Indirect flood impacts and cascade risk across interdependent linear infrastructures

Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from t...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards and earth system sciences Vol. 21; no. 6; pp. 1955 - 1969
Main Authors Arrighi, Chiara, Pregnolato, Maria, Castelli, Fabio
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 24.06.2021
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr−1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures.
AbstractList Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D-quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr.sup.-1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures.
Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr−1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures.
Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr −1 ) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures.
Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr-1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures.
Audience Academic
Author Castelli, Fabio
Arrighi, Chiara
Pregnolato, Maria
Author_xml – sequence: 1
  givenname: Chiara
  orcidid: 0000-0002-8096-7435
  surname: Arrighi
  fullname: Arrighi, Chiara
– sequence: 2
  givenname: Maria
  orcidid: 0000-0003-0796-9618
  surname: Pregnolato
  fullname: Pregnolato, Maria
– sequence: 3
  givenname: Fabio
  orcidid: 0000-0003-0304-0289
  surname: Castelli
  fullname: Castelli, Fabio
BookMark eNp9kk-LFDEQxRtZwd3VL-CpwZOHXpN0Op0cl8U_AwuCrudQnVTGjD3JmKRBv73pGZEdEU8Jxe-9pKreVXMRYsCmeUnJzUAVfxO-Ys4dox1Vw9AxwuiT5pIKyTulJL14dH_WXOW8I4SpgZPL5mETrE9oSuvmGG3r9wcwJbcQbGsgG7DYJp-_tWBSzLn1oWCyeMBgMZR29gEh1apLkEtaTFkS5ufNUwdzxhe_z-vmy7u3D3cfuvuP7zd3t_ed4VKUDqxFKsk4OsJG4xyjk5wc4mhG5npKJjEIC0jUKByT1BAUpHfOMCelUEPfXzebk6-NsNOH5PeQfuoIXh8LMW01pOLNjBodGcEQyrkgHJWZbH1wcGaqA-O8V9Xr1cnrkOL3BXPRu7ikUL-v2UpwOTymtlBNa9uxJDB7n42-FUL0TEkuK3XzDwrWYe69qZtzvtbPBK_PBJUp-KNsYclZbz5_OmfZiT0uJKH70zgleg2DPoZBM6rXMOg1DFUk_xIZX6D4-k4CP_9P-gubbryc
CitedBy_id crossref_primary_10_1029_2021EF002581
crossref_primary_10_1016_j_accre_2023_05_005
crossref_primary_10_1016_j_rser_2022_113038
crossref_primary_10_1016_j_scitotenv_2023_168237
crossref_primary_10_54175_hsustain3020011
crossref_primary_10_1038_s41467_022_30848_w
crossref_primary_10_1016_j_jenvman_2023_119592
crossref_primary_10_1016_j_heliyon_2023_e20432
crossref_primary_10_1111_jfr3_13030
crossref_primary_10_1038_s43247_022_00613_4
crossref_primary_10_1111_risa_17664
crossref_primary_10_3390_app13095595
crossref_primary_10_1016_j_ijdrr_2023_104189
crossref_primary_10_3390_jmse11112146
crossref_primary_10_3389_frwa_2023_1278205
crossref_primary_10_3390_w17070912
crossref_primary_10_1016_j_ress_2024_110473
crossref_primary_10_3390_w13202830
crossref_primary_10_1007_s11269_024_03766_3
crossref_primary_10_15292_acta_hydro_2024_03
crossref_primary_10_3390_w16030506
crossref_primary_10_1080_23789689_2024_2446124
crossref_primary_10_61790_vt_2024_17660
crossref_primary_10_1016_j_scs_2024_105294
crossref_primary_10_1061_NHREFO_NHENG_1971
crossref_primary_10_1177_08854122221137861
crossref_primary_10_3390_hydrology8030142
crossref_primary_10_1007_s11069_024_06791_y
crossref_primary_10_1007_s13753_024_00573_7
crossref_primary_10_1061_JITSE4_ISENG_2447
crossref_primary_10_2166_nh_2023_088
crossref_primary_10_1016_j_jenvman_2022_115959
Cites_doi 10.3311/FloodRisk2020.6.3
10.1111/j.1752-1688.1970.tb00528.x
10.3390/ijgi4010124
10.3390/w12061753
10.1007/b100669
10.1016/j.ijdrr.2018.02.018
10.2495/FRIAR080321
10.1007/BF01386390
10.3390/w10010081
10.5194/nhess-2020-375
10.5194/nhess-17-1-2017
10.5822/978-1-61091-756-8_3
10.1080/09640568.2019.1641474
10.1016/j.ijdrr.2018.01.019
10.1016/j.ress.2013.06.040
10.1111/jfr3.12288
10.2495/SAFE-V8-N4-515-527
10.1016/j.scitotenv.2018.11.191
10.1109/37.969131
10.1016/j.jenvman.2017.11.017
10.1016/j.ress.2016.02.009
10.5194/nhess-13-221-2013
10.1061/(ASCE)1076-0342(2007)13:3(185)
10.1016/j.proeng.2015.08.542
10.1680/ener.14.00028
10.2495/SAFE-V8-N3-377-389
10.1016/j.proeng.2016.06.168
10.1371/journal.pone.0220338
10.1111/jfr3.12028
10.1016/j.ijdrr.2018.03.017
10.5194/nhess-13-1375-2013
10.1098/rsos.160023
10.1061/(ASCE)IS.1943-555X.0000372
10.1002/wat2.1370
10.1007/s11069-016-2678-1
10.2172/1184636
10.1016/j.ijdrr.2018.03.006
10.1016/j.ssci.2012.08.013
10.3390/su12062330
10.1007/978-3-319-95597-1_8
10.1016/j.scitotenv.2020.141001
10.5194/nhess-17-2109-2017
10.1016/j.jtrangeo.2014.06.025
10.5194/nhess-16-2357-2016
10.3138/cart.53.4.2018-0013
10.3390/w11030517
10.1016/j.scitotenv.2018.01.138
10.1061/41203(425)45
10.1016/j.trpro.2016.05.012
10.1016/j.physa.2018.05.081
10.1038/s41467-019-10442-3
10.1061/(ASCE)IS.1943-555X.0000533
10.3390/su13010061
10.1007/s11269-011-9968-x
10.1016/j.trd.2017.06.020
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/nhess-21-1955-2021
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Public Health
EISSN 1684-9981
EndPage 1969
ExternalDocumentID oai_doaj_org_article_ef07ac0144604e9cbdcff5fcb1954439
A666329848
10_5194_nhess_21_1955_2021
GroupedDBID 123
29M
2WC
2XV
5VS
6KP
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c486t-adde18077f027cff21b8bfee7c72f310b656dae0976f281c0e603ffc2f8869533
IEDL.DBID BENPR
ISSN 1684-9981
1561-8633
IngestDate Wed Aug 27 01:17:33 EDT 2025
Fri Jul 25 09:53:27 EDT 2025
Tue Jun 17 21:42:43 EDT 2025
Tue Jun 10 20:34:16 EDT 2025
Fri Jun 27 04:10:54 EDT 2025
Tue Jul 01 02:46:10 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-adde18077f027cff21b8bfee7c72f310b656dae0976f281c0e603ffc2f8869533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0796-9618
0000-0002-8096-7435
0000-0003-0304-0289
OpenAccessLink https://www.proquest.com/docview/2544348539?pq-origsite=%requestingapplication%
PQID 2544348539
PQPubID 105722
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_ef07ac0144604e9cbdcff5fcb1954439
proquest_journals_2544348539
gale_infotracmisc_A666329848
gale_infotracacademiconefile_A666329848
gale_incontextgauss_ISR_A666329848
crossref_primary_10_5194_nhess_21_1955_2021
crossref_citationtrail_10_5194_nhess_21_1955_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-24
PublicationDateYYYYMMDD 2021-06-24
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-24
  day: 24
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Natural hazards and earth system sciences
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref9
  doi: 10.3311/FloodRisk2020.6.3
– ident: ref13
  doi: 10.1111/j.1752-1688.1970.tb00528.x
– ident: ref29
  doi: 10.3390/ijgi4010124
– ident: ref4
  doi: 10.3390/w12061753
– ident: ref33
  doi: 10.1007/b100669
– ident: ref56
  doi: 10.1016/j.ijdrr.2018.02.018
– ident: ref31
  doi: 10.2495/FRIAR080321
– ident: ref19
  doi: 10.1007/BF01386390
– ident: ref34
  doi: 10.3390/w10010081
– ident: ref10
  doi: 10.3311/FloodRisk2020.6.3
– ident: ref52
  doi: 10.5194/nhess-2020-375
– ident: ref32
  doi: 10.5194/nhess-17-1-2017
– ident: ref11
– ident: ref17
– ident: ref30
  doi: 10.5822/978-1-61091-756-8_3
– ident: ref43
  doi: 10.1080/09640568.2019.1641474
– ident: ref61
– ident: ref46
  doi: 10.1016/j.ijdrr.2018.01.019
– ident: ref53
  doi: 10.1016/j.ress.2013.06.040
– ident: ref45
  doi: 10.1111/jfr3.12288
– ident: ref48
  doi: 10.2495/SAFE-V8-N4-515-527
– ident: ref8
  doi: 10.1016/j.scitotenv.2018.11.191
– ident: ref44
– ident: ref55
  doi: 10.1109/37.969131
– ident: ref7
  doi: 10.1016/j.jenvman.2017.11.017
– ident: ref64
  doi: 10.1016/j.ress.2016.02.009
– ident: ref40
  doi: 10.5194/nhess-13-221-2013
– ident: ref21
  doi: 10.1061/(ASCE)1076-0342(2007)13:3(185)
– ident: ref23
– ident: ref27
  doi: 10.1016/j.proeng.2015.08.542
– ident: ref14
  doi: 10.1680/ener.14.00028
– ident: ref39
  doi: 10.2495/SAFE-V8-N3-377-389
– ident: ref63
  doi: 10.1016/j.proeng.2016.06.168
– ident: ref16
  doi: 10.1371/journal.pone.0220338
– ident: ref25
  doi: 10.1111/jfr3.12028
– ident: ref54
– ident: ref58
  doi: 10.1016/j.ijdrr.2018.03.017
– ident: ref5
  doi: 10.5194/nhess-13-1375-2013
– ident: ref49
  doi: 10.1098/rsos.160023
– ident: ref50
  doi: 10.1061/(ASCE)IS.1943-555X.0000372
– ident: ref28
  doi: 10.1002/wat2.1370
– ident: ref37
  doi: 10.1007/s11069-016-2678-1
– ident: ref47
  doi: 10.2172/1184636
– ident: ref60
– ident: ref2
  doi: 10.1016/j.ijdrr.2018.03.006
– ident: ref35
  doi: 10.1016/j.ssci.2012.08.013
– ident: ref26
  doi: 10.3390/su12062330
– ident: ref59
  doi: 10.1007/978-3-319-95597-1_8
– ident: ref1
  doi: 10.1016/j.scitotenv.2020.141001
– ident: ref6
  doi: 10.5194/nhess-17-2109-2017
– ident: ref12
  doi: 10.1016/j.jtrangeo.2014.06.025
– ident: ref15
– ident: ref36
  doi: 10.5194/nhess-16-2357-2016
– ident: ref3
  doi: 10.3138/cart.53.4.2018-0013
– ident: ref18
  doi: 10.3390/w11030517
– ident: ref42
  doi: 10.1016/j.scitotenv.2018.01.138
– ident: ref22
  doi: 10.1061/41203(425)45
– ident: ref62
  doi: 10.1016/j.trpro.2016.05.012
– ident: ref41
  doi: 10.1016/j.physa.2018.05.081
– ident: ref38
  doi: 10.1038/s41467-019-10442-3
– ident: ref20
  doi: 10.1061/(ASCE)IS.1943-555X.0000533
– ident: ref24
  doi: 10.3390/su13010061
– ident: ref57
  doi: 10.1007/s11269-011-9968-x
– ident: ref51
  doi: 10.1016/j.trd.2017.06.020
SSID ssj0029540
Score 2.4785693
Snippet Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1955
SubjectTerms Analysis
Emergency preparedness
Failure
Flooding
Floods
Floodwater
Hydraulic models
Impact damage
Infrastructure
Infrastructure (Economics)
Metropolitan areas
Public health
Risk analysis
Risk assessment
Roads & highways
Threat evaluation
Traffic congestion
Transportation networks
Two dimensional models
Water distribution
Water distribution systems
Water engineering
Water supply
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF1gQn6JQkIWQGFDU2HESZyyIqkWCAVqpm-U4Nh1QQP0Y-PfcJU5FBmBhTZzEfrncvYvO7wi5EtICy7ZZgC1GA4F1VFkMRA6CCzpFkQiH_zsen5LRVDzM4tm3Vl9YE1bLA9fA9a0LU22Q9ych3NPkhXEudiZHqTKIpuh9IeY1yZRPteBctRUS2EEgkyiqt8sAWxH9cg4uJOAMZxeDkXDWCkmVcv9P_rkKOsM9suvZIh3Us9wnW7Y8INu-cfn885BMxmUdlKjDCnRab3pcUl0W1OglFr9TrB6nuno2RXWIRdP4dkWRY-oFHHULXSvJriH9PiLT4f3kbhT4RgmBETJZBeijmAzT1EGSCfBwlsvcWZualDvgbzmQtkLbEKiH45KZ0CZh5JzhTsoE60uPSad8L-0JobEDyJhmqckjYYTVNtIiFnlh8cZCdglrsFLGq4hjM4s3BdkE4qsqfBVnCvFViG-X3Gyu-ag1NH4dfYuvYDMS9a-rA2AVyluF-ssquuQSX6BChYsSS2he9RqeM355VgNI2CKeSVzLtR_k3mENRvsdCYAEimK1RvZaI-ETNO3TjZ0o7wJgTTgRAWwoO_2PFZ2RHUQHq9S46JEO2IQ9Bz60yi8q0_8Cde0GPA
  priority: 102
  providerName: Directory of Open Access Journals
Title Indirect flood impacts and cascade risk across interdependent linear infrastructures
URI https://www.proquest.com/docview/2544348539
https://doaj.org/article/ef07ac0144604e9cbdcff5fcb1954439
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N9gEkNG0wtDKorAlpDyhq7DiJ8zQBoiuTQBMfUt8sx7HhYUqhLQ_897uL3Up9GK_JNbHPl7vfXe8D4EQqhyjbVQmNGE0k5VFVOQI5NC6kFGUhPcU7rm-KyYP8Pc2nMeC2iGmVK53YKepmZilGPqJWWplE41L9fH5JaGoU_bsaR2hsQR9VsFI96J9f3vy5XbtcVR5KIhElJKrIslA2g6hFjtonVCWJ4LTKHIVF8A3T1HXw_5-e7ozP-BN8jKiRnYVj_gwfXLsH23GA-dPbHuyG8BsLVUX7cH_VBmPFPGWms1AMuWCmbZg1C0qKZ5RVzky3FkZdI-argbhLRtjTzPGqn5vQYfYV3fIv8DC-vL-YJHGAQmKlKpYJ6S6u0rL06Hxa7wWvVe2dK20pPOK6GsFcY1yKkMQLxW3qijTz3gqvVEF5pwfQa2et-wos98hCbnhp60xa6YzLjMxl3Th6sFQD4CveaRu7i9OQi78avQzit-74rQXXxG9N_B7A6fo3z6G3xrvU53Qka0rqi91dmM0fdfzMtPNpaSx5iUWKEmjrBleXe1tTYzvEXgP4TgeqqfNFS6k1j-YV33N1d6vP0JHLRKVoLz8ikZ_hHqyJlQrICWqWtUF5tEGJn6bdvL2SGx1VA-5pLciH79_-Bju0b8pLE_IIenja7hgR0LIewpYa_xpGYR92cYR_tV4FJA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAkhKAFsaWAhVpxQFFjx0mcQ4UKdNnt6wBbqTfjOHZ7QNk2uxXqn-I3diZOVtoDvfWaeLPx5_HMN848AHakcsiyXRFRi9FIUhxVkSKRQ-NCSlFm0tN5x-lZNjqXRxfpxQr863NhKKyy14mtoq6mls7I96iUViLRuBRfrm8i6hpFX1f7FhpBLI7d3V902Wb74--4vrtCDA8n30ZR11UgslJl84g2NFdxnnv0yKz3gpeq9M7lNhceyU6JDKcyLkY77YXiNnZZnHhvhVcqo2BMfO4TWJMJWnLKTB_-WDh4RRoSMJGTRCpLkpCkgxxJ7tVXqLgiwQmTFEVT8CVD2PYL-J9VaE3d8AU87zgqOwhC9RJWXL0B61279Ku7DXgWDvtYyGHahMm4DqaReYqDZyH1csZMXTFrZhSCzyiGnZn2XRjVqGj69rtzRkzXNHjVNybUs71t3OwVnD8KsK9htZ7W7g2w1COE3PDclom00hmXGJnKsnL0YKkGwHvstO1qmVNLjT8afRrCW7d4a8E14a0J7wF8XvzmOlTyeHD0V1qSxUiqwt1emDaXutvU2vk4N5Z80ixGebdlhW-XeltSGT1kegP4SAuqqc5GTYE8l-YW_2f866c-QLcxEYWiuXzqBvkpzsGaLi8CkaDSXEsjt5dGoiKwy7d7udGdIsI5LbbN1sO3P8D6aHJ6ok_GZ8dv4SlhQBFxQm7DKq68e4fca16-bwWewe_H3mH3Sk8_dQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRIaIIBomyAhUAcUNTEcRLnMKGNrVoZVNPYpN2M49jbAaUj7TTtX-Ov473YqdQDu-2avKbxz-_TeR8AH4S06GXbMqIRo5GgPKoyQ0cOjQspRZELR-cdP6b54Zn4dp6dr8HfvhaG0ip7ndgp6npm6Ix8RK20UoHGpRy5kBZxvD_-cvUnoglS9KW1H6fhWeTI3t5g-DbfmezjXn_kfHxw-vUwChMGIiNkvohIuBMZF4XD6Mw4x5NKVs7awhTcoeNTobdTaxujzXZcJia2eZw6Z7iTMqfETHzuA1gvKCoawPrewfT4ZBnulZkvx0QPJZJ5mvqSHfSYxKi5RDUW8YQQypBRebJiFrvpAf-zEZ3hGz-FjeCxsl3PYs9gzTab8CgMT7-83YQn_uiP-Yqm53A6abyhZI6y4pkvxJwz3dTM6Dkl5DPKaGe6exdGHSvafhjvgpHfq1u86lrtu9tet3b-As7uBdqXMGhmjX0FLHMIYaKTwlSpMMJqm2qRiaq29GAhh5D02CkTOpvTgI3fCiMcwlt1eCueKMJbEd5D-Lz8zZXv63En9R5tyZKSenJ3F2bthQoirqyLC20oQs1j5H5T1fh2mTMVNdVDv28I72lDFXXdaIh_L_Q1_s_k54naxSAy5aWktXwKRG6GazA6VEkgEtSoa4Vye4US1YJZvd3zjQpqCde0FKLXd99-Bw9RutT3yfRoCx4TBJQex8U2DHDj7Rt0xBbV28DxDH7dt5D9A3dwRQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+flood+impacts+and+cascade+risk+across+interdependent+linear+infrastructures&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Arrighi%2C+Chiara&rft.au=Pregnolato%2C+Maria&rft.au=Castelli%2C+Fabio&rft.date=2021-06-24&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=21&rft.issue=6&rft.spage=1955&rft.epage=1969&rft_id=info:doi/10.5194%2Fnhess-21-1955-2021&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon