Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing
Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechan...
Saved in:
Published in | International journal of machine tools & manufacture Vol. 77; pp. 66 - 73 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG.
•A system matching model of ultrasonic vibration system and machine tool system is deduced.•The predicted grinding force model and MRR model are presented.•The mechanism of grinding force reduction and surface roughness forming are described in theory.•An experiment with system matching is executed to validate the predicted results.•The predicted character of system matching in ultrasonic vibration assisted grinding is validated. |
---|---|
AbstractList | Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG. Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of grinding force and workpiece surface quality is improved by UAG, but the principle of improvement is still unclear. In order to reveal the mechanism of grinding force reduction and grinding quality improvement in UAG, this paper presents a mathematical model for system matching in UAG of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in UAG of brittle materials, the system matching model is developed step by step. On the basis of this mathematical model, the mechanism of grinding force reduction and surface roughness forming are discussed. The advantage of UAG processing brittle materials is pointed out in theory. Using the model developed, influences of input variables on grinding force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful foundation for development of grinding force models in UAG of brittle materials and models to predict surface roughness in UAG. •A system matching model of ultrasonic vibration system and machine tool system is deduced.•The predicted grinding force model and MRR model are presented.•The mechanism of grinding force reduction and surface roughness forming are described in theory.•An experiment with system matching is executed to validate the predicted results.•The predicted character of system matching in ultrasonic vibration assisted grinding is validated. |
Author | Cao, Xiaoyan Lin, Bin Wang, Yan Wang, Shaolei |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan email: satansdestiny@163.com – sequence: 2 givenname: Bin surname: Lin fullname: Lin, Bin email: tdlinbin@126.com – sequence: 3 givenname: Shaolei surname: Wang fullname: Wang, Shaolei – sequence: 4 givenname: Xiaoyan surname: Cao fullname: Cao, Xiaoyan |
BookMark | eNqNkUuPEzEQhC20SGQX_oO5cZmhe14enxCKeEkrcQDOlsfTThzN2MF2Vsq_xyEcEBdystr6qrpVdc_ufPDE2GuEGgGHt4faHVZt9jmEJdUNYFsj1gDtM7bBUciqQQF3bAOjhGqQff-C3ad0AAAcW9yw47d8ms88eJ73xNM5ZVr5qrPZO7_jwfLTkqNOwTvDn9wUdXaF1Sm5Qs58F52fL6QNke91nLn2M5-iy3mhiw9Fp5fEjzEYKiK_e8me2_JDr_68D-zHxw_ft5-rx6-fvmzfP1amG4dcaSAapbQghBa2mTqap6YDA2A7PQ5911itBQ096rm3CGUWQyMAJ7DW9FP7wN5cfcvqnydKWa0uGVoW7SmcksJBCNmLYcT_o32PICV23Q1oC1KM5ZCCvruiJoaUIlllXP4dXwnULQpBXRpUB_VXg-rSoEJUpcHiIP9xOEa36ni-Sbu9aqlk_OQoqmQceUOzi2SymoO7weUX86jCRA |
CitedBy_id | crossref_primary_10_3390_app11093888 crossref_primary_10_1007_s00170_022_10532_5 crossref_primary_10_1007_s00170_020_05761_5 crossref_primary_10_1007_s00170_021_07967_7 crossref_primary_10_1007_s00170_021_07612_3 crossref_primary_10_3390_mi15070915 crossref_primary_10_1016_j_ijmecsci_2019_03_026 crossref_primary_10_1007_s00170_022_09186_0 crossref_primary_10_4028_www_scientific_net_SSP_324_52 crossref_primary_10_1007_s00170_018_2164_x crossref_primary_10_1007_s00170_018_2457_0 crossref_primary_10_1007_s00170_024_13412_2 crossref_primary_10_1007_s00170_016_9945_x crossref_primary_10_1016_j_ceramint_2020_02_008 crossref_primary_10_1007_s00170_023_11565_0 crossref_primary_10_1080_10426914_2015_1090586 crossref_primary_10_1016_j_ijmecsci_2019_105246 crossref_primary_10_1631_jzus_A2300243 crossref_primary_10_1007_s00170_018_03274_w crossref_primary_10_1007_s00170_015_8326_1 crossref_primary_10_3390_app122010352 crossref_primary_10_3390_ma12101690 crossref_primary_10_1007_s00170_021_07165_5 crossref_primary_10_1007_s00170_023_12034_4 crossref_primary_10_1007_s00170_017_1401_z crossref_primary_10_1080_10910344_2019_1575402 crossref_primary_10_1155_2017_6750467 crossref_primary_10_1016_j_jclepro_2018_05_280 crossref_primary_10_1016_j_ceramint_2019_08_273 crossref_primary_10_1007_s43452_022_00399_4 crossref_primary_10_1016_j_jmapro_2020_01_003 crossref_primary_10_1016_j_precisioneng_2019_07_005 crossref_primary_10_1007_s00170_019_04084_4 crossref_primary_10_1007_s00170_023_12882_0 crossref_primary_10_1016_j_cja_2024_11_004 crossref_primary_10_1007_s00170_018_3195_z crossref_primary_10_1007_s00170_018_1644_3 crossref_primary_10_1007_s00170_019_03762_7 crossref_primary_10_1088_2631_7990_ab103b crossref_primary_10_1364_AO_55_006547 crossref_primary_10_1016_j_ijmachtools_2014_02_004 crossref_primary_10_1016_j_ultras_2019_106017 crossref_primary_10_1016_j_ijmachtools_2020_103594 crossref_primary_10_1186_s10033_023_00957_8 crossref_primary_10_1016_j_ijmecsci_2023_108311 crossref_primary_10_1016_j_ijmachtools_2015_10_005 crossref_primary_10_1051_matecconf_201818500018 crossref_primary_10_1016_j_cja_2023_01_008 crossref_primary_10_1016_j_ceramint_2022_06_019 crossref_primary_10_3390_mi10090616 crossref_primary_10_1007_s00170_015_7549_5 crossref_primary_10_1016_j_jclepro_2020_121876 crossref_primary_10_1016_j_jmapro_2018_02_001 crossref_primary_10_1016_j_ultras_2021_106577 crossref_primary_10_1007_s00170_017_0149_9 crossref_primary_10_1007_s00170_017_1468_6 crossref_primary_10_1016_j_ceramint_2024_12_204 crossref_primary_10_9773_sosei_56_658 crossref_primary_10_1007_s00170_018_2929_2 crossref_primary_10_1016_j_triboint_2020_106815 crossref_primary_10_1007_s00170_017_0316_z crossref_primary_10_1177_09544054211028527 crossref_primary_10_3390_s18082417 crossref_primary_10_1364_OE_452751 crossref_primary_10_1016_j_jmapro_2020_01_027 crossref_primary_10_1016_j_ceramint_2021_12_214 crossref_primary_10_1016_j_commatsci_2023_112353 crossref_primary_10_1016_j_vacuum_2020_109637 crossref_primary_10_1016_j_ceramint_2021_04_214 crossref_primary_10_1016_j_cja_2020_12_026 crossref_primary_10_1007_s11665_024_09890_w crossref_primary_10_1177_0954405420949106 crossref_primary_10_1007_s00170_018_1643_4 crossref_primary_10_3390_machines12100732 crossref_primary_10_1115_1_4032080 crossref_primary_10_1016_j_jmapro_2018_06_028 crossref_primary_10_1177_07316844211051731 crossref_primary_10_1016_j_jmapro_2023_04_040 crossref_primary_10_1007_s00170_016_8977_6 crossref_primary_10_1007_s00170_023_12571_y crossref_primary_10_1088_1757_899X_998_1_012048 crossref_primary_10_1007_s00170_016_9148_5 crossref_primary_10_1007_s00170_018_3006_6 crossref_primary_10_3390_coatings13101788 crossref_primary_10_1007_s00170_016_9602_4 crossref_primary_10_1007_s00170_018_1715_5 crossref_primary_10_1016_j_ceramint_2016_11_066 crossref_primary_10_1016_j_jmapro_2023_03_067 crossref_primary_10_1016_j_jmatprotec_2019_116585 crossref_primary_10_1007_s00170_020_04976_w crossref_primary_10_1007_s11465_022_0717_z crossref_primary_10_1016_j_matdes_2020_108755 crossref_primary_10_1007_s00170_018_1609_6 crossref_primary_10_1016_j_ijmecsci_2017_11_042 crossref_primary_10_1016_j_precisioneng_2016_04_005 crossref_primary_10_1016_j_ceramint_2021_09_040 crossref_primary_10_1007_s00170_022_10678_2 crossref_primary_10_1016_j_ceramint_2019_10_048 crossref_primary_10_1016_j_jmapro_2019_01_046 crossref_primary_10_1016_j_matpr_2021_04_118 crossref_primary_10_3390_ma16175819 crossref_primary_10_1007_s00170_016_9151_x crossref_primary_10_1007_s00170_023_11590_z crossref_primary_10_1016_j_ijmecsci_2019_105336 crossref_primary_10_3390_s16101660 crossref_primary_10_1007_s00170_017_0012_z crossref_primary_10_1016_j_wear_2015_02_047 crossref_primary_10_1016_j_jmatprotec_2014_04_001 crossref_primary_10_1038_s41598_022_11000_6 crossref_primary_10_1088_1361_651X_ad064f crossref_primary_10_1007_s12206_021_0232_x crossref_primary_10_1016_j_ijmachtools_2015_11_003 crossref_primary_10_1177_1045389X17711818 crossref_primary_10_4028_www_scientific_net_KEM_764_210 crossref_primary_10_1007_s00170_018_1744_0 crossref_primary_10_1177_09544089241311722 crossref_primary_10_1007_s00170_024_13939_4 crossref_primary_10_1177_09544054211040609 crossref_primary_10_1016_j_ceramint_2022_02_067 crossref_primary_10_1007_s00170_024_13380_7 crossref_primary_10_1016_j_ceramint_2020_02_262 crossref_primary_10_1177_09544062241291791 crossref_primary_10_1007_s40430_018_1296_0 crossref_primary_10_1007_s00170_020_05975_7 crossref_primary_10_1007_s12541_018_0110_3 crossref_primary_10_1016_j_ceramint_2016_10_135 crossref_primary_10_1016_j_ijmecsci_2019_03_009 crossref_primary_10_1007_s00170_021_07447_y crossref_primary_10_1063_1_5025498 crossref_primary_10_1007_s00170_020_05769_x crossref_primary_10_1063_5_0245763 crossref_primary_10_1016_j_cirpj_2021_03_019 crossref_primary_10_1016_j_diamond_2024_111565 crossref_primary_10_4028_www_scientific_net_MSF_1047_62 crossref_primary_10_1016_j_apsusc_2022_153692 crossref_primary_10_1007_s00170_023_11444_8 crossref_primary_10_1016_j_ceramint_2019_06_067 crossref_primary_10_1007_s12046_021_01771_5 crossref_primary_10_21595_jve_2015_16341 crossref_primary_10_1177_0954406217747914 crossref_primary_10_1007_s00170_022_10469_9 crossref_primary_10_1016_j_ijmachtools_2020_103540 crossref_primary_10_1631_jzus_A2200367 crossref_primary_10_1007_s00170_016_9726_6 crossref_primary_10_1007_s00170_022_10068_8 crossref_primary_10_3390_cryst13010151 crossref_primary_10_70322_ism_2025_10001 crossref_primary_10_1016_j_ijmecsci_2020_105551 crossref_primary_10_1007_s00170_015_8181_0 crossref_primary_10_1016_j_sna_2023_114556 |
Cites_doi | 10.1016/0890-6955(94)00100-X 10.1016/j.ijmachtools.2010.08.009 10.1007/BF00823224 10.1016/S0924-0136(96)02422-3 10.1016/0020-7357(86)90008-9 10.1016/0924-0136(94)01720-L 10.1016/j.jmatprotec.2007.06.077 10.1016/j.ijmachtools.2011.09.006 10.1016/S0007-8506(07)62828-5 10.1111/j.1151-2916.1980.tb10768.x 10.1016/j.jeurceramsoc.2008.11.010 10.4028/www.scientific.net/MSF.471-472.101 10.1016/j.ijmachtools.2009.12.006 10.1080/00207549108948077 10.1007/s00170-013-5269-2 10.1016/S0890-6955(97)00036-9 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7TB 8BQ 8FD F28 FR3 JG9 |
DOI | 10.1016/j.ijmachtools.2013.11.003 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2170 |
EndPage | 73 |
ExternalDocumentID | 10_1016_j_ijmachtools_2013_11_003 S0890695513001880 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XFK ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8BQ 8FD F28 FR3 JG9 EFKBS |
ID | FETCH-LOGICAL-c486t-a0ee899f077a7f2b4edb240c00f4a86542faa7e651ad5f1042f762701b0ffc5b3 |
IEDL.DBID | .~1 |
ISSN | 0890-6955 |
IngestDate | Tue Aug 05 10:01:49 EDT 2025 Tue Aug 05 10:03:49 EDT 2025 Thu Jul 10 18:42:27 EDT 2025 Tue Jul 01 01:16:01 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Fri Feb 23 02:34:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | UAG Surface roughness System matching Vibration frequency Grinding force |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-a0ee899f077a7f2b4edb240c00f4a86542faa7e651ad5f1042f762701b0ffc5b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1530978270 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1677957681 proquest_miscellaneous_1551099144 proquest_miscellaneous_1530978270 crossref_citationtrail_10_1016_j_ijmachtools_2013_11_003 crossref_primary_10_1016_j_ijmachtools_2013_11_003 elsevier_sciencedirect_doi_10_1016_j_ijmachtools_2013_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2014 2014-2-00 20140201 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
PublicationDecade | 2010 |
PublicationTitle | International journal of machine tools & manufacture |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Subramanian, Ramanath (bib11) 1992 Prabhakar, Pei, Ferreira (bib15) 1993; XXI Gong, Fang (bib6) 2010; 50 Komaraiah, Reddy (bib8) 1991; 29 R.J. Clifton, H.D. Espinosa, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Materials Division, Advances in Failure Mechanisms in Brittle Materials (75), 1996, 187. Lawn, Marshall, Evans (bib21) 1980; 63 Islam, Kumar, Balakumar, Lim, Rahman (bib2) 2008; 198 Samant, Dahotre (bib3) 2009; 29 Pei (bib13) 1995; 48 Uhimann, Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance, Annals of the CIRP470 (1) (1998) 249–252. . Spur, Holl (bib4) 1997; 4 Agarwal, Rao (bib10) 2010; 50 Pei, Ferreira, Kapoor (bib12) 1995; 35 D.F. Liu, W.L. Cong, Z.J. Pei, Yong Jun Tang, A cutting force model for rotary ultrasonic machining of brittle materials, Int. J. Mach. Tools Manuf. 52: 77–84. Y. Wang, B. Lin, X.F. Zhang, Research on the system matching model in ultrasonic vibration assisted grinding, Int. J. Adv. Manuf. Technol. Soundararejan, Radhakrishnan (bib18) 1986; 26 Wu, Nomura, Feng, Kato (bib5) 2004; 471–472 Uhlmann, Spur (bib14) 1998; 47 Thoe, Aspinwall, Wise (bib1) 1998; 38 Spur, Holl (bib7) 1996; 62 Lawn, Wilshaw (bib19) 1975; 10 Pei (10.1016/j.ijmachtools.2013.11.003_bib12) 1995; 35 Soundararejan (10.1016/j.ijmachtools.2013.11.003_bib18) 1986; 26 Prabhakar (10.1016/j.ijmachtools.2013.11.003_bib15) 1993; XXI Komaraiah (10.1016/j.ijmachtools.2013.11.003_bib8) 1991; 29 Spur (10.1016/j.ijmachtools.2013.11.003_bib7) 1996; 62 10.1016/j.ijmachtools.2013.11.003_bib9 Islam (10.1016/j.ijmachtools.2013.11.003_bib2) 2008; 198 Lawn (10.1016/j.ijmachtools.2013.11.003_bib19) 1975; 10 Gong (10.1016/j.ijmachtools.2013.11.003_bib6) 2010; 50 Lawn (10.1016/j.ijmachtools.2013.11.003_bib21) 1980; 63 10.1016/j.ijmachtools.2013.11.003_bib20 Samant (10.1016/j.ijmachtools.2013.11.003_bib3) 2009; 29 Spur (10.1016/j.ijmachtools.2013.11.003_bib4) 1997; 4 10.1016/j.ijmachtools.2013.11.003_bib16 Thoe (10.1016/j.ijmachtools.2013.11.003_bib1) 1998; 38 Agarwal (10.1016/j.ijmachtools.2013.11.003_bib10) 2010; 50 Uhlmann (10.1016/j.ijmachtools.2013.11.003_bib14) 1998; 47 10.1016/j.ijmachtools.2013.11.003_bib17 Wu (10.1016/j.ijmachtools.2013.11.003_bib5) 2004; 471–472 Subramanian (10.1016/j.ijmachtools.2013.11.003_bib11) 1992 Pei (10.1016/j.ijmachtools.2013.11.003_bib13) 1995; 48 |
References_xml | – volume: 198 start-page: 281 year: 2008 end-page: 290 ident: bib2 article-title: Characterization of ELID grinding process for machining silicon wafers publication-title: J. Mater. Process. Technol. – volume: 26 start-page: 307 year: 1986 end-page: 321 ident: bib18 article-title: An experimental investigation on the basic mechanisms involved in ultrasonic machining publication-title: Int. J. Mach. Tools Des. Res. – volume: 4 start-page: 9 year: 1997 end-page: 14 ident: bib4 article-title: Material removal mechanisms during ultrasonic assisted grinding publication-title: Prod. Eng. – reference: . – volume: 62 start-page: 287 year: 1996 end-page: 293 ident: bib7 article-title: Ultrasonic assisted grinding of ceramics publication-title: J. Mater. Process. Technol. – volume: 47 start-page: 249 year: 1998 end-page: 252 ident: bib14 article-title: Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance publication-title: CIRP Ann. Manuf. Technol. – volume: 29 start-page: 969 year: 2009 end-page: 993 ident: bib3 article-title: Laser machining of structural ceramics a review publication-title: J. Eur. Ceram. Soc. – volume: 50 start-page: 303 year: 2010 end-page: 307 ident: bib6 article-title: Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials publication-title: Int. J. Mach. Tools Manuf. – reference: Uhimann, Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance, Annals of the CIRP470 (1) (1998) 249–252. – volume: 50 start-page: 1065 year: 2010 end-page: 1076 ident: bib10 article-title: Modeling and prediction of surface roughness in ceramic grinding publication-title: Int. J. Mach. Tools Manuf. – volume: 48 start-page: 771 year: 1995 end-page: 777 ident: bib13 article-title: Plastic flow in rotary ultrasonic machining of ceramics publication-title: J. Mater. Process. Technol. – reference: Y. Wang, B. Lin, X.F. Zhang, Research on the system matching model in ultrasonic vibration assisted grinding, Int. J. Adv. Manuf. Technol. – volume: XXI start-page: 167 year: 1993 end-page: 172 ident: bib15 article-title: A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics publication-title: Trans North Am. Manuf. Res. Inst. SME – volume: 10 start-page: 1049 year: 1975 end-page: 1081 ident: bib19 article-title: Review indentation fracture: principles and applications publication-title: J. Mater. Sci. – volume: 29 start-page: 2177 year: 1991 end-page: 2187 ident: bib8 article-title: Rotary ultrasonic machining—a new cutting process and its performance publication-title: Int. J. Prod. Res. – volume: 38 start-page: 239 year: 1998 end-page: 255 ident: bib1 article-title: Review on ultrasonic machining publication-title: Int. J. Mach. Tools Manuf. – volume: 471–472 start-page: 101 year: 2004 end-page: 106 ident: bib5 article-title: Modeling of grinding force in constant-depth -of-cut ultrasonically assisted grinding publication-title: Mater. Sci. Forum – volume: 35 start-page: 1033 year: 1995 end-page: 1046 ident: bib12 article-title: Rotary ultrasonic machining for face milling of ceramics publication-title: Int. J. Mach. Tools Manuf. – reference: R.J. Clifton, H.D. Espinosa, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Materials Division, Advances in Failure Mechanisms in Brittle Materials (75), 1996, 187. – volume: 63 start-page: 574 year: 1980 end-page: 581 ident: bib21 article-title: Elastic/plastic indentation damage in ceramics: the median/radial crack system publication-title: J. Am. Ceram. Soc. – start-page: 1 year: 1992 end-page: 19 ident: bib11 article-title: Mechanism of material removal in the precision grinding of ceramics, in: PED—vol. 58, Precision Machining: Technology and Machine Development and Improvement publication-title: ASME – reference: D.F. Liu, W.L. Cong, Z.J. Pei, Yong Jun Tang, A cutting force model for rotary ultrasonic machining of brittle materials, Int. J. Mach. Tools Manuf. 52: 77–84. – volume: 35 start-page: 1033 issue: 7 year: 1995 ident: 10.1016/j.ijmachtools.2013.11.003_bib12 article-title: Rotary ultrasonic machining for face milling of ceramics publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/0890-6955(94)00100-X – volume: 50 start-page: 1065 issue: 12 year: 2010 ident: 10.1016/j.ijmachtools.2013.11.003_bib10 article-title: Modeling and prediction of surface roughness in ceramic grinding publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2010.08.009 – volume: 10 start-page: 1049 issue: 6 year: 1975 ident: 10.1016/j.ijmachtools.2013.11.003_bib19 article-title: Review indentation fracture: principles and applications publication-title: J. Mater. Sci. doi: 10.1007/BF00823224 – volume: 62 start-page: 287 issue: 4 year: 1996 ident: 10.1016/j.ijmachtools.2013.11.003_bib7 article-title: Ultrasonic assisted grinding of ceramics publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(96)02422-3 – volume: XXI start-page: 167 year: 1993 ident: 10.1016/j.ijmachtools.2013.11.003_bib15 article-title: A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics publication-title: Trans North Am. Manuf. Res. Inst. SME – volume: 26 start-page: 307 issue: 3 year: 1986 ident: 10.1016/j.ijmachtools.2013.11.003_bib18 article-title: An experimental investigation on the basic mechanisms involved in ultrasonic machining publication-title: Int. J. Mach. Tools Des. Res. doi: 10.1016/0020-7357(86)90008-9 – start-page: 1 year: 1992 ident: 10.1016/j.ijmachtools.2013.11.003_bib11 article-title: Mechanism of material removal in the precision grinding of ceramics, in: PED—vol. 58, Precision Machining: Technology and Machine Development and Improvement publication-title: ASME – volume: 48 start-page: 771 issue: 1–4 year: 1995 ident: 10.1016/j.ijmachtools.2013.11.003_bib13 article-title: Plastic flow in rotary ultrasonic machining of ceramics publication-title: J. Mater. Process. Technol. doi: 10.1016/0924-0136(94)01720-L – volume: 198 start-page: 281 issue: 1–3 year: 2008 ident: 10.1016/j.ijmachtools.2013.11.003_bib2 article-title: Characterization of ELID grinding process for machining silicon wafers publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.06.077 – ident: 10.1016/j.ijmachtools.2013.11.003_bib16 doi: 10.1016/j.ijmachtools.2011.09.006 – volume: 47 start-page: 249 issue: 1 year: 1998 ident: 10.1016/j.ijmachtools.2013.11.003_bib14 article-title: Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/S0007-8506(07)62828-5 – volume: 63 start-page: 574 year: 1980 ident: 10.1016/j.ijmachtools.2013.11.003_bib21 article-title: Elastic/plastic indentation damage in ceramics: the median/radial crack system publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1980.tb10768.x – volume: 29 start-page: 969 issue: 6 year: 2009 ident: 10.1016/j.ijmachtools.2013.11.003_bib3 article-title: Laser machining of structural ceramics a review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.11.010 – volume: 4 start-page: 9 issue: 2 year: 1997 ident: 10.1016/j.ijmachtools.2013.11.003_bib4 article-title: Material removal mechanisms during ultrasonic assisted grinding publication-title: Prod. Eng. – volume: 471–472 start-page: 101 year: 2004 ident: 10.1016/j.ijmachtools.2013.11.003_bib5 article-title: Modeling of grinding force in constant-depth -of-cut ultrasonically assisted grinding publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.471-472.101 – volume: 50 start-page: 303 issue: 3 year: 2010 ident: 10.1016/j.ijmachtools.2013.11.003_bib6 article-title: Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2009.12.006 – volume: 29 start-page: 2177 issue: 11 year: 1991 ident: 10.1016/j.ijmachtools.2013.11.003_bib8 article-title: Rotary ultrasonic machining—a new cutting process and its performance publication-title: Int. J. Prod. Res. doi: 10.1080/00207549108948077 – ident: 10.1016/j.ijmachtools.2013.11.003_bib17 doi: 10.1007/s00170-013-5269-2 – ident: 10.1016/j.ijmachtools.2013.11.003_bib20 – volume: 38 start-page: 239 issue: 4 year: 1998 ident: 10.1016/j.ijmachtools.2013.11.003_bib1 article-title: Review on ultrasonic machining publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(97)00036-9 – ident: 10.1016/j.ijmachtools.2013.11.003_bib9 doi: 10.1016/S0007-8506(07)62828-5 |
SSID | ssj0001831 |
Score | 2.4993055 |
Snippet | Ultrasonic vibration assisted grinding (UAG) is an effective processing method for hard and brittle materials. Compared with common grinding (CG), both of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Brittle materials Foundations Grinding force Matching Mathematical analysis Mathematical models Reduction Surface roughness System matching UAG Ultrasonic vibration Vibration frequency |
Title | Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing |
URI | https://dx.doi.org/10.1016/j.ijmachtools.2013.11.003 https://www.proquest.com/docview/1530978270 https://www.proquest.com/docview/1551099144 https://www.proquest.com/docview/1677957681 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9sQWvsWmyyW7ASymWquhFhd7CbrKrkZqUNBW8-NudycMnFMFjwmxYdiYz87Ez3xBygqRySkjQgA64xaRwLekybvnakQ7TwsRl1_v1jT-6Z5djb9wig6YXBssqa99f-fTSW9dvuvVpdqdJ0r21RWD7AQ4owclyAnE7Yxyt_PTts8wDTLacmgfCFkqvkM5njVfy9CyjxyLLJsjc3XNPkdCzmZ_1O0b98NZlCBpukPU6d6T9anubpKXTLbL2hVFwm0yxLvCVZimFxI5WNM0UktKyYpJmhs4nRS5nyIdLXxApo14oJNCo7Zg-5EnZ5UIhlaXYj0VlGlOVJ8h0jN-p7JVOq_YCkNwh98Pzu8HIqocqWBETfmFJW2vAWMbmXHLjKKZjBVE9sm0DmsLxVUZKrn2vJ2PPAFhzDPhLbveUbUzkKXeXLKVZqvcIjaQWwgcAowDEac9T3IPsSvsuyAZK8DYRzTGGUc04joMvJmFTWvYUftFAiBoARIJ0pW3ifCydVrQbf1l01ugq_GZDIYSHvyzvNPoN4R_DixOZ6mw-CyEqYLsLnMIiGQ8vGQGfLpDxOQ8Q4PX2_7fVA7IKT6yqHj8kS0U-10eQHBXquLT-Y7Lcv7ga3bwD-qoS7g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EwcdBfOLbLXiNTfPaDXgRUaq2vajQ27Kb7GqkJqWmghd_uzN5aFUoBa_tbAj77c7MR2a-IeQEReUUl4CADpnlSe5a0vWYFWhHOp7mJi663ru9oP3g3fT9_hy5qHthsKyy8v2lTy-8dfVLs9rN5jBJmnc2D-0gxAElOFmOA29f8OD64hiD04_vOg84s8XYPLC20HyRNL6LvJLnFxk95Vk2QOnulnuKip71AK2_QeqXuy5i0NUaWa2SR3pevt86mdPpBlmZkBTcJEMsDHynWUohs6OlTjOFrLQomaSZoeNBPpKvKIhL35AqIzAUMmiEO6aPo6Roc6GQy1JsyKIyjakaJSh1jM8pDywdlv0FYLlFHq4u7y_aVjVVwYo8HuSWtLUGkmVsxiQzjvJ0rCCsR7ZtACqcX2WkZDrwWzL2DbA1x4DDZHZL2cZEvnK3yXyapXqH0EhqzgNgMApYnPZ9xXxIr3Tggm2oONslvN5GEVWS4zj5YiDq2rJnMYGAQASAkqBe6S5xvpYOS92NWRad1ViJH4dIQHyYZXmjxlfAJcMvJzLV2fhVQFjAfhfYhWk2Pn5lBII6xSZgLESG19r736sek6X2fbcjOte9232yDP94ZSn5AZnPR2N9CJlSro6Km_AJGSQUfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+system+matching+of+ultrasonic+vibration+assisted+grinding+for+hard+and+brittle+materials+processing&rft.jtitle=International+journal+of+machine+tools+%26+manufacture&rft.au=Wang%2C+Yan&rft.au=Lin%2C+Bin&rft.au=Wang%2C+Shaolei&rft.au=Cao%2C+Xiaoyan&rft.date=2014-02-01&rft.issn=0890-6955&rft.volume=77&rft.spage=66&rft.epage=73&rft_id=info:doi/10.1016%2Fj.ijmachtools.2013.11.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6955&client=summon |