Stick or leave – Pushing methanogens to biofilm formation for ex situ biomethanation
[Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT a...
Saved in:
Published in | Bioresource technology Vol. 291; p. 121784 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2019.121784 |
Cover
Loading…
Abstract | [Display omitted]
•Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT and sludge source.
Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H2 exposure. |
---|---|
AbstractList | Biomethanation exploits the ability of methanogenic archaea to convert CO₂ and renewable H₂ from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH₄ productivity and low energy input for H₂ gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H₂/CO₂ for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH₄ productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H₂ exposure. Biomethanation exploits the ability of methanogenic archaea to convert CO and renewable H from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH productivity and low energy input for H gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H /CO for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H exposure. Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H2 exposure.Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H2 exposure. [Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT and sludge source. Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H2 exposure. |
ArticleNumber | 121784 |
Author | de Jonge, Nadieh Nielsen, Jeppe Lund Jensen, Mads Borgbjerg Ottosen, Lars Ditlev Mørck Strübing, Dietmar Koch, Konrad Kofoed, Michael Vedel Wegener |
Author_xml | – sequence: 1 givenname: Mads Borgbjerg surname: Jensen fullname: Jensen, Mads Borgbjerg organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark – sequence: 2 givenname: Dietmar surname: Strübing fullname: Strübing, Dietmar organization: Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany – sequence: 3 givenname: Nadieh surname: de Jonge fullname: de Jonge, Nadieh organization: Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark – sequence: 4 givenname: Jeppe Lund surname: Nielsen fullname: Nielsen, Jeppe Lund organization: Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark – sequence: 5 givenname: Lars Ditlev Mørck surname: Ottosen fullname: Ottosen, Lars Ditlev Mørck organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark – sequence: 6 givenname: Konrad orcidid: 0000-0001-5425-0169 surname: Koch fullname: Koch, Konrad organization: Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany – sequence: 7 givenname: Michael Vedel Wegener surname: Kofoed fullname: Kofoed, Michael Vedel Wegener email: mvk@eng.au.dk organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31344638$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFO3DAURa0KVAbaX0BessnUjh07llhQIQqVkFoJ6NZynBfG0ySmtoPKjn_gD_mSJmSmCzazsuV37n3WvYdor_c9IHRMyZISKr6sl5XzIYFdLXNC1ZLmVJb8A1rQUrIsV1LsoQVRgmRlkfMDdBjjmhDCqMw_ogNGGeeClQv06yY5-xv7gFswj4Bfn1_wzyGuXH-PO0gr0_t76CNOHo8LG9d2uPGhM8n5frph-IujS8M0nfm30Se035g2wufNeYTuvl3cnl9l1z8uv59_vc4sL0XKVGUkMCPl-EeW1yBUbQkIZgtuTTE-KUM4ZUQaWyjI61KZquJN0TQ151QQdoROZt-H4P8MEJPuXLTQtqYHP0Q92lI12gu-G81FIYWQakKPN-hQdVDrh-A6E570NrYREDNgg48xQPMfoURP_ei13vajp3703M8oPH0ntC69JZaCce1u-dkshzHTRwdBR-ugt1C7ADbp2rtdFv8AipSwrw |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_128963 crossref_primary_10_1016_j_rser_2021_111690 crossref_primary_10_1016_j_biortech_2023_128648 crossref_primary_10_1016_j_biteb_2021_100876 crossref_primary_10_1016_j_enconman_2024_118733 crossref_primary_10_1093_femsre_fuad013 crossref_primary_10_3390_en15114064 crossref_primary_10_1016_j_biortech_2021_126524 crossref_primary_10_1016_j_ces_2023_118498 crossref_primary_10_1016_j_jece_2022_107741 crossref_primary_10_1016_j_energy_2023_127856 crossref_primary_10_1186_s13068_024_02592_4 crossref_primary_10_1016_j_jhazmat_2024_133739 crossref_primary_10_1016_j_cej_2025_161179 crossref_primary_10_1016_j_biortech_2024_131225 crossref_primary_10_1016_j_jcou_2021_101611 crossref_primary_10_3390_molecules25235577 crossref_primary_10_2139_ssrn_4153579 crossref_primary_10_1007_s11157_021_09589_7 crossref_primary_10_1016_j_ijhydene_2022_02_072 crossref_primary_10_3390_su152115247 crossref_primary_10_1016_j_biortech_2021_125183 crossref_primary_10_3390_fermentation7040276 crossref_primary_10_3390_microorganisms8040614 crossref_primary_10_1016_j_bej_2024_109574 crossref_primary_10_1080_21622515_2024_2355598 crossref_primary_10_1016_j_bej_2020_107869 crossref_primary_10_1016_j_biotechadv_2023_108218 crossref_primary_10_1038_s42003_021_01828_5 crossref_primary_10_3390_en14164895 crossref_primary_10_1016_j_rser_2021_111209 crossref_primary_10_1016_j_bej_2021_108311 crossref_primary_10_1016_j_biortech_2020_124098 crossref_primary_10_1371_journal_pone_0252881 crossref_primary_10_1016_j_chemosphere_2024_142119 crossref_primary_10_1093_femsec_fiae142 crossref_primary_10_3390_en14102742 |
Cites_doi | 10.1016/j.biortech.2018.06.013 10.1007/s11157-008-9131-1 10.1016/j.biortech.2018.02.102 10.1016/j.biortech.2014.08.023 10.1016/j.apenergy.2018.04.034 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M 10.1016/j.biortech.2017.02.128 10.1099/ijs.0.63887-0 10.1007/BF00408385 10.1038/nmeth.2604 10.1016/j.biotechadv.2018.01.011 10.1111/gcbb.12547 10.2166/wst.1992.0445 10.1002/bit.260440506 10.1073/pnas.1000080107 10.1002/bit.24557 10.1016/j.biortech.2019.121422 10.1016/j.apenergy.2018.09.225 10.1016/j.wasman.2017.05.054 10.1111/1751-7915.12115 10.1016/j.biortech.2017.08.088 10.1093/nar/gks1219 10.1016/j.scitotenv.2017.03.074 10.1038/nmeth.f.303 10.1016/j.watres.2007.08.013 10.1016/j.biotechadv.2017.12.003 10.1016/j.biortech.2018.02.109 10.1093/bioinformatics/btu170 10.1016/j.apenergy.2017.05.134 10.1016/j.bej.2009.11.014 10.1016/j.cej.2015.09.081 10.1016/j.scitotenv.2018.11.289 10.2166/wst.1995.0258 10.1128/aem.63.2.403-407.1997 10.1016/j.biortech.2015.08.021 10.1021/acssuschemeng.5b00367 10.1080/08927019309386236 10.1016/j.biortech.2017.02.016 10.1093/bioinformatics/btr507 10.3389/fmicb.2016.01276 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2019.121784 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 31344638 10_1016_j_biortech_2019_121784 S0960852419310144 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c486t-9ba7e3a7752432de69dc0e63c54ca54329a041307ac59e2d89abb4f5ffd441603 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 02 04:49:52 EDT 2025 Mon Jul 21 11:39:21 EDT 2025 Mon Jul 21 06:08:14 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Tue Jul 01 03:18:31 EDT 2025 Sat Nov 16 16:00:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ex situ biomethanation H2 Homoacetogenesis Hydraulic retention time Methanogenic biofilm H |
Language | English |
License | Copyright © 2019. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-9ba7e3a7752432de69dc0e63c54ca54329a041307ac59e2d89abb4f5ffd441603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5425-0169 |
OpenAccessLink | http://mediatum.ub.tum.de/node?id=1515043 |
PMID | 31344638 |
PQID | 2265766794 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431977564 proquest_miscellaneous_2265766794 pubmed_primary_31344638 crossref_primary_10_1016_j_biortech_2019_121784 crossref_citationtrail_10_1016_j_biortech_2019_121784 elsevier_sciencedirect_doi_10_1016_j_biortech_2019_121784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Agneessens, Ottosen, Andersen, Berg Olesen, Feilberg, Kofoed (b0010) 2018; 258 Liu, Hao, Wei (b0110) 2016; 284 Heijnen, Van Loosdrecht, Mulder, Tijhuis (b0095) 1992; 26 Poehlein, Daniel, Seedorf (b0150) 2017; 1–9 Wall, Dumont, Murphy (b0225) 2018; 2 Zabranska, Pokorna (b0230) 2018; 36 Strübing, Moeller, Mößnang, Lebuhn, Drewes, Koch (b0200) 2018; 232 Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (b0025) 2018; 36 Agneessens, Ottosen, Voigt, Nielsen, de Jonge, Fischer, Kofoed (b0005) 2016; 233 Ma, Liu, Dong (b0120) 2006; 56 Aryal, Kvist, Ammam, Pant, Ottosen (b0035) 2018; 264 Cresson, Escudié, Steyer, Delgenès, Bernet (b0065) 2008; 42 Maegaard, Garcia-Robledo, Kofoed, Agneessens, de Jonge, Nielsen, Ottosen, Nielsen, Revsbech (b0125) 2019; 287 Mulat, Mosbæk, Ward, Polag, Greule, Keppler, Nielsen, Feilberg (b0140) 2017; 68 Tijhuis, Huisman, Hekkelman, van Loosdrecht, Heijnen (b0205) 1994; 44 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (b0060) 2011; 108 (accessed 04.07.2019). Demirel, Scherer (b0070) 2008; 7 Benjaminsson, G., Benjaminsson, J., Rudberg, R., 2013. Power-to-gas – a technical review. URL Alitalo, Niskanen, Aura (b0015) 2015; 196 Aryal, Tremblay, Lizak, Zhang (b0030) 2017; 233 Siegert, Yates, Spormann, Logan (b0190) 2015; 3 Luo, Angelidaki (b0115) 2012; 109 Savvas, Donnelly, Patterson, Chong, Esteves (b0175) 2017; 202 Edgar (b0075) 2013; 10 Bolger, Lohse, Usadel (b0045) 2014; 30 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (b0160) 2013; 41 EIA, 2017. International Energy Outlook 2017. URL Veiga, Jain, Wu, Hollingsworth, Zeikus (b0220) 1997; 63 Oren (b0145) 2014 Ullrich, Lemmer (b0210) 2019; 11 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (b0055) 2010; 7 Möller, Oßmer, Howard, Gottschalk, Hippe (b0135) 1984; 139 Rachbauer, Beyer, Bochmann, Fuchs (b0165) 2017; 595 van Loosdrecht, Eikelboom, Gjaltema, Mulder, Tijhuis, Heijnen (b0215) 1995; 32 Zellner, Diekmann, Austermann-Haun, Baumgarten, Seyfried (b0235) 1993; 6 Magoč, Salzberg (b0130) 2011; 27 Jensen, Kofoed, Fischer, Voigt, Agneessens, Batstone, Ottosen (b0105) 2018; 222 Andersen, Kirkegaard, Karst, Albertsen (b0020) 2018 Savvas, Donnelly, Patterson, Siong, Esteves (b0180) 2018; 257 Strübing, Huber, Lebuhn, Drewes, Koch (b0195) 2017; 245 Garcia-Robledo, Ottosen, Voigt, Kofoed, Revsbech (b0085) 2016; 7 Habouzit, Hamelin, Steyer, Bernet (b0090) 2014; 7 Rice, Baird, Eaton (b0170) 2017 Burkhardt, Koschack, Busch (b0050) 2015; 178 Hori, Matsumoto (b0100) 2010; 48 Porté, Kougias, Alfaro, Treu, Campanaro, Angelidaki (b0155) 2019; 655 Schmidt, Ahring (b0185) 1996; 49 Jensen (10.1016/j.biortech.2019.121784_b0105) 2018; 222 van Loosdrecht (10.1016/j.biortech.2019.121784_b0215) 1995; 32 Möller (10.1016/j.biortech.2019.121784_b0135) 1984; 139 Habouzit (10.1016/j.biortech.2019.121784_b0090) 2014; 7 Savvas (10.1016/j.biortech.2019.121784_b0175) 2017; 202 Strübing (10.1016/j.biortech.2019.121784_b0195) 2017; 245 Burkhardt (10.1016/j.biortech.2019.121784_b0050) 2015; 178 Magoč (10.1016/j.biortech.2019.121784_b0130) 2011; 27 Ullrich (10.1016/j.biortech.2019.121784_b0210) 2019; 11 Bolger (10.1016/j.biortech.2019.121784_b0045) 2014; 30 Agneessens (10.1016/j.biortech.2019.121784_b0005) 2016; 233 Aryal (10.1016/j.biortech.2019.121784_b0035) 2018; 264 Poehlein (10.1016/j.biortech.2019.121784_b0150) 2017; 1–9 10.1016/j.biortech.2019.121784_b0040 Schmidt (10.1016/j.biortech.2019.121784_b0185) 1996; 49 Alitalo (10.1016/j.biortech.2019.121784_b0015) 2015; 196 Angelidaki (10.1016/j.biortech.2019.121784_b0025) 2018; 36 10.1016/j.biortech.2019.121784_b0080 Wall (10.1016/j.biortech.2019.121784_b0225) 2018; 2 Veiga (10.1016/j.biortech.2019.121784_b0220) 1997; 63 Zellner (10.1016/j.biortech.2019.121784_b0235) 1993; 6 Mulat (10.1016/j.biortech.2019.121784_b0140) 2017; 68 Luo (10.1016/j.biortech.2019.121784_b0115) 2012; 109 Porté (10.1016/j.biortech.2019.121784_b0155) 2019; 655 Oren (10.1016/j.biortech.2019.121784_b0145) 2014 Demirel (10.1016/j.biortech.2019.121784_b0070) 2008; 7 Heijnen (10.1016/j.biortech.2019.121784_b0095) 1992; 26 Aryal (10.1016/j.biortech.2019.121784_b0030) 2017; 233 Agneessens (10.1016/j.biortech.2019.121784_b0010) 2018; 258 Hori (10.1016/j.biortech.2019.121784_b0100) 2010; 48 Strübing (10.1016/j.biortech.2019.121784_b0200) 2018; 232 Garcia-Robledo (10.1016/j.biortech.2019.121784_b0085) 2016; 7 Ma (10.1016/j.biortech.2019.121784_b0120) 2006; 56 Caporaso (10.1016/j.biortech.2019.121784_b0060) 2011; 108 Cresson (10.1016/j.biortech.2019.121784_b0065) 2008; 42 Edgar (10.1016/j.biortech.2019.121784_b0075) 2013; 10 Savvas (10.1016/j.biortech.2019.121784_b0180) 2018; 257 Zabranska (10.1016/j.biortech.2019.121784_b0230) 2018; 36 Liu (10.1016/j.biortech.2019.121784_b0110) 2016; 284 Rachbauer (10.1016/j.biortech.2019.121784_b0165) 2017; 595 Andersen (10.1016/j.biortech.2019.121784_b0020) 2018 Tijhuis (10.1016/j.biortech.2019.121784_b0205) 1994; 44 Quast (10.1016/j.biortech.2019.121784_b0160) 2013; 41 Siegert (10.1016/j.biortech.2019.121784_b0190) 2015; 3 Caporaso (10.1016/j.biortech.2019.121784_b0055) 2010; 7 Maegaard (10.1016/j.biortech.2019.121784_b0125) 2019; 287 Rice (10.1016/j.biortech.2019.121784_b0170) 2017 |
References_xml | – year: 2014 ident: b0145 article-title: 9 the family methanobacteriaceae publication-title: The Prokaryotes – Other Major Lineages of Bacteria and Archaea – volume: 48 start-page: 424 year: 2010 end-page: 434 ident: b0100 article-title: Bacterial adhesion: From mechanism to control publication-title: Biochem. Eng. J. – volume: 222 start-page: 840 year: 2018 end-page: 846 ident: b0105 article-title: Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation publication-title: Appl. Energy – volume: 202 start-page: 238 year: 2017 end-page: 247 ident: b0175 article-title: Biological methanation of CO2 in a novel biofilm plug-flow reactor: a high rate and low parasitic energy process publication-title: Appl. Energy – volume: 6 start-page: 345 year: 1993 end-page: 361 ident: b0235 article-title: Biofilm formation on polypropylene during start-up of anaerobic fixed-bed reactors publication-title: Biofouling – volume: 232 start-page: 543 year: 2018 end-page: 554 ident: b0200 article-title: Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation publication-title: Appl. Energy – volume: 7 start-page: 1 year: 2016 end-page: 10 ident: b0085 article-title: Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor publication-title: Front. Microbiol. – volume: 595 start-page: 912 year: 2017 end-page: 919 ident: b0165 article-title: Characteristics of adapted hydrogenotrophic community during biomethanation publication-title: Sci. Total Environ. – volume: 109 start-page: 2729 year: 2012 end-page: 2736 ident: b0115 article-title: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture publication-title: Biotechnol. Bioeng. – volume: 41 start-page: D590 year: 2013 end-page: D596 ident: b0160 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 264 start-page: 359 year: 2018 end-page: 369 ident: b0035 article-title: An overview of microbial biogas enrichment publication-title: Bioresour. Technol. – reference: (accessed 04.07.2019). – volume: 284 start-page: 1196 year: 2016 end-page: 1203 ident: b0110 article-title: Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved publication-title: Chem. Eng. J. – volume: 42 start-page: 792 year: 2008 end-page: 800 ident: b0065 article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors publication-title: Water Res. – volume: 178 start-page: 330 year: 2015 end-page: 333 ident: b0050 article-title: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system publication-title: Bioresour. Technol. – volume: 11 start-page: 63 year: 2019 end-page: 71 ident: b0210 article-title: Performance enhancement of biological methanation with trickle bed reactors by liquid flow modulation publication-title: GCB Bioenergy – volume: 68 start-page: 146 year: 2017 end-page: 156 ident: b0140 article-title: Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane publication-title: Waste Manag. – volume: 655 start-page: 529 year: 2019 end-page: 538 ident: b0155 article-title: Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading publication-title: Sci. Total Environ. – volume: 233 start-page: 256 year: 2016 end-page: 263 ident: b0005 article-title: In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level publication-title: Bioresour. Technol. – volume: 56 start-page: 127 year: 2006 end-page: 131 ident: b0120 article-title: Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor publication-title: Int. J. Syst. Evol. Microbiol. – volume: 233 start-page: 184 year: 2017 end-page: 190 ident: b0030 article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. – volume: 7 start-page: 173 year: 2008 end-page: 190 ident: b0070 article-title: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review publication-title: Rev. Environ. Sci. Biotechnol. – volume: 44 start-page: 595 year: 1994 end-page: 608 ident: b0205 article-title: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors publication-title: Biotechnol. Bioeng. – volume: 10 start-page: 996 year: 2013 end-page: 998 ident: b0075 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods – volume: 257 start-page: 164 year: 2018 end-page: 171 ident: b0180 article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: impact of temperature and microbial attachment publication-title: Bioresour. Technol. – volume: 245 start-page: 1176 year: 2017 end-page: 1183 ident: b0195 article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor publication-title: Bioresour. Technol. – volume: 27 start-page: 2957 year: 2011 end-page: 2963 ident: b0130 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 7 start-page: 257 year: 2014 end-page: 264 ident: b0090 article-title: Biofilm development during the start-up period of anaerobic biofilm reactors : the biofilm Archaea community is highly dependent on the support material publication-title: Microb. Biotechnol. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: b0055 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 49 start-page: 229 year: 1996 end-page: 246 ident: b0185 article-title: Review. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors publication-title: Biotechnol. Bioeng. – volume: 32 start-page: 35 year: 1995 end-page: 43 ident: b0215 article-title: Biofilm structures publication-title: Water Sci. Technol. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: b0045 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 196 start-page: 600 year: 2015 end-page: 605 ident: b0015 article-title: Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor publication-title: Bioresour. Technol. – start-page: 266 year: 2017 end-page: 273 ident: b0170 article-title: Solids publication-title: Standard Methods for the Examination of Water and Wastewater – reference: EIA, 2017. International Energy Outlook 2017. URL: – volume: 63 start-page: 403 year: 1997 end-page: 407 ident: b0220 article-title: Composition and role of extracellular polymers in methanogenic granules publication-title: Appl. Environ. Microbiol. – year: 2018 ident: b0020 article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data publication-title: bioRxiv – volume: 26 start-page: 647 year: 1992 end-page: 654 ident: b0095 article-title: Formation of biofilms in a biofilm air-lift suspension reactor publication-title: Water Sci. Technol. – volume: 139 start-page: 388 year: 1984 end-page: 396 ident: b0135 article-title: Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov publication-title: Arch. Microbiol. – volume: 1–9 year: 2017 ident: b0150 article-title: The draft genome of the non-host-associated methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins publication-title: Archaea – volume: 2 year: 2018 ident: b0225 article-title: Green gas – facilitating a future green gas grid through the production of renewable gas publication-title: IEA Bioenergy – volume: 36 start-page: 452 year: 2018 end-page: 466 ident: b0025 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: b0060 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 3 start-page: 1668 year: 2015 end-page: 1676 ident: b0190 article-title: Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells publication-title: ACS Sustain. Chem. Eng. – volume: 36 start-page: 707 year: 2018 end-page: 720 ident: b0230 article-title: Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens publication-title: Biotechnol. Adv. – volume: 258 start-page: 33 year: 2018 end-page: 40 ident: b0010 article-title: Parameters affecting acetate concentrations during in-situ biological hydrogen methanation publication-title: Bioresour. Technol. – reference: Benjaminsson, G., Benjaminsson, J., Rudberg, R., 2013. Power-to-gas – a technical review. URL: – volume: 287 start-page: 1 year: 2019 end-page: 8 ident: b0125 article-title: Biogas upgrading with hydrogenotrophic methanogenic biofilms publication-title: Bioresour. Technol. – volume: 264 start-page: 359 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0035 article-title: An overview of microbial biogas enrichment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.06.013 – volume: 7 start-page: 173 year: 2008 ident: 10.1016/j.biortech.2019.121784_b0070 article-title: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-008-9131-1 – volume: 258 start-page: 33 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0010 article-title: Parameters affecting acetate concentrations during in-situ biological hydrogen methanation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.102 – volume: 1–9 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0150 article-title: The draft genome of the non-host-associated methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins publication-title: Archaea – volume: 178 start-page: 330 year: 2015 ident: 10.1016/j.biortech.2019.121784_b0050 article-title: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.023 – year: 2014 ident: 10.1016/j.biortech.2019.121784_b0145 article-title: 9 the family methanobacteriaceae – volume: 222 start-page: 840 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0105 article-title: Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.034 – volume: 49 start-page: 229 year: 1996 ident: 10.1016/j.biortech.2019.121784_b0185 article-title: Review. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M – volume: 233 start-page: 184 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0030 article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.128 – volume: 56 start-page: 127 year: 2006 ident: 10.1016/j.biortech.2019.121784_b0120 article-title: Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63887-0 – volume: 139 start-page: 388 year: 1984 ident: 10.1016/j.biortech.2019.121784_b0135 article-title: Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov publication-title: Arch. Microbiol. doi: 10.1007/BF00408385 – volume: 10 start-page: 996 year: 2013 ident: 10.1016/j.biortech.2019.121784_b0075 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods doi: 10.1038/nmeth.2604 – volume: 36 start-page: 452 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0025 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.01.011 – volume: 11 start-page: 63 year: 2019 ident: 10.1016/j.biortech.2019.121784_b0210 article-title: Performance enhancement of biological methanation with trickle bed reactors by liquid flow modulation publication-title: GCB Bioenergy doi: 10.1111/gcbb.12547 – volume: 26 start-page: 647 year: 1992 ident: 10.1016/j.biortech.2019.121784_b0095 article-title: Formation of biofilms in a biofilm air-lift suspension reactor publication-title: Water Sci. Technol. doi: 10.2166/wst.1992.0445 – volume: 44 start-page: 595 year: 1994 ident: 10.1016/j.biortech.2019.121784_b0205 article-title: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260440506 – volume: 2 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0225 article-title: Green gas – facilitating a future green gas grid through the production of renewable gas publication-title: IEA Bioenergy – volume: 108 start-page: 4516 issue: Suppl year: 2011 ident: 10.1016/j.biortech.2019.121784_b0060 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1000080107 – volume: 109 start-page: 2729 year: 2012 ident: 10.1016/j.biortech.2019.121784_b0115 article-title: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24557 – volume: 287 start-page: 1 year: 2019 ident: 10.1016/j.biortech.2019.121784_b0125 article-title: Biogas upgrading with hydrogenotrophic methanogenic biofilms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121422 – volume: 232 start-page: 543 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0200 article-title: Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.225 – volume: 68 start-page: 146 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0140 article-title: Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.05.054 – volume: 7 start-page: 257 year: 2014 ident: 10.1016/j.biortech.2019.121784_b0090 article-title: Biofilm development during the start-up period of anaerobic biofilm reactors : the biofilm Archaea community is highly dependent on the support material publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12115 – volume: 245 start-page: 1176 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0195 article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.088 – volume: 41 start-page: D590 year: 2013 ident: 10.1016/j.biortech.2019.121784_b0160 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 595 start-page: 912 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0165 article-title: Characteristics of adapted hydrogenotrophic community during biomethanation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.074 – ident: 10.1016/j.biortech.2019.121784_b0040 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.biortech.2019.121784_b0055 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 42 start-page: 792 year: 2008 ident: 10.1016/j.biortech.2019.121784_b0065 article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors publication-title: Water Res. doi: 10.1016/j.watres.2007.08.013 – volume: 36 start-page: 707 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0230 article-title: Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2017.12.003 – volume: 257 start-page: 164 year: 2018 ident: 10.1016/j.biortech.2019.121784_b0180 article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: impact of temperature and microbial attachment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.109 – volume: 30 start-page: 2114 year: 2014 ident: 10.1016/j.biortech.2019.121784_b0045 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 202 start-page: 238 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0175 article-title: Biological methanation of CO2 in a novel biofilm plug-flow reactor: a high rate and low parasitic energy process publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.134 – volume: 48 start-page: 424 year: 2010 ident: 10.1016/j.biortech.2019.121784_b0100 article-title: Bacterial adhesion: From mechanism to control publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2009.11.014 – volume: 284 start-page: 1196 year: 2016 ident: 10.1016/j.biortech.2019.121784_b0110 article-title: Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.081 – volume: 655 start-page: 529 year: 2019 ident: 10.1016/j.biortech.2019.121784_b0155 article-title: Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.289 – volume: 32 start-page: 35 year: 1995 ident: 10.1016/j.biortech.2019.121784_b0215 article-title: Biofilm structures publication-title: Water Sci. Technol. doi: 10.2166/wst.1995.0258 – volume: 63 start-page: 403 year: 1997 ident: 10.1016/j.biortech.2019.121784_b0220 article-title: Composition and role of extracellular polymers in methanogenic granules publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.2.403-407.1997 – volume: 196 start-page: 600 year: 2015 ident: 10.1016/j.biortech.2019.121784_b0015 article-title: Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.021 – year: 2018 ident: 10.1016/j.biortech.2019.121784_b0020 article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data publication-title: bioRxiv – start-page: 266 year: 2017 ident: 10.1016/j.biortech.2019.121784_b0170 article-title: Solids – volume: 3 start-page: 1668 year: 2015 ident: 10.1016/j.biortech.2019.121784_b0190 article-title: Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00367 – volume: 6 start-page: 345 year: 1993 ident: 10.1016/j.biortech.2019.121784_b0235 article-title: Biofilm formation on polypropylene during start-up of anaerobic fixed-bed reactors publication-title: Biofouling doi: 10.1080/08927019309386236 – volume: 233 start-page: 256 year: 2016 ident: 10.1016/j.biortech.2019.121784_b0005 article-title: In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.016 – ident: 10.1016/j.biortech.2019.121784_b0080 – volume: 27 start-page: 2957 year: 2011 ident: 10.1016/j.biortech.2019.121784_b0130 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2019.121784_b0085 article-title: Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01276 |
SSID | ssj0003172 |
Score | 2.4692457 |
Snippet | [Display omitted]
•Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at... Biomethanation exploits the ability of methanogenic archaea to convert CO and renewable H from electrolysis to biomethane. Biofilm reactors are promising for... Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for... Biomethanation exploits the ability of methanogenic archaea to convert CO₂ and renewable H₂ from electrolysis to biomethane. Biofilm reactors are promising for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121784 |
SubjectTerms | biofilm biogas biomass carbon dioxide electrolysis energy Ex situ biomethanation Homoacetogenesis Hydraulic retention time liquids mass transfer methane production Methanogenic biofilm methanogens plankton species technology |
Title | Stick or leave – Pushing methanogens to biofilm formation for ex situ biomethanation |
URI | https://dx.doi.org/10.1016/j.biortech.2019.121784 https://www.ncbi.nlm.nih.gov/pubmed/31344638 https://www.proquest.com/docview/2265766794 https://www.proquest.com/docview/2431977564 |
Volume | 291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaq5QAcVsvy2geVkbimTetH4mNV7aqAVCEti3qz7NhB2S3Jqk1Xe0L8B_4hv4QZJynLYemBW2LPRJZnNPM5ngch75KRVRbcdMSAIuL5yEWpi22kYitBXUQ8diHaYi5nl_zDQix6ZNrlwmBYZWv7G5serHU7Mmx3c3hTFMMLBN-pAA-kGDacxZqgnCeo5YPvf8I8wD-GmwQgjpD6Xpbw1cAWGNEaLiVGCgstJCl_yEE9BECDIzo_IPstgqSTZpHPSM-Xh-Tp5OuqraLhD8njadfGDWbuVRx8Tr5cANc1rVZ06c2tp79-_KSfNuE3FMVm0qasQKPWtK4orDovlt_oNr0Rn6i_o-ui3tCQto_0YeoFuTw_-zydRW1rhSjjqawjZU3imUkS2BE2dl4ql8VeskzwzAgYUiZG95aYTCg_dqky1vJc5LkD_CRj9pLslVXpXxMKDt5mqcIAT8tVChsNJxThnJTwacCDR0R0-6mztu44tr9Y6i7A7Ep3ctAoB93I4YgMt3w3TeWNnRyqE5f-S4c0uIedvG87-WoQEN6amNJXm7UGfApnMgl26x80AMMASAsJNK8a5diumY0YHLlZevwfqzshT_CtyYE8JXv1auPfABiqbT9oe588mrz_OJv_BjFICJk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAcEFCgFGi3Uq9unKx37T1GEVEoNKoEVNxWu941ckhtlDioR96BN-RJmPVPFA7AgZvlnbFWM6OZb73zA_Aj7GihMUx7FCm8IOkYLzK-9oSvOZoL87umzLYY8eFl8OuKXa1Av6mFcWmVte-vfHrpres37Vqa7ds0bZ878B0xjECCuoGzwQdYdd2pWAtWeyenw9HCIWOILC8TkN5zDEuFwuOfOnVJreW9REe4XgthFLwUo17CoGUsGmzCRg0iSa_a5xas2Gwb1nvX07qRht2GtX4zyQ1XlpoOfoK_58h1Q_IpmVh1Z8nj_QP5My__RBE3T1plORrVjBQ5wV0n6eQfWVQ4uidi_5NZWsxJWbnv6MulHbgcHF_0h149XcGLg4gXntAqtFSFIUqEdo3lwsS-5TRmQawYvhLKdxEuVDETtmsiobQOEpYkBiEU9-kutLI8s5-BYIzXcSRcjqcORISCxkMKM4Zz_DRCwn1gjTxlXLcedxMwJrLJMRvLRg_S6UFWetiH9oLvtmq-8SaHaNQln5mRxAjxJu_3Rr8SFeQuTlRm8_lMIkTFYxlH1_UKDSIxxNKMI81eZRyLPdMOxVM3jb68Y3ffYG148ftMnp2MTg_go1upSiIPoVVM5_YIsVGhv9a2_wQ5jQtK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stick+or+leave+-+Pushing+methanogens+to+biofilm+formation+for+ex+situ+biomethanation&rft.jtitle=Bioresource+technology&rft.au=Jensen%2C+Mads+Borgbjerg&rft.au=Str%C3%BCbing%2C+Dietmar&rft.au=de+Jonge%2C+Nadieh&rft.au=Nielsen%2C+Jeppe+Lund&rft.date=2019-11-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=291&rft.spage=121784&rft_id=info:doi/10.1016%2Fj.biortech.2019.121784&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |