e_1_3_4_15_2
  doi: 10.3389/fpls.2017.01493
– ident: e_1_3_4_33_2
  doi: 10.1080/02571862.2001.10634410
– ident: e_1_3_4_20_2
  doi: 10.1105/tpc.15.00080
– ident: e_1_3_4_2_2
  doi: 10.1111/j.1365-2389.2007.00956.x
– ident: e_1_3_4_5_2
  doi: 10.1016/0167-1987(95)00475-8
– ident: e_1_3_4_19_2
  doi: 10.1093/mp/sst087
– ident: e_1_3_4_8_2
  doi: 10.1093/jxb/erz383
– ident: e_1_3_4_34_2
  doi: 10.1007/s11103-007-9203-6
– ident: e_1_3_4_11_2
  doi: 10.1105/tpc.107.052126
– ident: e_1_3_4_14_2
  doi: 10.1111/nph.17180
– ident: e_1_3_4_32_2
  doi: 10.4141/S04-055
– ident: e_1_3_4_23_2
  doi: 10.3389/fpls.2018.00405
– ident: e_1_3_4_24_2
  doi: 10.1371/journal.pgen.1004701
– ident: e_1_3_4_12_2
  doi: 10.3390/ijms19113656
– ident: e_1_3_4_26_2
  doi: 10.1105/tpc.107.052068
– ident: e_1_3_4_35_2
  doi: 10.1007/s00425-021-03657-6
– ident: e_1_3_4_1_2
  doi: 10.1016/j.still.2004.08.009
– ident: e_1_3_4_37_2
  doi: 10.1111/j.1365-313X.2007.03272.x
– ident: e_1_3_4_4_2
  doi: 10.1626/pps.3.316
– ident: e_1_3_4_10_2
  doi: 10.1126/science.abf3013
– ident: e_1_3_4_13_2
  doi: 10.1105/tpc.107.052100
– ident: e_1_3_4_7_2
  doi: 10.1073/pnas.2012087118
– ident: e_1_3_4_16_2
  doi: 10.1126/sciadv.abd4113
– ident: e_1_3_4_3_2
  doi: 10.1023/A:1004484518652
– ident: e_1_3_4_30_2
  doi: 10.1111/pce.12467
– ident: e_1_3_4_17_2
  doi: 10.1093/jxb/47.4.539
– volume: 8
  start-page: 256
  year: 2017
  ident: e_1_3_4_27_2
  article-title: Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers
  publication-title: Front. Plant Sci.
– ident: e_1_3_4_31_2
  doi: 10.1038/s41467-018-03850-4
SSID ssj0009580
Score 2.6159134
Snippet Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as...
Intensive agriculture and changing tillage practices are causing soils to become increasingly compacted. Hard soils cause roots to accumulate the hormone...
SourceID pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abscisic acid
Auxins
Biological Sciences
Biosynthesis
Compacted soils
Crop yield
Elongation
Ethylene
Mutants
Rice
Roots
Soil compaction
Tips
Weeds
Title Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms
URI https://www.jstor.org/stable/27172070
https://www.proquest.com/docview/2697396198
https://www.proquest.com/docview/2692755999
https://pubmed.ncbi.nlm.nih.gov/PMC9335218
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBGzBRGMhIHIailObTzrGgjmoaZYdW6i2yE2eL1CWwNhPaiT-dZ8d2GlSkwcWqHMeN_H5-fs_vC6H3MQflPwyIKzjJ3bAIcpcKaHgYjoVXRJRzadH9Oo9ny_B8Fa0Gg187XkvNlo-y-71xJf9DVegDusoo2X-grJ0UOuA30BdaoDC0D6LxFFYZTg2Z9-O65MoEAPveAWF464h1XV0x48qoXM0zKV1u6nLt3JXMmXyauG2q1uZnWbkqhEQOuBEyGLjc6DTmWnC9tAfdxrgVzM094qSLStGsYuO4zuW8q3E8a_S19Jem_gGAvNox_ZeqxvrknuW2k92ylvcrp37rA2Ivt89LVu9eV_jKtbWNidccFgQUNw7bGqEjsafPsGXNSlv8aeNNy2WFL234UndN9p4CwLZk6eKKbUb9kf182_Nv6dny4iJdTFeLR-ixD4pGYO57bNpm2uaz0B9okkOR4OMf0_fkmta1tae09F1ud2SYxSF6qpUPPGmRdIQGonqGjgzN8KnOQf7hOUoNtLCBFpbQwhJauIMWPMUWWlhCCwO0sIQWBmjhPrRwB60XaHk2XXyeuboWh5uFNN5Cm4zHnPCA5rCpaTZOMh4LUYxjnjAv4gWoP5EnYgYSO_GZrFaZF37Og4iHXFpzj9FBVVfiJcIRDPKiHGRLmgBzSHgUFYRTkod-nlORDNHIrGSa6UT1sl7KOlUOEyRI5dKn3dIP0al94Xubo-XvQ48Vaew4n8DnwrE3RCeGVqne4fBenJAgib2EDtE7-xj4rzSqsUrUjRrjE5m2D-YmPRrb_5AZ3PtPqvJaZXJPZMSjR189YPbX6Em3nU7Qwfa2EW9AHt7ytwqyvwHE-rf5
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene+inhibits+rice+root+elongation+in+compacted+soil+via+ABA-+and+auxin-mediated+mechanisms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Huang%2C+Guoqiang&rft.au=Kilic%2C+Azad&rft.au=Karady%2C+Michal&rft.au=Zhang%2C+Jiao&rft.date=2022-07-26&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=30&rft.spage=e2201072119&rft_id=info:doi/10.1073%2Fpnas.2201072119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon