Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing

Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechan...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine tools & manufacture Vol. 77; pp. 66 - 73
Main Authors Wang, Yan, Lin, Bin, Wang, Shaolei, Cao, Xiaoyan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG. •A system matching model of ultrasonic vibration system and machine tool system is deduced.•The predicted grinding force model and MRR model are presented.•The mechanism of grinding force reduction and surface roughness forming are described in theory.•An experiment with system matching is executed to validate the predicted results.•The predicted character of system matching in ultrasonic vibration assisted grinding is validated.
AbstractList Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG.
Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG. •A system matching model of ultrasonic vibration system and machine tool system is deduced.•The predicted grinding force model and MRR model are presented.•The mechanism of grinding force reduction and surface roughness forming are described in theory.•An experiment with system matching is executed to validate the predicted results.•The predicted character of system matching in ultrasonic vibration assisted grinding is validated.
Author Cao, Xiaoyan
Lin, Bin
Wang, Yan
Wang, Shaolei
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  email: satansdestiny@163.com
– sequence: 2
  givenname: Bin
  surname: Lin
  fullname: Lin, Bin
  email: tdlinbin@126.com
– sequence: 3
  givenname: Shaolei
  surname: Wang
  fullname: Wang, Shaolei
– sequence: 4
  givenname: Xiaoyan
  surname: Cao
  fullname: Cao, Xiaoyan
BookMark eNqNkUuPEzEQhC20SGQX_oO5cZmhe14enxCKeEkrcQDOlsfTThzN2MF2Vsq_xyEcEBdystr6qrpVdc_ufPDE2GuEGgGHt4faHVZt9jmEJdUNYFsj1gDtM7bBUciqQQF3bAOjhGqQff-C3ad0AAAcW9yw47d8ms88eJ73xNM5ZVr5qrPZO7_jwfLTkqNOwTvDn9wUdXaF1Sm5Qs58F52fL6QNke91nLn2M5-iy3mhiw9Fp5fEjzEYKiK_e8me2_JDr_68D-zHxw_ft5-rx6-fvmzfP1amG4dcaSAapbQghBa2mTqap6YDA2A7PQ5911itBQ096rm3CGUWQyMAJ7DW9FP7wN5cfcvqnydKWa0uGVoW7SmcksJBCNmLYcT_o32PICV23Q1oC1KM5ZCCvruiJoaUIlllXP4dXwnULQpBXRpUB_VXg-rSoEJUpcHiIP9xOEa36ni-Sbu9aqlk_OQoqmQceUOzi2SymoO7weUX86jCRA
CitedBy_id crossref_primary_10_3390_app11093888
crossref_primary_10_1007_s00170_022_10532_5
crossref_primary_10_1007_s00170_020_05761_5
crossref_primary_10_1007_s00170_021_07967_7
crossref_primary_10_1007_s00170_021_07612_3
crossref_primary_10_3390_mi15070915
crossref_primary_10_1016_j_ijmecsci_2019_03_026
crossref_primary_10_1007_s00170_022_09186_0
crossref_primary_10_4028_www_scientific_net_SSP_324_52
crossref_primary_10_1007_s00170_018_2164_x
crossref_primary_10_1007_s00170_018_2457_0
crossref_primary_10_1007_s00170_024_13412_2
crossref_primary_10_1007_s00170_016_9945_x
crossref_primary_10_1016_j_ceramint_2020_02_008
crossref_primary_10_1007_s00170_023_11565_0
crossref_primary_10_1080_10426914_2015_1090586
crossref_primary_10_1016_j_ijmecsci_2019_105246
crossref_primary_10_1631_jzus_A2300243
crossref_primary_10_1007_s00170_018_03274_w
crossref_primary_10_1007_s00170_015_8326_1
crossref_primary_10_3390_app122010352
crossref_primary_10_3390_ma12101690
crossref_primary_10_1007_s00170_021_07165_5
crossref_primary_10_1007_s00170_023_12034_4
crossref_primary_10_1007_s00170_017_1401_z
crossref_primary_10_1080_10910344_2019_1575402
crossref_primary_10_1155_2017_6750467
crossref_primary_10_1016_j_jclepro_2018_05_280
crossref_primary_10_1016_j_ceramint_2019_08_273
crossref_primary_10_1007_s43452_022_00399_4
crossref_primary_10_1016_j_jmapro_2020_01_003
crossref_primary_10_1016_j_precisioneng_2019_07_005
crossref_primary_10_1007_s00170_019_04084_4
crossref_primary_10_1007_s00170_023_12882_0
crossref_primary_10_1016_j_cja_2024_11_004
crossref_primary_10_1007_s00170_018_3195_z
crossref_primary_10_1007_s00170_018_1644_3
crossref_primary_10_1007_s00170_019_03762_7
crossref_primary_10_1088_2631_7990_ab103b
crossref_primary_10_1364_AO_55_006547
crossref_primary_10_1016_j_ijmachtools_2014_02_004
crossref_primary_10_1016_j_ultras_2019_106017
crossref_primary_10_1016_j_ijmachtools_2020_103594
crossref_primary_10_1186_s10033_023_00957_8
crossref_primary_10_1016_j_ijmecsci_2023_108311
crossref_primary_10_1016_j_ijmachtools_2015_10_005
crossref_primary_10_1051_matecconf_201818500018
crossref_primary_10_1016_j_cja_2023_01_008
crossref_primary_10_1016_j_ceramint_2022_06_019
crossref_primary_10_3390_mi10090616
crossref_primary_10_1007_s00170_015_7549_5
crossref_primary_10_1016_j_jclepro_2020_121876
crossref_primary_10_1016_j_jmapro_2018_02_001
crossref_primary_10_1016_j_ultras_2021_106577
crossref_primary_10_1007_s00170_017_0149_9
crossref_primary_10_1007_s00170_017_1468_6
crossref_primary_10_1016_j_ceramint_2024_12_204
crossref_primary_10_9773_sosei_56_658
crossref_primary_10_1007_s00170_018_2929_2
crossref_primary_10_1016_j_triboint_2020_106815
crossref_primary_10_1007_s00170_017_0316_z
crossref_primary_10_1177_09544054211028527
crossref_primary_10_3390_s18082417
crossref_primary_10_1364_OE_452751
crossref_primary_10_1016_j_jmapro_2020_01_027
crossref_primary_10_1016_j_ceramint_2021_12_214
crossref_primary_10_1016_j_commatsci_2023_112353
crossref_primary_10_1016_j_vacuum_2020_109637
crossref_primary_10_1016_j_ceramint_2021_04_214
crossref_primary_10_1016_j_cja_2020_12_026
crossref_primary_10_1007_s11665_024_09890_w
crossref_primary_10_1177_0954405420949106
crossref_primary_10_1007_s00170_018_1643_4
crossref_primary_10_3390_machines12100732
crossref_primary_10_1115_1_4032080
crossref_primary_10_1016_j_jmapro_2018_06_028
crossref_primary_10_1177_07316844211051731
crossref_primary_10_1016_j_jmapro_2023_04_040
crossref_primary_10_1007_s00170_016_8977_6
crossref_primary_10_1007_s00170_023_12571_y
crossref_primary_10_1088_1757_899X_998_1_012048
crossref_primary_10_1007_s00170_016_9148_5
crossref_primary_10_1007_s00170_018_3006_6
crossref_primary_10_3390_coatings13101788
crossref_primary_10_1007_s00170_016_9602_4
crossref_primary_10_1007_s00170_018_1715_5
crossref_primary_10_1016_j_ceramint_2016_11_066
crossref_primary_10_1016_j_jmapro_2023_03_067
crossref_primary_10_1016_j_jmatprotec_2019_116585
crossref_primary_10_1007_s00170_020_04976_w
crossref_primary_10_1007_s11465_022_0717_z
crossref_primary_10_1016_j_matdes_2020_108755
crossref_primary_10_1007_s00170_018_1609_6
crossref_primary_10_1016_j_ijmecsci_2017_11_042
crossref_primary_10_1016_j_precisioneng_2016_04_005
crossref_primary_10_1016_j_ceramint_2021_09_040
crossref_primary_10_1007_s00170_022_10678_2
crossref_primary_10_1016_j_ceramint_2019_10_048
crossref_primary_10_1016_j_jmapro_2019_01_046
crossref_primary_10_1016_j_matpr_2021_04_118
crossref_primary_10_3390_ma16175819
crossref_primary_10_1007_s00170_016_9151_x
crossref_primary_10_1007_s00170_023_11590_z
crossref_primary_10_1016_j_ijmecsci_2019_105336
crossref_primary_10_3390_s16101660
crossref_primary_10_1007_s00170_017_0012_z
crossref_primary_10_1016_j_wear_2015_02_047
crossref_primary_10_1016_j_jmatprotec_2014_04_001
crossref_primary_10_1038_s41598_022_11000_6
crossref_primary_10_1088_1361_651X_ad064f
crossref_primary_10_1007_s12206_021_0232_x
crossref_primary_10_1016_j_ijmachtools_2015_11_003
crossref_primary_10_1177_1045389X17711818
crossref_primary_10_4028_www_scientific_net_KEM_764_210
crossref_primary_10_1007_s00170_018_1744_0
crossref_primary_10_1177_09544089241311722
crossref_primary_10_1007_s00170_024_13939_4
crossref_primary_10_1177_09544054211040609
crossref_primary_10_1016_j_ceramint_2022_02_067
crossref_primary_10_1007_s00170_024_13380_7
crossref_primary_10_1016_j_ceramint_2020_02_262
crossref_primary_10_1177_09544062241291791
crossref_primary_10_1007_s40430_018_1296_0
crossref_primary_10_1007_s00170_020_05975_7
crossref_primary_10_1007_s12541_018_0110_3
crossref_primary_10_1016_j_ceramint_2016_10_135
crossref_primary_10_1016_j_ijmecsci_2019_03_009
crossref_primary_10_1007_s00170_021_07447_y
crossref_primary_10_1063_1_5025498
crossref_primary_10_1007_s00170_020_05769_x
crossref_primary_10_1063_5_0245763
crossref_primary_10_1016_j_cirpj_2021_03_019
crossref_primary_10_1016_j_diamond_2024_111565
crossref_primary_10_4028_www_scientific_net_MSF_1047_62
crossref_primary_10_1016_j_apsusc_2022_153692
crossref_primary_10_1007_s00170_023_11444_8
crossref_primary_10_1016_j_ceramint_2019_06_067
crossref_primary_10_1007_s12046_021_01771_5
crossref_primary_10_21595_jve_2015_16341
crossref_primary_10_1177_0954406217747914
crossref_primary_10_1007_s00170_022_10469_9
crossref_primary_10_1016_j_ijmachtools_2020_103540
crossref_primary_10_1631_jzus_A2200367
crossref_primary_10_1007_s00170_016_9726_6
crossref_primary_10_1007_s00170_022_10068_8
crossref_primary_10_3390_cryst13010151
crossref_primary_10_70322_ism_2025_10001
crossref_primary_10_1016_j_ijmecsci_2020_105551
crossref_primary_10_1007_s00170_015_8181_0
crossref_primary_10_1016_j_sna_2023_114556
Cites_doi 10.1016/0890-6955(94)00100-X
10.1016/j.ijmachtools.2010.08.009
10.1007/BF00823224
10.1016/S0924-0136(96)02422-3
10.1016/0020-7357(86)90008-9
10.1016/0924-0136(94)01720-L
10.1016/j.jmatprotec.2007.06.077
10.1016/j.ijmachtools.2011.09.006
10.1016/S0007-8506(07)62828-5
10.1111/j.1151-2916.1980.tb10768.x
10.1016/j.jeurceramsoc.2008.11.010
10.4028/www.scientific.net/MSF.471-472.101
10.1016/j.ijmachtools.2009.12.006
10.1080/00207549108948077
10.1007/s00170-013-5269-2
10.1016/S0890-6955(97)00036-9
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.ijmachtools.2013.11.003
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2170
EndPage 73
ExternalDocumentID 10_1016_j_ijmachtools_2013_11_003
S0890695513001880
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XFK
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8BQ
8FD
F28
FR3
JG9
EFKBS
ID FETCH-LOGICAL-c486t-a0ee899f077a7f2b4edb240c00f4a86542faa7e651ad5f1042f762701b0ffc5b3
IEDL.DBID .~1
ISSN 0890-6955
IngestDate Tue Aug 05 10:01:49 EDT 2025
Tue Aug 05 10:03:49 EDT 2025
Thu Jul 10 18:42:27 EDT 2025
Tue Jul 01 01:16:01 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords UAG
Surface roughness
System matching
Vibration frequency
Grinding force
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-a0ee899f077a7f2b4edb240c00f4a86542faa7e651ad5f1042f762701b0ffc5b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1530978270
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677957681
proquest_miscellaneous_1551099144
proquest_miscellaneous_1530978270
crossref_citationtrail_10_1016_j_ijmachtools_2013_11_003
crossref_primary_10_1016_j_ijmachtools_2013_11_003
elsevier_sciencedirect_doi_10_1016_j_ijmachtools_2013_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2014
2014-2-00
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationTitle International journal of machine tools & manufacture
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Subramanian, Ramanath (bib11) 1992
Prabhakar, Pei, Ferreira (bib15) 1993; XXI
Gong, Fang (bib6) 2010; 50
Komaraiah, Reddy (bib8) 1991; 29
R.J. Clifton, H.D. Espinosa, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Materials Division, Advances in Failure Mechanisms in Brittle Materials (75), 1996, 187.
Lawn, Marshall, Evans (bib21) 1980; 63
Islam, Kumar, Balakumar, Lim, Rahman (bib2) 2008; 198
Samant, Dahotre (bib3) 2009; 29
Pei (bib13) 1995; 48
Uhimann, Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance, Annals of the CIRP470 (1) (1998) 249–252.
.
Spur, Holl (bib4) 1997; 4
Agarwal, Rao (bib10) 2010; 50
Pei, Ferreira, Kapoor (bib12) 1995; 35
D.F. Liu, W.L. Cong, Z.J. Pei, Yong Jun Tang, A cutting force model for rotary ultrasonic machining of brittle materials, Int. J. Mach. Tools Manuf. 52: 77–84.
Y. Wang, B. Lin, X.F. Zhang, Research on the system matching model in ultrasonic vibration assisted grinding, Int. J. Adv. Manuf. Technol.
Soundararejan, Radhakrishnan (bib18) 1986; 26
Wu, Nomura, Feng, Kato (bib5) 2004; 471–472
Uhlmann, Spur (bib14) 1998; 47
Thoe, Aspinwall, Wise (bib1) 1998; 38
Spur, Holl (bib7) 1996; 62
Lawn, Wilshaw (bib19) 1975; 10
Pei (10.1016/j.ijmachtools.2013.11.003_bib12) 1995; 35
Soundararejan (10.1016/j.ijmachtools.2013.11.003_bib18) 1986; 26
Prabhakar (10.1016/j.ijmachtools.2013.11.003_bib15) 1993; XXI
Komaraiah (10.1016/j.ijmachtools.2013.11.003_bib8) 1991; 29
Spur (10.1016/j.ijmachtools.2013.11.003_bib7) 1996; 62
10.1016/j.ijmachtools.2013.11.003_bib9
Islam (10.1016/j.ijmachtools.2013.11.003_bib2) 2008; 198
Lawn (10.1016/j.ijmachtools.2013.11.003_bib19) 1975; 10
Gong (10.1016/j.ijmachtools.2013.11.003_bib6) 2010; 50
Lawn (10.1016/j.ijmachtools.2013.11.003_bib21) 1980; 63
10.1016/j.ijmachtools.2013.11.003_bib20
Samant (10.1016/j.ijmachtools.2013.11.003_bib3) 2009; 29
Spur (10.1016/j.ijmachtools.2013.11.003_bib4) 1997; 4
10.1016/j.ijmachtools.2013.11.003_bib16
Thoe (10.1016/j.ijmachtools.2013.11.003_bib1) 1998; 38
Agarwal (10.1016/j.ijmachtools.2013.11.003_bib10) 2010; 50
Uhlmann (10.1016/j.ijmachtools.2013.11.003_bib14) 1998; 47
10.1016/j.ijmachtools.2013.11.003_bib17
Wu (10.1016/j.ijmachtools.2013.11.003_bib5) 2004; 471–472
Subramanian (10.1016/j.ijmachtools.2013.11.003_bib11) 1992
Pei (10.1016/j.ijmachtools.2013.11.003_bib13) 1995; 48
References_xml – volume: 198
  start-page: 281
  year: 2008
  end-page: 290
  ident: bib2
  article-title: Characterization of ELID grinding process for machining silicon wafers
  publication-title: J. Mater. Process. Technol.
– volume: 26
  start-page: 307
  year: 1986
  end-page: 321
  ident: bib18
  article-title: An experimental investigation on the basic mechanisms involved in ultrasonic machining
  publication-title: Int. J. Mach. Tools Des. Res.
– volume: 4
  start-page: 9
  year: 1997
  end-page: 14
  ident: bib4
  article-title: Material removal mechanisms during ultrasonic assisted grinding
  publication-title: Prod. Eng.
– reference: .
– volume: 62
  start-page: 287
  year: 1996
  end-page: 293
  ident: bib7
  article-title: Ultrasonic assisted grinding of ceramics
  publication-title: J. Mater. Process. Technol.
– volume: 47
  start-page: 249
  year: 1998
  end-page: 252
  ident: bib14
  article-title: Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance
  publication-title: CIRP Ann. Manuf. Technol.
– volume: 29
  start-page: 969
  year: 2009
  end-page: 993
  ident: bib3
  article-title: Laser machining of structural ceramics a review
  publication-title: J. Eur. Ceram. Soc.
– volume: 50
  start-page: 303
  year: 2010
  end-page: 307
  ident: bib6
  article-title: Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials
  publication-title: Int. J. Mach. Tools Manuf.
– reference: Uhimann, Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance, Annals of the CIRP470 (1) (1998) 249–252.
– volume: 50
  start-page: 1065
  year: 2010
  end-page: 1076
  ident: bib10
  article-title: Modeling and prediction of surface roughness in ceramic grinding
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 48
  start-page: 771
  year: 1995
  end-page: 777
  ident: bib13
  article-title: Plastic flow in rotary ultrasonic machining of ceramics
  publication-title: J. Mater. Process. Technol.
– reference: Y. Wang, B. Lin, X.F. Zhang, Research on the system matching model in ultrasonic vibration assisted grinding, Int. J. Adv. Manuf. Technol.
– volume: XXI
  start-page: 167
  year: 1993
  end-page: 172
  ident: bib15
  article-title: A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics
  publication-title: Trans North Am. Manuf. Res. Inst. SME
– volume: 10
  start-page: 1049
  year: 1975
  end-page: 1081
  ident: bib19
  article-title: Review indentation fracture: principles and applications
  publication-title: J. Mater. Sci.
– volume: 29
  start-page: 2177
  year: 1991
  end-page: 2187
  ident: bib8
  article-title: Rotary ultrasonic machining—a new cutting process and its performance
  publication-title: Int. J. Prod. Res.
– volume: 38
  start-page: 239
  year: 1998
  end-page: 255
  ident: bib1
  article-title: Review on ultrasonic machining
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 471–472
  start-page: 101
  year: 2004
  end-page: 106
  ident: bib5
  article-title: Modeling of grinding force in constant-depth -of-cut ultrasonically assisted grinding
  publication-title: Mater. Sci. Forum
– volume: 35
  start-page: 1033
  year: 1995
  end-page: 1046
  ident: bib12
  article-title: Rotary ultrasonic machining for face milling of ceramics
  publication-title: Int. J. Mach. Tools Manuf.
– reference: R.J. Clifton, H.D. Espinosa, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Materials Division, Advances in Failure Mechanisms in Brittle Materials (75), 1996, 187.
– volume: 63
  start-page: 574
  year: 1980
  end-page: 581
  ident: bib21
  article-title: Elastic/plastic indentation damage in ceramics: the median/radial crack system
  publication-title: J. Am. Ceram. Soc.
– start-page: 1
  year: 1992
  end-page: 19
  ident: bib11
  article-title: Mechanism of material removal in the precision grinding of ceramics, in: PED—vol. 58, Precision Machining: Technology and Machine Development and Improvement
  publication-title: ASME
– reference: D.F. Liu, W.L. Cong, Z.J. Pei, Yong Jun Tang, A cutting force model for rotary ultrasonic machining of brittle materials, Int. J. Mach. Tools Manuf. 52: 77–84.
– volume: 35
  start-page: 1033
  issue: 7
  year: 1995
  ident: 10.1016/j.ijmachtools.2013.11.003_bib12
  article-title: Rotary ultrasonic machining for face milling of ceramics
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/0890-6955(94)00100-X
– volume: 50
  start-page: 1065
  issue: 12
  year: 2010
  ident: 10.1016/j.ijmachtools.2013.11.003_bib10
  article-title: Modeling and prediction of surface roughness in ceramic grinding
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2010.08.009
– volume: 10
  start-page: 1049
  issue: 6
  year: 1975
  ident: 10.1016/j.ijmachtools.2013.11.003_bib19
  article-title: Review indentation fracture: principles and applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00823224
– volume: 62
  start-page: 287
  issue: 4
  year: 1996
  ident: 10.1016/j.ijmachtools.2013.11.003_bib7
  article-title: Ultrasonic assisted grinding of ceramics
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(96)02422-3
– volume: XXI
  start-page: 167
  year: 1993
  ident: 10.1016/j.ijmachtools.2013.11.003_bib15
  article-title: A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics
  publication-title: Trans North Am. Manuf. Res. Inst. SME
– volume: 26
  start-page: 307
  issue: 3
  year: 1986
  ident: 10.1016/j.ijmachtools.2013.11.003_bib18
  article-title: An experimental investigation on the basic mechanisms involved in ultrasonic machining
  publication-title: Int. J. Mach. Tools Des. Res.
  doi: 10.1016/0020-7357(86)90008-9
– start-page: 1
  year: 1992
  ident: 10.1016/j.ijmachtools.2013.11.003_bib11
  article-title: Mechanism of material removal in the precision grinding of ceramics, in: PED—vol. 58, Precision Machining: Technology and Machine Development and Improvement
  publication-title: ASME
– volume: 48
  start-page: 771
  issue: 1–4
  year: 1995
  ident: 10.1016/j.ijmachtools.2013.11.003_bib13
  article-title: Plastic flow in rotary ultrasonic machining of ceramics
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/0924-0136(94)01720-L
– volume: 198
  start-page: 281
  issue: 1–3
  year: 2008
  ident: 10.1016/j.ijmachtools.2013.11.003_bib2
  article-title: Characterization of ELID grinding process for machining silicon wafers
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.06.077
– ident: 10.1016/j.ijmachtools.2013.11.003_bib16
  doi: 10.1016/j.ijmachtools.2011.09.006
– volume: 47
  start-page: 249
  issue: 1
  year: 1998
  ident: 10.1016/j.ijmachtools.2013.11.003_bib14
  article-title: Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance
  publication-title: CIRP Ann. Manuf. Technol.
  doi: 10.1016/S0007-8506(07)62828-5
– volume: 63
  start-page: 574
  year: 1980
  ident: 10.1016/j.ijmachtools.2013.11.003_bib21
  article-title: Elastic/plastic indentation damage in ceramics: the median/radial crack system
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1980.tb10768.x
– volume: 29
  start-page: 969
  issue: 6
  year: 2009
  ident: 10.1016/j.ijmachtools.2013.11.003_bib3
  article-title: Laser machining of structural ceramics a review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2008.11.010
– volume: 4
  start-page: 9
  issue: 2
  year: 1997
  ident: 10.1016/j.ijmachtools.2013.11.003_bib4
  article-title: Material removal mechanisms during ultrasonic assisted grinding
  publication-title: Prod. Eng.
– volume: 471–472
  start-page: 101
  year: 2004
  ident: 10.1016/j.ijmachtools.2013.11.003_bib5
  article-title: Modeling of grinding force in constant-depth -of-cut ultrasonically assisted grinding
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.471-472.101
– volume: 50
  start-page: 303
  issue: 3
  year: 2010
  ident: 10.1016/j.ijmachtools.2013.11.003_bib6
  article-title: Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2009.12.006
– volume: 29
  start-page: 2177
  issue: 11
  year: 1991
  ident: 10.1016/j.ijmachtools.2013.11.003_bib8
  article-title: Rotary ultrasonic machining—a new cutting process and its performance
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207549108948077
– ident: 10.1016/j.ijmachtools.2013.11.003_bib17
  doi: 10.1007/s00170-013-5269-2
– ident: 10.1016/j.ijmachtools.2013.11.003_bib20
– volume: 38
  start-page: 239
  issue: 4
  year: 1998
  ident: 10.1016/j.ijmachtools.2013.11.003_bib1
  article-title: Review on ultrasonic machining
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(97)00036-9
– ident: 10.1016/j.ijmachtools.2013.11.003_bib9
  doi: 10.1016/S0007-8506(07)62828-5
SSID ssj0001831
Score 2.4993055
Snippet Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Brittle materials
Foundations
Grinding force
Matching
Mathematical analysis
Mathematical models
Reduction
Surface roughness
System matching
UAG
Ultrasonic vibration
Vibration frequency
Title Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing
URI https://dx.doi.org/10.1016/j.ijmachtools.2013.11.003
https://www.proquest.com/docview/1530978270
https://www.proquest.com/docview/1551099144
https://www.proquest.com/docview/1677957681
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9sQWvsWmyyW7ASymWquhFhd7CbrKrkZqUNBW8-NudycMnFMFjwmxYdiYz87Ez3xBygqRySkjQgA64xaRwLekybvnakQ7TwsRl1_v1jT-6Z5djb9wig6YXBssqa99f-fTSW9dvuvVpdqdJ0r21RWD7AQ4owclyAnE7Yxyt_PTts8wDTLacmgfCFkqvkM5njVfy9CyjxyLLJsjc3XNPkdCzmZ_1O0b98NZlCBpukPU6d6T9anubpKXTLbL2hVFwm0yxLvCVZimFxI5WNM0UktKyYpJmhs4nRS5nyIdLXxApo14oJNCo7Zg-5EnZ5UIhlaXYj0VlGlOVJ8h0jN-p7JVOq_YCkNwh98Pzu8HIqocqWBETfmFJW2vAWMbmXHLjKKZjBVE9sm0DmsLxVUZKrn2vJ2PPAFhzDPhLbveUbUzkKXeXLKVZqvcIjaQWwgcAowDEac9T3IPsSvsuyAZK8DYRzTGGUc04joMvJmFTWvYUftFAiBoARIJ0pW3ifCydVrQbf1l01ugq_GZDIYSHvyzvNPoN4R_DixOZ6mw-CyEqYLsLnMIiGQ8vGQGfLpDxOQ8Q4PX2_7fVA7IKT6yqHj8kS0U-10eQHBXquLT-Y7Lcv7ga3bwD-qoS7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EwcdBfOLbLXiNTfPaDXgRUaq2vajQ27Kb7GqkJqWmghd_uzN5aFUoBa_tbAj77c7MR2a-IeQEReUUl4CADpnlSe5a0vWYFWhHOp7mJi663ru9oP3g3fT9_hy5qHthsKyy8v2lTy-8dfVLs9rN5jBJmnc2D-0gxAElOFmOA29f8OD64hiD04_vOg84s8XYPLC20HyRNL6LvJLnFxk95Vk2QOnulnuKip71AK2_QeqXuy5i0NUaWa2SR3pevt86mdPpBlmZkBTcJEMsDHynWUohs6OlTjOFrLQomaSZoeNBPpKvKIhL35AqIzAUMmiEO6aPo6Roc6GQy1JsyKIyjakaJSh1jM8pDywdlv0FYLlFHq4u7y_aVjVVwYo8HuSWtLUGkmVsxiQzjvJ0rCCsR7ZtACqcX2WkZDrwWzL2DbA1x4DDZHZL2cZEvnK3yXyapXqH0EhqzgNgMApYnPZ9xXxIr3Tggm2oONslvN5GEVWS4zj5YiDq2rJnMYGAQASAkqBe6S5xvpYOS92NWRad1ViJH4dIQHyYZXmjxlfAJcMvJzLV2fhVQFjAfhfYhWk2Pn5lBII6xSZgLESG19r736sek6X2fbcjOte9232yDP94ZSn5AZnPR2N9CJlSro6Km_AJGSQUfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+system+matching+of+ultrasonic+vibration+assisted+grinding+for+hard+and+brittle+materials+processing&rft.jtitle=International+journal+of+machine+tools+%26+manufacture&rft.au=Wang%2C+Yan&rft.au=Lin%2C+Bin&rft.au=Wang%2C+Shaolei&rft.au=Cao%2C+Xiaoyan&rft.date=2014-02-01&rft.issn=0890-6955&rft.volume=77&rft.spage=66&rft.epage=73&rft_id=info:doi/10.1016%2Fj.ijmachtools.2013.11.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6955&client=summon