Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks
The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed st...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 17; p. 7311 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
22.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed state and non-closed state and treats them as normal and abnormal states, respectively. Since the non-closed state includes the fully open state and the misalignment state, while the latter may lead to brake abnormally, it is very necessary to further detect the misalignment state from the non-closed state. In this paper, we propose a coarse-to-fine localization method to achieve this goal. Firstly, the localization result of an angle cock is obtained by using the YOLOv4 model. Following that, the SVM model combined with the HOG feature of the localization result of an angle cock is used to further obtain its handle localization result. After that, the HOG feature of the sub-image only containing the handle localization result continues to be used in the SVM model to detect whether the angle cock is in the non-closed state or not. When the angle cock is in the non-closed state, its handle curve is fitted by binarization and window search, and the tilt angle of the handle is calculated by the minimum bounding rectangle. Finally, the misalignment state is detected when the tilt angle of the handle is less than the threshold. The effectiveness and robustness of the proposed method are verified by extensive experiments, and the accuracy of misalignment state detection for angle cocks reaches 96.49%. |
---|---|
AbstractList | The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains. Although the current research for fault detection of angle cocks has achieved high accuracy, it only focuses on the detection of the closed state and non-closed state and treats them as normal and abnormal states, respectively. Since the non-closed state includes the fully open state and the misalignment state, while the latter may lead to brake abnormally, it is very necessary to further detect the misalignment state from the non-closed state. In this paper, we propose a coarse-to-fine localization method to achieve this goal. Firstly, the localization result of an angle cock is obtained by using the YOLOv4 model. Following that, the SVM model combined with the HOG feature of the localization result of an angle cock is used to further obtain its handle localization result. After that, the HOG feature of the sub-image only containing the handle localization result continues to be used in the SVM model to detect whether the angle cock is in the non-closed state or not. When the angle cock is in the non-closed state, its handle curve is fitted by binarization and window search, and the tilt angle of the handle is calculated by the minimum bounding rectangle. Finally, the misalignment state is detected when the tilt angle of the handle is less than the threshold. The effectiveness and robustness of the proposed method are verified by extensive experiments, and the accuracy of misalignment state detection for angle cocks reaches 96.49%. |
Audience | Academic |
Author | Lei, Hengda Li, Xiuhua Cao, Li |
AuthorAffiliation | 1 School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China 2 Wuhan Huamu Information Technology Co., Ltd., Wuhan 430070, China |
AuthorAffiliation_xml | – name: 1 School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China – name: 2 Wuhan Huamu Information Technology Co., Ltd., Wuhan 430070, China |
Author_xml | – sequence: 1 givenname: Hengda surname: Lei fullname: Lei, Hengda – sequence: 2 givenname: Li orcidid: 0009-0005-1848-0051 surname: Cao fullname: Cao, Li – sequence: 3 givenname: Xiuhua surname: Li fullname: Li, Xiuhua |
BookMark | eNpdkk1vFDEMhiNURD_gwD8YiQscpjgfM5k5odXSQsUiDvQeJRlnyDKblCRbCX59U7aqKMohkf34tR37lByFGJCQ1xTOOR_hfWacSskpfUZOqGCiHRiDo3_ex-Q05y0A45wPL8gxl_0gZS9PyJd11CljW2J76QM2m2j14v_o4mNoXEzNRyxoiw9z89Xn6prDDkNpvhddsImuWYV5wWYd7c_8kjx3esn46uE-I9eXF9frz-3m26er9WrTWjH0pdXaOTE5ATCaCZzDTiOOfdeZDgRzYBEZMONc13disECdc9U8GjFKB5qfkauD7BT1Vt0kv9Ppt4raq7-GmGalU_F2QaUlZYba0XSjFRTY0Bs-MQ0TpyCNsVXrw0HrZm92ONnaWtLLE9GnnuB_qDneKgpiBM5oVXj7oJDirz3monY-W1wWHTDus6o5Oa8kg4q--Q_dxn0K9avuKVYHOEhWqfMDNevagQ8u1sS2ngl33tbBO1_tK9kL0Xd85DXg3SHApphzQvdYPgV1vx_qcT_4HeO8rG8 |
CitedBy_id | crossref_primary_10_3390_s23239360 |
Cites_doi | 10.1016/j.measurement.2021.109742 10.1049/iet-its.2015.0026 10.1109/TII.2021.3056554 10.1016/j.neucom.2016.10.018 10.1109/TII.2022.3224989 10.1177/0954409716674983 10.1016/j.asoc.2020.106907 10.1016/j.autcon.2016.06.008 10.1007/s13042-021-01488-1 10.1016/j.aej.2020.10.044 10.1007/s13042-021-01274-z 10.1177/0954409715619603 10.1109/TIE.2020.2994868 10.1177/0954409713495532 10.3390/s22134720 10.1109/TII.2020.3021688 10.1109/TNNLS.2020.3039675 10.3390/s21072547 10.1016/j.engfailanal.2021.105446 10.1016/j.hspr.2022.11.001 10.3390/s21103339 10.1177/0954409717734397 10.1109/TIM.2015.2479101 10.1177/0954409715588119 10.3390/s23041927 10.1109/TVT.2019.2949603 10.1016/j.measurement.2021.109330 10.1109/TIM.2019.2955799 10.1016/j.isatra.2020.07.011 10.3390/s22124617 10.1049/iet-its.2016.0338 10.1016/j.patcog.2020.107623 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23177311 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest Medical & Health Databases) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X7 name: Health & Medical Collection (ProQuest Medical & Health Databases) url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc A764465393 10_3390_s23177311 |
GrantInformation_xml | – fundername: Research Funding of Wuhan Polytechnic University grantid: 2023RZ036 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M BGLVJ 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c486t-aaff4df4009bd0ffe5aee9655b5042f0cee202bff56548c01fff2f09b497f0a3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:13:35 EDT 2024 Tue Sep 17 21:29:45 EDT 2024 Fri Oct 25 21:41:05 EDT 2024 Thu Oct 10 16:18:09 EDT 2024 Fri Feb 02 04:40:55 EST 2024 Thu Sep 26 16:15:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-aaff4df4009bd0ffe5aee9655b5042f0cee202bff56548c01fff2f09b497f0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0005-1848-0051 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490321/ |
PMID | 37687767 |
PQID | 2862731872 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490321 proquest_miscellaneous_2863303220 proquest_journals_2862731872 gale_infotracacademiconefile_A764465393 crossref_primary_10_3390_s23177311 |
PublicationCentury | 2000 |
PublicationDate | 20230822 |
PublicationDateYYYYMMDD | 2023-08-22 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230822 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhou (ref_25) 2018; 12 Cha (ref_17) 2016; 71 Bai (ref_5) 2021; 182 Belagoune (ref_9) 2021; 177 Liu (ref_13) 2016; 10 Saeid (ref_28) 2021; 21 Zhou (ref_8) 2013; 228 Li (ref_15) 2016; 230 Cao (ref_26) 2022; 1 Shi (ref_29) 2021; 68 Guo (ref_24) 2018; 232 Zhang (ref_1) 2022; 19 Liu (ref_14) 2016; 65 Wang (ref_30) 2022; 33 Zou (ref_11) 2021; 60 Liu (ref_16) 2016; 230 Chadha (ref_6) 2020; 106 Zou (ref_31) 2020; 69 ref_23 ref_22 Zhang (ref_2) 2021; 17 Zhang (ref_4) 2021; 127 ref_3 Chen (ref_12) 2020; 17 Zheng (ref_18) 2018; 232 Tao (ref_20) 2021; 12 ref_27 Chen (ref_10) 2021; 100 Zhang (ref_7) 2020; 69 Sun (ref_19) 2017; 222 Tao (ref_21) 2022; 13 Tang (ref_32) 2021; 111 |
References_xml | – volume: 182 start-page: 109742 year: 2021 ident: ref_5 article-title: An optimized railway fastener detection method based on modified Faster R-CNN publication-title: Measurement doi: 10.1016/j.measurement.2021.109742 contributor: fullname: Bai – volume: 10 start-page: 130 year: 2016 ident: ref_13 article-title: Vision-based fault inspection of small mechanical components for train safety publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2015.0026 contributor: fullname: Liu – volume: 17 start-page: 7423 year: 2021 ident: ref_2 article-title: A Unified Light Framework for Real-Time Fault Detection of Freight Train Images publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3056554 contributor: fullname: Zhang – volume: 222 start-page: 127 year: 2017 ident: ref_19 article-title: Automatic multi-fault recognition in TFDS based on convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.018 contributor: fullname: Sun – volume: 19 start-page: 9082 year: 2022 ident: ref_1 article-title: Visual Fault Detection of Multi-scale Key Components in Freight Trains publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3224989 contributor: fullname: Zhang – volume: 232 start-page: 471 year: 2018 ident: ref_18 article-title: An automatic online inspection system for a coupler yoke for freight trains publication-title: J. Rail Rapid Transit doi: 10.1177/0954409716674983 contributor: fullname: Zheng – volume: 100 start-page: 106907 year: 2021 ident: ref_10 article-title: Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2020.106907 contributor: fullname: Chen – volume: 71 start-page: 181 year: 2016 ident: ref_17 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.06.008 contributor: fullname: Cha – volume: 13 start-page: 1781 year: 2022 ident: ref_21 article-title: Fault detection of train mechanical parts using multi-mode aggregation feature enhanced convolution neural network publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01488-1 contributor: fullname: Tao – volume: 60 start-page: 1209 year: 2021 ident: ref_11 article-title: Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.044 contributor: fullname: Zou – volume: 12 start-page: 1789 year: 2021 ident: ref_20 article-title: Fault detection of railway freight cars mechanical components based on multi-feature fusion convolutional neural network publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01274-z contributor: fullname: Tao – volume: 230 start-page: 1629 year: 2016 ident: ref_16 article-title: Automated status inspection of fastening bolts on freight trains using a machine vision approach publication-title: J. Rail Rapid Transit doi: 10.1177/0954409715619603 contributor: fullname: Liu – volume: 68 start-page: 6248 year: 2021 ident: ref_29 article-title: Fault Diagnosis of an Autonomous Vehicle with an Improved SVM Algorithm Subject to Unbalanced Dataset publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2994868 contributor: fullname: Shi – volume: 228 start-page: 794 year: 2013 ident: ref_8 article-title: Automated visual inspection of angle cocks during train operation publication-title: J. Rail Rapid Transit doi: 10.1177/0954409713495532 contributor: fullname: Zhou – ident: ref_22 doi: 10.3390/s22134720 – volume: 17 start-page: 4827 year: 2020 ident: ref_12 article-title: Construction of a hierarchical feature enhancement network and its application in fault recognition publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3021688 contributor: fullname: Chen – volume: 33 start-page: 1066 year: 2022 ident: ref_30 article-title: Multitask Attention Network for Lane Detection and Fitting publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3039675 contributor: fullname: Wang – volume: 21 start-page: 2547 year: 2021 ident: ref_28 article-title: Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles publication-title: Sensors doi: 10.3390/s21072547 contributor: fullname: Saeid – volume: 127 start-page: 105466 year: 2021 ident: ref_4 article-title: A hierarchical method based on improved deep forest and case-based reasoning for railway turnout fault diagnosis publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105446 contributor: fullname: Zhang – volume: 1 start-page: 63 year: 2022 ident: ref_26 article-title: Rail fastener detection of heavy railway based on deep learning publication-title: High Speed Railw. doi: 10.1016/j.hspr.2022.11.001 contributor: fullname: Cao – ident: ref_27 doi: 10.3390/s21103339 – volume: 232 start-page: 1500 year: 2018 ident: ref_24 article-title: Automated visual inspection of multipattern train components using gradient information and feature fusion under the illumination-variant condition publication-title: J. Rail Rapid Transit doi: 10.1177/0954409717734397 contributor: fullname: Guo – volume: 65 start-page: 2 year: 2016 ident: ref_14 article-title: Automated Visual Inspection System for Bogie Block Key Under Complex Freight Train Environment publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2479101 contributor: fullname: Liu – volume: 230 start-page: 1213 year: 2016 ident: ref_15 article-title: Online inspection system for the automatic detection of bolt defects on a freight train publication-title: J. Rail Rapid Transit doi: 10.1177/0954409715588119 contributor: fullname: Li – ident: ref_3 doi: 10.3390/s23041927 – volume: 69 start-page: 41 year: 2020 ident: ref_31 article-title: Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2949603 contributor: fullname: Zou – volume: 177 start-page: 109330 year: 2021 ident: ref_9 article-title: Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems publication-title: Measurement doi: 10.1016/j.measurement.2021.109330 contributor: fullname: Belagoune – volume: 69 start-page: 5274 year: 2020 ident: ref_7 article-title: Real-Time Vision-Based System of Fault Detection for Freight Trains publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2955799 contributor: fullname: Zhang – volume: 106 start-page: 330 year: 2020 ident: ref_6 article-title: Bidirectional deep recurrent neural networks for process fault classification publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.07.011 contributor: fullname: Chadha – ident: ref_23 doi: 10.3390/s22124617 – volume: 12 start-page: 550 year: 2018 ident: ref_25 article-title: Automated visual inspection of target parts for train safety based on deep learning publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2016.0338 contributor: fullname: Zhou – volume: 111 start-page: 107623 year: 2021 ident: ref_32 article-title: A review of lane detection methods based on deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107623 contributor: fullname: Tang |
SSID | ssj0023338 |
Score | 2.4522128 |
Snippet | The state of angle cocks determines the air connectivity of freight trains, and detecting their state is helpful to improve the safety of the running trains.... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 7311 |
SubjectTerms | Accuracy Air freight Analysis angle cock Braking systems Cameras Deep learning False alarms handle localization Localization misalignment state Neural networks non-closed state Osmosis Support vector machines Trains Ventilation Vision systems |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6hnOihAtqqSwG5CImTFT_25WNIG6HyOIHEzbK9dhoJ7SIS_n_H3k2UtAcuvdqjlfebHc_Mjv0NwEXta4d5g6OiVIHmteXUcu5pga64dqVgMh3GvLsvrx_zX0_F01arr3gmrKcH7oEbm4oLy52yhXJ59IallY0wrMG4pLLWpd2XqXUyNaRaEjOvnkdIYlI_XmIUU1WS8x3vk0j6_92K_z4eueVvZgfwcQgUyaRf4CHs-fYIPmzRB36Cm2mHaamnq47OcJTcRr803KskGIySHz6WCFCW3C2WODVPpX-SAkzSBTJp58-eTHFLXH6Gh9nPh-k1HZojUJfX5YoaE0LeBDRBZRsWgi-M96osClugHQaGzk8wYUMoYmd4x3gIAYeVzVUVmJFfYNR2rf8KpDSIlvXe5ywgwsEwhZJOGteIvKpVBudrzPRLT4GhMXWIwOoNsBlcRTQ3ApG1Og2gLvWgS_2eLjO4jLrQ0bYQeWeGKwK4zshSpSdVmfjglMzgZK0uPRjdUuPzMBjjdSUy-L6ZRnOJNRDT-u4tyUj02kKwDOodNe8sfXemXfxOxNs8lkml4Mf_42W_wX5sXR__TwtxAqPV65s_xQBnZc_St_wHA3H6YQ priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0-qIPpX7h2laiCD6FJtnsR57keu1R1BaRCn0LSTY5C7Jbu9f_30kud-0p-JoMu2EmM_ObZDID8KH1rcO4wVFRq0Blazm1nHtaoStuXS1YmZIxzy_qsx_y81V1lQ_cxpxWubaJyVB3g4tn5EcCoXeDG7ARn25-09g1Kt6u5hYaj2FHYKQgJrBzfHrx7fsm5CoxAlvVEyoxuD8aEc00-BW-5YVSsf5_TfLfaZIP_M58D3YzYCTTlYSfwSPfP4enD8oIvoAvswHDU0-XA53jKPka_VN-X0kQlJITH68KkJacX484tUgpACQBTTIEMu0XvzyZoWkcX8Ll_PRydkZzkwTqZFsvqTEhyC6gKirbsRB8ZbxXdVXZCvUxMHSCggkbQhU7xDvGQwg4rKxUTWCmfAWTfuj9ayC1QW5Z771kQXIWDFNI6UrjOiGbVhXwfs0zfbMqhaExhIiM1RvGFnAcubkhiNWr08Bwu9BZGbRpuLDcKVspJyPCqW3ZCcM6xJqNta6Aj1EWOuoYct6Z_FQA1xmrVelpU6e6cKos4GAtLp2Vb9T3W6WAd5tpVJt4F2J6P9wlmhK9txCsgHZLzFtL357pr3-mAtw8XpeWgr_5_9_34UlsTh9PoIU4gMny9s4fIoRZ2rd5n_4BUrzzZw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLaqcoED4ikGCgoIiVMgr3nkgNCysKqAcmql3kZJJlkqVTOwu5Xg32NnZ1cd4Mg1sUaJHcf22PkM8LKJTcC4IXBV2cRN4yX3UkZeoiluQqWEzsWYJ1-r4zPz6bw8P4Bdj82Rget_hnbUT-psdfn6549f71Dh31LEiSH7mzX6KHWt6YXvDUV4XFTBZ_bJBKUxDNuCCk3JJ6YoI_b_fS__WSt5zfgs7sDt0Wtks62Y78JB7O_BrWtYgvfh83zAjUS-GfgCR9kXMlLjI0uGnin7EClfgLTs5GKNU8tcB8Cyt8mGxGb98jKyOd6P6wdwuvh4Oj_mY6cEHkxTbbhzKZkuoT5a34mUYulitFVZ-hKVMgm0hEoon1JJbeKDkCklHLbe2DoJpx_CYT_08RGwyiG3fIzRiGSkSE5YpAzahU6ZurEFvNjxrP2-xcNoMY4gxrZ7xhbwnri5JyAI6zwwrJbtqBGtq6XyMlhf2mDIzam87pQTHTqctfehgFcki5ZEj5wPbnwvgOskyKp2VlcZHM7qAo524mp3B6jF76FnJptaFfB8P426QwkR18fhKtNoNOFKiQKaiZgnS5_O9BffMgq3pJypVvLx_9jsE7hJfezpZ7VSR3C4WV3Fp-jtbPyzfJZ_A2z-AGg priority: 102 providerName: Scholars Portal |
Title | Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks |
URI | https://www.proquest.com/docview/2862731872 https://search.proquest.com/docview/2863303220 https://pubmed.ncbi.nlm.nih.gov/PMC10490321 https://doaj.org/article/a712b1c9b59c410286b3d2a0d3107bbc |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615QIHxFMslMggJE7b-LW79jENDRWQqkJFym1le-0Qqd2tmvT_M3Z2owZuXHywZ1fWPDwz9vgzwCfllcO8weW81CGXyrLcMubzAl2xciWnIhVjzi_K81_y26JYHEA53IVJRfvOrk7a65uTdvU71Vbe3rjxUCc2vpxPWTyuEpyND-EQNXTI0fs0S2DWtcUQEpjQj9cYwVSVYPFNGLQmFeFr9pxQwur_d0X-u0rygduZPYOnfbxIJtt5PYcD376AJw9QBF_C92mH2anPN10-w17yI7qn_nolwZiUfPHxpABpyXy1xqFlqgAgKc4kXSCTdnntyRRXxvUruJqdXU3P8_6NhNxJVW5yY0KQTUBL1LahIfjCeK_LorAFmmOg6AM55TaEIj4Q7ygLIWC3tlJXgRrxGo7arvVvgJQGGWe995IGyWgwVCOlE8Y1XFZKZ_Bx4Fl9u0XCqDGDiDyudzzO4DRyc0cQwatTR3e3rHsR1qZi3DKnbaGdjAFOaUXDDW0w1KysdRl8jrKoo4kh553pbwrgPCNYVT2pygQLp0UGx4O46t721jX-D2MypiqewYfdMFpNPAoxre_uE41A5805zUDtiXlv6vsjqI4Jf3tQv7f__-k7eBzfrY-b05wfw9Hm7t6_x-hmY0eo0osKWzX7OoJHp2cXlz9HaacA27lUo6TsfwDsawCY |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BOQAHxFMsFDAIiZNV2_v0CYVAFGjSU5Bys2yvnVZCu6VJ_z8zziZtQOJqj3atGc_LHn8D8LEJjce8wXNV6ciLxknupAy8RFfc-EqJPBVjzs-q6c_ix7JcDgdu66GscmcTk6Fue09n5CcKQ-8aN2CtPl_-5tQ1im5XhxYad-Ee4XARdn69vEm4csy_tmhCOab2J2uMZWr8hjzwQQmq_1-D_HeR5C2vM3kMj4ZwkY228n0Cd0L3FB7eAhF8BqfjHpPTwDc9n-Aom5F3Gl5XMgxJ2ddAFwVIy-YXa5xapQIAlsJM1kc26la_AhujYVw_h8Xk22I85UOLBO6Lptpwa2Ms2oiKqF0rYgylDUFXZelK1MYo0AUqoVyMJfWH90LGGHFYu0LXUdj8BRx1fRdeAqsscsuFEAoRCymiFRopfW59q4q60Rl82PHMXG6BMAwmEMRYs2dsBl-Im3sCwq5OA_3VygyqYGwtlZNeu1L7guKbyuWtsqLFSLN2zmfwiWRhSMOQ894ODwVwnYRVZUZ1lVDhdJ7B8U5cZlC9tbnZKBm830-j0tBNiO1Cf51ocvTdSokMmgMxHyz9cKa7OE_w25IuS3MlX_3_7-_g_nQxn5nZ97PT1_CA2tTTWbRSx3C0uboObzCY2bi3acf-AdYW9PI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxcNAriD6In3Rr1SiCT-GSbPYjT3K99qi2PYpU6FtIsslZkN3avf7_TvZyZ0_B12TYDfM9mckMwKfa1w7jBkdFqQKVteXUcu5pgaa4dqVg-VCMeTYvj3_Ib5fFZap_6lNZ5VonDoq66Vy8Ix8LdL0rZMBKjEMqizg_nH25_k3jBKmYaU3jNB7CTiWRq0awc3A0P_--Cb9yjMZWvYVyDPTHPXo2FX6Rb1mkoXH_v-r575LJezZo9gyeJueRTFbUfg4PfPsCntxrKfgSTqYdhqqeLjs6w1VyGm1VemtJ0EElhz6mDRCWnF31uLUYygHI4HSSLpBJu_jlyRTVZP8KLmZHF9NjmgYmUCfrckmNCUE2AcVS2YaF4AvjvSqLwhYom4GhQRRM2BCKOC3eMR5CwGVlpaoCM_lrGLVd63eBlAaxZb33kgXJWTBMIaTLjWuErGqVwcc1zvT1qi2GxnAiIlZvEJvBQcTmBiB2sh4WupuFToKhTcWF5U7ZQjkZvZ3S5o0wrEG_s7LWZfA50kJHeUPMO5OeDeA5Y-cqPanKoUecyjPYX5NLJ0Hs9R-2yeDDZhtFKOZFTOu72wEmR0suBMug3iLz1tG3d9qrn0Mzbh5Tp7nge___-3t4hOyqT7_OT97A4zizPl5MC7EPo-XNrX-Lns3Svkssewdc1_qV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coarse-to-Fine+Localization+for+Detecting+Misalignment+State+of+Angle+Cocks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hengda+Lei&rft.au=Li+Cao&rft.au=Xiuhua+Li&rft.date=2023-08-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft.spage=7311&rft_id=info:doi/10.3390%2Fs23177311&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a712b1c9b59c410286b3d2a0d3107bbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |