Development of Working Memory Maintenance

Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania Submitted 15 June 2008; accepted in final form 20 October 2008 The neural circuitry supporting mature visual spatial working...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 101; no. 1; pp. 84 - 99
Main Authors Geier, Charles F, Garver, Krista, Terwilliger, Robert, Luna, Beatriz
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.01.2009
American Physiological Society
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
DOI10.1152/jn.90562.2008

Cover

Abstract Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania Submitted 15 June 2008; accepted in final form 20 October 2008 The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we still have limited understanding about developmental change through adolescence in this network. We present results from a fast event-related functional MRI (fMRI) study aimed at characterizing developmental changes in brain mechanisms supporting VSWM across different delay periods. Forty-three healthy subjects (17 adults, 18–30 yr; 13 adolescents, 13–17 yr; 13 children, 8–12 yr) were scanned as they performed an oculomotor delayed response (ODR) task with short (2.5 s) and long (10 s) delay period trials. Results showed that all age groups recruited a common network of regions to support both delay trials, including frontal, parietal, and temporal regions, indicative of a core circuitry needed to perform the task. Several age-related differences were found in the recruitment of regions, supporting short delay trials, including fronto-caudal areas, which could contribute to known differences in initial memory-guided saccade precision. To support extended delay trials, adults primarily recruited additional posterior parietal cortex (PPC), whereas children and adolescents recruited a considerably more extensive distributed circuitry. Our findings indicate that brain processes supporting basic aspects of working memory across cortex are established by childhood. We also find evidence for continued immaturities in systems supporting working memory precision, reflected by differences in the circuitry recruited by children and by continued refinement of fronto-insular-temporal regions recruited by adolescents. Taken together, these results suggest distinct developmental changes in the circuitry supporting visual spatial working memory. Address for reprint requests and other correspondence: C. Geier, Univ. of Pittsburgh, 121 Meyran Ave., Loeffler Bldg., Rm. 113, Pittsburgh, PA 15213 (E-mail: geiercf{at}upmc.edu )
AbstractList The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we still have limited understanding about developmental change through adolescence in this network. We present results from a fast event-related functional MRI (fMRI) study aimed at characterizing developmental changes in brain mechanisms supporting VSWM across different delay periods. Forty-three healthy subjects (17 adults, 18–30 yr; 13 adolescents, 13–17 yr; 13 children, 8–12 yr) were scanned as they performed an oculomotor delayed response (ODR) task with short (2.5 s) and long (10 s) delay period trials. Results showed that all age groups recruited a common network of regions to support both delay trials, including frontal, parietal, and temporal regions, indicative of a core circuitry needed to perform the task. Several age-related differences were found in the recruitment of regions, supporting short delay trials, including fronto-caudal areas, which could contribute to known differences in initial memory-guided saccade precision. To support extended delay trials, adults primarily recruited additional posterior parietal cortex (PPC), whereas children and adolescents recruited a considerably more extensive distributed circuitry. Our findings indicate that brain processes supporting basic aspects of working memory across cortex are established by childhood. We also find evidence for continued immaturities in systems supporting working memory precision, reflected by differences in the circuitry recruited by children and by continued refinement of fronto-insular-temporal regions recruited by adolescents. Taken together, these results suggest distinct developmental changes in the circuitry supporting visual spatial working memory.
The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we still have limited understanding about developmental change through adolescence in this network. We present results from a fast event-related functional MRI (fMRI) study aimed at characterizing developmental changes in brain mechanisms supporting VSWM across different delay periods. Forty-three healthy subjects (17 adults, 18-30 yr; 13 adolescents, 13-17 yr; 13 children, 8-12 yr) were scanned as they performed an oculomotor delayed response (ODR) task with short (2.5 s) and long (10 s) delay period trials. Results showed that all age groups recruited a common network of regions to support both delay trials, including frontal, parietal, and temporal regions, indicative of a core circuitry needed to perform the task. Several age-related differences were found in the recruitment of regions, supporting short delay trials, including fronto-caudal areas, which could contribute to known differences in initial memory-guided saccade precision. To support extended delay trials, adults primarily recruited additional posterior parietal cortex (PPC), whereas children and adolescents recruited a considerably more extensive distributed circuitry. Our findings indicate that brain processes supporting basic aspects of working memory across cortex are established by childhood. We also find evidence for continued immaturities in systems supporting working memory precision, reflected by differences in the circuitry recruited by children and by continued refinement of fronto-insular-temporal regions recruited by adolescents. Taken together, these results suggest distinct developmental changes in the circuitry supporting visual spatial working memory.The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we still have limited understanding about developmental change through adolescence in this network. We present results from a fast event-related functional MRI (fMRI) study aimed at characterizing developmental changes in brain mechanisms supporting VSWM across different delay periods. Forty-three healthy subjects (17 adults, 18-30 yr; 13 adolescents, 13-17 yr; 13 children, 8-12 yr) were scanned as they performed an oculomotor delayed response (ODR) task with short (2.5 s) and long (10 s) delay period trials. Results showed that all age groups recruited a common network of regions to support both delay trials, including frontal, parietal, and temporal regions, indicative of a core circuitry needed to perform the task. Several age-related differences were found in the recruitment of regions, supporting short delay trials, including fronto-caudal areas, which could contribute to known differences in initial memory-guided saccade precision. To support extended delay trials, adults primarily recruited additional posterior parietal cortex (PPC), whereas children and adolescents recruited a considerably more extensive distributed circuitry. Our findings indicate that brain processes supporting basic aspects of working memory across cortex are established by childhood. We also find evidence for continued immaturities in systems supporting working memory precision, reflected by differences in the circuitry recruited by children and by continued refinement of fronto-insular-temporal regions recruited by adolescents. Taken together, these results suggest distinct developmental changes in the circuitry supporting visual spatial working memory.
Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania Submitted 15 June 2008; accepted in final form 20 October 2008 The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we still have limited understanding about developmental change through adolescence in this network. We present results from a fast event-related functional MRI (fMRI) study aimed at characterizing developmental changes in brain mechanisms supporting VSWM across different delay periods. Forty-three healthy subjects (17 adults, 18–30 yr; 13 adolescents, 13–17 yr; 13 children, 8–12 yr) were scanned as they performed an oculomotor delayed response (ODR) task with short (2.5 s) and long (10 s) delay period trials. Results showed that all age groups recruited a common network of regions to support both delay trials, including frontal, parietal, and temporal regions, indicative of a core circuitry needed to perform the task. Several age-related differences were found in the recruitment of regions, supporting short delay trials, including fronto-caudal areas, which could contribute to known differences in initial memory-guided saccade precision. To support extended delay trials, adults primarily recruited additional posterior parietal cortex (PPC), whereas children and adolescents recruited a considerably more extensive distributed circuitry. Our findings indicate that brain processes supporting basic aspects of working memory across cortex are established by childhood. We also find evidence for continued immaturities in systems supporting working memory precision, reflected by differences in the circuitry recruited by children and by continued refinement of fronto-insular-temporal regions recruited by adolescents. Taken together, these results suggest distinct developmental changes in the circuitry supporting visual spatial working memory. Address for reprint requests and other correspondence: C. Geier, Univ. of Pittsburgh, 121 Meyran Ave., Loeffler Bldg., Rm. 113, Pittsburgh, PA 15213 (E-mail: geiercf{at}upmc.edu )
Author Terwilliger, Robert
Luna, Beatriz
Garver, Krista
Geier, Charles F
AuthorAffiliation Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
AuthorAffiliation_xml – name: Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
Author_xml – sequence: 1
  fullname: Geier, Charles F
– sequence: 2
  fullname: Garver, Krista
– sequence: 3
  fullname: Terwilliger, Robert
– sequence: 4
  fullname: Luna, Beatriz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18971297$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFvEzEQhS1URNPCkSvKCYnDhrGdtb0XJFRaQGrFpYij5fXOJg5ee7E3hfz7OqSlgOBky_O9N8_vhByFGJCQ5xQWlNbs9SYsGqgFWzAA9YjMyhuraN2oIzIDKHcOUh6Tk5w3ACBrYE_IMVWNpKyRM_LqHd6gj-OAYZrHfv4lpq8urOZXOMS0m18ZFyYMJlh8Sh73xmd8dneeks8X59dnH6rLT-8_nr29rOxSialqettJ2rVKcmRAGaWyEVZaQ1W7tKIVyBVH6Otalbmk0KNshUXWcQmcNfyUvDn4jtt2wM6WYMl4PSY3mLTT0Tj95yS4tV7FG81EcYBlMXh5Z5Dity3mSQ8uW_TeBIzbrIVQJZikBXzx-6ZfK-7bKUB1AGyKOSfsHxDQ-_b1Juif7et9-4Xnf_HWTWZycR_U-f-q2EG1dqv1d5dQj-tddtHH1U5fbL2_xh9T0VCgmmq11GPXP3zyX6Lifw_zW_fNp3E
CitedBy_id crossref_primary_10_1016_j_cortex_2023_10_019
crossref_primary_10_1111_cdev_13721
crossref_primary_10_1002_hbm_25197
crossref_primary_10_1016_j_neuroimage_2017_01_016
crossref_primary_10_1002_hbm_21073
crossref_primary_10_1016_j_dcn_2013_03_003
crossref_primary_10_1016_j_neuroimage_2023_120112
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_1186_s12915_016_0270_5
crossref_primary_10_1016_j_neuroimage_2012_03_060
crossref_primary_10_1016_j_cognition_2021_104749
crossref_primary_10_1113_JP287372
crossref_primary_10_1016_j_nicl_2020_102392
crossref_primary_10_1016_j_neuroimage_2013_05_034
crossref_primary_10_1016_j_nicl_2015_12_002
crossref_primary_10_1053_j_semperi_2016_09_004
crossref_primary_10_1016_j_bandc_2013_02_007
crossref_primary_10_1007_s11682_012_9192_1
crossref_primary_10_1007_s12640_010_9162_6
crossref_primary_10_1093_cercor_bhr189
crossref_primary_10_1016_j_neuroimage_2020_116971
crossref_primary_10_1016_j_dcn_2016_04_004
crossref_primary_10_1080_00222895_2022_2134287
crossref_primary_10_3390_jcm13123585
crossref_primary_10_1016_j_neuropsychologia_2011_10_001
crossref_primary_10_1016_j_ntt_2012_08_005
crossref_primary_10_3389_fpsyg_2017_01638
crossref_primary_10_1007_s10548_017_0552_4
crossref_primary_10_1093_cercor_bhad545
crossref_primary_10_1093_braincomms_fcac123
crossref_primary_10_1186_s11689_018_9236_y
crossref_primary_10_1016_j_bpsc_2019_01_007
crossref_primary_10_1002_brb3_1063
crossref_primary_10_1038_npp_2009_115
crossref_primary_10_1016_j_neubiorev_2018_09_005
crossref_primary_10_1017_S0954579415001042
crossref_primary_10_1016_j_biopsycho_2013_01_006
crossref_primary_10_1016_j_neuroimage_2015_11_053
crossref_primary_10_3389_fpsyg_2016_00987
crossref_primary_10_1016_j_cogdev_2016_03_004
crossref_primary_10_1093_cercor_bhp282
crossref_primary_10_1016_j_neuroimage_2020_116688
crossref_primary_10_1016_j_tics_2017_01_003
crossref_primary_10_3389_fnhum_2017_00394
crossref_primary_10_1016_j_bbi_2023_09_012
crossref_primary_10_1016_j_dcn_2010_11_001
crossref_primary_10_1093_cercor_bhv139
crossref_primary_10_1016_j_neuropsychologia_2009_09_020
crossref_primary_10_3389_fnins_2025_1524931
crossref_primary_10_1016_j_biopsych_2011_05_006
crossref_primary_10_1016_j_neubiorev_2013_03_004
crossref_primary_10_3389_fnsys_2016_00068
crossref_primary_10_1007_s10802_013_9737_9
crossref_primary_10_1007_s00221_009_1850_1
crossref_primary_10_1016_j_pneurobio_2010_06_010
crossref_primary_10_1038_s41598_022_10100_7
crossref_primary_10_1016_j_neuropsychologia_2018_10_020
crossref_primary_10_1016_j_brainres_2014_09_057
crossref_primary_10_1016_j_neubiorev_2012_06_004
crossref_primary_10_3389_fpsyg_2018_01106
crossref_primary_10_1016_j_cortex_2012_08_004
crossref_primary_10_1016_j_dcn_2019_100732
crossref_primary_10_1016_j_neuropsychologia_2012_10_022
crossref_primary_10_1016_j_pbb_2009_01_021
crossref_primary_10_1093_cercor_bhp225
crossref_primary_10_1016_j_nlm_2017_12_003
crossref_primary_10_1007_s00247_015_3365_1
crossref_primary_10_1016_j_jecp_2021_105230
crossref_primary_10_1007_s11682_016_9592_8
crossref_primary_10_1523_JNEUROSCI_0842_13_2014
crossref_primary_10_1523_JNEUROSCI_2345_13_2013
crossref_primary_10_1111_mono_12035
crossref_primary_10_1097_MD_0000000000001586
crossref_primary_10_1146_annurev_neuro_071714_034054
crossref_primary_10_1016_j_neuroimage_2011_12_079
crossref_primary_10_1371_journal_pone_0032279
crossref_primary_10_1016_j_bandc_2012_11_003
crossref_primary_10_1016_j_dcn_2018_09_001
crossref_primary_10_1016_j_pscychresns_2013_08_004
crossref_primary_10_1016_j_neuroimage_2022_119139
crossref_primary_10_3390_nu12113513
crossref_primary_10_3389_fnhum_2014_00848
crossref_primary_10_1080_87565641_2014_939182
crossref_primary_10_1016_j_neuroimage_2020_116617
crossref_primary_10_1016_j_pneurobio_2024_102695
crossref_primary_10_1016_j_schres_2016_09_003
crossref_primary_10_1155_2013_712758
crossref_primary_10_1016_j_neuropsychologia_2012_11_011
crossref_primary_10_1016_j_bandc_2009_08_005
crossref_primary_10_1007_s11682_016_9541_6
crossref_primary_10_1017_S0954579417001638
crossref_primary_10_1016_j_dcn_2023_101318
crossref_primary_10_1016_j_dcn_2015_10_007
crossref_primary_10_1162_jocn_a_00824
crossref_primary_10_1523_JNEUROSCI_2612_10_2010
crossref_primary_10_1038_nrn3313
Cites_doi 10.1007/BF00248277
10.1017/S1355617705050757
10.1111/j.1467-8624.2004.00745.x
10.1006/nimg.1999.0466
10.1016/j.neuroscience.2005.04.070
10.1073/pnas.0510088103
10.1523/JNEUROSCI.2063-07.2007
10.1097/00004583-200210000-00013
10.1093/cercor/12.9.926
10.1152/jn.00189.2006
10.1016/0028-3932(95)00134-4
10.1016/j.neuroscience.2005.06.005
10.1016/j.neuroimage.2006.12.022
10.1016/j.cogbrainres.2003.09.003
10.1006/nimg.1995.1029
10.1006/nimg.2000.0743
10.1080/87565649809540729
10.1038/nn846
10.1136/jamia.2001.0080443
10.1093/cercor/bhj037
10.1097/00004647-200208000-00002
10.1016/S0896-6273(03)00393-3
10.1016/S0896-6273(00)80593-0
10.1523/JNEUROSCI.5640-03.2004
10.1073/pnas.0402680101
10.1093/cercor/bhl014
10.1016/j.neuroimage.2007.03.050
10.1196/annals.1308.035
10.1152/jn.1983.49.5.1268
10.1006/cbmr.1996.0014
10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
10.1037/0012-1649.36.1.109
10.1002/hbm.10062
10.1162/089892902317205276
10.1038/nn1675
10.1152/jn.01290.2004
10.1146/annurev.ne.09.030186.002041
10.1038/35094500
10.1002/hbm.20017
10.1146/annurev.psych.48.1.269
10.1073/pnas.162486399
10.1006/nimg.1999.0503
10.1162/089892900564028
10.1093/cercor/bhn012
10.1093/cercor/8.1.40
10.1037/0012-1649.35.4.986
10.1162/0898929041920441
10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
10.1152/jn.1996.75.1.454
10.1073/pnas.89.13.5951
10.1016/j.neuroimage.2004.07.051
10.1162/jocn.2006.18.7.1045
10.1016/j.neuron.2006.04.031
10.1017/S0012162201001591
10.1152/jn.00382.2003
10.1016/j.neuroimage.2006.07.028
10.1093/cercor/bhh095
10.3758/BF03195488
10.1016/0959-4388(92)90141-7
10.1152/jn.1989.61.2.331
10.1207/s15326942dn2602_3
10.1523/JNEUROSCI.15-07-04851.1995
10.1076/jcen.25.2.242.13639
10.1073/pnas.89.12.5675
10.1006/nimg.2001.0788
10.1016/j.neuroimage.2004.08.036
10.1016/S1364-6613(00)01593-X
10.1037/0012-1649.40.2.177
10.1523/JNEUROSCI.16-13-04207.1996
10.1523/JNEUROSCI.05-03-00776.1985
10.1016/S1361-8415(01)00036-6
10.1002/hbm.20237
10.1016/S0959-4388(02)00361-6
ContentType Journal Article
Copyright Copyright © 2009, American Physiological Society 2009
Copyright_xml – notice: Copyright © 2009, American Physiological Society 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.90562.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 99
ExternalDocumentID PMC2637004
18971297
10_1152_jn_90562_2008
jn_101_1_84
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH-067924
– fundername: NIMH NIH HHS
  grantid: MH-01727
– fundername: NIMH NIH HHS
  grantid: R01 MH067924
GroupedDBID -
0VX
29L
2WC
39C
3O-
4.4
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H~9
KQ8
L7B
O0-
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
---
-DZ
-~X
.55
.GJ
18M
1CY
1Z7
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
MVM
NEJ
OHT
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c486t-9fcd71db873e201211796c7ca18b4c6b6e383e0f558e20710fe7b6ce2d3703293
ISSN 0022-3077
IngestDate Thu Aug 21 18:20:21 EDT 2025
Thu Sep 04 17:06:54 EDT 2025
Fri May 30 10:59:26 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Tue Jul 01 01:17:07 EDT 2025
Mon May 06 11:53:08 EDT 2019
Tue Jan 05 17:57:00 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-9fcd71db873e201211796c7ca18b4c6b6e383e0f558e20710fe7b6ce2d3703293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
PMID 18971297
PQID 66820171
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2637004
pubmed_primary_18971297
proquest_miscellaneous_66820171
crossref_citationtrail_10_1152_jn_90562_2008
crossref_primary_10_1152_jn_90562_2008
highwire_physiology_jn_101_1_84
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2009
Publisher Am Phys Soc
American Physiological Society
Publisher_xml – name: Am Phys Soc
– name: American Physiological Society
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R69
R24
R68
R27
R32A
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R70
R72
R71
R30
R74
R73
R32
R31
R75
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R37A
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R19
  doi: 10.1007/BF00248277
– ident: R58
  doi: 10.1017/S1355617705050757
– ident: R38
  doi: 10.1111/j.1467-8624.2004.00745.x
– ident: R69
  doi: 10.1006/nimg.1999.0466
– ident: R12
  doi: 10.1016/j.neuroscience.2005.04.070
– ident: R11
  doi: 10.1073/pnas.0510088103
– ident: R32A
  doi: 10.1523/JNEUROSCI.2063-07.2007
– ident: R68
  doi: 10.1097/00004583-200210000-00013
– ident: R44
  doi: 10.1093/cercor/12.9.926
– ident: R43
  doi: 10.1152/jn.00189.2006
– ident: R50
  doi: 10.1016/0028-3932(95)00134-4
– ident: R51
  doi: 10.1016/j.neuroscience.2005.06.005
– ident: R24
  doi: 10.1016/j.neuroimage.2006.12.022
– ident: R49
  doi: 10.1016/j.cogbrainres.2003.09.003
– ident: R7
  doi: 10.1006/nimg.1995.1029
– ident: R40
  doi: 10.1006/nimg.2000.0743
– ident: R75
  doi: 10.1080/87565649809540729
– ident: R54
  doi: 10.1038/nn846
– ident: R71
  doi: 10.1136/jamia.2001.0080443
– ident: R74
  doi: 10.1093/cercor/bhj037
– ident: R30
  doi: 10.1097/00004647-200208000-00002
– ident: R42
  doi: 10.1016/S0896-6273(03)00393-3
– ident: R9
  doi: 10.1016/S0896-6273(00)80593-0
– ident: R13
  doi: 10.1523/JNEUROSCI.5640-03.2004
– ident: R26
  doi: 10.1073/pnas.0402680101
– ident: R48
  doi: 10.1093/cercor/bhl014
– ident: R57
  doi: 10.1016/j.neuroimage.2007.03.050
– ident: R39
  doi: 10.1196/annals.1308.035
– ident: R31
  doi: 10.1152/jn.1983.49.5.1268
– ident: R10
  doi: 10.1006/cbmr.1996.0014
– ident: R16
  doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
– ident: R46
  doi: 10.1037/0012-1649.36.1.109
– ident: R63
  doi: 10.1002/hbm.10062
– ident: R34
  doi: 10.1162/089892902317205276
– ident: R61
  doi: 10.1038/nn1675
– ident: R56
  doi: 10.1152/jn.01290.2004
– ident: R1
  doi: 10.1146/annurev.ne.09.030186.002041
– ident: R28
  doi: 10.1038/35094500
– ident: R62
  doi: 10.1002/hbm.20017
– ident: R21
  doi: 10.1146/annurev.psych.48.1.269
– ident: R37A
– ident: R35
  doi: 10.1073/pnas.162486399
– ident: R37
  doi: 10.1006/nimg.1999.0503
– ident: R52
  doi: 10.1162/089892900564028
– ident: R72
  doi: 10.1093/cercor/bhn012
– ident: R41
  doi: 10.1093/cercor/8.1.40
– ident: R66
  doi: 10.1037/0012-1649.35.4.986
– ident: R45
  doi: 10.1162/0898929041920441
– ident: R15
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
– ident: R67
  doi: 10.1152/jn.1996.75.1.454
– ident: R73
– ident: R47
  doi: 10.1073/pnas.89.13.5951
– ident: R64
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: R55
  doi: 10.1162/jocn.2006.18.7.1045
– ident: R20
  doi: 10.1016/j.neuron.2006.04.031
– ident: R65
  doi: 10.1017/S0012162201001591
– ident: R6
  doi: 10.1152/jn.00382.2003
– ident: R8
  doi: 10.1016/j.neuroimage.2006.07.028
– ident: R18
– ident: R60
  doi: 10.1093/cercor/bhh095
– ident: R25
  doi: 10.3758/BF03195488
– ident: R14
– ident: R27
  doi: 10.1016/0959-4388(92)90141-7
– ident: R22
  doi: 10.1152/jn.1989.61.2.331
– ident: R5
  doi: 10.1207/s15326942dn2602_3
– ident: R29
  doi: 10.1523/JNEUROSCI.15-07-04851.1995
– ident: R17
  doi: 10.1076/jcen.25.2.242.13639
– ident: R36
  doi: 10.1073/pnas.89.12.5675
– ident: R3
  doi: 10.1006/nimg.2001.0788
– ident: R33
  doi: 10.1016/j.neuroimage.2004.08.036
– ident: R2
  doi: 10.1016/S1364-6613(00)01593-X
– ident: R23
  doi: 10.1037/0012-1649.40.2.177
– ident: R4
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– ident: R59
  doi: 10.1523/JNEUROSCI.05-03-00776.1985
– ident: R32
  doi: 10.1016/S1361-8415(01)00036-6
– ident: R53
  doi: 10.1002/hbm.20237
– ident: R70
  doi: 10.1016/S0959-4388(02)00361-6
SSID ssj0007502
Score 2.2827103
Snippet Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh,...
The neural circuitry supporting mature visual spatial working memory (VSWM) has been well delineated in nonhuman primates and in human adults. However, we...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Adolescent
Adult
Aging - physiology
Attention - physiology
Brain Mapping
Child
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Memory, Short-Term - physiology
Nerve Net - physiology
Neural Pathways - growth & development
Neural Pathways - physiology
Oculomotor Muscles - physiology
Parietal Lobe - physiology
Photic Stimulation
Psychomotor Performance - physiology
Recruitment, Neurophysiological
Saccades - physiology
Space Perception - physiology
Young Adult
Title Development of Working Memory Maintenance
URI http://jn.physiology.org/cgi/content/abstract/101/1/84
https://www.ncbi.nlm.nih.gov/pubmed/18971297
https://www.proquest.com/docview/66820171
https://pubmed.ncbi.nlm.nih.gov/PMC2637004
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeOEFwTYgDEYe0CRUUtp82PHjQIyJfQikTtqb1ThnrROkU5cKbX895484yVakjZeoii9Jk9_57mf7fEfI-0QCjaUOleIKByjoEKK8SOOI4pA55aUEyfTe4eMTenCafj_Lzto4XbO7pC6G8mblvpL_QRXPIa56l-wDkPU3xRP4G_HFIyKMx3th3In40aTPTXwPjnX07LUOn9Dx6R7WuxTUJLM0cxu9yfVvMHPbA-1a_GB_6JumCxfyaayDt-kTWPyZmdSenXjtpvFoaTeefQZdD-CmN9HAOxMNncD_kau6As5e4jlkRHnPoLZXec2x5tFWg3OO1hZGumvCM50S9qIacs3NTLRr66ua9flbLswHFpohTRaLi0qYy02VzUfkccyYWcQ__Nnmkkeu1OaSx9dqMrBm8afe0_uMpckivWpEcjuwtsNUJs_IU4dvuGf15TlZg2qDbO5V03r--zrcDX94wDfJh44KhXMVOhUKrQqFHRXaIqf7XydfDiJXPSOSaU7riCtZsnFZ5CyB2GTyY5xKJqdj7IySFhSSPIGRyrIc25FoKmCFrg9XJugFkAW-IOvVvIJXJOSAo_JRKdMUGZ3iyEhLGAGkcam4QpcXkI_NFxLSpZbXFU5-iZV4BGTXi1_anCr_Ehw0n1u0nUHoyZkJ4o7CqGpiLPJUXJYqIO9WSeMdGymUaDATaEX10ti0gvnySlCqmTAbB-SlRbD9YzlnyIlZQFgPWy-g87P3W6rZucnTHtNEF494fd_X3SZP2n73hqzXiyW8RcpbFztGc_8CfB6rqA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Working+Memory+Maintenance&rft.jtitle=Journal+of+neurophysiology&rft.au=Geier%2C+Charles+F.&rft.au=Garver%2C+Krista&rft.au=Terwilliger%2C+Robert&rft.au=Luna%2C+Beatriz&rft.date=2009-01-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=101&rft.issue=1&rft.spage=84&rft.epage=99&rft_id=info:doi/10.1152%2Fjn.90562.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_90562_2008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon