Indirect flood impacts and cascade risk across interdependent linear infrastructures
Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from t...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 21; no. 6; pp. 1955 - 1969 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
24.06.2021
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr−1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures. |
---|---|
AbstractList | Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D-quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr.sup.-1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures. Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr−1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures. Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr −1 ) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures. Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of indirect impacts is less frequently achieved. Indirect impacts are not due to the physical contact with flood water but result, for example, from the reduced performance of infrastructures. Linear critical infrastructures (such as roads and pipes) have an interconnected nature that may lead to failure propagation, so that impacts extend far beyond the inundated areas and/or period. This work presents the risk analysis of two linear infrastructure systems, i.e. the water distribution system (WSS) and the road network system. The evaluation of indirect flood impacts on the two networks is carried out for four flooding scenarios, obtained by a coupled 1D–quasi-2D hydraulic model. Two methods are used for assessing the impacts on the WSS and on the road network: a pressure-driven demand network model and a transport network disruption model respectively. The analysis is focused on the identification of (i) common impact metrics, (ii) vulnerable elements exposed to the flood, (iii) similarities and differences of the methodological aspects for the two networks, and (iv) risks due to systemic interdependency. The study presents an application to the metropolitan area of Florence (Italy). When interdependencies are accounted for, results showed that the risk to the WSS in terms of population equivalent (PE/year) can be reduced by 71.5 % and 41.8 %, if timely repairs to the WSS stations are accomplished by 60 and 120 min respectively; the risk to WSS in terms of pipe length (km yr-1) reduces by 53.1 % and 15.6 %. The study highlights that resilience is enhanced by systemic risk-informed planning, which ensures timely interventions on critical infrastructures; however, for indirect impacts and cascade effects, temporal and spatial scales are difficult to define. Perspective research could further improve this work by applying a system-risk analysis to multiple urban infrastructures. |
Audience | Academic |
Author | Castelli, Fabio Arrighi, Chiara Pregnolato, Maria |
Author_xml | – sequence: 1 givenname: Chiara orcidid: 0000-0002-8096-7435 surname: Arrighi fullname: Arrighi, Chiara – sequence: 2 givenname: Maria orcidid: 0000-0003-0796-9618 surname: Pregnolato fullname: Pregnolato, Maria – sequence: 3 givenname: Fabio orcidid: 0000-0003-0304-0289 surname: Castelli fullname: Castelli, Fabio |
BookMark | eNp9kk-LFDEQxRtZwd3VL-CpwZOHXpN0Op0cl8U_AwuCrudQnVTGjD3JmKRBv73pGZEdEU8Jxe-9pKreVXMRYsCmeUnJzUAVfxO-Ys4dox1Vw9AxwuiT5pIKyTulJL14dH_WXOW8I4SpgZPL5mETrE9oSuvmGG3r9wcwJbcQbGsgG7DYJp-_tWBSzLn1oWCyeMBgMZR29gEh1apLkEtaTFkS5ufNUwdzxhe_z-vmy7u3D3cfuvuP7zd3t_ed4VKUDqxFKsk4OsJG4xyjk5wc4mhG5npKJjEIC0jUKByT1BAUpHfOMCelUEPfXzebk6-NsNOH5PeQfuoIXh8LMW01pOLNjBodGcEQyrkgHJWZbH1wcGaqA-O8V9Xr1cnrkOL3BXPRu7ikUL-v2UpwOTymtlBNa9uxJDB7n42-FUL0TEkuK3XzDwrWYe69qZtzvtbPBK_PBJUp-KNsYclZbz5_OmfZiT0uJKH70zgleg2DPoZBM6rXMOg1DFUk_xIZX6D4-k4CP_9P-gubbryc |
CitedBy_id | crossref_primary_10_1029_2021EF002581 crossref_primary_10_1016_j_accre_2023_05_005 crossref_primary_10_1016_j_rser_2022_113038 crossref_primary_10_1016_j_scitotenv_2023_168237 crossref_primary_10_54175_hsustain3020011 crossref_primary_10_1038_s41467_022_30848_w crossref_primary_10_1016_j_jenvman_2023_119592 crossref_primary_10_1016_j_heliyon_2023_e20432 crossref_primary_10_1111_jfr3_13030 crossref_primary_10_1038_s43247_022_00613_4 crossref_primary_10_1111_risa_17664 crossref_primary_10_3390_app13095595 crossref_primary_10_1016_j_ijdrr_2023_104189 crossref_primary_10_3390_jmse11112146 crossref_primary_10_3389_frwa_2023_1278205 crossref_primary_10_3390_w17070912 crossref_primary_10_1016_j_ress_2024_110473 crossref_primary_10_3390_w13202830 crossref_primary_10_1007_s11269_024_03766_3 crossref_primary_10_15292_acta_hydro_2024_03 crossref_primary_10_3390_w16030506 crossref_primary_10_1080_23789689_2024_2446124 crossref_primary_10_61790_vt_2024_17660 crossref_primary_10_1016_j_scs_2024_105294 crossref_primary_10_1061_NHREFO_NHENG_1971 crossref_primary_10_1177_08854122221137861 crossref_primary_10_3390_hydrology8030142 crossref_primary_10_1007_s11069_024_06791_y crossref_primary_10_1007_s13753_024_00573_7 crossref_primary_10_1061_JITSE4_ISENG_2447 crossref_primary_10_2166_nh_2023_088 crossref_primary_10_1016_j_jenvman_2022_115959 |
Cites_doi | 10.3311/FloodRisk2020.6.3 10.1111/j.1752-1688.1970.tb00528.x 10.3390/ijgi4010124 10.3390/w12061753 10.1007/b100669 10.1016/j.ijdrr.2018.02.018 10.2495/FRIAR080321 10.1007/BF01386390 10.3390/w10010081 10.5194/nhess-2020-375 10.5194/nhess-17-1-2017 10.5822/978-1-61091-756-8_3 10.1080/09640568.2019.1641474 10.1016/j.ijdrr.2018.01.019 10.1016/j.ress.2013.06.040 10.1111/jfr3.12288 10.2495/SAFE-V8-N4-515-527 10.1016/j.scitotenv.2018.11.191 10.1109/37.969131 10.1016/j.jenvman.2017.11.017 10.1016/j.ress.2016.02.009 10.5194/nhess-13-221-2013 10.1061/(ASCE)1076-0342(2007)13:3(185) 10.1016/j.proeng.2015.08.542 10.1680/ener.14.00028 10.2495/SAFE-V8-N3-377-389 10.1016/j.proeng.2016.06.168 10.1371/journal.pone.0220338 10.1111/jfr3.12028 10.1016/j.ijdrr.2018.03.017 10.5194/nhess-13-1375-2013 10.1098/rsos.160023 10.1061/(ASCE)IS.1943-555X.0000372 10.1002/wat2.1370 10.1007/s11069-016-2678-1 10.2172/1184636 10.1016/j.ijdrr.2018.03.006 10.1016/j.ssci.2012.08.013 10.3390/su12062330 10.1007/978-3-319-95597-1_8 10.1016/j.scitotenv.2020.141001 10.5194/nhess-17-2109-2017 10.1016/j.jtrangeo.2014.06.025 10.5194/nhess-16-2357-2016 10.3138/cart.53.4.2018-0013 10.3390/w11030517 10.1016/j.scitotenv.2018.01.138 10.1061/41203(425)45 10.1016/j.trpro.2016.05.012 10.1016/j.physa.2018.05.081 10.1038/s41467-019-10442-3 10.1061/(ASCE)IS.1943-555X.0000533 10.3390/su13010061 10.1007/s11269-011-9968-x 10.1016/j.trd.2017.06.020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/nhess-21-1955-2021 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Public Health |
EISSN | 1684-9981 |
EndPage | 1969 |
ExternalDocumentID | oai_doaj_org_article_ef07ac0144604e9cbdcff5fcb1954439 A666329848 10_5194_nhess_21_1955_2021 |
GroupedDBID | 123 29M 2WC 2XV 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c486t-adde18077f027cff21b8bfee7c72f310b656dae0976f281c0e603ffc2f8869533 |
IEDL.DBID | BENPR |
ISSN | 1684-9981 1561-8633 |
IngestDate | Wed Aug 27 01:17:33 EDT 2025 Fri Jul 25 09:53:27 EDT 2025 Tue Jun 17 21:42:43 EDT 2025 Tue Jun 10 20:34:16 EDT 2025 Fri Jun 27 04:10:54 EDT 2025 Tue Jul 01 02:46:10 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-adde18077f027cff21b8bfee7c72f310b656dae0976f281c0e603ffc2f8869533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0796-9618 0000-0002-8096-7435 0000-0003-0304-0289 |
OpenAccessLink | https://www.proquest.com/docview/2544348539?pq-origsite=%requestingapplication% |
PQID | 2544348539 |
PQPubID | 105722 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef07ac0144604e9cbdcff5fcb1954439 proquest_journals_2544348539 gale_infotracmisc_A666329848 gale_infotracacademiconefile_A666329848 gale_incontextgauss_ISR_A666329848 crossref_primary_10_5194_nhess_21_1955_2021 crossref_citationtrail_10_5194_nhess_21_1955_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-24 |
PublicationDateYYYYMMDD | 2021-06-24 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Natural hazards and earth system sciences |
PublicationYear | 2021 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref9 doi: 10.3311/FloodRisk2020.6.3 – ident: ref13 doi: 10.1111/j.1752-1688.1970.tb00528.x – ident: ref29 doi: 10.3390/ijgi4010124 – ident: ref4 doi: 10.3390/w12061753 – ident: ref33 doi: 10.1007/b100669 – ident: ref56 doi: 10.1016/j.ijdrr.2018.02.018 – ident: ref31 doi: 10.2495/FRIAR080321 – ident: ref19 doi: 10.1007/BF01386390 – ident: ref34 doi: 10.3390/w10010081 – ident: ref10 doi: 10.3311/FloodRisk2020.6.3 – ident: ref52 doi: 10.5194/nhess-2020-375 – ident: ref32 doi: 10.5194/nhess-17-1-2017 – ident: ref11 – ident: ref17 – ident: ref30 doi: 10.5822/978-1-61091-756-8_3 – ident: ref43 doi: 10.1080/09640568.2019.1641474 – ident: ref61 – ident: ref46 doi: 10.1016/j.ijdrr.2018.01.019 – ident: ref53 doi: 10.1016/j.ress.2013.06.040 – ident: ref45 doi: 10.1111/jfr3.12288 – ident: ref48 doi: 10.2495/SAFE-V8-N4-515-527 – ident: ref8 doi: 10.1016/j.scitotenv.2018.11.191 – ident: ref44 – ident: ref55 doi: 10.1109/37.969131 – ident: ref7 doi: 10.1016/j.jenvman.2017.11.017 – ident: ref64 doi: 10.1016/j.ress.2016.02.009 – ident: ref40 doi: 10.5194/nhess-13-221-2013 – ident: ref21 doi: 10.1061/(ASCE)1076-0342(2007)13:3(185) – ident: ref23 – ident: ref27 doi: 10.1016/j.proeng.2015.08.542 – ident: ref14 doi: 10.1680/ener.14.00028 – ident: ref39 doi: 10.2495/SAFE-V8-N3-377-389 – ident: ref63 doi: 10.1016/j.proeng.2016.06.168 – ident: ref16 doi: 10.1371/journal.pone.0220338 – ident: ref25 doi: 10.1111/jfr3.12028 – ident: ref54 – ident: ref58 doi: 10.1016/j.ijdrr.2018.03.017 – ident: ref5 doi: 10.5194/nhess-13-1375-2013 – ident: ref49 doi: 10.1098/rsos.160023 – ident: ref50 doi: 10.1061/(ASCE)IS.1943-555X.0000372 – ident: ref28 doi: 10.1002/wat2.1370 – ident: ref37 doi: 10.1007/s11069-016-2678-1 – ident: ref47 doi: 10.2172/1184636 – ident: ref60 – ident: ref2 doi: 10.1016/j.ijdrr.2018.03.006 – ident: ref35 doi: 10.1016/j.ssci.2012.08.013 – ident: ref26 doi: 10.3390/su12062330 – ident: ref59 doi: 10.1007/978-3-319-95597-1_8 – ident: ref1 doi: 10.1016/j.scitotenv.2020.141001 – ident: ref6 doi: 10.5194/nhess-17-2109-2017 – ident: ref12 doi: 10.1016/j.jtrangeo.2014.06.025 – ident: ref15 – ident: ref36 doi: 10.5194/nhess-16-2357-2016 – ident: ref3 doi: 10.3138/cart.53.4.2018-0013 – ident: ref18 doi: 10.3390/w11030517 – ident: ref42 doi: 10.1016/j.scitotenv.2018.01.138 – ident: ref22 doi: 10.1061/41203(425)45 – ident: ref62 doi: 10.1016/j.trpro.2016.05.012 – ident: ref41 doi: 10.1016/j.physa.2018.05.081 – ident: ref38 doi: 10.1038/s41467-019-10442-3 – ident: ref20 doi: 10.1061/(ASCE)IS.1943-555X.0000533 – ident: ref24 doi: 10.3390/su13010061 – ident: ref57 doi: 10.1007/s11269-011-9968-x – ident: ref51 doi: 10.1016/j.trd.2017.06.020 |
SSID | ssj0029540 |
Score | 2.4785693 |
Snippet | Floods are one of the most frequent and damaging natural threats worldwide. Whereas the assessment of direct impacts is well advanced, the evaluation of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1955 |
SubjectTerms | Analysis Emergency preparedness Failure Flooding Floods Floodwater Hydraulic models Impact damage Infrastructure Infrastructure (Economics) Metropolitan areas Public health Risk analysis Risk assessment Roads & highways Threat evaluation Traffic congestion Transportation networks Two dimensional models Water distribution Water distribution systems Water engineering Water supply |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF1gQn6JQkIWQGFDU2HESZyyIqkWCAVqpm-U4Nh1QQP0Y-PfcJU5FBmBhTZzEfrncvYvO7wi5EtICy7ZZgC1GA4F1VFkMRA6CCzpFkQiH_zsen5LRVDzM4tm3Vl9YE1bLA9fA9a0LU22Q9ych3NPkhXEudiZHqTKIpuh9IeY1yZRPteBctRUS2EEgkyiqt8sAWxH9cg4uJOAMZxeDkXDWCkmVcv9P_rkKOsM9suvZIh3Us9wnW7Y8INu-cfn885BMxmUdlKjDCnRab3pcUl0W1OglFr9TrB6nuno2RXWIRdP4dkWRY-oFHHULXSvJriH9PiLT4f3kbhT4RgmBETJZBeijmAzT1EGSCfBwlsvcWZualDvgbzmQtkLbEKiH45KZ0CZh5JzhTsoE60uPSad8L-0JobEDyJhmqckjYYTVNtIiFnlh8cZCdglrsFLGq4hjM4s3BdkE4qsqfBVnCvFViG-X3Gyu-ag1NH4dfYuvYDMS9a-rA2AVyluF-ssquuQSX6BChYsSS2he9RqeM355VgNI2CKeSVzLtR_k3mENRvsdCYAEimK1RvZaI-ETNO3TjZ0o7wJgTTgRAWwoO_2PFZ2RHUQHq9S46JEO2IQ9Bz60yi8q0_8Cde0GPA priority: 102 providerName: Directory of Open Access Journals |
Title | Indirect flood impacts and cascade risk across interdependent linear infrastructures |
URI | https://www.proquest.com/docview/2544348539 https://doaj.org/article/ef07ac0144604e9cbdcff5fcb1954439 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N9gEkNG0wtDKorAlpDyhq7DiJ8zQBoiuTQBMfUt8sx7HhYUqhLQ_897uL3Up9GK_JNbHPl7vfXe8D4EQqhyjbVQmNGE0k5VFVOQI5NC6kFGUhPcU7rm-KyYP8Pc2nMeC2iGmVK53YKepmZilGPqJWWplE41L9fH5JaGoU_bsaR2hsQR9VsFI96J9f3vy5XbtcVR5KIhElJKrIslA2g6hFjtonVCWJ4LTKHIVF8A3T1HXw_5-e7ozP-BN8jKiRnYVj_gwfXLsH23GA-dPbHuyG8BsLVUX7cH_VBmPFPGWms1AMuWCmbZg1C0qKZ5RVzky3FkZdI-argbhLRtjTzPGqn5vQYfYV3fIv8DC-vL-YJHGAQmKlKpYJ6S6u0rL06Hxa7wWvVe2dK20pPOK6GsFcY1yKkMQLxW3qijTz3gqvVEF5pwfQa2et-wos98hCbnhp60xa6YzLjMxl3Th6sFQD4CveaRu7i9OQi78avQzit-74rQXXxG9N_B7A6fo3z6G3xrvU53Qka0rqi91dmM0fdfzMtPNpaSx5iUWKEmjrBleXe1tTYzvEXgP4TgeqqfNFS6k1j-YV33N1d6vP0JHLRKVoLz8ikZ_hHqyJlQrICWqWtUF5tEGJn6bdvL2SGx1VA-5pLciH79_-Bju0b8pLE_IIenja7hgR0LIewpYa_xpGYR92cYR_tV4FJA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAkhKAFsaWAhVpxQFFjx0mcQ4UKdNnt6wBbqTfjOHZ7QNk2uxXqn-I3diZOVtoDvfWaeLPx5_HMN848AHakcsiyXRFRi9FIUhxVkSKRQ-NCSlFm0tN5x-lZNjqXRxfpxQr863NhKKyy14mtoq6mls7I96iUViLRuBRfrm8i6hpFX1f7FhpBLI7d3V902Wb74--4vrtCDA8n30ZR11UgslJl84g2NFdxnnv0yKz3gpeq9M7lNhceyU6JDKcyLkY77YXiNnZZnHhvhVcqo2BMfO4TWJMJWnLKTB_-WDh4RRoSMJGTRCpLkpCkgxxJ7tVXqLgiwQmTFEVT8CVD2PYL-J9VaE3d8AU87zgqOwhC9RJWXL0B61279Ku7DXgWDvtYyGHahMm4DqaReYqDZyH1csZMXTFrZhSCzyiGnZn2XRjVqGj69rtzRkzXNHjVNybUs71t3OwVnD8KsK9htZ7W7g2w1COE3PDclom00hmXGJnKsnL0YKkGwHvstO1qmVNLjT8afRrCW7d4a8E14a0J7wF8XvzmOlTyeHD0V1qSxUiqwt1emDaXutvU2vk4N5Z80ixGebdlhW-XeltSGT1kegP4SAuqqc5GTYE8l-YW_2f866c-QLcxEYWiuXzqBvkpzsGaLi8CkaDSXEsjt5dGoiKwy7d7udGdIsI5LbbN1sO3P8D6aHJ6ok_GZ8dv4SlhQBFxQm7DKq68e4fca16-bwWewe_H3mH3Sk8_dQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRIaIIBomyAhUAcUNTEcRLnMKGNrVoZVNPYpN2M49jbAaUj7TTtX-Ov473YqdQDu-2avKbxz-_TeR8AH4S06GXbMqIRo5GgPKoyQ0cOjQspRZELR-cdP6b54Zn4dp6dr8HfvhaG0ip7ndgp6npm6Ix8RK20UoHGpRy5kBZxvD_-cvUnoglS9KW1H6fhWeTI3t5g-DbfmezjXn_kfHxw-vUwChMGIiNkvohIuBMZF4XD6Mw4x5NKVs7awhTcoeNTobdTaxujzXZcJia2eZw6Z7iTMqfETHzuA1gvKCoawPrewfT4ZBnulZkvx0QPJZJ5mvqSHfSYxKi5RDUW8YQQypBRebJiFrvpAf-zEZ3hGz-FjeCxsl3PYs9gzTab8CgMT7-83YQn_uiP-Yqm53A6abyhZI6y4pkvxJwz3dTM6Dkl5DPKaGe6exdGHSvafhjvgpHfq1u86lrtu9tet3b-As7uBdqXMGhmjX0FLHMIYaKTwlSpMMJqm2qRiaq29GAhh5D02CkTOpvTgI3fCiMcwlt1eCueKMJbEd5D-Lz8zZXv63En9R5tyZKSenJ3F2bthQoirqyLC20oQs1j5H5T1fh2mTMVNdVDv28I72lDFXXdaIh_L_Q1_s_k54naxSAy5aWktXwKRG6GazA6VEkgEtSoa4Vye4US1YJZvd3zjQpqCde0FKLXd99-Bw9RutT3yfRoCx4TBJQex8U2DHDj7Rt0xBbV28DxDH7dt5D9A3dwRQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+flood+impacts+and+cascade+risk+across+interdependent+linear+infrastructures&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Arrighi%2C+Chiara&rft.au=Pregnolato%2C+Maria&rft.au=Castelli%2C+Fabio&rft.date=2021-06-24&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=21&rft.issue=6&rft.spage=1955&rft.epage=1969&rft_id=info:doi/10.5194%2Fnhess-21-1955-2021&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |