Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients
•We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal thre...
Saved in:
Published in | Medical engineering & physics Vol. 84; no. NA; pp. 174 - 183 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2020.09.001 |
Cover
Loading…
Abstract | •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal threshold of triggering can defined for each patient for specific tasks.
This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.
In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.
Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.
Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training. |
---|---|
AbstractList | •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this automated FES training system.•This system can reduce variability in compound movements produced by poststroke patients and FES.•An optimal threshold of triggering can defined for each patient for specific tasks.
This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.
In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.
Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.
Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.BACKGROUNDThis paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients.In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.METHODSIn the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements.Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.RESULTSSynchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors.Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.CONCLUSIONSEvidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training. Background. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. Methods. In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. Results. Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. Conclusions. Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training. |
Author | Chou, Chih-Hong Hao, Manzhao Sun, Xiaopei Xie, Qing Lan, Ning Wang, Tong Niu, Chuanxin M. |
Author_xml | – sequence: 1 givenname: Chih-Hong surname: Chou fullname: Chou, Chih-Hong organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China – sequence: 2 givenname: Tong surname: Wang fullname: Wang, Tong organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China – sequence: 3 givenname: Xiaopei surname: Sun fullname: Sun, Xiaopei organization: Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Chuanxin M. surname: Niu fullname: Niu, Chuanxin M. organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China – sequence: 5 givenname: Manzhao surname: Hao fullname: Hao, Manzhao organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China – sequence: 6 givenname: Qing surname: Xie fullname: Xie, Qing email: ruijin_xq@163.com organization: Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China – sequence: 7 givenname: Ning surname: Lan fullname: Lan, Ning email: ninglan@sjtu.edu.cn, ninglan@usc.edu organization: Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, China |
BookMark | eNqNkcFq3TAQRUVJoUnab6iW3dgdWbJsL0p5hKYNBLpp18KWxqlebMmV5ID_PnJfySKrt9KA5h6Ye67IhfMOCfnIoGTA5OdjOaNB97D82coKKiihKwHYG3LJ2oYXAjhc5JnXUIia83fkKsYjAAgh-SWJhzX5uU9o6Lg6nax3_URxQp2C1XmMyc7r1O8fNIXeOuseaNxiwpmOPtB1WTAUk52HFwANqP0Tho1aRxcfU0zBPyJdMgVdiu_J27GfIn74_16T37ffft38KO5_fr-7OdwXWrQyFYPuZSdq07GRV4KboR2QNW0tGVStYVLnY_UAoxlGMKBlV0FdN4J1Q89Amo5fk08n7hL83xVjUrONGqepd-jXqCohGiG7TDxnVUopmm6nNqdVHXyMAUe1BDv3YVMM1G5EHdWLEbUbUdCpbCQnv7xKapv-NbsXO52RP5zymEt7shhU1LlQjcbmxpMy3p7B-PqKoafsNJt-xO0swjNwMsgk |
CitedBy_id | crossref_primary_10_1109_TNSRE_2023_3290293 crossref_primary_10_1109_TNSRE_2023_3313617 crossref_primary_10_3389_fneur_2023_1272992 crossref_primary_10_1016_j_engappai_2023_106167 crossref_primary_10_1080_10749357_2024_2409595 crossref_primary_10_3390_s22041443 crossref_primary_10_3389_fnbot_2023_1168322 crossref_primary_10_3390_biomimetics6040063 crossref_primary_10_1016_j_heliyon_2023_e16202 crossref_primary_10_1177_09544119221095341 |
Cites_doi | 10.1272/jnms.82.4 10.1186/1743-0003-11-64 10.1007/s00521-016-2234-7 10.1038/s41467-018-04673-z 10.1177/1545968307303401 10.3389/fneur.2017.00337 10.1109/TNSRE.2013.2293673 10.1016/j.medengphy.2016.01.004 10.3389/fnhum.2015.00168 10.1146/annurev.bioeng.6.040803.140103 10.1523/JNEUROSCI.0830-06.2006 10.1109/RBME.2018.2874132 10.3389/fneur.2017.00447 10.1016/S0140-6736(11)60325-5 10.1007/BF02349979 10.1007/s11517-011-0797-0 10.1016/j.jns.2004.05.005 10.1097/NPT.0b013e3181c1fc0b 10.3389/fneur.2017.00120 10.1186/1743-0003-4-3 10.1109/TNSRE.2019.2891004 10.1186/s12984-017-0231-4 10.1310/tsr1402-52 10.1310/sci1701-16 10.1002/ana.24390 10.1310/tsr1506-521 10.1186/1743-0003-11-51 10.3389/fbioe.2015.00203 10.1162/0899766041336431 10.1186/1743-0003-10-60 10.1179/016164103771953853 10.1109/TNSRE.2015.2408453 10.1016/j.cmpb.2013.09.006 10.3389/fnhum.2014.01075 10.3109/17483107.2013.873491 10.1682/JRRD.2014.10.0227 10.3389/fnhum.2016.00442 10.3389/fnins.2016.00425 10.1016/j.jbiomech.2015.08.016 10.1109/86.340877 10.2340/16501977-1785 10.1007/BF02513367 10.1038/nn.3616 10.1177/1545968306297871 10.1186/1743-0003-9-54 10.1682/JRRD.2008.03.0037 10.1016/j.apmr.2006.04.010 10.1177/0269215507083368 10.1016/j.conengprac.2008.08.003 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.medengphy.2020.09.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 183 |
ExternalDocumentID | 10_1016_j_medengphy_2020_09_001 S135045332030134X |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH AAIAV ABLVK ABTAH ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAXKI AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c486t-bca6945d91f3243db8be178561028d16c020cb0fdbf0d0c6920557419ba106d93 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Fri Jul 11 02:12:53 EDT 2025 Tue Aug 05 11:01:32 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Tue Jul 01 04:24:56 EDT 2025 Fri Feb 23 02:45:03 EST 2024 Tue Aug 26 16:31:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Keywords | Hemiparesis Muscle synergy Stroke rehabilitation Accelerometry Functional electrical stimulation (FES) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-bca6945d91f3243db8be178561028d16c020cb0fdbf0d0c6920557419ba106d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S135045332030134X |
PQID | 2446664799 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2447469856 proquest_miscellaneous_2446664799 crossref_primary_10_1016_j_medengphy_2020_09_001 crossref_citationtrail_10_1016_j_medengphy_2020_09_001 elsevier_sciencedirect_doi_10_1016_j_medengphy_2020_09_001 elsevier_clinicalkey_doi_10_1016_j_medengphy_2020_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Medical engineering & physics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peckham, Knutson (bib0008) 2005; 7 Meilink, Hemmen, Seelen, Kwakkel (bib0047) 2008; 22 Goršič, Cikajlo, Novak (bib0055) 2017; 14 Adkins-Muir, Jones (bib0010) 2003; 25 Micera, Sabatini, Dario (bib0019) 1999; 37 Alibeji, Kirsch, Sharma (bib0028) 2015; 3 Lalitharatne, Teramoto, Hayashi, Kiguchi (bib0048) 2013; 4 Wang, Bao, Hao, Zhang, Li, Xie (bib0026) 2018; 2018 Jagodnik, Blana, van den Bogert, Kirsch (bib0020) 2015; 48 Biasiucci, Leeb, Iturrate, Perdikis, Al-Khodairy, Corbet (bib0011) 2018; 9 Hara (bib0009) 2015; 82 Jacobs, Timmermans, Michielsen, Vander Plaetse, Markopoulos (bib0061) 2013 Betker, Szturm, Moussavi, Nett (bib0062) 2006; 87 Tong, Mak, Ip (bib0021) 2003; 41 Sucar, Orihuela-Espina, Velazquez, Reinkensmeyer, Leder, Hernández-Franco (bib0051) 2014; 22 Wheeler, Peckham (bib0016) 2009; 46 Novak, Nagle, Keller, Riener (bib0052) 2014; 11 Johnson, Feng, Johnson, Ramachandran, Winters, Kosasih (bib0040) 2006; 2006 Niu, Bao, Zhuang, Li, Wang, Cui (bib0025) 2019; 27 Mukaino, Ono, Shindo, Fujiwara, Ota, Kimura (bib0012) 2014; 46 Alimanova, Borambayeva, Kozhamzharova, Kurmangaiyeva, Ospanova, Tyulepberdinova (bib0054) 2017 Aman, Elangovan, Yeh, Konczak (bib0041) 2015; 8 Arvaneh, Guan, Ang, Ward, Chua, Kuah (bib0042) 2017; 28 Buick, Kowalczewski, Carson, Prochazka (bib0014) 2016; 24 Zhuang, Marquez, Qu, He, Lan (bib0023) 2015 Loureiro, Harwin, Nagai, Johnson (bib0013) 2011; 49 Safavynia, Torres-Oviedo, Ting (bib0004) 2011; 17 Daly, Cheng, Rogers, Litinas, Hrovat, Dohring (bib0038) 2009; 33 Alon, Levitt, McCarthy (bib0007) 2007; 21 Lan, Hua-Quan, Crago (bib0018) 1994; 2 Wang, Chou, Bao, Hao, Gu, Niu (bib0029) 2020 Niu, Zhuang, Bao, Li, Lan, Xie (bib0030) 2017 Wu, Miyamoto, Castro, Ölveczky, Smith (bib0035) 2014; 17 Looned, Webb, Xiao, Menon (bib0037) 2014; 11 Hatem, Saussez, della Faille, Prist, Zhang, Dispa (bib0005) 2016; 10 Li (bib0006) 2017; 8 Ferrante, Chia Bejarano, Ambrosini, Nardone, Turcato, Monticone (bib0027) 2016; 10 Colombo, Pisano, Mazzone, Delconte, Micera, Carrozza (bib0039) 2007; 4 Kutlu, Freeman, Hallewell, Hughes, Laila (bib0017) 2016; 38 Cheung, Niu, Li, Xie, Lan (bib0024) 2019; 12 Doyle, Kelly, Patterson, Caulfield (bib0059) 2011 Jovičić, Saranovac, Popović (bib0015) 2012; 9 Bolton, Cauraugh, Hausenblas (bib0046) 2004; 223 Sanger (bib0034) 2004; 16 Cho, Ku, Cho, Kim, Kang, Jang (bib0057) 2014; 113 (bib0002) 2014 Henderson, Korner-Bitensky, Levin (bib0056) 2007; 14 Giggins, Persson, Caulfield (bib0060) 2013; 10 Rong, Tong, Hu, Ho (bib0045) 2015; 10 Patton, Small, Zev Rymer (bib0050) 2008; 15 Borghese, Mainetti, Pirovano, Lanzi (bib0058) 2013 Ferreira, Guimarães, Santos, Sousa (bib0053) 2014 d'Avella, Portone, Fernandez, Lacquaniti (bib0032) 2006; 26 Freeman, Hughes, Burridge, Chappell, Lewin, Rogers (bib0022) 2009; 17 Elnady, Zhang, Xiao, Yong, Randhawa, Boyd (bib0036) 2015; 9 Qian, Hu, Lai, Ng, Zheng, Poon (bib0044) 2017; 8 Colombo, Pisano, Micera, Mazzone, Delconte, Carrozza (bib0003) 2008; 22 Li, Zhuang, Niu, Bao, Xie, Lan (bib0033) 2017; 8 Qu, Xie, Liu, He, Hao, Bao (bib0031) 2016; 52 Pichiorri, Morone, Petti, Toppi, Pisotta, Molinari (bib0043) 2015; 77 Flores, Tobon, Cavallaro, Cavallaro, Perry, Keller (bib0049) 2008 Langhorne, Bernhardt, Kwakkel (bib0001) 2011; 377 Ferrante (10.1016/j.medengphy.2020.09.001_bib0027) 2016; 10 Giggins (10.1016/j.medengphy.2020.09.001_bib0060) 2013; 10 Bolton (10.1016/j.medengphy.2020.09.001_bib0046) 2004; 223 (10.1016/j.medengphy.2020.09.001_bib0002) 2014 d'Avella (10.1016/j.medengphy.2020.09.001_bib0032) 2006; 26 Flores (10.1016/j.medengphy.2020.09.001_bib0049) 2008 Colombo (10.1016/j.medengphy.2020.09.001_bib0039) 2007; 4 Biasiucci (10.1016/j.medengphy.2020.09.001_bib0011) 2018; 9 Hara (10.1016/j.medengphy.2020.09.001_bib0009) 2015; 82 Mukaino (10.1016/j.medengphy.2020.09.001_bib0012) 2014; 46 Wheeler (10.1016/j.medengphy.2020.09.001_bib0016) 2009; 46 Li (10.1016/j.medengphy.2020.09.001_bib0006) 2017; 8 Kutlu (10.1016/j.medengphy.2020.09.001_bib0017) 2016; 38 Niu (10.1016/j.medengphy.2020.09.001_bib0025) 2019; 27 Elnady (10.1016/j.medengphy.2020.09.001_bib0036) 2015; 9 Hatem (10.1016/j.medengphy.2020.09.001_bib0005) 2016; 10 Peckham (10.1016/j.medengphy.2020.09.001_bib0008) 2005; 7 Adkins-Muir (10.1016/j.medengphy.2020.09.001_bib0010) 2003; 25 Tong (10.1016/j.medengphy.2020.09.001_bib0021) 2003; 41 Wu (10.1016/j.medengphy.2020.09.001_bib0035) 2014; 17 Novak (10.1016/j.medengphy.2020.09.001_bib0052) 2014; 11 Betker (10.1016/j.medengphy.2020.09.001_bib0062) 2006; 87 Henderson (10.1016/j.medengphy.2020.09.001_bib0056) 2007; 14 Aman (10.1016/j.medengphy.2020.09.001_bib0041) 2015; 8 Johnson (10.1016/j.medengphy.2020.09.001_bib0040) 2006; 2006 Borghese (10.1016/j.medengphy.2020.09.001_bib0058) 2013 Doyle (10.1016/j.medengphy.2020.09.001_bib0059) 2011 Cho (10.1016/j.medengphy.2020.09.001_bib0057) 2014; 113 Safavynia (10.1016/j.medengphy.2020.09.001_bib0004) 2011; 17 Wang (10.1016/j.medengphy.2020.09.001_bib0029) 2020 Niu (10.1016/j.medengphy.2020.09.001_bib0030) 2017 Ferreira (10.1016/j.medengphy.2020.09.001_bib0053) 2014 Langhorne (10.1016/j.medengphy.2020.09.001_bib0001) 2011; 377 Jacobs (10.1016/j.medengphy.2020.09.001_bib0061) 2013 Jovičić (10.1016/j.medengphy.2020.09.001_bib0015) 2012; 9 Li (10.1016/j.medengphy.2020.09.001_bib0033) 2017; 8 Rong (10.1016/j.medengphy.2020.09.001_bib0045) 2015; 10 Lalitharatne (10.1016/j.medengphy.2020.09.001_bib0048) 2013; 4 Sucar (10.1016/j.medengphy.2020.09.001_bib0051) 2014; 22 Qu (10.1016/j.medengphy.2020.09.001_bib0031) 2016; 52 Pichiorri (10.1016/j.medengphy.2020.09.001_bib0043) 2015; 77 Micera (10.1016/j.medengphy.2020.09.001_bib0019) 1999; 37 Arvaneh (10.1016/j.medengphy.2020.09.001_bib0042) 2017; 28 Buick (10.1016/j.medengphy.2020.09.001_bib0014) 2016; 24 Cheung (10.1016/j.medengphy.2020.09.001_bib0024) 2019; 12 Freeman (10.1016/j.medengphy.2020.09.001_bib0022) 2009; 17 Zhuang (10.1016/j.medengphy.2020.09.001_bib0023) 2015 Loureiro (10.1016/j.medengphy.2020.09.001_bib0013) 2011; 49 Qian (10.1016/j.medengphy.2020.09.001_bib0044) 2017; 8 Wang (10.1016/j.medengphy.2020.09.001_bib0026) 2018; 2018 Alimanova (10.1016/j.medengphy.2020.09.001_bib0054) 2017 Goršič (10.1016/j.medengphy.2020.09.001_bib0055) 2017; 14 Jagodnik (10.1016/j.medengphy.2020.09.001_bib0020) 2015; 48 Alibeji (10.1016/j.medengphy.2020.09.001_bib0028) 2015; 3 Patton (10.1016/j.medengphy.2020.09.001_bib0050) 2008; 15 Looned (10.1016/j.medengphy.2020.09.001_bib0037) 2014; 11 Meilink (10.1016/j.medengphy.2020.09.001_bib0047) 2008; 22 Lan (10.1016/j.medengphy.2020.09.001_bib0018) 1994; 2 Alon (10.1016/j.medengphy.2020.09.001_bib0007) 2007; 21 Colombo (10.1016/j.medengphy.2020.09.001_bib0003) 2008; 22 Sanger (10.1016/j.medengphy.2020.09.001_bib0034) 2004; 16 Daly (10.1016/j.medengphy.2020.09.001_bib0038) 2009; 33 |
References_xml | – start-page: 282 year: 2014 end-page: 285 ident: bib0053 article-title: Gamification of stroke rehabilitation exercises using a smartphone publication-title: Proceedings of the Eighth international conference on pervasive computing technologies for healthcare, ICST – volume: 17 start-page: 368 year: 2009 end-page: 381 ident: bib0022 article-title: Iterative learning control of FES applied to the upper extremity for rehabilitation publication-title: Control Eng Pract – volume: 2 start-page: 213 year: 1994 end-page: 224 ident: bib0018 article-title: Neural network generation of muscle stimulation patterns for control of arm movements publication-title: IEEE Trans Rehabil Eng – volume: 9 start-page: 54 year: 2012 ident: bib0015 article-title: Wireless distributed functional electrical stimulation system publication-title: J Neuroengineering Rehabil – volume: 12 start-page: 154 year: 2019 end-page: 167 ident: bib0024 article-title: A novel FES strategy for poststroke rehabilitation based on the natural organization of neuromuscular control publication-title: IEEE Rev Biomed Eng – volume: 9 start-page: 168 year: 2015 ident: bib0036 article-title: A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform publication-title: Front Hum Neurosci – volume: 8 start-page: 337 year: 2017 ident: bib0033 article-title: Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke publication-title: Front Neurol – volume: 48 start-page: 3692 year: 2015 end-page: 3700 ident: bib0020 article-title: An optimized proportional-derivative controller for the human upper extremity with gravity publication-title: J Biomech – volume: 49 start-page: 1103 year: 2011 ident: bib0013 article-title: Advances in upper limb stroke rehabilitation: a technology push publication-title: Med Biol Eng Comput – year: 2017 ident: bib0030 article-title: Synergy-based NMES Intervention Accelerated Rehabilitation of Post-stroke Hemiparesis – volume: 7 start-page: 327 year: 2005 end-page: 360 ident: bib0008 article-title: Functional electrical stimulation for neuromuscular applications publication-title: Ann Rev Biomed Eng – volume: 21 start-page: 207 year: 2007 end-page: 215 ident: bib0007 article-title: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study publication-title: Neurorehabil Neural Repair – start-page: 816 year: 2015 end-page: 819 ident: bib0023 article-title: A neuromuscular electrical stimulation strategy based on muscle synergy for stroke rehabilitation – volume: 9 start-page: 2421 year: 2018 ident: bib0011 article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke publication-title: Nat Commun – volume: 4 start-page: 3 year: 2007 ident: bib0039 article-title: Design strategies to improve patient motivation during robot-aided rehabilitation publication-title: J NeuroEngineering Rehabil – start-page: 415 year: 2013 ident: bib0061 article-title: CONTRAST: gamification of arm-hand training for stroke survivors publication-title: Proceedings of the extended abstracts on human factors in computing systems - CHI EA 13 – volume: 52 start-page: 263 year: 2016 end-page: 278 ident: bib0031 article-title: Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation publication-title: J Rehabil Res Dev – volume: 22 start-page: 291 year: 2008 end-page: 305 ident: bib0047 article-title: Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature publication-title: Clin Rehabil – volume: 27 start-page: 256 year: 2019 end-page: 264 ident: bib0025 article-title: Synergy-based FES for post-stroke rehabilitation of upper-limb motor functions publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc – volume: 28 start-page: 3259 year: 2017 end-page: 3272 ident: bib0042 article-title: Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement publication-title: Neural Comput Appl – volume: 22 start-page: 634 year: 2014 end-page: 643 ident: bib0051 article-title: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 8 year: 2017 ident: bib0006 article-title: Spasticity, motor recovery, and neural plasticity after stroke publication-title: Front Neurol – volume: 41 start-page: 710 year: 2003 end-page: 717 ident: bib0021 article-title: Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes publication-title: Med Biol Eng Comput – volume: 11 start-page: 51 year: 2014 ident: bib0037 article-title: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation publication-title: J Neuroeng Rehabil – year: 2020 ident: bib0029 article-title: Correlation of muscle activation changes with functional improvement after FES intervention in patients post stroke publication-title: Proceedings of the 14th ISPRM World Congress – year: 2014 ident: bib0002 publication-title: Stroke recovery and rehabilitation – volume: 2018 start-page: 3541 year: 2018 end-page: 3544 ident: bib0026 article-title: Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions publication-title: Proceedings of the annual international conference on IEEE engineering in medicine and biology society – start-page: 1 year: 2011 end-page: 5 ident: bib0059 article-title: The effects of visual feedback in therapeutic exergaming on motor task accuracy publication-title: Proceedings of the international conference on virtual rehabilitation – volume: 10 start-page: 425 year: 2016 ident: bib0027 article-title: A Personalized Multi-Channel FES controller based on muscle synergies to support gait rehabilitation after stroke publication-title: Front Neurosci – volume: 2006 start-page: 254 year: 2006 end-page: 259 ident: bib0040 article-title: Robotic systems that rehabilitate as well as motivate: three strategies for motivating impaired arm use publication-title: Proceedings of the First IEEERAS-EMBS international conference for biomedical robotics and biomechatronics 2006 BioRob – volume: 14 start-page: 23 year: 2017 ident: bib0055 article-title: Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity publication-title: J NeuroEng Rehabil – volume: 4 year: 2013 ident: bib0048 article-title: Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: current status, challenges and future directions publication-title: Paladyn J Behav Robot – volume: 10 start-page: 149 year: 2015 end-page: 159 ident: bib0045 article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke publication-title: Disabil Rehabil Assist Technol – volume: 25 start-page: 780 year: 2003 end-page: 788 ident: bib0010 article-title: Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats publication-title: Neurol Res – volume: 46 start-page: 243 year: 2009 end-page: 256 ident: bib0016 article-title: Wireless wearable controller for upper-limb neuroprosthesis publication-title: J Rehabil Res Dev – volume: 3 start-page: 203 year: 2015 ident: bib0028 article-title: A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis publication-title: Front Bioeng Biotechnol – start-page: 336 year: 2017 end-page: 339 ident: bib0054 article-title: Gamification of hand rehabilitation process using virtual reality tools: using leap motion for hand rehabilitation publication-title: Proceedings of the First IEEE international conference on robotic computing, IRC – start-page: 1 year: 2013 end-page: 8 ident: bib0058 article-title: An intelligent game engine for the at-home rehabilitation of stroke patients publication-title: Proceedings of the IEEE second international conference on serious games and applications for health (SeGAH) – volume: 8 year: 2015 ident: bib0041 article-title: The effectiveness of proprioceptive training for improving motor function: a systematic review publication-title: Front Hum Neurosci – volume: 38 start-page: 366 year: 2016 end-page: 379 ident: bib0017 article-title: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations publication-title: Med Eng Phys – volume: 8 year: 2017 ident: bib0044 article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm publication-title: Front Neurol – volume: 17 start-page: 16 year: 2011 end-page: 24 ident: bib0004 article-title: Muscle synergies: implications for clinical evaluation and rehabilitation of movement publication-title: Top Spinal Cord Inj Rehabil – volume: 113 start-page: 258 year: 2014 end-page: 265 ident: bib0057 article-title: Development of virtual reality proprioceptive rehabilitation system for stroke patients publication-title: Comput Methods Programs Biomed – volume: 377 start-page: 1693 year: 2011 end-page: 1702 ident: bib0001 article-title: Stroke rehabilitation publication-title: The Lancet – volume: 77 start-page: 851 year: 2015 end-page: 865 ident: bib0043 article-title: Brain-computer interface boosts motor imagery practice during stroke recovery publication-title: Ann Neurol – volume: 22 start-page: 50 year: 2008 end-page: 63 ident: bib0003 article-title: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb publication-title: Neurorehabil Neural Repair – volume: 82 start-page: 4 year: 2015 end-page: 13 ident: bib0009 article-title: Brain plasticity and rehabilitation in stroke patients publication-title: J Nippon Med Sch Nippon Ika Daigaku Zasshi – volume: 26 start-page: 7791 year: 2006 end-page: 7810 ident: bib0032 article-title: Control of fast-reaching movements by muscle synergy combinations publication-title: J Neurosci – volume: 223 start-page: 121 year: 2004 end-page: 127 ident: bib0046 article-title: Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis publication-title: J Neurol Sci – volume: 46 start-page: 378 year: 2014 end-page: 382 ident: bib0012 article-title: Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke publication-title: J Rehabil Med – volume: 11 start-page: 64 year: 2014 ident: bib0052 article-title: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay publication-title: J NeuroEng Rehabil – volume: 87 start-page: 1141 year: 2006 end-page: 1149 ident: bib0062 article-title: Video game–based exercises for balance rehabilitation: a single-subject design publication-title: Arch Phys Med Rehabil – start-page: 381 year: 2008 end-page: 384 ident: bib0049 article-title: Improving patient motivation in game development for motor deficit rehabilitation publication-title: Proceedings of the 2008 international conference on advances in computer entertainment technology – volume: 16 start-page: 1873 year: 2004 end-page: 1886 ident: bib0034 article-title: Failure of motor learning for large initial errors publication-title: Neural Comput – volume: 10 start-page: 60 year: 2013 ident: bib0060 article-title: Biofeedback in rehabilitation publication-title: J NeuroEng Rehabil – volume: 15 start-page: 521 year: 2008 end-page: 541 ident: bib0050 article-title: Functional restoration for the stroke survivor: informing the efforts of engineers publication-title: Top Stroke Rehabil – volume: 14 start-page: 52 year: 2007 end-page: 61 ident: bib0056 article-title: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery publication-title: Top Stroke Rehabil – volume: 10 year: 2016 ident: bib0005 article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery publication-title: Front Hum Neurosci – volume: 37 start-page: 680 year: 1999 end-page: 685 ident: bib0019 article-title: Adaptive fuzzy control of electrically stimulated muscles for arm movements publication-title: Med Biol Eng Comput – volume: 24 start-page: 79 year: 2016 end-page: 87 ident: bib0014 article-title: Tele-supervised FES-assisted exercise for hemiplegic upper limb publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc – volume: 17 start-page: 312 year: 2014 end-page: 321 ident: bib0035 article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability publication-title: Nat Neurosci – volume: 33 start-page: 203 year: 2009 end-page: 211 ident: bib0038 article-title: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke publication-title: J Neurol Phys Ther JNPT – start-page: 415 year: 2013 ident: 10.1016/j.medengphy.2020.09.001_bib0061 article-title: CONTRAST: gamification of arm-hand training for stroke survivors – start-page: 1 year: 2013 ident: 10.1016/j.medengphy.2020.09.001_bib0058 article-title: An intelligent game engine for the at-home rehabilitation of stroke patients – volume: 82 start-page: 4 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0009 article-title: Brain plasticity and rehabilitation in stroke patients publication-title: J Nippon Med Sch Nippon Ika Daigaku Zasshi doi: 10.1272/jnms.82.4 – start-page: 816 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0023 – volume: 11 start-page: 64 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0052 article-title: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay publication-title: J NeuroEng Rehabil doi: 10.1186/1743-0003-11-64 – volume: 28 start-page: 3259 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0042 article-title: Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2234-7 – volume: 9 start-page: 2421 year: 2018 ident: 10.1016/j.medengphy.2020.09.001_bib0011 article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke publication-title: Nat Commun doi: 10.1038/s41467-018-04673-z – volume: 22 start-page: 50 year: 2008 ident: 10.1016/j.medengphy.2020.09.001_bib0003 article-title: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968307303401 – volume: 8 start-page: 337 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0033 article-title: Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke publication-title: Front Neurol doi: 10.3389/fneur.2017.00337 – volume: 22 start-page: 634 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0051 article-title: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2293673 – volume: 38 start-page: 366 year: 2016 ident: 10.1016/j.medengphy.2020.09.001_bib0017 article-title: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.01.004 – year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0002 – volume: 9 start-page: 168 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0036 article-title: A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00168 – volume: 7 start-page: 327 year: 2005 ident: 10.1016/j.medengphy.2020.09.001_bib0008 article-title: Functional electrical stimulation for neuromuscular applications publication-title: Ann Rev Biomed Eng doi: 10.1146/annurev.bioeng.6.040803.140103 – volume: 26 start-page: 7791 year: 2006 ident: 10.1016/j.medengphy.2020.09.001_bib0032 article-title: Control of fast-reaching movements by muscle synergy combinations publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0830-06.2006 – volume: 12 start-page: 154 year: 2019 ident: 10.1016/j.medengphy.2020.09.001_bib0024 article-title: A novel FES strategy for poststroke rehabilitation based on the natural organization of neuromuscular control publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2018.2874132 – volume: 8 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0044 article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm publication-title: Front Neurol doi: 10.3389/fneur.2017.00447 – volume: 377 start-page: 1693 year: 2011 ident: 10.1016/j.medengphy.2020.09.001_bib0001 article-title: Stroke rehabilitation publication-title: The Lancet doi: 10.1016/S0140-6736(11)60325-5 – volume: 2006 start-page: 254 year: 2006 ident: 10.1016/j.medengphy.2020.09.001_bib0040 article-title: Robotic systems that rehabilitate as well as motivate: three strategies for motivating impaired arm use – volume: 41 start-page: 710 year: 2003 ident: 10.1016/j.medengphy.2020.09.001_bib0021 article-title: Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes publication-title: Med Biol Eng Comput doi: 10.1007/BF02349979 – volume: 49 start-page: 1103 year: 2011 ident: 10.1016/j.medengphy.2020.09.001_bib0013 article-title: Advances in upper limb stroke rehabilitation: a technology push publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0797-0 – volume: 223 start-page: 121 year: 2004 ident: 10.1016/j.medengphy.2020.09.001_bib0046 article-title: Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis publication-title: J Neurol Sci doi: 10.1016/j.jns.2004.05.005 – volume: 33 start-page: 203 year: 2009 ident: 10.1016/j.medengphy.2020.09.001_bib0038 article-title: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke publication-title: J Neurol Phys Ther JNPT doi: 10.1097/NPT.0b013e3181c1fc0b – volume: 8 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0006 article-title: Spasticity, motor recovery, and neural plasticity after stroke publication-title: Front Neurol doi: 10.3389/fneur.2017.00120 – volume: 2018 start-page: 3541 year: 2018 ident: 10.1016/j.medengphy.2020.09.001_bib0026 article-title: Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions – volume: 4 start-page: 3 year: 2007 ident: 10.1016/j.medengphy.2020.09.001_bib0039 article-title: Design strategies to improve patient motivation during robot-aided rehabilitation publication-title: J NeuroEngineering Rehabil doi: 10.1186/1743-0003-4-3 – volume: 27 start-page: 256 year: 2019 ident: 10.1016/j.medengphy.2020.09.001_bib0025 article-title: Synergy-based FES for post-stroke rehabilitation of upper-limb motor functions publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc doi: 10.1109/TNSRE.2019.2891004 – volume: 14 start-page: 23 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0055 article-title: Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-017-0231-4 – volume: 4 year: 2013 ident: 10.1016/j.medengphy.2020.09.001_bib0048 article-title: Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: current status, challenges and future directions publication-title: Paladyn J Behav Robot – start-page: 381 year: 2008 ident: 10.1016/j.medengphy.2020.09.001_bib0049 article-title: Improving patient motivation in game development for motor deficit rehabilitation – volume: 14 start-page: 52 year: 2007 ident: 10.1016/j.medengphy.2020.09.001_bib0056 article-title: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery publication-title: Top Stroke Rehabil doi: 10.1310/tsr1402-52 – volume: 17 start-page: 16 year: 2011 ident: 10.1016/j.medengphy.2020.09.001_bib0004 article-title: Muscle synergies: implications for clinical evaluation and rehabilitation of movement publication-title: Top Spinal Cord Inj Rehabil doi: 10.1310/sci1701-16 – volume: 77 start-page: 851 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0043 article-title: Brain-computer interface boosts motor imagery practice during stroke recovery publication-title: Ann Neurol doi: 10.1002/ana.24390 – start-page: 282 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0053 article-title: Gamification of stroke rehabilitation exercises using a smartphone – volume: 15 start-page: 521 year: 2008 ident: 10.1016/j.medengphy.2020.09.001_bib0050 article-title: Functional restoration for the stroke survivor: informing the efforts of engineers publication-title: Top Stroke Rehabil doi: 10.1310/tsr1506-521 – volume: 11 start-page: 51 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0037 article-title: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-11-51 – volume: 3 start-page: 203 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0028 article-title: A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2015.00203 – volume: 16 start-page: 1873 year: 2004 ident: 10.1016/j.medengphy.2020.09.001_bib0034 article-title: Failure of motor learning for large initial errors publication-title: Neural Comput doi: 10.1162/0899766041336431 – volume: 10 start-page: 60 year: 2013 ident: 10.1016/j.medengphy.2020.09.001_bib0060 article-title: Biofeedback in rehabilitation publication-title: J NeuroEng Rehabil doi: 10.1186/1743-0003-10-60 – year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0030 – volume: 25 start-page: 780 year: 2003 ident: 10.1016/j.medengphy.2020.09.001_bib0010 article-title: Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats publication-title: Neurol Res doi: 10.1179/016164103771953853 – volume: 24 start-page: 79 year: 2016 ident: 10.1016/j.medengphy.2020.09.001_bib0014 article-title: Tele-supervised FES-assisted exercise for hemiplegic upper limb publication-title: IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc doi: 10.1109/TNSRE.2015.2408453 – volume: 113 start-page: 258 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0057 article-title: Development of virtual reality proprioceptive rehabilitation system for stroke patients publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.09.006 – volume: 8 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0041 article-title: The effectiveness of proprioceptive training for improving motor function: a systematic review publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.01075 – volume: 10 start-page: 149 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0045 article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke publication-title: Disabil Rehabil Assist Technol doi: 10.3109/17483107.2013.873491 – year: 2020 ident: 10.1016/j.medengphy.2020.09.001_bib0029 article-title: Correlation of muscle activation changes with functional improvement after FES intervention in patients post stroke – volume: 52 start-page: 263 year: 2016 ident: 10.1016/j.medengphy.2020.09.001_bib0031 article-title: Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2014.10.0227 – volume: 10 year: 2016 ident: 10.1016/j.medengphy.2020.09.001_bib0005 article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00442 – volume: 10 start-page: 425 year: 2016 ident: 10.1016/j.medengphy.2020.09.001_bib0027 article-title: A Personalized Multi-Channel FES controller based on muscle synergies to support gait rehabilitation after stroke publication-title: Front Neurosci doi: 10.3389/fnins.2016.00425 – volume: 48 start-page: 3692 year: 2015 ident: 10.1016/j.medengphy.2020.09.001_bib0020 article-title: An optimized proportional-derivative controller for the human upper extremity with gravity publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.08.016 – volume: 2 start-page: 213 year: 1994 ident: 10.1016/j.medengphy.2020.09.001_bib0018 article-title: Neural network generation of muscle stimulation patterns for control of arm movements publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.340877 – start-page: 1 year: 2011 ident: 10.1016/j.medengphy.2020.09.001_bib0059 article-title: The effects of visual feedback in therapeutic exergaming on motor task accuracy – volume: 46 start-page: 378 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0012 article-title: Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke publication-title: J Rehabil Med doi: 10.2340/16501977-1785 – volume: 37 start-page: 680 year: 1999 ident: 10.1016/j.medengphy.2020.09.001_bib0019 article-title: Adaptive fuzzy control of electrically stimulated muscles for arm movements publication-title: Med Biol Eng Comput doi: 10.1007/BF02513367 – volume: 17 start-page: 312 year: 2014 ident: 10.1016/j.medengphy.2020.09.001_bib0035 article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability publication-title: Nat Neurosci doi: 10.1038/nn.3616 – volume: 21 start-page: 207 year: 2007 ident: 10.1016/j.medengphy.2020.09.001_bib0007 article-title: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968306297871 – volume: 9 start-page: 54 year: 2012 ident: 10.1016/j.medengphy.2020.09.001_bib0015 article-title: Wireless distributed functional electrical stimulation system publication-title: J Neuroengineering Rehabil doi: 10.1186/1743-0003-9-54 – volume: 46 start-page: 243 year: 2009 ident: 10.1016/j.medengphy.2020.09.001_bib0016 article-title: Wireless wearable controller for upper-limb neuroprosthesis publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2008.03.0037 – volume: 87 start-page: 1141 year: 2006 ident: 10.1016/j.medengphy.2020.09.001_bib0062 article-title: Video game–based exercises for balance rehabilitation: a single-subject design publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2006.04.010 – start-page: 336 year: 2017 ident: 10.1016/j.medengphy.2020.09.001_bib0054 article-title: Gamification of hand rehabilitation process using virtual reality tools: using leap motion for hand rehabilitation – volume: 22 start-page: 291 year: 2008 ident: 10.1016/j.medengphy.2020.09.001_bib0047 article-title: Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature publication-title: Clin Rehabil doi: 10.1177/0269215507083368 – volume: 17 start-page: 368 year: 2009 ident: 10.1016/j.medengphy.2020.09.001_bib0022 article-title: Iterative learning control of FES applied to the upper extremity for rehabilitation publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2008.08.003 |
SSID | ssj0004463 |
Score | 2.3501325 |
Snippet | •We developed an accelerometry system to detect the motion intention of poststroke patients for triggering FES.•A visual game module was combined with this... This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of... Background. This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 174 |
SubjectTerms | Accelerometry Functional electrical stimulation (FES) Hemiparesis Muscle synergy Stroke rehabilitation |
Title | Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S135045332030134X https://dx.doi.org/10.1016/j.medengphy.2020.09.001 https://www.proquest.com/docview/2446664799 https://www.proquest.com/docview/2447469856 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaKFtjWQ7FlG9puLTRgVze2LMvWbkGwItuwXNYCuQmRJRfpwzYa59BLf3tJW86WAl0H7GYboiGTFPnRokiAz-jDXJGrOLB2ngTCREmgUotXUegct86avK32OZWTc_F9lsy2YNyfhaG0Sm_7O5veWmv_ZOi5OawXi-GvKE4Qj8QxJ1QfixmdYBcpafnJ_e80Dwx32iR7HBzQ6I0cL3Q4rrzA78FAkYcnXe3KpzzUI1vdOqDT17DnkSMbdZN7A1uuHMDLcd-wbQC7f9QWHMCLn37X_C0sR6umQmTqLCM31v39Y10DHJIRw2V-49t4sb5nBOtqPDMEtWxV1-42uF7cmPULGEXSuAzu2KJkdbVscA7VlWO-TuvyHZyffj0bTwLfbCHIRSabwORzqURiVVQgxoqtyYyL0ozgFc9sJHNkUG7CwpoitGEuFafqXSJSZo5RpVXxe9guq9LtA8tsWiSi4MYWXJhEKsMNRnWZFGmRpS49ANkzWOe-Ejl93LXuU84u9VoymiSjQ0XJdwcQrgnrrhjH8yRZL0HdnzVF66jRYTxP-mVNuqGS_0b8qVcXjWpAuzDz0lWrpea0g46sUOqvY1Jq7ZnIw_-ZxAd4RXdd7uFH2G5uV-4IMVRjjttFcgw7o28_JtMHs1UgdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLwMEEBMcYPI_Eamji2E--tqjZ1bOsLm9Q3q44dVNiSaE0f-O-5a5zCkGBIvEVJLrJ99t138fk7gA_ow3xZ6DRybiEjYRMZ6czhVRJ7z513ttiwfc7U9Ep8msv5Dkz6szCUVhlsf2fTN9Y63BmF0Rw1y-Xoc5JKxCNpygnVp2L-AHaJnUoOYHd8ejad_TweKTYF1ej9iATupHmhz_HVF-wSxoo8_tjRV_7JSf1mrjc-6OQJ7AfwyMZd-57Cjq-GsDfpa7YN4fEv9IJDeHgRNs6fwWq8bmsEp94x8mTdD0DW1cAhNTFc6Tehkhfry0awjuaZIa5l66bxt9H18sZuP8AomMaV8J0tK9bUqxbbUH_zLFC1rp7D1cnx5WQahXoLUSFy1Ua2WCgtpNNJiTArdTa3PslyQlg8d4kqcIAKG5fOlrGLC6U5EXiJRNsFBpZOpy9gUNWVfwksd1kpRcmtK7mwUmnLLQZ2uRJZmWc-OwDVD7ApAhk5de7a9FlnX81WM4Y0Y2JN-XcHEG8Fm46P436RvNeg6Y-booE06DPuFz3ait6Zlf8m_L6fLganAW3ELCpfr1eG0yY6DoXWf30no-qeUr36n0a8g73p5cW5OT-dnR3CI3rSpSK-hkF7u_ZvEFK19m1YMj8AeDYjJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+functional+electrical+stimulation+training+system+for+upper-limb+function+recovery+in+poststroke+patients&rft.jtitle=Medical+engineering+%26+physics&rft.au=Chou%2C+Chih-Hong&rft.au=Wang%2C+Tong&rft.au=Sun%2C+Xiaopei&rft.au=Niu%2C+Chuanxin+M.&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=84&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.medengphy.2020.09.001&rft.externalDocID=S135045332030134X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon |