Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks

The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed st...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 17; p. 7311
Main Authors Lei, Hengda, Cao, Li, Li, Xiuhua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed state and non-closed state and treats them as normal and abnormal states, respectively. Since the non-closed state includes the fully open state and the misalignment state, while the latter may lead to brake abnormally, it is very necessary to further detect the misalignment state from the non-closed state. In this paper, we propose a coarse-to-fine localization method to achieve this goal. Firstly, the localization result of an angle cock is obtained by using the YOLOv4 model. Following that, the SVM model combined with the HOG feature of the localization result of an angle cock is used to further obtain its handle localization result. After that, the HOG feature of the sub-image only containing the handle localization result continues to be used in the SVM model to detect whether the angle cock is in the non-closed state or not. When the angle cock is in the non-closed state, its handle curve is fitted by binarization and window search, and the tilt angle of the handle is calculated by the minimum bounding rectangle. Finally, the misalignment state is detected when the tilt angle of the handle is less than the threshold. The effectiveness and robustness of the proposed method are verified by extensive experiments, and the accuracy of misalignment state detection for angle cocks reaches 96.49%.
AbstractList The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed state and non-closed state and treats them as normal and abnormal states, respectively. Since the non-closed state includes the fully open state and the misalignment state, while the latter may lead to brake abnormally, it is very necessary to further detect the misalignment state from the non-closed state. In this paper, we propose a coarse-to-fine localization method to achieve this goal. Firstly, the localization result of an angle cock is obtained by using the YOLOv4 model. Following that, the SVM model combined with the HOG feature of the localization result of an angle cock is used to further obtain its handle localization result. After that, the HOG feature of the sub-image only containing the handle localization result continues to be used in the SVM model to detect whether the angle cock is in the non-closed state or not. When the angle cock is in the non-closed state, its handle curve is fitted by binarization and window search, and the tilt angle of the handle is calculated by the minimum bounding rectangle. Finally, the misalignment state is detected when the tilt angle of the handle is less than the threshold. The effectiveness and robustness of the proposed method are verified by extensive experiments, and the accuracy of misalignment state detection for angle cocks reaches 96.49%.
Audience Academic
Author Lei, Hengda
Li, Xiuhua
Cao, Li
AuthorAffiliation 1 School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
2 Wuhan Huamu Information Technology Co., Ltd., Wuhan 430070, China
AuthorAffiliation_xml – name: 1 School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
– name: 2 Wuhan Huamu Information Technology Co., Ltd., Wuhan 430070, China
Author_xml – sequence: 1
  givenname: Hengda
  surname: Lei
  fullname: Lei, Hengda
– sequence: 2
  givenname: Li
  orcidid: 0009-0005-1848-0051
  surname: Cao
  fullname: Cao, Li
– sequence: 3
  givenname: Xiuhua
  surname: Li
  fullname: Li, Xiuhua
BookMark eNpdkk1vFDEMhiNURD_gwD8YiQscpjgfM5k5odXSQsUiDvQeJRlnyDKblCRbCX59U7aqKMohkf34tR37lByFGJCQ1xTOOR_hfWacSskpfUZOqGCiHRiDo3_ex-Q05y0A45wPL8gxl_0gZS9PyJd11CljW2J76QM2m2j14v_o4mNoXEzNRyxoiw9z89Xn6prDDkNpvhddsImuWYV5wWYd7c_8kjx3esn46uE-I9eXF9frz-3m26er9WrTWjH0pdXaOTE5ATCaCZzDTiOOfdeZDgRzYBEZMONc13disECdc9U8GjFKB5qfkauD7BT1Vt0kv9Ppt4raq7-GmGalU_F2QaUlZYba0XSjFRTY0Bs-MQ0TpyCNsVXrw0HrZm92ONnaWtLLE9GnnuB_qDneKgpiBM5oVXj7oJDirz3monY-W1wWHTDus6o5Oa8kg4q--Q_dxn0K9avuKVYHOEhWqfMDNevagQ8u1sS2ngl33tbBO1_tK9kL0Xd85DXg3SHApphzQvdYPgV1vx_qcT_4HeO8rG8
CitedBy_id crossref_primary_10_3390_s23239360
Cites_doi 10.1016/j.measurement.2021.109742
10.1049/iet-its.2015.0026
10.1109/TII.2021.3056554
10.1016/j.neucom.2016.10.018
10.1109/TII.2022.3224989
10.1177/0954409716674983
10.1016/j.asoc.2020.106907
10.1016/j.autcon.2016.06.008
10.1007/s13042-021-01488-1
10.1016/j.aej.2020.10.044
10.1007/s13042-021-01274-z
10.1177/0954409715619603
10.1109/TIE.2020.2994868
10.1177/0954409713495532
10.3390/s22134720
10.1109/TII.2020.3021688
10.1109/TNNLS.2020.3039675
10.3390/s21072547
10.1016/j.engfailanal.2021.105446
10.1016/j.hspr.2022.11.001
10.3390/s21103339
10.1177/0954409717734397
10.1109/TIM.2015.2479101
10.1177/0954409715588119
10.3390/s23041927
10.1109/TVT.2019.2949603
10.1016/j.measurement.2021.109330
10.1109/TIM.2019.2955799
10.1016/j.isatra.2020.07.011
10.3390/s22124617
10.1049/iet-its.2016.0338
10.1016/j.patcog.2020.107623
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23177311
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest Medical & Health Databases)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection (ProQuest Medical & Health Databases)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc
A764465393
10_3390_s23177311
GrantInformation_xml – fundername: Research Funding of Wuhan Polytechnic University
  grantid: 2023RZ036
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
BGLVJ
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c486t-aaff4df4009bd0ffe5aee9655b5042f0cee202bff56548c01fff2f09b497f0a3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:13:35 EDT 2024
Tue Sep 17 21:29:45 EDT 2024
Fri Oct 25 21:41:05 EDT 2024
Thu Oct 10 16:18:09 EDT 2024
Fri Feb 02 04:40:55 EST 2024
Thu Sep 26 16:15:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-aaff4df4009bd0ffe5aee9655b5042f0cee202bff56548c01fff2f09b497f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0005-1848-0051
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490321/
PMID 37687767
PQID 2862731872
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490321
proquest_miscellaneous_2863303220
proquest_journals_2862731872
gale_infotracacademiconefile_A764465393
crossref_primary_10_3390_s23177311
PublicationCentury 2000
PublicationDate 20230822
PublicationDateYYYYMMDD 2023-08-22
PublicationDate_xml – month: 8
  year: 2023
  text: 20230822
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhou (ref_25) 2018; 12
Cha (ref_17) 2016; 71
Bai (ref_5) 2021; 182
Belagoune (ref_9) 2021; 177
Liu (ref_13) 2016; 10
Saeid (ref_28) 2021; 21
Zhou (ref_8) 2013; 228
Li (ref_15) 2016; 230
Cao (ref_26) 2022; 1
Shi (ref_29) 2021; 68
Guo (ref_24) 2018; 232
Zhang (ref_1) 2022; 19
Liu (ref_14) 2016; 65
Wang (ref_30) 2022; 33
Zou (ref_11) 2021; 60
Liu (ref_16) 2016; 230
Chadha (ref_6) 2020; 106
Zou (ref_31) 2020; 69
ref_23
ref_22
Zhang (ref_2) 2021; 17
Zhang (ref_4) 2021; 127
ref_3
Chen (ref_12) 2020; 17
Zheng (ref_18) 2018; 232
Tao (ref_20) 2021; 12
ref_27
Chen (ref_10) 2021; 100
Zhang (ref_7) 2020; 69
Sun (ref_19) 2017; 222
Tao (ref_21) 2022; 13
Tang (ref_32) 2021; 111
References_xml – volume: 182
  start-page: 109742
  year: 2021
  ident: ref_5
  article-title: An optimized railway fastener detection method based on modified Faster R-CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109742
  contributor:
    fullname: Bai
– volume: 10
  start-page: 130
  year: 2016
  ident: ref_13
  article-title: Vision-based fault inspection of small mechanical components for train safety
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2015.0026
  contributor:
    fullname: Liu
– volume: 17
  start-page: 7423
  year: 2021
  ident: ref_2
  article-title: A Unified Light Framework for Real-Time Fault Detection of Freight Train Images
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3056554
  contributor:
    fullname: Zhang
– volume: 222
  start-page: 127
  year: 2017
  ident: ref_19
  article-title: Automatic multi-fault recognition in TFDS based on convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.018
  contributor:
    fullname: Sun
– volume: 19
  start-page: 9082
  year: 2022
  ident: ref_1
  article-title: Visual Fault Detection of Multi-scale Key Components in Freight Trains
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3224989
  contributor:
    fullname: Zhang
– volume: 232
  start-page: 471
  year: 2018
  ident: ref_18
  article-title: An automatic online inspection system for a coupler yoke for freight trains
  publication-title: J. Rail Rapid Transit
  doi: 10.1177/0954409716674983
  contributor:
    fullname: Zheng
– volume: 100
  start-page: 106907
  year: 2021
  ident: ref_10
  article-title: Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106907
  contributor:
    fullname: Chen
– volume: 71
  start-page: 181
  year: 2016
  ident: ref_17
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.06.008
  contributor:
    fullname: Cha
– volume: 13
  start-page: 1781
  year: 2022
  ident: ref_21
  article-title: Fault detection of train mechanical parts using multi-mode aggregation feature enhanced convolution neural network
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01488-1
  contributor:
    fullname: Tao
– volume: 60
  start-page: 1209
  year: 2021
  ident: ref_11
  article-title: Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.044
  contributor:
    fullname: Zou
– volume: 12
  start-page: 1789
  year: 2021
  ident: ref_20
  article-title: Fault detection of railway freight cars mechanical components based on multi-feature fusion convolutional neural network
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01274-z
  contributor:
    fullname: Tao
– volume: 230
  start-page: 1629
  year: 2016
  ident: ref_16
  article-title: Automated status inspection of fastening bolts on freight trains using a machine vision approach
  publication-title: J. Rail Rapid Transit
  doi: 10.1177/0954409715619603
  contributor:
    fullname: Liu
– volume: 68
  start-page: 6248
  year: 2021
  ident: ref_29
  article-title: Fault Diagnosis of an Autonomous Vehicle with an Improved SVM Algorithm Subject to Unbalanced Dataset
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2994868
  contributor:
    fullname: Shi
– volume: 228
  start-page: 794
  year: 2013
  ident: ref_8
  article-title: Automated visual inspection of angle cocks during train operation
  publication-title: J. Rail Rapid Transit
  doi: 10.1177/0954409713495532
  contributor:
    fullname: Zhou
– ident: ref_22
  doi: 10.3390/s22134720
– volume: 17
  start-page: 4827
  year: 2020
  ident: ref_12
  article-title: Construction of a hierarchical feature enhancement network and its application in fault recognition
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3021688
  contributor:
    fullname: Chen
– volume: 33
  start-page: 1066
  year: 2022
  ident: ref_30
  article-title: Multitask Attention Network for Lane Detection and Fitting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3039675
  contributor:
    fullname: Wang
– volume: 21
  start-page: 2547
  year: 2021
  ident: ref_28
  article-title: Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles
  publication-title: Sensors
  doi: 10.3390/s21072547
  contributor:
    fullname: Saeid
– volume: 127
  start-page: 105466
  year: 2021
  ident: ref_4
  article-title: A hierarchical method based on improved deep forest and case-based reasoning for railway turnout fault diagnosis
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105446
  contributor:
    fullname: Zhang
– volume: 1
  start-page: 63
  year: 2022
  ident: ref_26
  article-title: Rail fastener detection of heavy railway based on deep learning
  publication-title: High Speed Railw.
  doi: 10.1016/j.hspr.2022.11.001
  contributor:
    fullname: Cao
– ident: ref_27
  doi: 10.3390/s21103339
– volume: 232
  start-page: 1500
  year: 2018
  ident: ref_24
  article-title: Automated visual inspection of multipattern train components using gradient information and feature fusion under the illumination-variant condition
  publication-title: J. Rail Rapid Transit
  doi: 10.1177/0954409717734397
  contributor:
    fullname: Guo
– volume: 65
  start-page: 2
  year: 2016
  ident: ref_14
  article-title: Automated Visual Inspection System for Bogie Block Key Under Complex Freight Train Environment
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2479101
  contributor:
    fullname: Liu
– volume: 230
  start-page: 1213
  year: 2016
  ident: ref_15
  article-title: Online inspection system for the automatic detection of bolt defects on a freight train
  publication-title: J. Rail Rapid Transit
  doi: 10.1177/0954409715588119
  contributor:
    fullname: Li
– ident: ref_3
  doi: 10.3390/s23041927
– volume: 69
  start-page: 41
  year: 2020
  ident: ref_31
  article-title: Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2949603
  contributor:
    fullname: Zou
– volume: 177
  start-page: 109330
  year: 2021
  ident: ref_9
  article-title: Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109330
  contributor:
    fullname: Belagoune
– volume: 69
  start-page: 5274
  year: 2020
  ident: ref_7
  article-title: Real-Time Vision-Based System of Fault Detection for Freight Trains
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2955799
  contributor:
    fullname: Zhang
– volume: 106
  start-page: 330
  year: 2020
  ident: ref_6
  article-title: Bidirectional deep recurrent neural networks for process fault classification
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.07.011
  contributor:
    fullname: Chadha
– ident: ref_23
  doi: 10.3390/s22124617
– volume: 12
  start-page: 550
  year: 2018
  ident: ref_25
  article-title: Automated visual inspection of target parts for train safety based on deep learning
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2016.0338
  contributor:
    fullname: Zhou
– volume: 111
  start-page: 107623
  year: 2021
  ident: ref_32
  article-title: A review of lane detection methods based on deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107623
  contributor:
    fullname: Tang
SSID ssj0023338
Score 2.4522128
Snippet The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains....
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 7311
SubjectTerms Accuracy
Air freight
Analysis
angle cock
Braking systems
Cameras
Deep learning
False alarms
handle localization
Localization
misalignment state
Neural networks
non-closed state
Osmosis
Support vector machines
Trains
Ventilation
Vision systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6hnOihAtqqSwG5CImTFT_25WNIG6HyOIHEzbK9dhoJ7SIS_n_H3k2UtAcuvdqjlfebHc_Mjv0NwEXta4d5g6OiVIHmteXUcu5pga64dqVgMh3GvLsvrx_zX0_F01arr3gmrKcH7oEbm4oLy52yhXJ59IallY0wrMG4pLLWpd2XqXUyNaRaEjOvnkdIYlI_XmIUU1WS8x3vk0j6_92K_z4eueVvZgfwcQgUyaRf4CHs-fYIPmzRB36Cm2mHaamnq47OcJTcRr803KskGIySHz6WCFCW3C2WODVPpX-SAkzSBTJp58-eTHFLXH6Gh9nPh-k1HZojUJfX5YoaE0LeBDRBZRsWgi-M96osClugHQaGzk8wYUMoYmd4x3gIAYeVzVUVmJFfYNR2rf8KpDSIlvXe5ywgwsEwhZJOGteIvKpVBudrzPRLT4GhMXWIwOoNsBlcRTQ3ApG1Og2gLvWgS_2eLjO4jLrQ0bYQeWeGKwK4zshSpSdVmfjglMzgZK0uPRjdUuPzMBjjdSUy-L6ZRnOJNRDT-u4tyUj02kKwDOodNe8sfXemXfxOxNs8lkml4Mf_42W_wX5sXR__TwtxAqPV65s_xQBnZc_St_wHA3H6YQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0-qIPpX7h2laiCD6FJtnsR57keu1R1BaRCn0LSTY5C7Jbu9f_30kud-0p-JoMu2EmM_ObZDID8KH1rcO4wVFRq0Blazm1nHtaoStuXS1YmZIxzy_qsx_y81V1lQ_cxpxWubaJyVB3g4tn5EcCoXeDG7ARn25-09g1Kt6u5hYaj2FHYKQgJrBzfHrx7fsm5CoxAlvVEyoxuD8aEc00-BW-5YVSsf5_TfLfaZIP_M58D3YzYCTTlYSfwSPfP4enD8oIvoAvswHDU0-XA53jKPka_VN-X0kQlJITH68KkJacX484tUgpACQBTTIEMu0XvzyZoWkcX8Ll_PRydkZzkwTqZFsvqTEhyC6gKirbsRB8ZbxXdVXZCvUxMHSCggkbQhU7xDvGQwg4rKxUTWCmfAWTfuj9ayC1QW5Z771kQXIWDFNI6UrjOiGbVhXwfs0zfbMqhaExhIiM1RvGFnAcubkhiNWr08Bwu9BZGbRpuLDcKVspJyPCqW3ZCcM6xJqNta6Aj1EWOuoYct6Z_FQA1xmrVelpU6e6cKos4GAtLp2Vb9T3W6WAd5tpVJt4F2J6P9wlmhK9txCsgHZLzFtL357pr3-mAtw8XpeWgr_5_9_34UlsTh9PoIU4gMny9s4fIoRZ2rd5n_4BUrzzZw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLaqcoED4ikGCgoIiVMgr3nkgNCysKqAcmql3kZJJlkqVTOwu5Xg32NnZ1cd4Mg1sUaJHcf22PkM8LKJTcC4IXBV2cRN4yX3UkZeoiluQqWEzsWYJ1-r4zPz6bw8P4Bdj82Rget_hnbUT-psdfn6549f71Dh31LEiSH7mzX6KHWt6YXvDUV4XFTBZ_bJBKUxDNuCCk3JJ6YoI_b_fS__WSt5zfgs7sDt0Wtks62Y78JB7O_BrWtYgvfh83zAjUS-GfgCR9kXMlLjI0uGnin7EClfgLTs5GKNU8tcB8Cyt8mGxGb98jKyOd6P6wdwuvh4Oj_mY6cEHkxTbbhzKZkuoT5a34mUYulitFVZ-hKVMgm0hEoon1JJbeKDkCklHLbe2DoJpx_CYT_08RGwyiG3fIzRiGSkSE5YpAzahU6ZurEFvNjxrP2-xcNoMY4gxrZ7xhbwnri5JyAI6zwwrJbtqBGtq6XyMlhf2mDIzam87pQTHTqctfehgFcki5ZEj5wPbnwvgOskyKp2VlcZHM7qAo524mp3B6jF76FnJptaFfB8P426QwkR18fhKtNoNOFKiQKaiZgnS5_O9BffMgq3pJypVvLx_9jsE7hJfezpZ7VSR3C4WV3Fp-jtbPyzfJZ_A2z-AGg
  priority: 102
  providerName: Scholars Portal
Title Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks
URI https://www.proquest.com/docview/2862731872
https://search.proquest.com/docview/2863303220
https://pubmed.ncbi.nlm.nih.gov/PMC10490321
https://doaj.org/article/a712b1c9b59c410286b3d2a0d3107bbc
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615QIHxFMslMggJE7b-LW79jENDRWQqkJFym1le-0Qqd2tmvT_M3Z2owZuXHywZ1fWPDwz9vgzwCfllcO8weW81CGXyrLcMubzAl2xciWnIhVjzi_K81_y26JYHEA53IVJRfvOrk7a65uTdvU71Vbe3rjxUCc2vpxPWTyuEpyND-EQNXTI0fs0S2DWtcUQEpjQj9cYwVSVYPFNGLQmFeFr9pxQwur_d0X-u0rygduZPYOnfbxIJtt5PYcD376AJw9QBF_C92mH2anPN10-w17yI7qn_nolwZiUfPHxpABpyXy1xqFlqgAgKc4kXSCTdnntyRRXxvUruJqdXU3P8_6NhNxJVW5yY0KQTUBL1LahIfjCeK_LorAFmmOg6AM55TaEIj4Q7ygLIWC3tlJXgRrxGo7arvVvgJQGGWe995IGyWgwVCOlE8Y1XFZKZ_Bx4Fl9u0XCqDGDiDyudzzO4DRyc0cQwatTR3e3rHsR1qZi3DKnbaGdjAFOaUXDDW0w1KysdRl8jrKoo4kh553pbwrgPCNYVT2pygQLp0UGx4O46t721jX-D2MypiqewYfdMFpNPAoxre_uE41A5805zUDtiXlv6vsjqI4Jf3tQv7f__-k7eBzfrY-b05wfw9Hm7t6_x-hmY0eo0osKWzX7OoJHp2cXlz9HaacA27lUo6TsfwDsawCY
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BOQAHxFMsFDAIiZNV2_v0CYVAFGjSU5Bys2yvnVZCu6VJ_z8zziZtQOJqj3atGc_LHn8D8LEJjce8wXNV6ciLxknupAy8RFfc-EqJPBVjzs-q6c_ix7JcDgdu66GscmcTk6Fue09n5CcKQ-8aN2CtPl_-5tQ1im5XhxYad-Ee4XARdn69vEm4csy_tmhCOab2J2uMZWr8hjzwQQmq_1-D_HeR5C2vM3kMj4ZwkY228n0Cd0L3FB7eAhF8BqfjHpPTwDc9n-Aom5F3Gl5XMgxJ2ddAFwVIy-YXa5xapQIAlsJM1kc26la_AhujYVw_h8Xk22I85UOLBO6Lptpwa2Ms2oiKqF0rYgylDUFXZelK1MYo0AUqoVyMJfWH90LGGHFYu0LXUdj8BRx1fRdeAqsscsuFEAoRCymiFRopfW59q4q60Rl82PHMXG6BMAwmEMRYs2dsBl-Im3sCwq5OA_3VygyqYGwtlZNeu1L7guKbyuWtsqLFSLN2zmfwiWRhSMOQ894ODwVwnYRVZUZ1lVDhdJ7B8U5cZlC9tbnZKBm830-j0tBNiO1Cf51ocvTdSokMmgMxHyz9cKa7OE_w25IuS3MlX_3_7-_g_nQxn5nZ97PT1_CA2tTTWbRSx3C0uboObzCY2bi3acf-AdYW9PI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxcNAriD6In3Rr1SiCT-GSbPYjT3K99qi2PYpU6FtIsslZkN3avf7_TvZyZ0_B12TYDfM9mckMwKfa1w7jBkdFqQKVteXUcu5pgaa4dqVg-VCMeTYvj3_Ib5fFZap_6lNZ5VonDoq66Vy8Ix8LdL0rZMBKjEMqizg_nH25_k3jBKmYaU3jNB7CTiWRq0awc3A0P_--Cb9yjMZWvYVyDPTHPXo2FX6Rb1mkoXH_v-r575LJezZo9gyeJueRTFbUfg4PfPsCntxrKfgSTqYdhqqeLjs6w1VyGm1VemtJ0EElhz6mDRCWnF31uLUYygHI4HSSLpBJu_jlyRTVZP8KLmZHF9NjmgYmUCfrckmNCUE2AcVS2YaF4AvjvSqLwhYom4GhQRRM2BCKOC3eMR5CwGVlpaoCM_lrGLVd63eBlAaxZb33kgXJWTBMIaTLjWuErGqVwcc1zvT1qi2GxnAiIlZvEJvBQcTmBiB2sh4WupuFToKhTcWF5U7ZQjkZvZ3S5o0wrEG_s7LWZfA50kJHeUPMO5OeDeA5Y-cqPanKoUecyjPYX5NLJ0Hs9R-2yeDDZhtFKOZFTOu72wEmR0suBMug3iLz1tG3d9qrn0Mzbh5Tp7nge___-3t4hOyqT7_OT97A4zizPl5MC7EPo-XNrX-Lns3Svkssewdc1_qV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coarse-to-Fine+Localization+for+Detecting+Misalignment+State+of+Angle+Cocks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hengda+Lei&rft.au=Li+Cao&rft.au=Xiuhua+Li&rft.date=2023-08-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft.spage=7311&rft_id=info:doi/10.3390%2Fs23177311&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon