Indices of novelty for emerging topic detection

► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the no...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 48; no. 2; pp. 303 - 325
Main Authors Tu, Yi-Ning, Seng, Jia-Lang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2012
Elsevier
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0306-4573
1873-5371
DOI10.1016/j.ipm.2011.07.006

Cover

Loading…
Abstract ► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the novelty and life span of emerging topics. Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals.
AbstractList Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. Adapted from the source document.
Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. [PUBLICATION ABSTRACT]
Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals.
► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the novelty and life span of emerging topics. Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals.
Author Seng, Jia-Lang
Tu, Yi-Ning
Author_xml – sequence: 1
  givenname: Yi-Ning
  surname: Tu
  fullname: Tu, Yi-Ning
  email: 082435@mail.fju.edu.tw
  organization: Department and Graduate School of Statistics and Information Science, College of Management, Fu Jen Catholic University, New Taipei 242, Taiwan
– sequence: 2
  givenname: Jia-Lang
  surname: Seng
  fullname: Seng, Jia-Lang
  email: seng@nccu.edu.tw
  organization: Department and Graduate School of Accounting, College of Commerce, National Chengchi University, Taipei 116, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25651747$$DView record in Pascal Francis
BookMark eNqFkUFr3DAQhUVJoZu0P6A3Uyj0Ymck2ZJMTyWkTSDQS3sW2tEoaPFKW8kbyL-v3U0vOSSnubzvPd68c3aWciLGPnLoOHB1ueviYd8J4LwD3QGoN2zDjZbtIDU_YxuQoNp-0PIdO691BwD9wMWGXd4mH5Fqk0OT8gNN82MTcmloT-U-pvtmzoeIjaeZcI45vWdvg5sqfXi6F-z39-tfVzft3c8ft1ff7lrsjZpbEwSYcQxebDWQRK-IegweScAWjNEubPkwksfB6NG4LY7Ukxc-IIYAUl6wLyffQ8l_jlRnu48VaZpconyslgux1FM96NelwI2UWv1z_fRMusvHkpYidhRS9Hw0q-jzk8hVdFMoLmGs9lDi3pVHKwY1cN2vufqkw5JrLRQsxtmtT5qLi9OSu0Yru7PLNHadxoK2yzQLyZ-R_81fYr6eGFq-_hCp2IqREpKPZZnG-hxfoP8CjlinmA
CODEN IPMADK
CitedBy_id crossref_primary_10_1162_qss_a_00221
crossref_primary_10_1016_j_procir_2019_03_116
crossref_primary_10_1007_s11192_024_04937_0
crossref_primary_10_1016_j_joi_2024_101612
crossref_primary_10_1016_j_ins_2022_12_081
crossref_primary_10_1016_j_techfore_2018_08_003
crossref_primary_10_1007_s10798_020_09638_2
crossref_primary_10_1080_09537325_2021_1876221
crossref_primary_10_1007_s11192_014_1347_y
crossref_primary_10_1016_j_ipm_2024_103859
crossref_primary_10_1007_s11634_016_0241_2
crossref_primary_10_1016_j_ipm_2019_01_009
crossref_primary_10_1016_j_ipm_2021_102843
crossref_primary_10_1007_s11192_017_2361_7
crossref_primary_10_1002_cpe_3374
crossref_primary_10_4028_www_scientific_net_AMM_602_605_2174
crossref_primary_10_1016_j_ipm_2021_102594
crossref_primary_10_1016_j_joi_2019_100983
crossref_primary_10_3390_info15090581
crossref_primary_10_1016_j_joi_2023_101426
crossref_primary_10_1007_s11192_019_03288_5
crossref_primary_10_1016_j_techfore_2021_121218
crossref_primary_10_1016_j_ipm_2019_02_014
crossref_primary_10_1177_0165551520920794
crossref_primary_10_1016_j_jengtecman_2013_07_001
crossref_primary_10_1016_j_procs_2019_01_182
crossref_primary_10_1007_s11192_021_04000_2
crossref_primary_10_1155_2014_360934
crossref_primary_10_3389_frma_2018_00009
crossref_primary_10_1016_j_ipm_2024_103793
crossref_primary_10_1016_j_ipm_2022_103110
crossref_primary_10_1108_EL_09_2016_0198
crossref_primary_10_1007_s11192_024_05156_3
crossref_primary_10_1007_s11192_014_1380_x
crossref_primary_10_1016_j_ipm_2019_02_003
crossref_primary_10_1016_j_techfore_2020_120490
crossref_primary_10_1002_asi_23522
crossref_primary_10_1016_j_joi_2024_101551
crossref_primary_10_1016_j_respol_2014_02_005
crossref_primary_10_1007_s11192_024_05068_2
crossref_primary_10_3390_machines12030197
crossref_primary_10_1007_s11192_021_04024_8
crossref_primary_10_1016_j_techfore_2021_120944
crossref_primary_10_1016_j_techfore_2018_09_005
crossref_primary_10_1177_01655515211061219
crossref_primary_10_1016_j_aap_2020_105568
crossref_primary_10_6000_1929_6002_2016_05_02_2
crossref_primary_10_1007_s11573_018_0898_4
crossref_primary_10_1007_s11192_014_1246_2
crossref_primary_10_1007_s11192_024_05093_1
crossref_primary_10_1016_j_ipm_2021_102611
crossref_primary_10_1007_s11192_022_04293_x
crossref_primary_10_1007_s11192_014_1451_z
crossref_primary_10_1016_j_ipm_2024_103766
Cites_doi 10.21437/Eurospeech.1999-539
10.1016/j.techfore.2007.02.007
10.1145/1401890.1401957
10.1145/775047.775150
10.1145/290941.290954
10.1145/1281192.1281234
10.1016/j.technovation.2008.03.009
10.1007/BFb0026683
10.1145/361219.361220
10.1109/TKDE.2007.1040
10.1016/j.ipm.2006.07.007
10.1145/383952.384013
10.1016/j.techfore.2007.11.010
10.1109/TKDE.2007.190702
10.1145/383952.384068
10.1016/j.techfore.2008.04.004
10.1016/j.techfore.2006.04.004
10.1145/775047.775061
10.1109/TKDE.2003.1232271
10.1016/j.ipm.2005.10.002
10.1016/j.techfore.2006.06.004
10.1016/j.eswa.2005.09.047
10.1145/1014052.1016919
10.1145/564376.564393
10.1145/1076034.1076054
10.1145/1281192.1281276
10.1109/TKDE.2004.33
10.1016/j.techfore.2007.11.004
10.1145/345508.345546
10.1016/j.ipm.2004.04.018
10.1016/S0378-7206(99)00022-1
10.1145/1014052.1014087
10.1016/j.ipm.2006.02.007
10.1021/cr990096j
10.1109/TKDE.2004.32
10.1016/S0306-4573(03)00039-6
10.1016/j.techfore.2007.02.009
10.1016/j.techfore.2007.02.008
10.1145/564376.564465
10.1016/j.eswa.2009.03.015
10.1002/asi.20529
10.1145/1066677.1066924
10.1145/345508.345550
10.1023/B:INRT.0000011210.12953.86
10.1016/j.techfore.2007.02.004
10.1145/1401890.1402015
10.1007/978-3-540-39857-8_7
10.1016/S0040-1625(01)00157-3
ContentType Journal Article
Copyright 2011
2015 INIST-CNRS
Copyright Pergamon Press Inc. Mar 2012
Copyright_xml – notice: 2011
– notice: 2015 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Mar 2012
DBID AAYXX
CITATION
IQODW
E3H
F2A
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ipm.2011.07.006
DatabaseName CrossRef
Pascal-Francis
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Materials Business File
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList Library and Information Science Abstracts (LISA)
Library and Information Science Abstracts (LISA)
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
EndPage 325
ExternalDocumentID 2593946141
25651747
10_1016_j_ipm_2011_07_006
S0306457311000768
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
08R
ABPIF
IQODW
E3H
EFKBS
F2A
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c486t-8f20899fd2b70e3cd6ee4cfdce20b0887afb159edc58798abc9e4ed2dfccff033
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Fri Jul 11 11:30:05 EDT 2025
Fri Jul 11 02:59:38 EDT 2025
Mon Jul 14 08:20:43 EDT 2025
Sun Oct 22 16:06:33 EDT 2023
Tue Jul 01 00:44:31 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Fri Feb 23 02:18:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Text mining
Aging theory
Topic detection and tracking
Information retrieval
Published volume index
Novelty index
Volume
Ageing
Index (documentation)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-8f20899fd2b70e3cd6ee4cfdce20b0887afb159edc58798abc9e4ed2dfccff033
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 923241983
PQPubID 46166
PageCount 23
ParticipantIDs proquest_miscellaneous_1221876407
proquest_miscellaneous_1018337603
proquest_journals_923241983
pascalfrancis_primary_25651747
crossref_citationtrail_10_1016_j_ipm_2011_07_006
crossref_primary_10_1016_j_ipm_2011_07_006
elsevier_sciencedirect_doi_10_1016_j_ipm_2011_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Oxford
PublicationTitle Information processing & management
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Ltd
References Chou, Chen (b0040) 2008; 20
Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In
Franz, M., & McCarley, J. C. (2001). Unsupervised and supervised clustering for topic tracking. In
(pp. 811–816).
Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive filtering. In
(pp. 310–317).
Kostoff (b0100) 2008; 75
(pp. 784–793).
(pp. 47–59).
Wu, Chen, Sun (b0240) 2004; 40
Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and tracking. In
Lee, Gosain, Im (b0140) 1997; 36
Yang, Y., Ault, T., Pierce T., & Lattimer, C. W. (2000). Improving text categorization methods for event tracking. In
Yang, Y., Zhang, J., Carbonell, J., & Jin, Chun. (2002). Topic-conditioned novelty detection. In
Malone, McGarry, Bowerman (b0145) 2006; 30
Daim, Rueda, Martin, Gerdsri (b0060) 2006; 73
Shibata, Kajikawa, Matsushima (b0195) 2007; 58
(pp. 424–425).
Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2010). Detection emerging research fronts in regenerative medicine by the citation network analysis of scientific publications.
Jin, Myaeng, Jung (b0075) 2007; 43
Kostoff, Briggs, Solka, Rushenberg (b0105) 2008; 75
(pp. 49–56).
Swan, R., & Allan, J. (2000). Automatic generation of overview timelines. In
Ontrup, Ritter, Scholz, Wagner (b0165) 2008; 20
Zhu, Porter (b0270) 2002; 69
(pp. 65–72).
(pp. 306–315).
Walls, F., Jin, H., Sista, S., & Schwartz, R. (1999). Topic detection in broadcast news. In
Braun, Schubert, Kostoff (b0025) 2000; 100
Jo, Y., Lagoze, C., & Giles, C. L. (2007). Detecting research topics via the correlation between graphs and texts. In
Ozmutlu, Cavdur (b0170) 2005; 41
Schultz, J. M., & Liberman, M. (1999). Topic detection and tracking using idf-weighted cosine coefficient. In
(pp. 1089–1095).
(pp. 91–101).
.
Tu, Seng (b0280) 2009; 36
Yang, Y., Yoo, S., Zhang, J., & Kisiel, B. (2005). Robustness of adaptive filtering methods in a cross-benchmark evaluation. In
(pp. 224–231).
(pp. 370–379).
Manmatha, R., Feng, A., Allan, J. (2002). A critical examination of TDT’s cost function. In
(pp. 81–88).
Porter, Cunningham (b0180) 2005
Morinaga, S., & Yamanishi, K. (2004). Tracking dynamics of topic trends using a finite mixture model. In
Kostoff, Bhattacharya, Pecht (b0120) 2007; 74
(pp. 688–693).
(pp. 542–550).
Tran, Daim (b0225) 2008; 75
Kostoff, Johnson, Bowles, Bhattacharya, Icenhour, Nikodym (b0125) 2007; 74
1249–1259.
Hatzivassiloglou, V., Gravano, L., & Maganti, A. (2000). An investigation of linguistic features and clustering algorithms. In
Lee, C., Lee, G. G., Jang, M. (2007). Dependency structure language model for topic detection and tracking.
Ozmutlu (b0175) 2006; 42
Kostoff, Briggs, Rushenberg, Bowles, Icenhour, Nikodym (b0110) 2007; 74
(pp. 37–45).
Kuramochi, Karypis (b0130) 2004; 16
Nallapati, R., Ahmed, A., Xing, E. P., & Cohen, W. W. (2008). Joint latent topic models for text and citations. In
Cunningham, Porter, Newman (b0055) 2006; 73
Shibata, Kajikawa, Takeda, Matsushima (b0200) 2008; 28
Salton, Wong, Yang (b0185) 1975; 18
Zhang, Y., Surendran, A. C., Platt, J. C., & Narasimhan, M. (2008). Learning from multi-topic web documents for contextual advertisement. In
Clifton, Cooley, Rennie (b0045) 2004; 16
Berry (b0020) 2004
Kostoff, Briggs, Rushenberg, Bowles, Pecht, Johnson (b0115) 2007; 74
Stokes, N., & Carthy, J. (2001). Combining semantic and syntactic document classifiers to improve first story detection. In
(pp. 98–105).
Aurora, Rafael, Jose (b0015) 2007; 43
Makkonen, Ahonen-Myka, Salmenkivi (b0275) 2004; 7
Wang, X., Zhai, C., Hu, X., & Sproat, R. (2007). Mining correlated bursty topic patterns from coordinated text streams. In
(pp. 403–404).
Kollios, Gunopulos, Koudas, Berchtold (b0095) 2003; 15
Chen, Luesukprasert, Chou (b0030) 2007; 19
Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, T. (1998). Topic detection and tracking pilot study: Final report. In
Cui, C., & Kitagawa, H. (2005). Topic activation analysis for document streams based on document arrival rate and relevance. In
Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In
Steyvers, M., Smyth, P., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In
(pp. 1051–1059).
Chen, C. C., Chen, Y. T., Sun, Y., & Chen, M. C. (2003). Life cycle modeling of news events using aging theory. In
Jin (10.1016/j.ipm.2011.07.006_b0075) 2007; 43
Tu (10.1016/j.ipm.2011.07.006_b0280) 2009; 36
10.1016/j.ipm.2011.07.006_b0215
Shibata (10.1016/j.ipm.2011.07.006_b0200) 2008; 28
10.1016/j.ipm.2011.07.006_b0065
Kostoff (10.1016/j.ipm.2011.07.006_b0105) 2008; 75
Malone (10.1016/j.ipm.2011.07.006_b0145) 2006; 30
10.1016/j.ipm.2011.07.006_b0265
10.1016/j.ipm.2011.07.006_b0220
Zhu (10.1016/j.ipm.2011.07.006_b0270) 2002; 69
10.1016/j.ipm.2011.07.006_b0260
Chou (10.1016/j.ipm.2011.07.006_b0040) 2008; 20
Ozmutlu (10.1016/j.ipm.2011.07.006_b0175) 2006; 42
Kostoff (10.1016/j.ipm.2011.07.006_b0110) 2007; 74
Porter (10.1016/j.ipm.2011.07.006_b0180) 2005
Aurora (10.1016/j.ipm.2011.07.006_b0015) 2007; 43
Kostoff (10.1016/j.ipm.2011.07.006_b0100) 2008; 75
10.1016/j.ipm.2011.07.006_b0035
Salton (10.1016/j.ipm.2011.07.006_b0185) 1975; 18
10.1016/j.ipm.2011.07.006_b0235
Braun (10.1016/j.ipm.2011.07.006_b0025) 2000; 100
10.1016/j.ipm.2011.07.006_b0230
10.1016/j.ipm.2011.07.006_b0155
10.1016/j.ipm.2011.07.006_b0150
Kostoff (10.1016/j.ipm.2011.07.006_b0120) 2007; 74
10.1016/j.ipm.2011.07.006_b0070
10.1016/j.ipm.2011.07.006_b0190
Lee (10.1016/j.ipm.2011.07.006_b0140) 1997; 36
Chen (10.1016/j.ipm.2011.07.006_b0030) 2007; 19
Ontrup (10.1016/j.ipm.2011.07.006_b0165) 2008; 20
Berry (10.1016/j.ipm.2011.07.006_b0020) 2004
10.1016/j.ipm.2011.07.006_b0245
10.1016/j.ipm.2011.07.006_b0005
Kostoff (10.1016/j.ipm.2011.07.006_b0115) 2007; 74
Makkonen (10.1016/j.ipm.2011.07.006_b0275) 2004; 7
10.1016/j.ipm.2011.07.006_b0160
10.1016/j.ipm.2011.07.006_b0085
Wu (10.1016/j.ipm.2011.07.006_b0240) 2004; 40
10.1016/j.ipm.2011.07.006_b0080
Ozmutlu (10.1016/j.ipm.2011.07.006_b0170) 2005; 41
Shibata (10.1016/j.ipm.2011.07.006_b0195) 2007; 58
Kuramochi (10.1016/j.ipm.2011.07.006_b0130) 2004; 16
10.1016/j.ipm.2011.07.006_b0205
Clifton (10.1016/j.ipm.2011.07.006_b0045) 2004; 16
10.1016/j.ipm.2011.07.006_b0135
10.1016/j.ipm.2011.07.006_b0255
Tran (10.1016/j.ipm.2011.07.006_b0225) 2008; 75
10.1016/j.ipm.2011.07.006_b0010
Daim (10.1016/j.ipm.2011.07.006_b0060) 2006; 73
Kollios (10.1016/j.ipm.2011.07.006_b0095) 2003; 15
10.1016/j.ipm.2011.07.006_b0210
10.1016/j.ipm.2011.07.006_b0050
Cunningham (10.1016/j.ipm.2011.07.006_b0055) 2006; 73
Kostoff (10.1016/j.ipm.2011.07.006_b0125) 2007; 74
10.1016/j.ipm.2011.07.006_b0250
10.1016/j.ipm.2011.07.006_b0090
References_xml – volume: 75
  start-page: 165
  year: 2008
  end-page: 185
  ident: b0100
  article-title: Literature-related discovery (LRD): Introduction and background
  publication-title: Technological Forecasting and Social Change
– volume: 41
  start-page: 1243
  year: 2005
  end-page: 1262
  ident: b0170
  article-title: Application of automatic topic identification on excite web search engine data logs
  publication-title: Information Processing & Management
– volume: 19
  start-page: 1016
  year: 2007
  end-page: 1025
  ident: b0030
  article-title: Hot topic extraction based on timeline analysis and multidimensional sentence modeling
  publication-title: IEEE Transactions on knowledge and data enginerting
– reference: (pp. 224–231).
– reference: (pp. 1051–1059).
– volume: 74
  start-page: 1538
  year: 2007
  end-page: 1591
  ident: b0120
  article-title: Assessment of China’s and India’s science and technology literature-introduction, background, and approach
  publication-title: Technological Forecasting and Social Change
– reference: Hatzivassiloglou, V., Gravano, L., & Maganti, A. (2000). An investigation of linguistic features and clustering algorithms. In
– reference: Yang, Y., Yoo, S., Zhang, J., & Kisiel, B. (2005). Robustness of adaptive filtering methods in a cross-benchmark evaluation. In
– reference: Cui, C., & Kitagawa, H. (2005). Topic activation analysis for document streams based on document arrival rate and relevance. In
– reference: Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2010). Detection emerging research fronts in regenerative medicine by the citation network analysis of scientific publications.
– reference: (pp. 688–693).
– reference: Wang, X., Zhai, C., Hu, X., & Sproat, R. (2007). Mining correlated bursty topic patterns from coordinated text streams. In
– volume: 20
  start-page: 289
  year: 2008
  end-page: 299
  ident: b0040
  article-title: Using incremental PLSI for threshold-resilient online event analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 49–56).
– volume: 36
  start-page: 233
  year: 1997
  end-page: 246
  ident: b0140
  article-title: Topics of interest in IS: Evolution of themes and differences between research and practice
  publication-title: Information & Management
– volume: 40
  start-page: 239
  year: 2004
  end-page: 255
  ident: b0240
  article-title: Automatic topics discovery from hyperlinked documents
  publication-title: Information Processing & Management
– volume: 75
  start-page: 186
  year: 2008
  end-page: 202
  ident: b0105
  article-title: Literature-related discovery (LRD): Methodology
  publication-title: Technological Forecasting and Social Change
– volume: 20
  year: 2008
  ident: b0165
  article-title: Detecting, assessing and monitoring relevant topics in virtual information environments
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 43
  start-page: 742
  year: 2007
  end-page: 768
  ident: b0015
  article-title: Topic discovery based on text mining techniques
  publication-title: Information Processing & Management
– reference: Zhang, Y., Surendran, A. C., Platt, J. C., & Narasimhan, M. (2008). Learning from multi-topic web documents for contextual advertisement. In
– reference: (pp. 424–425).
– reference: Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, T. (1998). Topic detection and tracking pilot study: Final report. In
– reference: Franz, M., & McCarley, J. C. (2001). Unsupervised and supervised clustering for topic tracking. In
– volume: 74
  start-page: 1609
  year: 2007
  end-page: 1630
  ident: b0115
  article-title: Comparisons of the structure and infrastructure of Chinese and Indian science and technology
  publication-title: Technological Forecasting and Social Change
– reference: (pp. 1089–1095).
– reference: (pp. 370–379).
– reference: Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive filtering. In
– volume: 16
  start-page: 949
  year: 2004
  end-page: 964
  ident: b0045
  article-title: Topcat: Data mining for topic identification in a text corpus
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 811–816).
– reference: Yang, Y., Ault, T., Pierce T., & Lattimer, C. W. (2000). Improving text categorization methods for event tracking. In
– reference: (pp. 81–88).
– reference: Swan, R., & Allan, J. (2000). Automatic generation of overview timelines. In
– volume: 16
  start-page: 1038
  year: 2004
  end-page: 1051
  ident: b0130
  article-title: An efficient algorithm for discovering frequent subgraphs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 42
  start-page: 934
  year: 2006
  end-page: 950
  ident: b0175
  article-title: Automatic new topic identification using multiple linear regression
  publication-title: Information Processing & Management
– reference: Walls, F., Jin, H., Sista, S., & Schwartz, R. (1999). Topic detection in broadcast news. In
– volume: 58
  start-page: 872
  year: 2007
  end-page: 882
  ident: b0195
  article-title: Topological analysis of citation networks to discover the future core articles
  publication-title: Journal of the American Society for Information Science and Technology
– reference: (pp. 542–550).
– volume: 30
  start-page: 24
  year: 2006
  end-page: 33
  ident: b0145
  article-title: Automated trend analysis of proteomics data using an intelligent data mining architecture
  publication-title: Expert Systems with Applications
– year: 2005
  ident: b0180
  article-title: Tech mining: Exploiting new technologies for competitive advantage
– volume: 43
  start-page: 365
  year: 2007
  end-page: 378
  ident: b0075
  article-title: Use of place information for improved event tracking
  publication-title: Information Processing & Management
– reference: (pp. 310–317).
– reference: Steyvers, M., Smyth, P., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In
– reference: Lee, C., Lee, G. G., Jang, M. (2007). Dependency structure language model for topic detection and tracking.
– reference: (pp. 37–45).
– volume: 15
  start-page: 1170
  year: 2003
  end-page: 1187
  ident: b0095
  article-title: Efficient biased sampling for approximate clustering and outlier detection in large data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 65–72).
– volume: 69
  start-page: 495
  year: 2002
  end-page: 506
  ident: b0270
  article-title: Automated extraction and visualization of information for technological intelligence and forecasting
  publication-title: Technological Forecasting & Social Change
– reference: (pp. 47–59).
– reference: Manmatha, R., Feng, A., Allan, J. (2002). A critical examination of TDT’s cost function. In
– volume: 7
  start-page: 347
  year: 2004
  end-page: 368
  ident: b0275
  article-title: Simple semantics in topic detection and tracking
  publication-title: Information Retrieval
– reference: Nallapati, R., Ahmed, A., Xing, E. P., & Cohen, W. W. (2008). Joint latent topic models for text and citations. In
– volume: 18
  start-page: 613
  year: 1975
  end-page: 620
  ident: b0185
  article-title: A vector space model fro automatic indexing
  publication-title: Communications of the ACM
– reference: (pp. 98–105).
– volume: 73
  start-page: 981
  year: 2006
  end-page: 1012
  ident: b0060
  article-title: Forecasting emerging technologies: Use of bibliometrics and patent analysis
  publication-title: Technological Forecasting & Social Change
– reference: (pp. 306–315).
– volume: 100
  start-page: 23
  year: 2000
  end-page: 27
  ident: b0025
  article-title: Grwth and trends of fullerence research as reflected in its journal literature
  publication-title: Chemical Reviews
– volume: 36
  start-page: 12151
  year: 2009
  end-page: 12166
  ident: b0280
  article-title: Research intelligence involving information retrieval–An example of conferences and journals
  publication-title: Expert Systems with Applications
– reference: Jo, Y., Lagoze, C., & Giles, C. L. (2007). Detecting research topics via the correlation between graphs and texts. In
– reference: Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In
– volume: 74
  start-page: 1574
  year: 2007
  end-page: 1608
  ident: b0125
  article-title: Assessment of India’s research literature
  publication-title: Technological Forecasting and Social Change
– reference: Stokes, N., & Carthy, J. (2001). Combining semantic and syntactic document classifiers to improve first story detection. In
– reference: (pp. 784–793).
– reference: (pp. 91–101).
– reference: Chen, C. C., Chen, Y. T., Sun, Y., & Chen, M. C. (2003). Life cycle modeling of news events using aging theory. In
– reference: Morinaga, S., & Yamanishi, K. (2004). Tracking dynamics of topic trends using a finite mixture model. In
– volume: 74
  start-page: 1539
  year: 2007
  end-page: 1573
  ident: b0110
  article-title: Chinese science and technology – Structure and infrastructure
  publication-title: Technological Forecasting and Social Change
– year: 2004
  ident: b0020
  article-title: Survey of text mining-clustering, classification, and retrieval
– reference: , 1249–1259.
– volume: 73
  start-page: 915
  year: 2006
  end-page: 922
  ident: b0055
  article-title: Introduction – Special issue on tech mining
  publication-title: Technological Forecasting & Social Change
– reference: Schultz, J. M., & Liberman, M. (1999). Topic detection and tracking using idf-weighted cosine coefficient. In
– reference: Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In
– reference: Yang, Y., Zhang, J., Carbonell, J., & Jin, Chun. (2002). Topic-conditioned novelty detection. In
– reference: .
– reference: (pp. 403–404).
– volume: 28
  start-page: 758
  year: 2008
  end-page: 775
  ident: b0200
  article-title: Detection emerging research fronts based on topological measures in citation networks of scientific publications
  publication-title: Technovation
– volume: 75
  start-page: 1396
  year: 2008
  end-page: 1405
  ident: b0225
  article-title: A taxonomic review of methods and tools applied in technology assessment
  publication-title: Technological Forecasting & Social Change
– reference: Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and tracking. In
– ident: 10.1016/j.ipm.2011.07.006_b0190
– ident: 10.1016/j.ipm.2011.07.006_b0230
  doi: 10.21437/Eurospeech.1999-539
– volume: 74
  start-page: 1609
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0115
  article-title: Comparisons of the structure and infrastructure of Chinese and Indian science and technology
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.02.007
– ident: 10.1016/j.ipm.2011.07.006_b0160
  doi: 10.1145/1401890.1401957
– ident: 10.1016/j.ipm.2011.07.006_b0250
  doi: 10.1145/775047.775150
– ident: 10.1016/j.ipm.2011.07.006_b0010
  doi: 10.1145/290941.290954
– ident: 10.1016/j.ipm.2011.07.006_b0080
  doi: 10.1145/1281192.1281234
– volume: 28
  start-page: 758
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0200
  article-title: Detection emerging research fronts based on topological measures in citation networks of scientific publications
  publication-title: Technovation
  doi: 10.1016/j.technovation.2008.03.009
– ident: 10.1016/j.ipm.2011.07.006_b0085
  doi: 10.1007/BFb0026683
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  ident: 10.1016/j.ipm.2011.07.006_b0185
  article-title: A vector space model fro automatic indexing
  publication-title: Communications of the ACM
  doi: 10.1145/361219.361220
– volume: 19
  start-page: 1016
  issue: 8
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0030
  article-title: Hot topic extraction based on timeline analysis and multidimensional sentence modeling
  publication-title: IEEE Transactions on knowledge and data enginerting
  doi: 10.1109/TKDE.2007.1040
– volume: 43
  start-page: 365
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0075
  article-title: Use of place information for improved event tracking
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2006.07.007
– ident: 10.1016/j.ipm.2011.07.006_b0065
  doi: 10.1145/383952.384013
– volume: 75
  start-page: 186
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0105
  article-title: Literature-related discovery (LRD): Methodology
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.11.010
– volume: 20
  start-page: 289
  issue: 3
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0040
  article-title: Using incremental PLSI for threshold-resilient online event analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190702
– ident: 10.1016/j.ipm.2011.07.006_b0215
  doi: 10.1145/383952.384068
– volume: 75
  start-page: 1396
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0225
  article-title: A taxonomic review of methods and tools applied in technology assessment
  publication-title: Technological Forecasting & Social Change
  doi: 10.1016/j.techfore.2008.04.004
– volume: 73
  start-page: 981
  year: 2006
  ident: 10.1016/j.ipm.2011.07.006_b0060
  article-title: Forecasting emerging technologies: Use of bibliometrics and patent analysis
  publication-title: Technological Forecasting & Social Change
  doi: 10.1016/j.techfore.2006.04.004
– ident: 10.1016/j.ipm.2011.07.006_b0090
  doi: 10.1145/775047.775061
– volume: 15
  start-page: 1170
  issue: 5
  year: 2003
  ident: 10.1016/j.ipm.2011.07.006_b0095
  article-title: Efficient biased sampling for approximate clustering and outlier detection in large data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2003.1232271
– volume: 42
  start-page: 934
  year: 2006
  ident: 10.1016/j.ipm.2011.07.006_b0175
  article-title: Automatic new topic identification using multiple linear regression
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2005.10.002
– volume: 73
  start-page: 915
  year: 2006
  ident: 10.1016/j.ipm.2011.07.006_b0055
  article-title: Introduction – Special issue on tech mining
  publication-title: Technological Forecasting & Social Change
  doi: 10.1016/j.techfore.2006.06.004
– volume: 30
  start-page: 24
  year: 2006
  ident: 10.1016/j.ipm.2011.07.006_b0145
  article-title: Automated trend analysis of proteomics data using an intelligent data mining architecture
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.047
– ident: 10.1016/j.ipm.2011.07.006_b0155
  doi: 10.1145/1014052.1016919
– ident: 10.1016/j.ipm.2011.07.006_b0260
  doi: 10.1145/564376.564393
– ident: 10.1016/j.ipm.2011.07.006_b0255
  doi: 10.1145/1076034.1076054
– ident: 10.1016/j.ipm.2011.07.006_b0235
  doi: 10.1145/1281192.1281276
– volume: 16
  start-page: 1038
  issue: 9
  year: 2004
  ident: 10.1016/j.ipm.2011.07.006_b0130
  article-title: An efficient algorithm for discovering frequent subgraphs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.33
– volume: 75
  start-page: 165
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0100
  article-title: Literature-related discovery (LRD): Introduction and background
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.11.004
– ident: 10.1016/j.ipm.2011.07.006_b0220
  doi: 10.1145/345508.345546
– volume: 41
  start-page: 1243
  year: 2005
  ident: 10.1016/j.ipm.2011.07.006_b0170
  article-title: Application of automatic topic identification on excite web search engine data logs
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2004.04.018
– ident: 10.1016/j.ipm.2011.07.006_b0205
– volume: 43
  start-page: 742
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0015
  article-title: Topic discovery based on text mining techniques
  publication-title: Information Processing & Management
– ident: 10.1016/j.ipm.2011.07.006_b0070
– volume: 36
  start-page: 233
  year: 1997
  ident: 10.1016/j.ipm.2011.07.006_b0140
  article-title: Topics of interest in IS: Evolution of themes and differences between research and practice
  publication-title: Information & Management
  doi: 10.1016/S0378-7206(99)00022-1
– ident: 10.1016/j.ipm.2011.07.006_b0210
  doi: 10.1145/1014052.1014087
– ident: 10.1016/j.ipm.2011.07.006_b0135
  doi: 10.1016/j.ipm.2006.02.007
– volume: 100
  start-page: 23
  issue: 1
  year: 2000
  ident: 10.1016/j.ipm.2011.07.006_b0025
  article-title: Grwth and trends of fullerence research as reflected in its journal literature
  publication-title: Chemical Reviews
  doi: 10.1021/cr990096j
– volume: 16
  start-page: 949
  issue: 8
  year: 2004
  ident: 10.1016/j.ipm.2011.07.006_b0045
  article-title: Topcat: Data mining for topic identification in a text corpus
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.32
– volume: 40
  start-page: 239
  year: 2004
  ident: 10.1016/j.ipm.2011.07.006_b0240
  article-title: Automatic topics discovery from hyperlinked documents
  publication-title: Information Processing & Management
  doi: 10.1016/S0306-4573(03)00039-6
– volume: 20
  issue: 7
  year: 2008
  ident: 10.1016/j.ipm.2011.07.006_b0165
  article-title: Detecting, assessing and monitoring relevant topics in virtual information environments
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– ident: 10.1016/j.ipm.2011.07.006_b0005
– year: 2004
  ident: 10.1016/j.ipm.2011.07.006_b0020
– volume: 74
  start-page: 1574
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0125
  article-title: Assessment of India’s research literature
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.02.009
– volume: 74
  start-page: 1539
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0110
  article-title: Chinese science and technology – Structure and infrastructure
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.02.008
– ident: 10.1016/j.ipm.2011.07.006_b0150
  doi: 10.1145/564376.564465
– volume: 36
  start-page: 12151
  issue: 10
  year: 2009
  ident: 10.1016/j.ipm.2011.07.006_b0280
  article-title: Research intelligence involving information retrieval–An example of conferences and journals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.03.015
– volume: 58
  start-page: 872
  issue: 6
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0195
  article-title: Topological analysis of citation networks to discover the future core articles
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.20529
– ident: 10.1016/j.ipm.2011.07.006_b0050
  doi: 10.1145/1066677.1066924
– ident: 10.1016/j.ipm.2011.07.006_b0245
  doi: 10.1145/345508.345550
– volume: 7
  start-page: 347
  issue: 3–4
  year: 2004
  ident: 10.1016/j.ipm.2011.07.006_b0275
  article-title: Simple semantics in topic detection and tracking
  publication-title: Information Retrieval
  doi: 10.1023/B:INRT.0000011210.12953.86
– volume: 74
  start-page: 1538
  year: 2007
  ident: 10.1016/j.ipm.2011.07.006_b0120
  article-title: Assessment of China’s and India’s science and technology literature-introduction, background, and approach
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2007.02.004
– ident: 10.1016/j.ipm.2011.07.006_b0265
  doi: 10.1145/1401890.1402015
– ident: 10.1016/j.ipm.2011.07.006_b0035
  doi: 10.1007/978-3-540-39857-8_7
– volume: 69
  start-page: 495
  year: 2002
  ident: 10.1016/j.ipm.2011.07.006_b0270
  article-title: Automated extraction and visualization of information for technological intelligence and forecasting
  publication-title: Technological Forecasting & Social Change
  doi: 10.1016/S0040-1625(01)00157-3
– year: 2005
  ident: 10.1016/j.ipm.2011.07.006_b0180
SSID ssj0004512
Score 2.2418752
Snippet ► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is...
Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 303
SubjectTerms Aging theory
Algorithms
Automatic text analysis
Collection
Conferences
Data mining
Data processing
Digital libraries
Digital systems
Exact sciences and technology
Information and communication sciences
Information processing and retrieval
Information retrieval
Information retrieval systems. Information and document management system
Information retrieval. Man machine relationship
Information science. Documentation
Life span
Methods
Novelty index
Published volume index
Research process. Evaluation
Sciences and techniques of general use
Studies
Subject fields
Text mining
Texts
Topic detection and tracking
Tracking
Title Indices of novelty for emerging topic detection
URI https://dx.doi.org/10.1016/j.ipm.2011.07.006
https://www.proquest.com/docview/923241983
https://www.proquest.com/docview/1018337603
https://www.proquest.com/docview/1221876407
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFH-IexGWxdVddnRnyIJ4WKiTfqXtUYaVcUUvKngLTfICs7htcTqCF_9289p0WJGdg8e2L014SX75hfcFcFRihipHh34mxsAxYh6UJVeBRh2KQmmrUgpwvrwS89vk9116twWzIRaG3Co99veY3qG1fzP12pw2i8X0mthukmYxJT0jexJFsCcZrfKT5_CfjOGhtySIgKQHy2bn47Vo_vosnpTIUPzvbPrYlEunMduXuniD2t1RdLYLnzyHZKf9MD_DFlZ7MPYRCOyY-RAjUjnze3cfpueVIVBgtWVV_Yj37RNzYowChKlQEWvrZqGZwbZzzqq-wO3Zr5vZPPDVEgKd5KINchuRCc-aSGUcY20EYqKt0RhxRVhSWuW4Cxqd5lmRl0oXmKCJjNXaWh7HX2G7qiv8BkyEDsGdjDBpnOgoKoX7oeXcCqOtu7CNgA96ktqnEqeKFvdy8Bn7I51qJalWcjJwixH8XDdp-jwam4STQfny1WKQDuc3NZu8mqh1R47WUULubASHw8xJv1WXsiBOGRZ5PIIf669uj5HhpKywXi2puzwm76FNMpEjSxmZRQ_eN_pD2HFPUe_f9h2224cVjh3hadWkW9ET-HB6fjG_egGriACW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7S5GGFUrb-oFnXToOxh4GJ4h-y_VjKSrK2eWkLfROWdIKU1DaNW9h_X10sh5WyPOzVOlnmJH36zN19AvheYIoqQ4d-JsLAMWIeFAVXgUY9FrnSViVU4Hw9E5O7-Pd9ct-D864WhtIqPfa3mL5Ca_9k5L05qufz0Q2x3ThJIxI9o3jSFgxInSrpw-BsejmZ_SUaPvbBBBFQhy64uUrzmtePXsiTtAzFv46nnbpYOqfZ9raLd8C9Oo0uPsKup5HsrP3ST9DDcg9OfBEC-8F8lRF5nfntuw-jaWkIF1hlWVm94KL5w5wZoxphuquINVU918xgs8rPKg_g7uLX7fkk8BcmBDrORBNkNqQonjWhSjlG2gjEWFujMeSK4KSwytEXNDrJ0jwrlM4xRhMaq7W1PIoOoV9WJR4BE2MH4s5GmCSKdRgWwr3Qcm6F0db9sw2Bd36S2quJ06UWC9mljT1I51pJrpWcYtxiCD_XXepWSmOTcdw5X75ZD9JB_aZup28maj2QY3akyZ0O4bibOel361LmRCvHeRYN4du61W0zip0UJVbPSxouiyiBaJNN6PhSSpHRz__39V_hw-T2-kpeTWeXx7DtWsI23e0L9JunZzxx_KdRp359vwJyhQNH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indices+of+novelty+for+emerging+topic+detection&rft.jtitle=Information+processing+%26+management&rft.au=Tu%2C+Yi-Ning&rft.au=Seng%2C+Jia-Lang&rft.date=2012-03-01&rft.issn=0306-4573&rft.volume=48&rft.issue=2&rft.spage=303&rft.epage=325&rft_id=info:doi/10.1016%2Fj.ipm.2011.07.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon