CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines

The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational cond...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 16; p. 7059
Main Authors Shang, Li, Zhang, Zi, Tang, Fujian, Cao, Qi, Pan, Hong, Lin, Zhibin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time–frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.
AbstractList The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time–frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.
The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time-frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time-frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.
Audience Academic
Author Zhang, Zi
Cao, Qi
Shang, Li
Pan, Hong
Lin, Zhibin
Tang, Fujian
AuthorAffiliation 1 Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; li.shang@ndsu.edu (L.S.); zi.zhang@ndsu.edu (Z.Z.)
2 School of Civil Engineering, Dalian University of Technology, Dalian 116024, China; ftang@dlut.edu.cn (F.T.); qcao@dlut.edu.cn (Q.C.)
AuthorAffiliation_xml – name: 1 Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; li.shang@ndsu.edu (L.S.); zi.zhang@ndsu.edu (Z.Z.)
– name: 2 School of Civil Engineering, Dalian University of Technology, Dalian 116024, China; ftang@dlut.edu.cn (F.T.); qcao@dlut.edu.cn (Q.C.)
Author_xml – sequence: 1
  givenname: Li
  surname: Shang
  fullname: Shang, Li
– sequence: 2
  givenname: Zi
  surname: Zhang
  fullname: Zhang, Zi
– sequence: 3
  givenname: Fujian
  orcidid: 0000-0002-3066-5041
  surname: Tang
  fullname: Tang, Fujian
– sequence: 4
  givenname: Qi
  orcidid: 0000-0002-2002-5892
  surname: Cao
  fullname: Cao, Qi
– sequence: 5
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
– sequence: 6
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
BookMark eNplUk1v1DAQjVAR_YAD_8ASFzhs69iOE59QtYW20m6p1FYcLX-Mg1dOvLWzlXrgv-NlC6JFPtgzfu95xvMOq70xjlBV72t8TKnAJ5nQmre4Ea-qg5oRNusIwXv_nPerw5xXGBNKafem2qctp3Uj-EH1c351NVvc3C7RxaNO3qJltBDQFNF1ikOcAN34flRhGxrI2Y89ig7dhSmpHEdv0PnGW7BooQaNvqsHyMjFhM7UoHpAZzCBmXwckR_REiYVQqFc-zUEP0J-W712KmR497QfVXdfv9zOL2aLb-eX89PFzLCOTzPBOBHEEqs0JeDqmmLNwLmGQmO6pq2V1p1gjXNWt1QoizlwjRnHtm24aOhRdbnTtVGt5Dr5QaVHGZWXvxMx9VKlyZsAkhnCKSMdMAKsxVY4ooWixGjj2q7RRevzTmu90QNYA2P5ivBM9PnN6H_IPj7IGrNGiI4XhY9PCinebyBPcvDZQAhqhLjJkpSWOlaKaAv0wwvoKm5SmccOxRjvBC2o4x2qV6UDP7pYHjZlWRi8KV5xvuRPW04a1op6SzjZEUyKOSdw0vhJbedUiD6UUuXWWPKvsQrj0wvGn4b_x_4CvWfM4w
CitedBy_id crossref_primary_10_1016_j_ultras_2025_107623
crossref_primary_10_1109_ACCESS_2024_3505214
crossref_primary_10_3389_fpubh_2024_1365942
crossref_primary_10_1016_j_jsasus_2024_02_001
crossref_primary_10_1016_j_neunet_2025_107153
crossref_primary_10_1109_ACCESS_2025_3542562
crossref_primary_10_1088_1361_6501_ada78a
crossref_primary_10_1109_TIM_2023_3348884
Cites_doi 10.1109/ICASSP.2014.6854363
10.1061/9780784484289.032
10.1061/(ASCE)BE.1943-5592.0001199
10.1007/978-3-319-67443-8_14
10.1016/j.engfracmech.2018.03.010
10.1016/j.ndteint.2006.04.003
10.20855/ijav.2019.24.11485
10.1016/j.energy.2022.126190
10.21437/Interspeech.2017-950
10.1016/B978-0-12-818366-3.00005-8
10.1109/TIM.2017.2673024
10.1038/nature14539
10.1109/TNNLS.2016.2582924
10.3390/buildings12111772
10.3390/s18010109
10.1016/j.ijpvp.2021.104471
10.1162/neco.1997.9.8.1735
10.3233/JIFS-162329
10.1109/ICASSP.2012.6288864
10.1061/(ASCE)AS.1943-5525.0000978
10.1016/j.ultras.2014.03.017
10.1016/j.renene.2021.02.166
10.1109/34.745739
10.1016/j.micpro.2022.104651
10.21437/Interspeech.2017-1608
10.3390/s20061790
10.1109/TII.2018.2828811
10.3390/s22145390
10.1007/s12205-017-1518-5
10.1109/TASL.2011.2109382
10.1016/j.measurement.2016.04.073
10.1016/j.measurement.2020.108374
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23167059
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4c263428e42e470d9f2b9a32cbcf785b
PMC10459986
A762547913
10_3390_s23167059
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: USDOTs
  grantid: DTPH5616HCAP03; 693JK318500010CAAP; 693JK31850009CAAP; 693JK32110003POTA; 693JK32250007CAAP
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c486t-946292d2dab32ef1130b4eff53e5c8571abb8945ffdb739ad06e6b0460d756953
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 18:36:42 EDT 2025
Thu Jul 10 21:59:21 EDT 2025
Fri Jul 25 05:00:58 EDT 2025
Tue Jun 10 21:29:34 EDT 2025
Tue Jul 01 01:20:19 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-946292d2dab32ef1130b4eff53e5c8571abb8945ffdb739ad06e6b0460d756953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3066-5041
0000-0002-2002-5892
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23167059
PMID 37631596
PQID 2857446893
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4c263428e42e470d9f2b9a32cbcf785b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10459986
proquest_miscellaneous_2857843427
proquest_journals_2857446893
gale_infotracacademiconefile_A762547913
crossref_citationtrail_10_3390_s23167059
crossref_primary_10_3390_s23167059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_41) 2019; 34
Davoudabadi (ref_40) 2017; 33
ref_14
Ahn (ref_2) 2019; 210
ref_13
ref_12
ref_33
ref_10
ref_30
Mellit (ref_34) 2021; 172
ref_19
Akram (ref_39) 2014; 54
Greff (ref_35) 2017; 28
ref_16
Pittner (ref_26) 1999; 21
Lecun (ref_32) 2015; 521
ref_38
ref_15
ref_37
Carvalho (ref_3) 2006; 39
Gui (ref_17) 2017; 21
Shi (ref_27) 2016; 90
Hochreiter (ref_36) 1997; 9
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_42
Andhale (ref_31) 2018; 24
ref_1
Lu (ref_6) 2019; 15
Mohamed (ref_11) 2012; 20
Pan (ref_18) 2018; 5
Feng (ref_4) 2017; 66
ref_29
ref_28
ref_9
ref_8
ref_5
ref_7
References_xml – volume: 34
  start-page: 409
  year: 2019
  ident: ref_41
  article-title: A Wavelet De-Noising Method for Power Quality Based on an Improved Threshold and Threshold Function
  publication-title: Trans. China Electrotech. Soc.
– ident: ref_10
  doi: 10.1109/ICASSP.2014.6854363
– ident: ref_30
– ident: ref_22
  doi: 10.1061/9780784484289.032
– ident: ref_21
  doi: 10.1061/(ASCE)BE.1943-5592.0001199
– ident: ref_5
– volume: 5
  start-page: 167
  year: 2018
  ident: ref_18
  article-title: Vibration-Based Support Vector Machine for Structural Health Monitoring
  publication-title: Lect. Notes Civ. Eng.
  doi: 10.1007/978-3-319-67443-8_14
– volume: 210
  start-page: 381
  year: 2019
  ident: ref_2
  article-title: Artificial Intelligence-Based Machine Learning Considering Flow and Temperature of the Pipeline for Leak Early Detection Using Acoustic Emission
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.03.010
– ident: ref_24
– volume: 39
  start-page: 661
  year: 2006
  ident: ref_3
  article-title: MFL Signals and Artificial Neural Networks Applied to Detection and Classification of Pipe Weld Defects
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2006.04.003
– volume: 24
  start-page: 150
  year: 2018
  ident: ref_31
  article-title: Localization of Damages in Plain And Riveted Aluminium Specimens Using Lamb Waves
  publication-title: Int. J. Acoust. Vib.
  doi: 10.20855/ijav.2019.24.11485
– ident: ref_29
  doi: 10.1016/j.energy.2022.126190
– ident: ref_8
  doi: 10.21437/Interspeech.2017-950
– ident: ref_38
  doi: 10.1016/B978-0-12-818366-3.00005-8
– volume: 66
  start-page: 1883
  year: 2017
  ident: ref_4
  article-title: Injurious or Noninjurious Defect Identification from MFL Images in Pipeline Inspection Using Convolutional Neural Network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2673024
– ident: ref_37
– ident: ref_14
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_32
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 28
  start-page: 2222
  year: 2017
  ident: ref_35
  article-title: LSTM: A Search Space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref_13
  doi: 10.3390/buildings12111772
– ident: ref_1
  doi: 10.3390/s18010109
– ident: ref_42
  doi: 10.1016/j.ijpvp.2021.104471
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_36
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 33
  start-page: 2159
  year: 2017
  ident: ref_40
  article-title: A fuzzy-wavelet denoising technique with applications to noise reduction in audio signals
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-162329
– ident: ref_9
  doi: 10.1109/ICASSP.2012.6288864
– ident: ref_12
– ident: ref_23
  doi: 10.1061/(ASCE)AS.1943-5525.0000978
– volume: 54
  start-page: 1534
  year: 2014
  ident: ref_39
  article-title: Active Incremental Support Vector Machine for Oil and Gas Pipeline Defects Prediction System Using Long Range Ultrasonic Transducers
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2014.03.017
– volume: 172
  start-page: 276
  year: 2021
  ident: ref_34
  article-title: Deep Learning Neural Networks for Short-Term Photovoltaic Power Forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.166
– volume: 21
  start-page: 83
  year: 1999
  ident: ref_26
  article-title: Feature Extraction from Wavelet Coefficients for Pattern Recognition Tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.745739
– ident: ref_15
– ident: ref_33
  doi: 10.1016/j.micpro.2022.104651
– ident: ref_7
  doi: 10.21437/Interspeech.2017-1608
– ident: ref_25
  doi: 10.3390/s20061790
– volume: 15
  start-page: 213
  year: 2019
  ident: ref_6
  article-title: An Estimation Method of Defect Size from MFL Image Using Visual Transformation Convolutional Neural Network
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2018.2828811
– ident: ref_16
  doi: 10.3390/s22145390
– volume: 21
  start-page: 523
  year: 2017
  ident: ref_17
  article-title: Data-Driven Support Vector Machine with Optimization Techniques for Structural Health Monitoring and Damage Detection
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1518-5
– ident: ref_19
– ident: ref_20
– volume: 20
  start-page: 14
  year: 2012
  ident: ref_11
  article-title: Acoustic Modeling Using Deep Belief Networks
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2109382
– volume: 90
  start-page: 318
  year: 2016
  ident: ref_27
  article-title: Signal Feature Extraction Based on Cascaded Multi-Stable Stochastic Resonance Denoising and EMD Method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.073
– ident: ref_28
  doi: 10.1016/j.measurement.2020.108374
SSID ssj0023338
Score 2.504241
Snippet The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7059
SubjectTerms Accuracy
Classification
CNN-LSTM hybrid model
Corrosion
Corrosion and anti-corrosives
damage identification
Data processing
data-driven approach
Datasets
Deep learning
Lamb wave
Machine learning
Neural networks
Pattern recognition systems
Pipe lines
Signal processing
structural health monitoring
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQnuAB8SkCGzIICV6itf5K_Dg2RoXWatJWsTfLds4sUpdOJEXaA_87ZyetWkDihbcosZ2zfee7k-9-R8g7DSwIPYJcWlnmIgieu_QkghTW6ZFL1RumMzWZiy9X8mqr1FeMCevhgfuFOxSeKY42MggGohhVOjCnLWfe-VCU0sXTF3Xe2pkaXC2OnlePI8TRqT9sWUz4ToCkW9ongfT_eRT_Hh65pW9OH5GHg6FIj3oCH5N70DwhD7bgA5-Sn8ezWX52cTmlk7uYeEVjYbMF7Zb0PAXZAb2ov8VBhmwA7ESXgc4X-L82QuLSz6u6goqe2RtHv9of0FK0YemJvcFThp5Al-K0Glo3dApopS-wy3l9G1PYoX1G5qefLo8n-VBOIfeiVF2uhWKaVayyjjMIY9ReTkAIkoP0pSzG1rlSCxlC5QqubTVSoFy8OK0KqbTkz8les2zgBaHgS8G8Db7gOISUNljsI6wFoWTwkJEP62U2fsAajyUvFgZ9jrgjZrMjGXm7aXrbA2z8rdHHuFebBhETO71ATjEDp5h_cUpG3sedNlFykRhvhwQEnFLEwDJHqBekKPSYZ2R_zQxmEOnWMFwi9J3RvsvIm81nFMZ4w2IbWK76NqVAIoqMlDtMtEP67pemvk6w3ugYS3R-1cv_MdlX5D5DMehDFffJXvd9BQdoPnXudZKUXyW-Guc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvMAD4lMEBjIICV6itf5I4ic0NroKrdWkrWJvke2cR6QuKUuKxAP_O-fEDS0g3qLEX_H5fHf23e8IeauAOaFGEEsts1g4wWPTPQknhTZqZLrsDbN5Ml2Iz5fyMhy4NcGtcrMndht1UVt_Rn7AMpmi6YLi9cPqW-yzRvnb1ZBC4za5M0ZJ4126ssnJYHBxtL96NCGOpv1Bw3zYdwdLuiWDOqj-vzfkP50kt6TO5AG5H9RFetjT9yG5BdUjcm8LRPAx-Xk0n8en5xczOv3hw6-oT2-2pG1NzzpXO6Dn5ZVvJMQEYCVaO7pYYn-NB8alJ-uygIKe6mtDv-jv0FDUZOmxvsa9hh5D23lrVbSs6AxQV19ilbNy5QPZoXlCFpNPF0fTOCRViK3IkjZWImGKFazQhjNwY5RhRoBzkoO0OMdjbUymhHSuMClXuhglkBh_fVqkMlGSPyV7VV3BM0LBZoJZ7WzKsQkptdNYR2gNIpHOQkTeb6Y5twFx3Ce-WOZoeXiK5ANFIvJmKLrqYTb-Veijp9VQwCNjdy_qm6s8MFouLEs42lQgGIh0VCjHjNKcWWNdmkkTkXee0rnnXxyM1SEMAX_JI2HlhygdpEjVmEdkf7MY8sDYTf57GUbk9fAZWdLfs-gK6nVfJhM4iDQi2c4i2hn67peq_NqBe6N5LNEETp7_v_cX5K5PfN-7Iu6TvfZmDS9RPWrNq44HfgE1dRJl
  priority: 102
  providerName: ProQuest
Title CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines
URI https://www.proquest.com/docview/2857446893
https://www.proquest.com/docview/2857843427
https://pubmed.ncbi.nlm.nih.gov/PMC10459986
https://doaj.org/article/4c263428e42e470d9f2b9a32cbcf785b
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHtLxEYKkMQoJLoPUjjg8I7atboW1VsVvRW2Q79lKpm-z2gdgD_51xklZb2AOXKIofcWbGnpnY8w3AO-Wo56rtYqFFGnPPWWyqO-4F10a1TZW9oT9IeiP-dSzGW7DKsdkQcH6vaxfySY1m04-_bm6_4IT_HDxOdNk_zWkI50Y7YRt2USHJkMigz9ebCZSxKqF1iOmKUR-2a4ChzaYbaqlC7_93jf773OQdRdTdg0eNBUkOapY_hi1XPIGHd3AFn8Lvo8EgPju_6JPebYjIIiHj2ZQsSjKsTt85cj65DJ00YQLYiJSejKb4vnnAyiWny0nucnKmrwz5rn-6OUHjlhzrK1x-yLFbVAe4CjIpSN8h5abYZDi5DrHtbv4MRt2Ti6Ne3ORZiC1Pk0WseEIVzWmuDaPOd1CtGe68F8wJmwrZ0cakigvvcyOZ0nk7cYkJO6q5FIkS7DnsFGXhXgBxNuXUam8lwy6E0F5jG66144nw1kXwYUXmzDYg5CEXxjRDZyRwJFtzJIK366rXNfLGfZUOA6_WFQJYdvWgnF1mzdzLuKUJQzfLceq4bOfKU6M0o9ZYL1NhIngfOJ0FIcPBWN1EJuAnBXCs7AAVhuBSdVgE-ythyFaimlEkETrVaPhF8GZdjLM0bL3owpXLuk7KcRAygnRDiDaGvllSTH5UeN_oMQv0ipOX_0ORV_CAosjXZxT3YWcxW7rXaDctTAu25VjiNe2etmD38GQw_Naq_kG0qvnyBzExG14
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiKdYKGAQCC6rJl57HweESkOa0iSq1ET0ttjecYmU7oZuAuqBv8RvZGZ3ExJA3HqLYnvt7Ixn_MUz3zD2MgHhZNICX2kV-9LJwDfVJ-mU1CZpmap6w2AY9sby46k63WI_l7kwFFa5tImVoc4KS_-R74pYRQhd0L2-m331qWoU3a4uS2jUanEEl98RspVvDzso31dCdD-M9nt-U1XAtzIO51RTXiQiE5k2gQDXRiNuJDinAlAWJ2lrY-JEKucyEwWJzlohhIbuD7NIhQlViUCTf00G6MkpM717sAJ4AeK9mr0IG1u7paA084oGdc3nVaUB_nYAfwZlrnm57m12qzme8r1an-6wLcjvsptrpIX32I_94dDvn4wGvHdJ6V6cyqlN-bzgx1VoH_CTyRk9pMlBwEG8cHw8xflKIuLlB4tJBhnv63PDP-lvUHI8OfOOPkfbxjswr6LDcj7J-QAQG0xxyPFkRonzUN5n4yt53Q_Ydl7k8JBxsLEUVjsbBfgIpbTTOEZqDTJUzoLH3ixfc2obhnMqtDFNEemQRNKVRDz2YtV1VtN6_KvTe5LVqgMxcVdfFBdnabOxU2lFGCCGAylARq0sccIkOhDWWBfFynjsNUk6JXuBi7G6SXvAn0TMW-keeiMlo6QdeGxnqQxpY0jK9Lfae-z5qhlNAN3r6ByKRd0nlriIyGPxhhJtLH2zJZ98qcjEEY4rhNzho__P_oxd740G_bR_ODx6zG4IVPY6DHKHbc8vFvAEj2Zz87TaD5x9vuoN-AtyAk8t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkLwgLiKwACDQPAStfUllweEtnWlY21VsVXsLbMde1TqkrK0oD3wx_h1nJOkpQXE296ixI4dn5u_-FwIeRVb5kTcsr5UMvKFE9zX5ZVwUigdt3RZvWEwDHpj8fFUnm6Rn8tYGHSrXOrEUlGnucF_5E0WyRCgC5jXpqvdIkad7vvZVx8rSOFJ67KcRsUiR_bqO8C34t1hB2j9mrHuwcl-z68rDPhGRMEc68uzmKUsVZoz69qg0LWwzklupYEB20rrKBbSuVSHPFZpK7CBxrPENJRBjBUjQP1vh4iKGmR772A4-rSCexzQX5XLiPO41SwYBp2XSVHXLGBZKOBvc_Cni-aazeveIbfrzSrdrbjrLtmy2T1yay2F4X3yY3849PvHJwPau8LgL4rF1aZ0ntNR6ehn6fHkHF9SRyRAJ5o7Op7CeAWm5aUfFpPUprSvLjT9rL7ZgsI-mnbUBWg62rHz0lcso5OMDiwghSl0GU1mGEZviwdkfC0L_pA0sjyzjwi1JhLMKGdCDq-QUjkFfYRSVgTSGeuRt8tlTkyd7xzLbkwTwD1IkWRFEY-8XDWdVUk-_tVoD2m1aoB5ucsb-eV5Uot5IgwLOCA6K5gVYSuNHdOx4sxo48JIao-8QUonqD1gMkbVQRDwSZiHK9kF2yRFGLe5R3aWzJDUaqVIfguBR16sHoNCwFMeldl8UbWJBEwi9Ei0wUQbU998kk2-lKnFAZxLAODB4_-P_pzcAOFL-ofDoyfkJgNer3wid0hjfrmwT2GfNtfPaoGg5Oy6ZfAXZexUvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-LSTM+Hybrid+Model+to+Promote+Signal+Processing+of+Ultrasonic+Guided+Lamb+Waves+for+Damage+Detection+in+Metallic+Pipelines&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shang%2C+Li&rft.au=Zhang%2C+Zi&rft.au=Tang%2C+Fujian&rft.au=Cao%2C+Qi&rft.date=2023-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7059&rft_id=info:doi/10.3390%2Fs23167059&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23167059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon