Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients

•We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal thre...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 84; no. NA; pp. 174 - 183
Main Authors Chou, Chih-Hong, Wang, Tong, Sun, Xiaopei, Niu, Chuanxin M., Hao, Manzhao, Xie, Qing, Lan, Ning
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2020.09.001

Cover

Loading…
Abstract •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal threshold of triggering can defined for each patient for specific tasks. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.
AbstractList •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal threshold of triggering can defined for each patient for specific tasks. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.
This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.BACKGROUNDThis paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.METHODSIn the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.RESULTSSynchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.CONCLUSIONSEvidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.
Background. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. Methods. In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. Results. Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. Conclusions. Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.
Author Chou, Chih-Hong
Hao, Manzhao
Sun, Xiaopei
Xie, Qing
Lan, Ning
Wang, Tong
Niu, Chuanxin M.
Author_xml – sequence: 1
  givenname: Chih-Hong
  surname: Chou
  fullname: Chou, Chih-Hong
  organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China
– sequence: 2
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China
– sequence: 3
  givenname: Xiaopei
  surname: Sun
  fullname: Sun, Xiaopei
  organization: Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Chuanxin M.
  surname: Niu
  fullname: Niu, Chuanxin M.
  organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China
– sequence: 5
  givenname: Manzhao
  surname: Hao
  fullname: Hao, Manzhao
  organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China
– sequence: 6
  givenname: Qing
  surname: Xie
  fullname: Xie, Qing
  email: ruijin_xq@163.com
  organization: Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
– sequence: 7
  givenname: Ning
  surname: Lan
  fullname: Lan, Ning
  email: ninglan@sjtu.edu.cn, ninglan@usc.edu
  organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China
BookMark eNqNkcFq3TAQRUVJoUnab6iW3dgdWbJsL0p5hKYNBLpp18KWxqlebMmV5ID_PnJfySKrt9KA5h6Ye67IhfMOCfnIoGTA5OdjOaNB97D82coKKiihKwHYG3LJ2oYXAjhc5JnXUIia83fkKsYjAAgh-SWJhzX5uU9o6Lg6nax3_URxQp2C1XmMyc7r1O8fNIXeOuseaNxiwpmOPtB1WTAUk52HFwANqP0Tho1aRxcfU0zBPyJdMgVdiu_J27GfIn74_16T37ffft38KO5_fr-7OdwXWrQyFYPuZSdq07GRV4KboR2QNW0tGVStYVLnY_UAoxlGMKBlV0FdN4J1Q89Amo5fk08n7hL83xVjUrONGqepd-jXqCohGiG7TDxnVUopmm6nNqdVHXyMAUe1BDv3YVMM1G5EHdWLEbUbUdCpbCQnv7xKapv-NbsXO52RP5zymEt7shhU1LlQjcbmxpMy3p7B-PqKoafsNJt-xO0swjNwMsgk
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3290293
crossref_primary_10_1109_TNSRE_2023_3313617
crossref_primary_10_3389_fneur_2023_1272992
crossref_primary_10_1016_j_engappai_2023_106167
crossref_primary_10_1080_10749357_2024_2409595
crossref_primary_10_3390_s22041443
crossref_primary_10_3389_fnbot_2023_1168322
crossref_primary_10_3390_biomimetics6040063
crossref_primary_10_1016_j_heliyon_2023_e16202
crossref_primary_10_1177_09544119221095341
Cites_doi 10.1272/jnms.82.4
10.1186/1743-0003-11-64
10.1007/s00521-016-2234-7
10.1038/s41467-018-04673-z
10.1177/1545968307303401
10.3389/fneur.2017.00337
10.1109/TNSRE.2013.2293673
10.1016/j.medengphy.2016.01.004
10.3389/fnhum.2015.00168
10.1146/annurev.bioeng.6.040803.140103
10.1523/JNEUROSCI.0830-06.2006
10.1109/RBME.2018.2874132
10.3389/fneur.2017.00447
10.1016/S0140-6736(11)60325-5
10.1007/BF02349979
10.1007/s11517-011-0797-0
10.1016/j.jns.2004.05.005
10.1097/NPT.0b013e3181c1fc0b
10.3389/fneur.2017.00120
10.1186/1743-0003-4-3
10.1109/TNSRE.2019.2891004
10.1186/s12984-017-0231-4
10.1310/tsr1402-52
10.1310/sci1701-16
10.1002/ana.24390
10.1310/tsr1506-521
10.1186/1743-0003-11-51
10.3389/fbioe.2015.00203
10.1162/0899766041336431
10.1186/1743-0003-10-60
10.1179/016164103771953853
10.1109/TNSRE.2015.2408453
10.1016/j.cmpb.2013.09.006
10.3389/fnhum.2014.01075
10.3109/17483107.2013.873491
10.1682/JRRD.2014.10.0227
10.3389/fnhum.2016.00442
10.3389/fnins.2016.00425
10.1016/j.jbiomech.2015.08.016
10.1109/86.340877
10.2340/16501977-1785
10.1007/BF02513367
10.1038/nn.3616
10.1177/1545968306297871
10.1186/1743-0003-9-54
10.1682/JRRD.2008.03.0037
10.1016/j.apmr.2006.04.010
10.1177/0269215507083368
10.1016/j.conengprac.2008.08.003
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.medengphy.2020.09.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 183
ExternalDocumentID 10_1016_j_medengphy_2020_09_001
S135045332030134X
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAXKI
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c486t-bca6945d91f3243db8be178561028d16c020cb0fdbf0d0c6920557419ba106d93
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Fri Jul 11 02:12:53 EDT 2025
Tue Aug 05 11:01:32 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Tue Jul 01 04:24:56 EDT 2025
Fri Feb 23 02:45:03 EST 2024
Tue Aug 26 16:31:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords Hemiparesis
Muscle synergy
Stroke rehabilitation
Accelerometry
Functional electrical stimulation (FES)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-bca6945d91f3243db8be178561028d16c020cb0fdbf0d0c6920557419ba106d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S135045332030134X
PQID 2446664799
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2447469856
proquest_miscellaneous_2446664799
crossref_primary_10_1016_j_medengphy_2020_09_001
crossref_citationtrail_10_1016_j_medengphy_2020_09_001
elsevier_sciencedirect_doi_10_1016_j_medengphy_2020_09_001
elsevier_clinicalkey_doi_10_1016_j_medengphy_2020_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Medical engineering & physics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peckham, Knutson (bib0008) 2005; 7
Meilink, Hemmen, Seelen, Kwakkel (bib0047) 2008; 22
Goršič, Cikajlo, Novak (bib0055) 2017; 14
Adkins-Muir, Jones (bib0010) 2003; 25
Micera, Sabatini, Dario (bib0019) 1999; 37
Alibeji, Kirsch, Sharma (bib0028) 2015; 3
Lalitharatne, Teramoto, Hayashi, Kiguchi (bib0048) 2013; 4
Wang, Bao, Hao, Zhang, Li, Xie (bib0026) 2018; 2018
Jagodnik, Blana, van den Bogert, Kirsch (bib0020) 2015; 48
Biasiucci, Leeb, Iturrate, Perdikis, Al-Khodairy, Corbet (bib0011) 2018; 9
Hara (bib0009) 2015; 82
Jacobs, Timmermans, Michielsen, Vander Plaetse, Markopoulos (bib0061) 2013
Betker, Szturm, Moussavi, Nett (bib0062) 2006; 87
Tong, Mak, Ip (bib0021) 2003; 41
Sucar, Orihuela-Espina, Velazquez, Reinkensmeyer, Leder, Hernández-Franco (bib0051) 2014; 22
Wheeler, Peckham (bib0016) 2009; 46
Novak, Nagle, Keller, Riener (bib0052) 2014; 11
Johnson, Feng, Johnson, Ramachandran, Winters, Kosasih (bib0040) 2006; 2006
Niu, Bao, Zhuang, Li, Wang, Cui (bib0025) 2019; 27
Mukaino, Ono, Shindo, Fujiwara, Ota, Kimura (bib0012) 2014; 46
Alimanova, Borambayeva, Kozhamzharova, Kurmangaiyeva, Ospanova, Tyulepberdinova (bib0054) 2017
Aman, Elangovan, Yeh, Konczak (bib0041) 2015; 8
Arvaneh, Guan, Ang, Ward, Chua, Kuah (bib0042) 2017; 28
Buick, Kowalczewski, Carson, Prochazka (bib0014) 2016; 24
Zhuang, Marquez, Qu, He, Lan (bib0023) 2015
Loureiro, Harwin, Nagai, Johnson (bib0013) 2011; 49
Safavynia, Torres-Oviedo, Ting (bib0004) 2011; 17
Daly, Cheng, Rogers, Litinas, Hrovat, Dohring (bib0038) 2009; 33
Alon, Levitt, McCarthy (bib0007) 2007; 21
Lan, Hua-Quan, Crago (bib0018) 1994; 2
Wang, Chou, Bao, Hao, Gu, Niu (bib0029) 2020
Niu, Zhuang, Bao, Li, Lan, Xie (bib0030) 2017
Wu, Miyamoto, Castro, Ölveczky, Smith (bib0035) 2014; 17
Looned, Webb, Xiao, Menon (bib0037) 2014; 11
Hatem, Saussez, della Faille, Prist, Zhang, Dispa (bib0005) 2016; 10
Li (bib0006) 2017; 8
Ferrante, Chia Bejarano, Ambrosini, Nardone, Turcato, Monticone (bib0027) 2016; 10
Colombo, Pisano, Mazzone, Delconte, Micera, Carrozza (bib0039) 2007; 4
Kutlu, Freeman, Hallewell, Hughes, Laila (bib0017) 2016; 38
Cheung, Niu, Li, Xie, Lan (bib0024) 2019; 12
Doyle, Kelly, Patterson, Caulfield (bib0059) 2011
Jovičić, Saranovac, Popović (bib0015) 2012; 9
Bolton, Cauraugh, Hausenblas (bib0046) 2004; 223
Sanger (bib0034) 2004; 16
Cho, Ku, Cho, Kim, Kang, Jang (bib0057) 2014; 113
(bib0002) 2014
Henderson, Korner-Bitensky, Levin (bib0056) 2007; 14
Giggins, Persson, Caulfield (bib0060) 2013; 10
Rong, Tong, Hu, Ho (bib0045) 2015; 10
Patton, Small, Zev Rymer (bib0050) 2008; 15
Borghese, Mainetti, Pirovano, Lanzi (bib0058) 2013
Ferreira, Guimarães, Santos, Sousa (bib0053) 2014
d'Avella, Portone, Fernandez, Lacquaniti (bib0032) 2006; 26
Freeman, Hughes, Burridge, Chappell, Lewin, Rogers (bib0022) 2009; 17
Elnady, Zhang, Xiao, Yong, Randhawa, Boyd (bib0036) 2015; 9
Qian, Hu, Lai, Ng, Zheng, Poon (bib0044) 2017; 8
Colombo, Pisano, Micera, Mazzone, Delconte, Carrozza (bib0003) 2008; 22
Li, Zhuang, Niu, Bao, Xie, Lan (bib0033) 2017; 8
Qu, Xie, Liu, He, Hao, Bao (bib0031) 2016; 52
Pichiorri, Morone, Petti, Toppi, Pisotta, Molinari (bib0043) 2015; 77
Flores, Tobon, Cavallaro, Cavallaro, Perry, Keller (bib0049) 2008
Langhorne, Bernhardt, Kwakkel (bib0001) 2011; 377
Ferrante (10.1016/j.medengphy.2020.09.001_bib0027) 2016; 10
Giggins (10.1016/j.medengphy.2020.09.001_bib0060) 2013; 10
Bolton (10.1016/j.medengphy.2020.09.001_bib0046) 2004; 223
(10.1016/j.medengphy.2020.09.001_bib0002) 2014
d'Avella (10.1016/j.medengphy.2020.09.001_bib0032) 2006; 26
Flores (10.1016/j.medengphy.2020.09.001_bib0049) 2008
Colombo (10.1016/j.medengphy.2020.09.001_bib0039) 2007; 4
Biasiucci (10.1016/j.medengphy.2020.09.001_bib0011) 2018; 9
Hara (10.1016/j.medengphy.2020.09.001_bib0009) 2015; 82
Mukaino (10.1016/j.medengphy.2020.09.001_bib0012) 2014; 46
Wheeler (10.1016/j.medengphy.2020.09.001_bib0016) 2009; 46
Li (10.1016/j.medengphy.2020.09.001_bib0006) 2017; 8
Kutlu (10.1016/j.medengphy.2020.09.001_bib0017) 2016; 38
Niu (10.1016/j.medengphy.2020.09.001_bib0025) 2019; 27
Elnady (10.1016/j.medengphy.2020.09.001_bib0036) 2015; 9
Hatem (10.1016/j.medengphy.2020.09.001_bib0005) 2016; 10
Peckham (10.1016/j.medengphy.2020.09.001_bib0008) 2005; 7
Adkins-Muir (10.1016/j.medengphy.2020.09.001_bib0010) 2003; 25
Tong (10.1016/j.medengphy.2020.09.001_bib0021) 2003; 41
Wu (10.1016/j.medengphy.2020.09.001_bib0035) 2014; 17
Novak (10.1016/j.medengphy.2020.09.001_bib0052) 2014; 11
Betker (10.1016/j.medengphy.2020.09.001_bib0062) 2006; 87
Henderson (10.1016/j.medengphy.2020.09.001_bib0056) 2007; 14
Aman (10.1016/j.medengphy.2020.09.001_bib0041) 2015; 8
Johnson (10.1016/j.medengphy.2020.09.001_bib0040) 2006; 2006
Borghese (10.1016/j.medengphy.2020.09.001_bib0058) 2013
Doyle (10.1016/j.medengphy.2020.09.001_bib0059) 2011
Cho (10.1016/j.medengphy.2020.09.001_bib0057) 2014; 113
Safavynia (10.1016/j.medengphy.2020.09.001_bib0004) 2011; 17
Wang (10.1016/j.medengphy.2020.09.001_bib0029) 2020
Niu (10.1016/j.medengphy.2020.09.001_bib0030) 2017
Ferreira (10.1016/j.medengphy.2020.09.001_bib0053) 2014
Langhorne (10.1016/j.medengphy.2020.09.001_bib0001) 2011; 377
Jacobs (10.1016/j.medengphy.2020.09.001_bib0061) 2013
Jovičić (10.1016/j.medengphy.2020.09.001_bib0015) 2012; 9
Li (10.1016/j.medengphy.2020.09.001_bib0033) 2017; 8
Rong (10.1016/j.medengphy.2020.09.001_bib0045) 2015; 10
Lalitharatne (10.1016/j.medengphy.2020.09.001_bib0048) 2013; 4
Sucar (10.1016/j.medengphy.2020.09.001_bib0051) 2014; 22
Qu (10.1016/j.medengphy.2020.09.001_bib0031) 2016; 52
Pichiorri (10.1016/j.medengphy.2020.09.001_bib0043) 2015; 77
Micera (10.1016/j.medengphy.2020.09.001_bib0019) 1999; 37
Arvaneh (10.1016/j.medengphy.2020.09.001_bib0042) 2017; 28
Buick (10.1016/j.medengphy.2020.09.001_bib0014) 2016; 24
Cheung (10.1016/j.medengphy.2020.09.001_bib0024) 2019; 12
Freeman (10.1016/j.medengphy.2020.09.001_bib0022) 2009; 17
Zhuang (10.1016/j.medengphy.2020.09.001_bib0023) 2015
Loureiro (10.1016/j.medengphy.2020.09.001_bib0013) 2011; 49
Qian (10.1016/j.medengphy.2020.09.001_bib0044) 2017; 8
Wang (10.1016/j.medengphy.2020.09.001_bib0026) 2018; 2018
Alimanova (10.1016/j.medengphy.2020.09.001_bib0054) 2017
Goršič (10.1016/j.medengphy.2020.09.001_bib0055) 2017; 14
Jagodnik (10.1016/j.medengphy.2020.09.001_bib0020) 2015; 48
Alibeji (10.1016/j.medengphy.2020.09.001_bib0028) 2015; 3
Patton (10.1016/j.medengphy.2020.09.001_bib0050) 2008; 15
Looned (10.1016/j.medengphy.2020.09.001_bib0037) 2014; 11
Meilink (10.1016/j.medengphy.2020.09.001_bib0047) 2008; 22
Lan (10.1016/j.medengphy.2020.09.001_bib0018) 1994; 2
Alon (10.1016/j.medengphy.2020.09.001_bib0007) 2007; 21
Colombo (10.1016/j.medengphy.2020.09.001_bib0003) 2008; 22
Sanger (10.1016/j.medengphy.2020.09.001_bib0034) 2004; 16
Daly (10.1016/j.medengphy.2020.09.001_bib0038) 2009; 33
References_xml – start-page: 282
  year: 2014
  end-page: 285
  ident: bib0053
  article-title: Gamification of stroke rehabilitation exercises using a smartphone
  publication-title: Proceedings of the Eighth international conference on pervasive computing technologies for healthcare, ICST
– volume: 17
  start-page: 368
  year: 2009
  end-page: 381
  ident: bib0022
  article-title: Iterative learning control of FES applied to the upper extremity for rehabilitation
  publication-title: Control Eng Pract
– volume: 2
  start-page: 213
  year: 1994
  end-page: 224
  ident: bib0018
  article-title: Neural network generation of muscle stimulation patterns for control of arm movements
  publication-title: IEEE Trans Rehabil Eng
– volume: 9
  start-page: 54
  year: 2012
  ident: bib0015
  article-title: Wireless distributed functional electrical stimulation system
  publication-title: J Neuroengineering Rehabil
– volume: 12
  start-page: 154
  year: 2019
  end-page: 167
  ident: bib0024
  article-title: A novel FES strategy for poststroke rehabilitation based on the natural organization of neuromuscular control
  publication-title: IEEE Rev Biomed Eng
– volume: 9
  start-page: 168
  year: 2015
  ident: bib0036
  article-title: A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform
  publication-title: Front Hum Neurosci
– volume: 8
  start-page: 337
  year: 2017
  ident: bib0033
  article-title: Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke
  publication-title: Front Neurol
– volume: 48
  start-page: 3692
  year: 2015
  end-page: 3700
  ident: bib0020
  article-title: An optimized proportional-derivative controller for the human upper extremity with gravity
  publication-title: J Biomech
– volume: 49
  start-page: 1103
  year: 2011
  ident: bib0013
  article-title: Advances in upper limb stroke rehabilitation: a technology push
  publication-title: Med Biol Eng Comput
– year: 2017
  ident: bib0030
  article-title: Synergy-based NMES Intervention Accelerated Rehabilitation of Post-stroke Hemiparesis
– volume: 7
  start-page: 327
  year: 2005
  end-page: 360
  ident: bib0008
  article-title: Functional electrical stimulation for neuromuscular applications
  publication-title: Ann Rev Biomed Eng
– volume: 21
  start-page: 207
  year: 2007
  end-page: 215
  ident: bib0007
  article-title: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study
  publication-title: Neurorehabil Neural Repair
– start-page: 816
  year: 2015
  end-page: 819
  ident: bib0023
  article-title: A neuromuscular electrical stimulation strategy based on muscle synergy for stroke rehabilitation
– volume: 9
  start-page: 2421
  year: 2018
  ident: bib0011
  article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke
  publication-title: Nat Commun
– volume: 4
  start-page: 3
  year: 2007
  ident: bib0039
  article-title: Design strategies to improve patient motivation during robot-aided rehabilitation
  publication-title: J NeuroEngineering Rehabil
– start-page: 415
  year: 2013
  ident: bib0061
  article-title: CONTRAST: gamification of arm-hand training for stroke survivors
  publication-title: Proceedings of the extended abstracts on human factors in computing systems - CHI EA 13
– volume: 52
  start-page: 263
  year: 2016
  end-page: 278
  ident: bib0031
  article-title: Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation
  publication-title: J Rehabil Res Dev
– volume: 22
  start-page: 291
  year: 2008
  end-page: 305
  ident: bib0047
  article-title: Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature
  publication-title: Clin Rehabil
– volume: 27
  start-page: 256
  year: 2019
  end-page: 264
  ident: bib0025
  article-title: Synergy-based FES for post-stroke rehabilitation of upper-limb motor functions
  publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc
– volume: 28
  start-page: 3259
  year: 2017
  end-page: 3272
  ident: bib0042
  article-title: Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement
  publication-title: Neural Comput Appl
– volume: 22
  start-page: 634
  year: 2014
  end-page: 643
  ident: bib0051
  article-title: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 8
  year: 2017
  ident: bib0006
  article-title: Spasticity, motor recovery, and neural plasticity after stroke
  publication-title: Front Neurol
– volume: 41
  start-page: 710
  year: 2003
  end-page: 717
  ident: bib0021
  article-title: Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes
  publication-title: Med Biol Eng Comput
– volume: 11
  start-page: 51
  year: 2014
  ident: bib0037
  article-title: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation
  publication-title: J Neuroeng Rehabil
– year: 2020
  ident: bib0029
  article-title: Correlation of muscle activation changes with functional improvement after FES intervention in patients post stroke
  publication-title: Proceedings of the 14th ISPRM World Congress
– year: 2014
  ident: bib0002
  publication-title: Stroke recovery and rehabilitation
– volume: 2018
  start-page: 3541
  year: 2018
  end-page: 3544
  ident: bib0026
  article-title: Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions
  publication-title: Proceedings of the annual international conference on IEEE engineering in medicine and biology society
– start-page: 1
  year: 2011
  end-page: 5
  ident: bib0059
  article-title: The effects of visual feedback in therapeutic exergaming on motor task accuracy
  publication-title: Proceedings of the international conference on virtual rehabilitation
– volume: 10
  start-page: 425
  year: 2016
  ident: bib0027
  article-title: A Personalized Multi-Channel FES controller based on muscle synergies to support gait rehabilitation after stroke
  publication-title: Front Neurosci
– volume: 2006
  start-page: 254
  year: 2006
  end-page: 259
  ident: bib0040
  article-title: Robotic systems that rehabilitate as well as motivate: three strategies for motivating impaired arm use
  publication-title: Proceedings of the First IEEERAS-EMBS international conference for biomedical robotics and biomechatronics 2006 BioRob
– volume: 14
  start-page: 23
  year: 2017
  ident: bib0055
  article-title: Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity
  publication-title: J NeuroEng Rehabil
– volume: 4
  year: 2013
  ident: bib0048
  article-title: Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: current status, challenges and future directions
  publication-title: Paladyn J Behav Robot
– volume: 10
  start-page: 149
  year: 2015
  end-page: 159
  ident: bib0045
  article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke
  publication-title: Disabil Rehabil Assist Technol
– volume: 25
  start-page: 780
  year: 2003
  end-page: 788
  ident: bib0010
  article-title: Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats
  publication-title: Neurol Res
– volume: 46
  start-page: 243
  year: 2009
  end-page: 256
  ident: bib0016
  article-title: Wireless wearable controller for upper-limb neuroprosthesis
  publication-title: J Rehabil Res Dev
– volume: 3
  start-page: 203
  year: 2015
  ident: bib0028
  article-title: A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis
  publication-title: Front Bioeng Biotechnol
– start-page: 336
  year: 2017
  end-page: 339
  ident: bib0054
  article-title: Gamification of hand rehabilitation process using virtual reality tools: using leap motion for hand rehabilitation
  publication-title: Proceedings of the First IEEE international conference on robotic computing, IRC
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib0058
  article-title: An intelligent game engine for the at-home rehabilitation of stroke patients
  publication-title: Proceedings of the IEEE second international conference on serious games and applications for health (SeGAH)
– volume: 8
  year: 2015
  ident: bib0041
  article-title: The effectiveness of proprioceptive training for improving motor function: a systematic review
  publication-title: Front Hum Neurosci
– volume: 38
  start-page: 366
  year: 2016
  end-page: 379
  ident: bib0017
  article-title: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations
  publication-title: Med Eng Phys
– volume: 8
  year: 2017
  ident: bib0044
  article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm
  publication-title: Front Neurol
– volume: 17
  start-page: 16
  year: 2011
  end-page: 24
  ident: bib0004
  article-title: Muscle synergies: implications for clinical evaluation and rehabilitation of movement
  publication-title: Top Spinal Cord Inj Rehabil
– volume: 113
  start-page: 258
  year: 2014
  end-page: 265
  ident: bib0057
  article-title: Development of virtual reality proprioceptive rehabilitation system for stroke patients
  publication-title: Comput Methods Programs Biomed
– volume: 377
  start-page: 1693
  year: 2011
  end-page: 1702
  ident: bib0001
  article-title: Stroke rehabilitation
  publication-title: The Lancet
– volume: 77
  start-page: 851
  year: 2015
  end-page: 865
  ident: bib0043
  article-title: Brain-computer interface boosts motor imagery practice during stroke recovery
  publication-title: Ann Neurol
– volume: 22
  start-page: 50
  year: 2008
  end-page: 63
  ident: bib0003
  article-title: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb
  publication-title: Neurorehabil Neural Repair
– volume: 82
  start-page: 4
  year: 2015
  end-page: 13
  ident: bib0009
  article-title: Brain plasticity and rehabilitation in stroke patients
  publication-title: J Nippon Med Sch Nippon Ika Daigaku Zasshi
– volume: 26
  start-page: 7791
  year: 2006
  end-page: 7810
  ident: bib0032
  article-title: Control of fast-reaching movements by muscle synergy combinations
  publication-title: J Neurosci
– volume: 223
  start-page: 121
  year: 2004
  end-page: 127
  ident: bib0046
  article-title: Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis
  publication-title: J Neurol Sci
– volume: 46
  start-page: 378
  year: 2014
  end-page: 382
  ident: bib0012
  article-title: Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke
  publication-title: J Rehabil Med
– volume: 11
  start-page: 64
  year: 2014
  ident: bib0052
  article-title: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay
  publication-title: J NeuroEng Rehabil
– volume: 87
  start-page: 1141
  year: 2006
  end-page: 1149
  ident: bib0062
  article-title: Video game–based exercises for balance rehabilitation: a single-subject design
  publication-title: Arch Phys Med Rehabil
– start-page: 381
  year: 2008
  end-page: 384
  ident: bib0049
  article-title: Improving patient motivation in game development for motor deficit rehabilitation
  publication-title: Proceedings of the 2008 international conference on advances in computer entertainment technology
– volume: 16
  start-page: 1873
  year: 2004
  end-page: 1886
  ident: bib0034
  article-title: Failure of motor learning for large initial errors
  publication-title: Neural Comput
– volume: 10
  start-page: 60
  year: 2013
  ident: bib0060
  article-title: Biofeedback in rehabilitation
  publication-title: J NeuroEng Rehabil
– volume: 15
  start-page: 521
  year: 2008
  end-page: 541
  ident: bib0050
  article-title: Functional restoration for the stroke survivor: informing the efforts of engineers
  publication-title: Top Stroke Rehabil
– volume: 14
  start-page: 52
  year: 2007
  end-page: 61
  ident: bib0056
  article-title: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery
  publication-title: Top Stroke Rehabil
– volume: 10
  year: 2016
  ident: bib0005
  article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery
  publication-title: Front Hum Neurosci
– volume: 37
  start-page: 680
  year: 1999
  end-page: 685
  ident: bib0019
  article-title: Adaptive fuzzy control of electrically stimulated muscles for arm movements
  publication-title: Med Biol Eng Comput
– volume: 24
  start-page: 79
  year: 2016
  end-page: 87
  ident: bib0014
  article-title: Tele-supervised FES-assisted exercise for hemiplegic upper limb
  publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc
– volume: 17
  start-page: 312
  year: 2014
  end-page: 321
  ident: bib0035
  article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
  publication-title: Nat Neurosci
– volume: 33
  start-page: 203
  year: 2009
  end-page: 211
  ident: bib0038
  article-title: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke
  publication-title: J Neurol Phys Ther JNPT
– start-page: 415
  year: 2013
  ident: 10.1016/j.medengphy.2020.09.001_bib0061
  article-title: CONTRAST: gamification of arm-hand training for stroke survivors
– start-page: 1
  year: 2013
  ident: 10.1016/j.medengphy.2020.09.001_bib0058
  article-title: An intelligent game engine for the at-home rehabilitation of stroke patients
– volume: 82
  start-page: 4
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0009
  article-title: Brain plasticity and rehabilitation in stroke patients
  publication-title: J Nippon Med Sch Nippon Ika Daigaku Zasshi
  doi: 10.1272/jnms.82.4
– start-page: 816
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0023
– volume: 11
  start-page: 64
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0052
  article-title: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/1743-0003-11-64
– volume: 28
  start-page: 3259
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0042
  article-title: Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2234-7
– volume: 9
  start-page: 2421
  year: 2018
  ident: 10.1016/j.medengphy.2020.09.001_bib0011
  article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04673-z
– volume: 22
  start-page: 50
  year: 2008
  ident: 10.1016/j.medengphy.2020.09.001_bib0003
  article-title: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968307303401
– volume: 8
  start-page: 337
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0033
  article-title: Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00337
– volume: 22
  start-page: 634
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0051
  article-title: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2293673
– volume: 38
  start-page: 366
  year: 2016
  ident: 10.1016/j.medengphy.2020.09.001_bib0017
  article-title: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2016.01.004
– year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0002
– volume: 9
  start-page: 168
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0036
  article-title: A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00168
– volume: 7
  start-page: 327
  year: 2005
  ident: 10.1016/j.medengphy.2020.09.001_bib0008
  article-title: Functional electrical stimulation for neuromuscular applications
  publication-title: Ann Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.6.040803.140103
– volume: 26
  start-page: 7791
  year: 2006
  ident: 10.1016/j.medengphy.2020.09.001_bib0032
  article-title: Control of fast-reaching movements by muscle synergy combinations
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0830-06.2006
– volume: 12
  start-page: 154
  year: 2019
  ident: 10.1016/j.medengphy.2020.09.001_bib0024
  article-title: A novel FES strategy for poststroke rehabilitation based on the natural organization of neuromuscular control
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2018.2874132
– volume: 8
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0044
  article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00447
– volume: 377
  start-page: 1693
  year: 2011
  ident: 10.1016/j.medengphy.2020.09.001_bib0001
  article-title: Stroke rehabilitation
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(11)60325-5
– volume: 2006
  start-page: 254
  year: 2006
  ident: 10.1016/j.medengphy.2020.09.001_bib0040
  article-title: Robotic systems that rehabilitate as well as motivate: three strategies for motivating impaired arm use
– volume: 41
  start-page: 710
  year: 2003
  ident: 10.1016/j.medengphy.2020.09.001_bib0021
  article-title: Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02349979
– volume: 49
  start-page: 1103
  year: 2011
  ident: 10.1016/j.medengphy.2020.09.001_bib0013
  article-title: Advances in upper limb stroke rehabilitation: a technology push
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0797-0
– volume: 223
  start-page: 121
  year: 2004
  ident: 10.1016/j.medengphy.2020.09.001_bib0046
  article-title: Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2004.05.005
– volume: 33
  start-page: 203
  year: 2009
  ident: 10.1016/j.medengphy.2020.09.001_bib0038
  article-title: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke
  publication-title: J Neurol Phys Ther JNPT
  doi: 10.1097/NPT.0b013e3181c1fc0b
– volume: 8
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0006
  article-title: Spasticity, motor recovery, and neural plasticity after stroke
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00120
– volume: 2018
  start-page: 3541
  year: 2018
  ident: 10.1016/j.medengphy.2020.09.001_bib0026
  article-title: Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions
– volume: 4
  start-page: 3
  year: 2007
  ident: 10.1016/j.medengphy.2020.09.001_bib0039
  article-title: Design strategies to improve patient motivation during robot-aided rehabilitation
  publication-title: J NeuroEngineering Rehabil
  doi: 10.1186/1743-0003-4-3
– volume: 27
  start-page: 256
  year: 2019
  ident: 10.1016/j.medengphy.2020.09.001_bib0025
  article-title: Synergy-based FES for post-stroke rehabilitation of upper-limb motor functions
  publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc
  doi: 10.1109/TNSRE.2019.2891004
– volume: 14
  start-page: 23
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0055
  article-title: Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-017-0231-4
– volume: 4
  year: 2013
  ident: 10.1016/j.medengphy.2020.09.001_bib0048
  article-title: Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: current status, challenges and future directions
  publication-title: Paladyn J Behav Robot
– start-page: 381
  year: 2008
  ident: 10.1016/j.medengphy.2020.09.001_bib0049
  article-title: Improving patient motivation in game development for motor deficit rehabilitation
– volume: 14
  start-page: 52
  year: 2007
  ident: 10.1016/j.medengphy.2020.09.001_bib0056
  article-title: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1402-52
– volume: 17
  start-page: 16
  year: 2011
  ident: 10.1016/j.medengphy.2020.09.001_bib0004
  article-title: Muscle synergies: implications for clinical evaluation and rehabilitation of movement
  publication-title: Top Spinal Cord Inj Rehabil
  doi: 10.1310/sci1701-16
– volume: 77
  start-page: 851
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0043
  article-title: Brain-computer interface boosts motor imagery practice during stroke recovery
  publication-title: Ann Neurol
  doi: 10.1002/ana.24390
– start-page: 282
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0053
  article-title: Gamification of stroke rehabilitation exercises using a smartphone
– volume: 15
  start-page: 521
  year: 2008
  ident: 10.1016/j.medengphy.2020.09.001_bib0050
  article-title: Functional restoration for the stroke survivor: informing the efforts of engineers
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1506-521
– volume: 11
  start-page: 51
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0037
  article-title: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-51
– volume: 3
  start-page: 203
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0028
  article-title: A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2015.00203
– volume: 16
  start-page: 1873
  year: 2004
  ident: 10.1016/j.medengphy.2020.09.001_bib0034
  article-title: Failure of motor learning for large initial errors
  publication-title: Neural Comput
  doi: 10.1162/0899766041336431
– volume: 10
  start-page: 60
  year: 2013
  ident: 10.1016/j.medengphy.2020.09.001_bib0060
  article-title: Biofeedback in rehabilitation
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/1743-0003-10-60
– year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0030
– volume: 25
  start-page: 780
  year: 2003
  ident: 10.1016/j.medengphy.2020.09.001_bib0010
  article-title: Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats
  publication-title: Neurol Res
  doi: 10.1179/016164103771953853
– volume: 24
  start-page: 79
  year: 2016
  ident: 10.1016/j.medengphy.2020.09.001_bib0014
  article-title: Tele-supervised FES-assisted exercise for hemiplegic upper limb
  publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc
  doi: 10.1109/TNSRE.2015.2408453
– volume: 113
  start-page: 258
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0057
  article-title: Development of virtual reality proprioceptive rehabilitation system for stroke patients
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.09.006
– volume: 8
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0041
  article-title: The effectiveness of proprioceptive training for improving motor function: a systematic review
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.01075
– volume: 10
  start-page: 149
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0045
  article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.3109/17483107.2013.873491
– year: 2020
  ident: 10.1016/j.medengphy.2020.09.001_bib0029
  article-title: Correlation of muscle activation changes with functional improvement after FES intervention in patients post stroke
– volume: 52
  start-page: 263
  year: 2016
  ident: 10.1016/j.medengphy.2020.09.001_bib0031
  article-title: Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2014.10.0227
– volume: 10
  year: 2016
  ident: 10.1016/j.medengphy.2020.09.001_bib0005
  article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00442
– volume: 10
  start-page: 425
  year: 2016
  ident: 10.1016/j.medengphy.2020.09.001_bib0027
  article-title: A Personalized Multi-Channel FES controller based on muscle synergies to support gait rehabilitation after stroke
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00425
– volume: 48
  start-page: 3692
  year: 2015
  ident: 10.1016/j.medengphy.2020.09.001_bib0020
  article-title: An optimized proportional-derivative controller for the human upper extremity with gravity
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2015.08.016
– volume: 2
  start-page: 213
  year: 1994
  ident: 10.1016/j.medengphy.2020.09.001_bib0018
  article-title: Neural network generation of muscle stimulation patterns for control of arm movements
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.340877
– start-page: 1
  year: 2011
  ident: 10.1016/j.medengphy.2020.09.001_bib0059
  article-title: The effects of visual feedback in therapeutic exergaming on motor task accuracy
– volume: 46
  start-page: 378
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0012
  article-title: Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-1785
– volume: 37
  start-page: 680
  year: 1999
  ident: 10.1016/j.medengphy.2020.09.001_bib0019
  article-title: Adaptive fuzzy control of electrically stimulated muscles for arm movements
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02513367
– volume: 17
  start-page: 312
  year: 2014
  ident: 10.1016/j.medengphy.2020.09.001_bib0035
  article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3616
– volume: 21
  start-page: 207
  year: 2007
  ident: 10.1016/j.medengphy.2020.09.001_bib0007
  article-title: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968306297871
– volume: 9
  start-page: 54
  year: 2012
  ident: 10.1016/j.medengphy.2020.09.001_bib0015
  article-title: Wireless distributed functional electrical stimulation system
  publication-title: J Neuroengineering Rehabil
  doi: 10.1186/1743-0003-9-54
– volume: 46
  start-page: 243
  year: 2009
  ident: 10.1016/j.medengphy.2020.09.001_bib0016
  article-title: Wireless wearable controller for upper-limb neuroprosthesis
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2008.03.0037
– volume: 87
  start-page: 1141
  year: 2006
  ident: 10.1016/j.medengphy.2020.09.001_bib0062
  article-title: Video game–based exercises for balance rehabilitation: a single-subject design
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2006.04.010
– start-page: 336
  year: 2017
  ident: 10.1016/j.medengphy.2020.09.001_bib0054
  article-title: Gamification of hand rehabilitation process using virtual reality tools: using leap motion for hand rehabilitation
– volume: 22
  start-page: 291
  year: 2008
  ident: 10.1016/j.medengphy.2020.09.001_bib0047
  article-title: Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature
  publication-title: Clin Rehabil
  doi: 10.1177/0269215507083368
– volume: 17
  start-page: 368
  year: 2009
  ident: 10.1016/j.medengphy.2020.09.001_bib0022
  article-title: Iterative learning control of FES applied to the upper extremity for rehabilitation
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2008.08.003
SSID ssj0004463
Score 2.3501325
Snippet •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this...
This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of...
Background. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Accelerometry
Functional electrical stimulation (FES)
Hemiparesis
Muscle synergy
Stroke rehabilitation
Title Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients
URI https://www.clinicalkey.com/#!/content/1-s2.0-S135045332030134X
https://dx.doi.org/10.1016/j.medengphy.2020.09.001
https://www.proquest.com/docview/2446664799
https://www.proquest.com/docview/2447469856
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaKFtjWQ7FlG9puLTRgVze2LMvWbkGwItuwXNYCuQmRJRfpwzYa59BLf3tJW86WAl0H7GYboiGTFPnRokiAz-jDXJGrOLB2ngTCREmgUotXUegct86avK32OZWTc_F9lsy2YNyfhaG0Sm_7O5veWmv_ZOi5OawXi-GvKE4Qj8QxJ1QfixmdYBcpafnJ_e80Dwx32iR7HBzQ6I0cL3Q4rrzA78FAkYcnXe3KpzzUI1vdOqDT17DnkSMbdZN7A1uuHMDLcd-wbQC7f9QWHMCLn37X_C0sR6umQmTqLCM31v39Y10DHJIRw2V-49t4sb5nBOtqPDMEtWxV1-42uF7cmPULGEXSuAzu2KJkdbVscA7VlWO-TuvyHZyffj0bTwLfbCHIRSabwORzqURiVVQgxoqtyYyL0ozgFc9sJHNkUG7CwpoitGEuFafqXSJSZo5RpVXxe9guq9LtA8tsWiSi4MYWXJhEKsMNRnWZFGmRpS49ANkzWOe-Ejl93LXuU84u9VoymiSjQ0XJdwcQrgnrrhjH8yRZL0HdnzVF66jRYTxP-mVNuqGS_0b8qVcXjWpAuzDz0lWrpea0g46sUOqvY1Jq7ZnIw_-ZxAd4RXdd7uFH2G5uV-4IMVRjjttFcgw7o28_JtMHs1UgdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLwMEEBMcYPI_Eamji2E--tqjZ1bOsLm9Q3q44dVNiSaE0f-O-5a5zCkGBIvEVJLrJ99t138fk7gA_ow3xZ6DRybiEjYRMZ6czhVRJ7z513ttiwfc7U9Ep8msv5Dkz6szCUVhlsf2fTN9Y63BmF0Rw1y-Xoc5JKxCNpygnVp2L-AHaJnUoOYHd8ejad_TweKTYF1ej9iATupHmhz_HVF-wSxoo8_tjRV_7JSf1mrjc-6OQJ7AfwyMZd-57Cjq-GsDfpa7YN4fEv9IJDeHgRNs6fwWq8bmsEp94x8mTdD0DW1cAhNTFc6Tehkhfry0awjuaZIa5l66bxt9H18sZuP8AomMaV8J0tK9bUqxbbUH_zLFC1rp7D1cnx5WQahXoLUSFy1Ua2WCgtpNNJiTArdTa3PslyQlg8d4kqcIAKG5fOlrGLC6U5EXiJRNsFBpZOpy9gUNWVfwksd1kpRcmtK7mwUmnLLQZ2uRJZmWc-OwDVD7ApAhk5de7a9FlnX81WM4Y0Y2JN-XcHEG8Fm46P436RvNeg6Y-booE06DPuFz3ait6Zlf8m_L6fLganAW3ELCpfr1eG0yY6DoXWf30no-qeUr36n0a8g73p5cW5OT-dnR3CI3rSpSK-hkF7u_ZvEFK19m1YMj8AeDYjJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+functional+electrical+stimulation+training+system+for+upper-limb+function+recovery+in+poststroke+patients&rft.jtitle=Medical+engineering+%26+physics&rft.au=Chou%2C+Chih-Hong&rft.au=Wang%2C+Tong&rft.au=Sun%2C+Xiaopei&rft.au=Niu%2C+Chuanxin+M.&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=84&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.medengphy.2020.09.001&rft.externalDocID=S135045332030134X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon