Stick or leave – Pushing methanogens to biofilm formation for ex situ biomethanation

[Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT a...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 291; p. 121784
Main Authors Jensen, Mads Borgbjerg, Strübing, Dietmar, de Jonge, Nadieh, Nielsen, Jeppe Lund, Ottosen, Lars Ditlev Mørck, Koch, Konrad, Kofoed, Michael Vedel Wegener
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2019
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2019.121784

Cover

Loading…
Abstract [Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT and sludge source. Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H2 exposure.
AbstractList Biomethanation exploits the ability of methanogenic archaea to convert CO₂ and renewable H₂ from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH₄ productivity and low energy input for H₂ gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H₂/CO₂ for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH₄ productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H₂ exposure.
Biomethanation exploits the ability of methanogenic archaea to convert CO and renewable H from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH productivity and low energy input for H gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H /CO for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H exposure.
Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H2 exposure.Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid's H2 exposure.
[Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at long HRT.•Acetate accumulation at short HRT due to increased homoacetogenesis.•Selected hydrogenotrophic biofilm species independent of HRT and sludge source. Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for biomethanation scale-up due to high CH4 productivity and low energy input for H2 gas-liquid mass transfer. Effects of operational conditions on biofilm dynamics remain largely uncharacterized but may increase reactor potentials further. This study investigated the effect of hydraulic retention time (HRT) on methanogenic biofilm activity and composition. Commercial carriers floating in liquid were exposed to H2/CO2 for 87 days with the liquid phase being subject to either 18 hours, 10 days, or 20 days HRT. Methanogenic biofilms were dominated by hydrogenotrophic methanogens, but biofilm CH4 productivity was enhanced at 18 hours HRT due to wash-out of competing planktonic species, which otherwise hampered proliferation of biofilm biomass at long HRT. It is suggested that high-rate biofilm reactors can increase methanogenic biofilm activity by minimizing the liquid’s H2 exposure.
ArticleNumber 121784
Author de Jonge, Nadieh
Nielsen, Jeppe Lund
Jensen, Mads Borgbjerg
Ottosen, Lars Ditlev Mørck
Strübing, Dietmar
Koch, Konrad
Kofoed, Michael Vedel Wegener
Author_xml – sequence: 1
  givenname: Mads Borgbjerg
  surname: Jensen
  fullname: Jensen, Mads Borgbjerg
  organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark
– sequence: 2
  givenname: Dietmar
  surname: Strübing
  fullname: Strübing, Dietmar
  organization: Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
– sequence: 3
  givenname: Nadieh
  surname: de Jonge
  fullname: de Jonge, Nadieh
  organization: Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
– sequence: 4
  givenname: Jeppe Lund
  surname: Nielsen
  fullname: Nielsen, Jeppe Lund
  organization: Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
– sequence: 5
  givenname: Lars Ditlev Mørck
  surname: Ottosen
  fullname: Ottosen, Lars Ditlev Mørck
  organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark
– sequence: 6
  givenname: Konrad
  orcidid: 0000-0001-5425-0169
  surname: Koch
  fullname: Koch, Konrad
  organization: Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
– sequence: 7
  givenname: Michael Vedel Wegener
  surname: Kofoed
  fullname: Kofoed, Michael Vedel Wegener
  email: mvk@eng.au.dk
  organization: Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31344638$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3DAURa0KVAbaX0BessnUjh07llhQIQqVkFoJ6NZynBfG0ySmtoPKjn_gD_mSJmSmCzazsuV37n3WvYdor_c9IHRMyZISKr6sl5XzIYFdLXNC1ZLmVJb8A1rQUrIsV1LsoQVRgmRlkfMDdBjjmhDCqMw_ogNGGeeClQv06yY5-xv7gFswj4Bfn1_wzyGuXH-PO0gr0_t76CNOHo8LG9d2uPGhM8n5frph-IujS8M0nfm30Se035g2wufNeYTuvl3cnl9l1z8uv59_vc4sL0XKVGUkMCPl-EeW1yBUbQkIZgtuTTE-KUM4ZUQaWyjI61KZquJN0TQ151QQdoROZt-H4P8MEJPuXLTQtqYHP0Q92lI12gu-G81FIYWQakKPN-hQdVDrh-A6E570NrYREDNgg48xQPMfoURP_ei13vajp3703M8oPH0ntC69JZaCce1u-dkshzHTRwdBR-ugt1C7ADbp2rtdFv8AipSwrw
CitedBy_id crossref_primary_10_1016_j_cej_2021_128963
crossref_primary_10_1016_j_rser_2021_111690
crossref_primary_10_1016_j_biortech_2023_128648
crossref_primary_10_1016_j_biteb_2021_100876
crossref_primary_10_1016_j_enconman_2024_118733
crossref_primary_10_1093_femsre_fuad013
crossref_primary_10_3390_en15114064
crossref_primary_10_1016_j_biortech_2021_126524
crossref_primary_10_1016_j_ces_2023_118498
crossref_primary_10_1016_j_jece_2022_107741
crossref_primary_10_1016_j_energy_2023_127856
crossref_primary_10_1186_s13068_024_02592_4
crossref_primary_10_1016_j_jhazmat_2024_133739
crossref_primary_10_1016_j_cej_2025_161179
crossref_primary_10_1016_j_biortech_2024_131225
crossref_primary_10_1016_j_jcou_2021_101611
crossref_primary_10_3390_molecules25235577
crossref_primary_10_2139_ssrn_4153579
crossref_primary_10_1007_s11157_021_09589_7
crossref_primary_10_1016_j_ijhydene_2022_02_072
crossref_primary_10_3390_su152115247
crossref_primary_10_1016_j_biortech_2021_125183
crossref_primary_10_3390_fermentation7040276
crossref_primary_10_3390_microorganisms8040614
crossref_primary_10_1016_j_bej_2024_109574
crossref_primary_10_1080_21622515_2024_2355598
crossref_primary_10_1016_j_bej_2020_107869
crossref_primary_10_1016_j_biotechadv_2023_108218
crossref_primary_10_1038_s42003_021_01828_5
crossref_primary_10_3390_en14164895
crossref_primary_10_1016_j_rser_2021_111209
crossref_primary_10_1016_j_bej_2021_108311
crossref_primary_10_1016_j_biortech_2020_124098
crossref_primary_10_1371_journal_pone_0252881
crossref_primary_10_1016_j_chemosphere_2024_142119
crossref_primary_10_1093_femsec_fiae142
crossref_primary_10_3390_en14102742
Cites_doi 10.1016/j.biortech.2018.06.013
10.1007/s11157-008-9131-1
10.1016/j.biortech.2018.02.102
10.1016/j.biortech.2014.08.023
10.1016/j.apenergy.2018.04.034
10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
10.1016/j.biortech.2017.02.128
10.1099/ijs.0.63887-0
10.1007/BF00408385
10.1038/nmeth.2604
10.1016/j.biotechadv.2018.01.011
10.1111/gcbb.12547
10.2166/wst.1992.0445
10.1002/bit.260440506
10.1073/pnas.1000080107
10.1002/bit.24557
10.1016/j.biortech.2019.121422
10.1016/j.apenergy.2018.09.225
10.1016/j.wasman.2017.05.054
10.1111/1751-7915.12115
10.1016/j.biortech.2017.08.088
10.1093/nar/gks1219
10.1016/j.scitotenv.2017.03.074
10.1038/nmeth.f.303
10.1016/j.watres.2007.08.013
10.1016/j.biotechadv.2017.12.003
10.1016/j.biortech.2018.02.109
10.1093/bioinformatics/btu170
10.1016/j.apenergy.2017.05.134
10.1016/j.bej.2009.11.014
10.1016/j.cej.2015.09.081
10.1016/j.scitotenv.2018.11.289
10.2166/wst.1995.0258
10.1128/aem.63.2.403-407.1997
10.1016/j.biortech.2015.08.021
10.1021/acssuschemeng.5b00367
10.1080/08927019309386236
10.1016/j.biortech.2017.02.016
10.1093/bioinformatics/btr507
10.3389/fmicb.2016.01276
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Ltd.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2019.121784
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 31344638
10_1016_j_biortech_2019_121784
S0960852419310144
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c486t-9ba7e3a7752432de69dc0e63c54ca54329a041307ac59e2d89abb4f5ffd441603
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 02 04:49:52 EDT 2025
Mon Jul 21 11:39:21 EDT 2025
Mon Jul 21 06:08:14 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Tue Jul 01 03:18:31 EDT 2025
Sat Nov 16 16:00:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ex situ biomethanation
H2
Homoacetogenesis
Hydraulic retention time
Methanogenic biofilm
H
Language English
License Copyright © 2019. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-9ba7e3a7752432de69dc0e63c54ca54329a041307ac59e2d89abb4f5ffd441603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5425-0169
OpenAccessLink http://mediatum.ub.tum.de/node?id=1515043
PMID 31344638
PQID 2265766794
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431977564
proquest_miscellaneous_2265766794
pubmed_primary_31344638
crossref_primary_10_1016_j_biortech_2019_121784
crossref_citationtrail_10_1016_j_biortech_2019_121784
elsevier_sciencedirect_doi_10_1016_j_biortech_2019_121784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Agneessens, Ottosen, Andersen, Berg Olesen, Feilberg, Kofoed (b0010) 2018; 258
Liu, Hao, Wei (b0110) 2016; 284
Heijnen, Van Loosdrecht, Mulder, Tijhuis (b0095) 1992; 26
Poehlein, Daniel, Seedorf (b0150) 2017; 1–9
Wall, Dumont, Murphy (b0225) 2018; 2
Zabranska, Pokorna (b0230) 2018; 36
Strübing, Moeller, Mößnang, Lebuhn, Drewes, Koch (b0200) 2018; 232
Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (b0025) 2018; 36
Agneessens, Ottosen, Voigt, Nielsen, de Jonge, Fischer, Kofoed (b0005) 2016; 233
Ma, Liu, Dong (b0120) 2006; 56
Aryal, Kvist, Ammam, Pant, Ottosen (b0035) 2018; 264
Cresson, Escudié, Steyer, Delgenès, Bernet (b0065) 2008; 42
Maegaard, Garcia-Robledo, Kofoed, Agneessens, de Jonge, Nielsen, Ottosen, Nielsen, Revsbech (b0125) 2019; 287
Mulat, Mosbæk, Ward, Polag, Greule, Keppler, Nielsen, Feilberg (b0140) 2017; 68
Tijhuis, Huisman, Hekkelman, van Loosdrecht, Heijnen (b0205) 1994; 44
Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (b0060) 2011; 108
(accessed 04.07.2019).
Demirel, Scherer (b0070) 2008; 7
Benjaminsson, G., Benjaminsson, J., Rudberg, R., 2013. Power-to-gas – a technical review. URL
Alitalo, Niskanen, Aura (b0015) 2015; 196
Aryal, Tremblay, Lizak, Zhang (b0030) 2017; 233
Siegert, Yates, Spormann, Logan (b0190) 2015; 3
Luo, Angelidaki (b0115) 2012; 109
Savvas, Donnelly, Patterson, Chong, Esteves (b0175) 2017; 202
Edgar (b0075) 2013; 10
Bolger, Lohse, Usadel (b0045) 2014; 30
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (b0160) 2013; 41
EIA, 2017. International Energy Outlook 2017. URL
Veiga, Jain, Wu, Hollingsworth, Zeikus (b0220) 1997; 63
Oren (b0145) 2014
Ullrich, Lemmer (b0210) 2019; 11
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (b0055) 2010; 7
Möller, Oßmer, Howard, Gottschalk, Hippe (b0135) 1984; 139
Rachbauer, Beyer, Bochmann, Fuchs (b0165) 2017; 595
van Loosdrecht, Eikelboom, Gjaltema, Mulder, Tijhuis, Heijnen (b0215) 1995; 32
Zellner, Diekmann, Austermann-Haun, Baumgarten, Seyfried (b0235) 1993; 6
Magoč, Salzberg (b0130) 2011; 27
Jensen, Kofoed, Fischer, Voigt, Agneessens, Batstone, Ottosen (b0105) 2018; 222
Andersen, Kirkegaard, Karst, Albertsen (b0020) 2018
Savvas, Donnelly, Patterson, Siong, Esteves (b0180) 2018; 257
Strübing, Huber, Lebuhn, Drewes, Koch (b0195) 2017; 245
Garcia-Robledo, Ottosen, Voigt, Kofoed, Revsbech (b0085) 2016; 7
Habouzit, Hamelin, Steyer, Bernet (b0090) 2014; 7
Rice, Baird, Eaton (b0170) 2017
Burkhardt, Koschack, Busch (b0050) 2015; 178
Hori, Matsumoto (b0100) 2010; 48
Porté, Kougias, Alfaro, Treu, Campanaro, Angelidaki (b0155) 2019; 655
Schmidt, Ahring (b0185) 1996; 49
Jensen (10.1016/j.biortech.2019.121784_b0105) 2018; 222
van Loosdrecht (10.1016/j.biortech.2019.121784_b0215) 1995; 32
Möller (10.1016/j.biortech.2019.121784_b0135) 1984; 139
Habouzit (10.1016/j.biortech.2019.121784_b0090) 2014; 7
Savvas (10.1016/j.biortech.2019.121784_b0175) 2017; 202
Strübing (10.1016/j.biortech.2019.121784_b0195) 2017; 245
Burkhardt (10.1016/j.biortech.2019.121784_b0050) 2015; 178
Magoč (10.1016/j.biortech.2019.121784_b0130) 2011; 27
Ullrich (10.1016/j.biortech.2019.121784_b0210) 2019; 11
Bolger (10.1016/j.biortech.2019.121784_b0045) 2014; 30
Agneessens (10.1016/j.biortech.2019.121784_b0005) 2016; 233
Aryal (10.1016/j.biortech.2019.121784_b0035) 2018; 264
Poehlein (10.1016/j.biortech.2019.121784_b0150) 2017; 1–9
10.1016/j.biortech.2019.121784_b0040
Schmidt (10.1016/j.biortech.2019.121784_b0185) 1996; 49
Alitalo (10.1016/j.biortech.2019.121784_b0015) 2015; 196
Angelidaki (10.1016/j.biortech.2019.121784_b0025) 2018; 36
10.1016/j.biortech.2019.121784_b0080
Wall (10.1016/j.biortech.2019.121784_b0225) 2018; 2
Veiga (10.1016/j.biortech.2019.121784_b0220) 1997; 63
Zellner (10.1016/j.biortech.2019.121784_b0235) 1993; 6
Mulat (10.1016/j.biortech.2019.121784_b0140) 2017; 68
Luo (10.1016/j.biortech.2019.121784_b0115) 2012; 109
Porté (10.1016/j.biortech.2019.121784_b0155) 2019; 655
Oren (10.1016/j.biortech.2019.121784_b0145) 2014
Demirel (10.1016/j.biortech.2019.121784_b0070) 2008; 7
Heijnen (10.1016/j.biortech.2019.121784_b0095) 1992; 26
Aryal (10.1016/j.biortech.2019.121784_b0030) 2017; 233
Agneessens (10.1016/j.biortech.2019.121784_b0010) 2018; 258
Hori (10.1016/j.biortech.2019.121784_b0100) 2010; 48
Strübing (10.1016/j.biortech.2019.121784_b0200) 2018; 232
Garcia-Robledo (10.1016/j.biortech.2019.121784_b0085) 2016; 7
Ma (10.1016/j.biortech.2019.121784_b0120) 2006; 56
Caporaso (10.1016/j.biortech.2019.121784_b0060) 2011; 108
Cresson (10.1016/j.biortech.2019.121784_b0065) 2008; 42
Edgar (10.1016/j.biortech.2019.121784_b0075) 2013; 10
Savvas (10.1016/j.biortech.2019.121784_b0180) 2018; 257
Zabranska (10.1016/j.biortech.2019.121784_b0230) 2018; 36
Liu (10.1016/j.biortech.2019.121784_b0110) 2016; 284
Rachbauer (10.1016/j.biortech.2019.121784_b0165) 2017; 595
Andersen (10.1016/j.biortech.2019.121784_b0020) 2018
Tijhuis (10.1016/j.biortech.2019.121784_b0205) 1994; 44
Quast (10.1016/j.biortech.2019.121784_b0160) 2013; 41
Siegert (10.1016/j.biortech.2019.121784_b0190) 2015; 3
Caporaso (10.1016/j.biortech.2019.121784_b0055) 2010; 7
Maegaard (10.1016/j.biortech.2019.121784_b0125) 2019; 287
Rice (10.1016/j.biortech.2019.121784_b0170) 2017
References_xml – year: 2014
  ident: b0145
  article-title: 9 the family methanobacteriaceae
  publication-title: The Prokaryotes – Other Major Lineages of Bacteria and Archaea
– volume: 48
  start-page: 424
  year: 2010
  end-page: 434
  ident: b0100
  article-title: Bacterial adhesion: From mechanism to control
  publication-title: Biochem. Eng. J.
– volume: 222
  start-page: 840
  year: 2018
  end-page: 846
  ident: b0105
  article-title: Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation
  publication-title: Appl. Energy
– volume: 202
  start-page: 238
  year: 2017
  end-page: 247
  ident: b0175
  article-title: Biological methanation of CO2 in a novel biofilm plug-flow reactor: a high rate and low parasitic energy process
  publication-title: Appl. Energy
– volume: 6
  start-page: 345
  year: 1993
  end-page: 361
  ident: b0235
  article-title: Biofilm formation on polypropylene during start-up of anaerobic fixed-bed reactors
  publication-title: Biofouling
– volume: 232
  start-page: 543
  year: 2018
  end-page: 554
  ident: b0200
  article-title: Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation
  publication-title: Appl. Energy
– volume: 7
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0085
  article-title: Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor
  publication-title: Front. Microbiol.
– volume: 595
  start-page: 912
  year: 2017
  end-page: 919
  ident: b0165
  article-title: Characteristics of adapted hydrogenotrophic community during biomethanation
  publication-title: Sci. Total Environ.
– volume: 109
  start-page: 2729
  year: 2012
  end-page: 2736
  ident: b0115
  article-title: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture
  publication-title: Biotechnol. Bioeng.
– volume: 41
  start-page: D590
  year: 2013
  end-page: D596
  ident: b0160
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
– volume: 264
  start-page: 359
  year: 2018
  end-page: 369
  ident: b0035
  article-title: An overview of microbial biogas enrichment
  publication-title: Bioresour. Technol.
– reference: (accessed 04.07.2019).
– volume: 284
  start-page: 1196
  year: 2016
  end-page: 1203
  ident: b0110
  article-title: Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 792
  year: 2008
  end-page: 800
  ident: b0065
  article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors
  publication-title: Water Res.
– volume: 178
  start-page: 330
  year: 2015
  end-page: 333
  ident: b0050
  article-title: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 63
  year: 2019
  end-page: 71
  ident: b0210
  article-title: Performance enhancement of biological methanation with trickle bed reactors by liquid flow modulation
  publication-title: GCB Bioenergy
– volume: 68
  start-page: 146
  year: 2017
  end-page: 156
  ident: b0140
  article-title: Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane
  publication-title: Waste Manag.
– volume: 655
  start-page: 529
  year: 2019
  end-page: 538
  ident: b0155
  article-title: Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading
  publication-title: Sci. Total Environ.
– volume: 233
  start-page: 256
  year: 2016
  end-page: 263
  ident: b0005
  article-title: In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level
  publication-title: Bioresour. Technol.
– volume: 56
  start-page: 127
  year: 2006
  end-page: 131
  ident: b0120
  article-title: Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 233
  start-page: 184
  year: 2017
  end-page: 190
  ident: b0030
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 173
  year: 2008
  end-page: 190
  ident: b0070
  article-title: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 44
  start-page: 595
  year: 1994
  end-page: 608
  ident: b0205
  article-title: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors
  publication-title: Biotechnol. Bioeng.
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  ident: b0075
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
– volume: 257
  start-page: 164
  year: 2018
  end-page: 171
  ident: b0180
  article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: impact of temperature and microbial attachment
  publication-title: Bioresour. Technol.
– volume: 245
  start-page: 1176
  year: 2017
  end-page: 1183
  ident: b0195
  article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  ident: b0130
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 7
  start-page: 257
  year: 2014
  end-page: 264
  ident: b0090
  article-title: Biofilm development during the start-up period of anaerobic biofilm reactors : the biofilm Archaea community is highly dependent on the support material
  publication-title: Microb. Biotechnol.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: b0055
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 49
  start-page: 229
  year: 1996
  end-page: 246
  ident: b0185
  article-title: Review. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors
  publication-title: Biotechnol. Bioeng.
– volume: 32
  start-page: 35
  year: 1995
  end-page: 43
  ident: b0215
  article-title: Biofilm structures
  publication-title: Water Sci. Technol.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: b0045
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 196
  start-page: 600
  year: 2015
  end-page: 605
  ident: b0015
  article-title: Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor
  publication-title: Bioresour. Technol.
– start-page: 266
  year: 2017
  end-page: 273
  ident: b0170
  article-title: Solids
  publication-title: Standard Methods for the Examination of Water and Wastewater
– reference: EIA, 2017. International Energy Outlook 2017. URL:
– volume: 63
  start-page: 403
  year: 1997
  end-page: 407
  ident: b0220
  article-title: Composition and role of extracellular polymers in methanogenic granules
  publication-title: Appl. Environ. Microbiol.
– year: 2018
  ident: b0020
  article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data
  publication-title: bioRxiv
– volume: 26
  start-page: 647
  year: 1992
  end-page: 654
  ident: b0095
  article-title: Formation of biofilms in a biofilm air-lift suspension reactor
  publication-title: Water Sci. Technol.
– volume: 139
  start-page: 388
  year: 1984
  end-page: 396
  ident: b0135
  article-title: Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov
  publication-title: Arch. Microbiol.
– volume: 1–9
  year: 2017
  ident: b0150
  article-title: The draft genome of the non-host-associated methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins
  publication-title: Archaea
– volume: 2
  year: 2018
  ident: b0225
  article-title: Green gas – facilitating a future green gas grid through the production of renewable gas
  publication-title: IEA Bioenergy
– volume: 36
  start-page: 452
  year: 2018
  end-page: 466
  ident: b0025
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  ident: b0060
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 3
  start-page: 1668
  year: 2015
  end-page: 1676
  ident: b0190
  article-title: Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells
  publication-title: ACS Sustain. Chem. Eng.
– volume: 36
  start-page: 707
  year: 2018
  end-page: 720
  ident: b0230
  article-title: Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens
  publication-title: Biotechnol. Adv.
– volume: 258
  start-page: 33
  year: 2018
  end-page: 40
  ident: b0010
  article-title: Parameters affecting acetate concentrations during in-situ biological hydrogen methanation
  publication-title: Bioresour. Technol.
– reference: Benjaminsson, G., Benjaminsson, J., Rudberg, R., 2013. Power-to-gas – a technical review. URL:
– volume: 287
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0125
  article-title: Biogas upgrading with hydrogenotrophic methanogenic biofilms
  publication-title: Bioresour. Technol.
– volume: 264
  start-page: 359
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0035
  article-title: An overview of microbial biogas enrichment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.06.013
– volume: 7
  start-page: 173
  year: 2008
  ident: 10.1016/j.biortech.2019.121784_b0070
  article-title: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-008-9131-1
– volume: 258
  start-page: 33
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0010
  article-title: Parameters affecting acetate concentrations during in-situ biological hydrogen methanation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.102
– volume: 1–9
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0150
  article-title: The draft genome of the non-host-associated methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins
  publication-title: Archaea
– volume: 178
  start-page: 330
  year: 2015
  ident: 10.1016/j.biortech.2019.121784_b0050
  article-title: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.023
– year: 2014
  ident: 10.1016/j.biortech.2019.121784_b0145
  article-title: 9 the family methanobacteriaceae
– volume: 222
  start-page: 840
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0105
  article-title: Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.034
– volume: 49
  start-page: 229
  year: 1996
  ident: 10.1016/j.biortech.2019.121784_b0185
  article-title: Review. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
– volume: 233
  start-page: 184
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0030
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.128
– volume: 56
  start-page: 127
  year: 2006
  ident: 10.1016/j.biortech.2019.121784_b0120
  article-title: Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63887-0
– volume: 139
  start-page: 388
  year: 1984
  ident: 10.1016/j.biortech.2019.121784_b0135
  article-title: Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00408385
– volume: 10
  start-page: 996
  year: 2013
  ident: 10.1016/j.biortech.2019.121784_b0075
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 36
  start-page: 452
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0025
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.01.011
– volume: 11
  start-page: 63
  year: 2019
  ident: 10.1016/j.biortech.2019.121784_b0210
  article-title: Performance enhancement of biological methanation with trickle bed reactors by liquid flow modulation
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12547
– volume: 26
  start-page: 647
  year: 1992
  ident: 10.1016/j.biortech.2019.121784_b0095
  article-title: Formation of biofilms in a biofilm air-lift suspension reactor
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1992.0445
– volume: 44
  start-page: 595
  year: 1994
  ident: 10.1016/j.biortech.2019.121784_b0205
  article-title: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260440506
– volume: 2
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0225
  article-title: Green gas – facilitating a future green gas grid through the production of renewable gas
  publication-title: IEA Bioenergy
– volume: 108
  start-page: 4516
  issue: Suppl
  year: 2011
  ident: 10.1016/j.biortech.2019.121784_b0060
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1000080107
– volume: 109
  start-page: 2729
  year: 2012
  ident: 10.1016/j.biortech.2019.121784_b0115
  article-title: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24557
– volume: 287
  start-page: 1
  year: 2019
  ident: 10.1016/j.biortech.2019.121784_b0125
  article-title: Biogas upgrading with hydrogenotrophic methanogenic biofilms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121422
– volume: 232
  start-page: 543
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0200
  article-title: Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.225
– volume: 68
  start-page: 146
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0140
  article-title: Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.05.054
– volume: 7
  start-page: 257
  year: 2014
  ident: 10.1016/j.biortech.2019.121784_b0090
  article-title: Biofilm development during the start-up period of anaerobic biofilm reactors : the biofilm Archaea community is highly dependent on the support material
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12115
– volume: 245
  start-page: 1176
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0195
  article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.088
– volume: 41
  start-page: D590
  year: 2013
  ident: 10.1016/j.biortech.2019.121784_b0160
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 595
  start-page: 912
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0165
  article-title: Characteristics of adapted hydrogenotrophic community during biomethanation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.074
– ident: 10.1016/j.biortech.2019.121784_b0040
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.biortech.2019.121784_b0055
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 42
  start-page: 792
  year: 2008
  ident: 10.1016/j.biortech.2019.121784_b0065
  article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.08.013
– volume: 36
  start-page: 707
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0230
  article-title: Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2017.12.003
– volume: 257
  start-page: 164
  year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0180
  article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: impact of temperature and microbial attachment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.109
– volume: 30
  start-page: 2114
  year: 2014
  ident: 10.1016/j.biortech.2019.121784_b0045
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 202
  start-page: 238
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0175
  article-title: Biological methanation of CO2 in a novel biofilm plug-flow reactor: a high rate and low parasitic energy process
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.134
– volume: 48
  start-page: 424
  year: 2010
  ident: 10.1016/j.biortech.2019.121784_b0100
  article-title: Bacterial adhesion: From mechanism to control
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2009.11.014
– volume: 284
  start-page: 1196
  year: 2016
  ident: 10.1016/j.biortech.2019.121784_b0110
  article-title: Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.081
– volume: 655
  start-page: 529
  year: 2019
  ident: 10.1016/j.biortech.2019.121784_b0155
  article-title: Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.289
– volume: 32
  start-page: 35
  year: 1995
  ident: 10.1016/j.biortech.2019.121784_b0215
  article-title: Biofilm structures
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1995.0258
– volume: 63
  start-page: 403
  year: 1997
  ident: 10.1016/j.biortech.2019.121784_b0220
  article-title: Composition and role of extracellular polymers in methanogenic granules
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.2.403-407.1997
– volume: 196
  start-page: 600
  year: 2015
  ident: 10.1016/j.biortech.2019.121784_b0015
  article-title: Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.021
– year: 2018
  ident: 10.1016/j.biortech.2019.121784_b0020
  article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data
  publication-title: bioRxiv
– start-page: 266
  year: 2017
  ident: 10.1016/j.biortech.2019.121784_b0170
  article-title: Solids
– volume: 3
  start-page: 1668
  year: 2015
  ident: 10.1016/j.biortech.2019.121784_b0190
  article-title: Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00367
– volume: 6
  start-page: 345
  year: 1993
  ident: 10.1016/j.biortech.2019.121784_b0235
  article-title: Biofilm formation on polypropylene during start-up of anaerobic fixed-bed reactors
  publication-title: Biofouling
  doi: 10.1080/08927019309386236
– volume: 233
  start-page: 256
  year: 2016
  ident: 10.1016/j.biortech.2019.121784_b0005
  article-title: In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.016
– ident: 10.1016/j.biortech.2019.121784_b0080
– volume: 27
  start-page: 2957
  year: 2011
  ident: 10.1016/j.biortech.2019.121784_b0130
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2019.121784_b0085
  article-title: Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01276
SSID ssj0003172
Score 2.4692457
Snippet [Display omitted] •Substantial enhancement of methanogenic biofilm activity at short HRT.•Planktonic hydrogenotrophic methanogens restricted biofilm growth at...
Biomethanation exploits the ability of methanogenic archaea to convert CO and renewable H from electrolysis to biomethane. Biofilm reactors are promising for...
Biomethanation exploits the ability of methanogenic archaea to convert CO2 and renewable H2 from electrolysis to biomethane. Biofilm reactors are promising for...
Biomethanation exploits the ability of methanogenic archaea to convert CO₂ and renewable H₂ from electrolysis to biomethane. Biofilm reactors are promising for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121784
SubjectTerms biofilm
biogas
biomass
carbon dioxide
electrolysis
energy
Ex situ biomethanation
Homoacetogenesis
Hydraulic retention time
liquids
mass transfer
methane production
Methanogenic biofilm
methanogens
plankton
species
technology
Title Stick or leave – Pushing methanogens to biofilm formation for ex situ biomethanation
URI https://dx.doi.org/10.1016/j.biortech.2019.121784
https://www.ncbi.nlm.nih.gov/pubmed/31344638
https://www.proquest.com/docview/2265766794
https://www.proquest.com/docview/2431977564
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaq5QAcVsvy2geVkbimTetH4mNV7aqAVCEti3qz7NhB2S3Jqk1Xe0L8B_4hv4QZJynLYemBW2LPRJZnNPM5ngch75KRVRbcdMSAIuL5yEWpi22kYitBXUQ8diHaYi5nl_zDQix6ZNrlwmBYZWv7G5serHU7Mmx3c3hTFMMLBN-pAA-kGDacxZqgnCeo5YPvf8I8wD-GmwQgjpD6Xpbw1cAWGNEaLiVGCgstJCl_yEE9BECDIzo_IPstgqSTZpHPSM-Xh-Tp5OuqraLhD8njadfGDWbuVRx8Tr5cANc1rVZ06c2tp79-_KSfNuE3FMVm0qasQKPWtK4orDovlt_oNr0Rn6i_o-ui3tCQto_0YeoFuTw_-zydRW1rhSjjqawjZU3imUkS2BE2dl4ql8VeskzwzAgYUiZG95aYTCg_dqky1vJc5LkD_CRj9pLslVXpXxMKDt5mqcIAT8tVChsNJxThnJTwacCDR0R0-6mztu44tr9Y6i7A7Ep3ctAoB93I4YgMt3w3TeWNnRyqE5f-S4c0uIedvG87-WoQEN6amNJXm7UGfApnMgl26x80AMMASAsJNK8a5diumY0YHLlZevwfqzshT_CtyYE8JXv1auPfABiqbT9oe588mrz_OJv_BjFICJk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAcEFCgFGi3Uq9unKx37T1GEVEoNKoEVNxWu941ckhtlDioR96BN-RJmPVPFA7AgZvlnbFWM6OZb73zA_Aj7GihMUx7FCm8IOkYLzK-9oSvOZoL87umzLYY8eFl8OuKXa1Av6mFcWmVte-vfHrpres37Vqa7ds0bZ878B0xjECCuoGzwQdYdd2pWAtWeyenw9HCIWOILC8TkN5zDEuFwuOfOnVJreW9REe4XgthFLwUo17CoGUsGmzCRg0iSa_a5xas2Gwb1nvX07qRht2GtX4zyQ1XlpoOfoK_58h1Q_IpmVh1Z8nj_QP5My__RBE3T1plORrVjBQ5wV0n6eQfWVQ4uidi_5NZWsxJWbnv6MulHbgcHF_0h149XcGLg4gXntAqtFSFIUqEdo3lwsS-5TRmQawYvhLKdxEuVDETtmsiobQOEpYkBiEU9-kutLI8s5-BYIzXcSRcjqcORISCxkMKM4Zz_DRCwn1gjTxlXLcedxMwJrLJMRvLRg_S6UFWetiH9oLvtmq-8SaHaNQln5mRxAjxJu_3Rr8SFeQuTlRm8_lMIkTFYxlH1_UKDSIxxNKMI81eZRyLPdMOxVM3jb68Y3ffYG148ftMnp2MTg_go1upSiIPoVVM5_YIsVGhv9a2_wQ5jQtK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stick+or+leave+-+Pushing+methanogens+to+biofilm+formation+for+ex+situ+biomethanation&rft.jtitle=Bioresource+technology&rft.au=Jensen%2C+Mads+Borgbjerg&rft.au=Str%C3%BCbing%2C+Dietmar&rft.au=de+Jonge%2C+Nadieh&rft.au=Nielsen%2C+Jeppe+Lund&rft.date=2019-11-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=291&rft.spage=121784&rft_id=info:doi/10.1016%2Fj.biortech.2019.121784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon