Indices of novelty for emerging topic detection
► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the no...
Saved in:
Published in | Information processing & management Vol. 48; no. 2; pp. 303 - 325 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2012
Elsevier Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0306-4573 1873-5371 |
DOI | 10.1016/j.ipm.2011.07.006 |
Cover
Loading…
Abstract | ► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the novelty and life span of emerging topics.
Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. |
---|---|
AbstractList | Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. Adapted from the source document. Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. [PUBLICATION ABSTRACT] Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. ► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is designed based on frequency. ► They are utilized to determine the detection point (DP) and worthiness of topics. ► The algorithms can decide the novelty and life span of emerging topics. Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The current methods of text mining and data mining used for this purpose focus only on the frequency of which subjects are mentioned, and ignore the novelty of the subject which is also critical, but beyond the scope of a frequency study. This work tackles this inadequacy to propose a new set of indices for emerging topic detection. They are the novelty index (NI) and the published volume index (PVI). This new set of indices is created based on time, volume, frequency and represents a resolution to provide a more precise set of prediction indices. They are then utilized to determine the detection point (DP) of new emerging topics. Following the detection point, the intersection decides the worth of a new topic. The algorithms presented in this paper can be used to decide the novelty and life span of an emerging topic in a specific field. The entire comprehensive collection of the ACM Digital Library is examined in the experiments. The application of the NI and PVI gives a promising indication of emerging topics in conferences and journals. |
Author | Seng, Jia-Lang Tu, Yi-Ning |
Author_xml | – sequence: 1 givenname: Yi-Ning surname: Tu fullname: Tu, Yi-Ning email: 082435@mail.fju.edu.tw organization: Department and Graduate School of Statistics and Information Science, College of Management, Fu Jen Catholic University, New Taipei 242, Taiwan – sequence: 2 givenname: Jia-Lang surname: Seng fullname: Seng, Jia-Lang email: seng@nccu.edu.tw organization: Department and Graduate School of Accounting, College of Commerce, National Chengchi University, Taipei 116, Taiwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25651747$$DView record in Pascal Francis |
BookMark | eNqFkUFr3DAQhUVJoZu0P6A3Uyj0Ymck2ZJMTyWkTSDQS3sW2tEoaPFKW8kbyL-v3U0vOSSnubzvPd68c3aWciLGPnLoOHB1ueviYd8J4LwD3QGoN2zDjZbtIDU_YxuQoNp-0PIdO691BwD9wMWGXd4mH5Fqk0OT8gNN82MTcmloT-U-pvtmzoeIjaeZcI45vWdvg5sqfXi6F-z39-tfVzft3c8ft1ff7lrsjZpbEwSYcQxebDWQRK-IegweScAWjNEubPkwksfB6NG4LY7Ukxc-IIYAUl6wLyffQ8l_jlRnu48VaZpconyslgux1FM96NelwI2UWv1z_fRMusvHkpYidhRS9Hw0q-jzk8hVdFMoLmGs9lDi3pVHKwY1cN2vufqkw5JrLRQsxtmtT5qLi9OSu0Yru7PLNHadxoK2yzQLyZ-R_81fYr6eGFq-_hCp2IqREpKPZZnG-hxfoP8CjlinmA |
CODEN | IPMADK |
CitedBy_id | crossref_primary_10_1162_qss_a_00221 crossref_primary_10_1016_j_procir_2019_03_116 crossref_primary_10_1007_s11192_024_04937_0 crossref_primary_10_1016_j_joi_2024_101612 crossref_primary_10_1016_j_ins_2022_12_081 crossref_primary_10_1016_j_techfore_2018_08_003 crossref_primary_10_1007_s10798_020_09638_2 crossref_primary_10_1080_09537325_2021_1876221 crossref_primary_10_1007_s11192_014_1347_y crossref_primary_10_1016_j_ipm_2024_103859 crossref_primary_10_1007_s11634_016_0241_2 crossref_primary_10_1016_j_ipm_2019_01_009 crossref_primary_10_1016_j_ipm_2021_102843 crossref_primary_10_1007_s11192_017_2361_7 crossref_primary_10_1002_cpe_3374 crossref_primary_10_4028_www_scientific_net_AMM_602_605_2174 crossref_primary_10_1016_j_ipm_2021_102594 crossref_primary_10_1016_j_joi_2019_100983 crossref_primary_10_3390_info15090581 crossref_primary_10_1016_j_joi_2023_101426 crossref_primary_10_1007_s11192_019_03288_5 crossref_primary_10_1016_j_techfore_2021_121218 crossref_primary_10_1016_j_ipm_2019_02_014 crossref_primary_10_1177_0165551520920794 crossref_primary_10_1016_j_jengtecman_2013_07_001 crossref_primary_10_1016_j_procs_2019_01_182 crossref_primary_10_1007_s11192_021_04000_2 crossref_primary_10_1155_2014_360934 crossref_primary_10_3389_frma_2018_00009 crossref_primary_10_1016_j_ipm_2024_103793 crossref_primary_10_1016_j_ipm_2022_103110 crossref_primary_10_1108_EL_09_2016_0198 crossref_primary_10_1007_s11192_024_05156_3 crossref_primary_10_1007_s11192_014_1380_x crossref_primary_10_1016_j_ipm_2019_02_003 crossref_primary_10_1016_j_techfore_2020_120490 crossref_primary_10_1002_asi_23522 crossref_primary_10_1016_j_joi_2024_101551 crossref_primary_10_1016_j_respol_2014_02_005 crossref_primary_10_1007_s11192_024_05068_2 crossref_primary_10_3390_machines12030197 crossref_primary_10_1007_s11192_021_04024_8 crossref_primary_10_1016_j_techfore_2021_120944 crossref_primary_10_1016_j_techfore_2018_09_005 crossref_primary_10_1177_01655515211061219 crossref_primary_10_1016_j_aap_2020_105568 crossref_primary_10_6000_1929_6002_2016_05_02_2 crossref_primary_10_1007_s11573_018_0898_4 crossref_primary_10_1007_s11192_014_1246_2 crossref_primary_10_1007_s11192_024_05093_1 crossref_primary_10_1016_j_ipm_2021_102611 crossref_primary_10_1007_s11192_022_04293_x crossref_primary_10_1007_s11192_014_1451_z crossref_primary_10_1016_j_ipm_2024_103766 |
Cites_doi | 10.21437/Eurospeech.1999-539 10.1016/j.techfore.2007.02.007 10.1145/1401890.1401957 10.1145/775047.775150 10.1145/290941.290954 10.1145/1281192.1281234 10.1016/j.technovation.2008.03.009 10.1007/BFb0026683 10.1145/361219.361220 10.1109/TKDE.2007.1040 10.1016/j.ipm.2006.07.007 10.1145/383952.384013 10.1016/j.techfore.2007.11.010 10.1109/TKDE.2007.190702 10.1145/383952.384068 10.1016/j.techfore.2008.04.004 10.1016/j.techfore.2006.04.004 10.1145/775047.775061 10.1109/TKDE.2003.1232271 10.1016/j.ipm.2005.10.002 10.1016/j.techfore.2006.06.004 10.1016/j.eswa.2005.09.047 10.1145/1014052.1016919 10.1145/564376.564393 10.1145/1076034.1076054 10.1145/1281192.1281276 10.1109/TKDE.2004.33 10.1016/j.techfore.2007.11.004 10.1145/345508.345546 10.1016/j.ipm.2004.04.018 10.1016/S0378-7206(99)00022-1 10.1145/1014052.1014087 10.1016/j.ipm.2006.02.007 10.1021/cr990096j 10.1109/TKDE.2004.32 10.1016/S0306-4573(03)00039-6 10.1016/j.techfore.2007.02.009 10.1016/j.techfore.2007.02.008 10.1145/564376.564465 10.1016/j.eswa.2009.03.015 10.1002/asi.20529 10.1145/1066677.1066924 10.1145/345508.345550 10.1023/B:INRT.0000011210.12953.86 10.1016/j.techfore.2007.02.004 10.1145/1401890.1402015 10.1007/978-3-540-39857-8_7 10.1016/S0040-1625(01)00157-3 |
ContentType | Journal Article |
Copyright | 2011 2015 INIST-CNRS Copyright Pergamon Press Inc. Mar 2012 |
Copyright_xml | – notice: 2011 – notice: 2015 INIST-CNRS – notice: Copyright Pergamon Press Inc. Mar 2012 |
DBID | AAYXX CITATION IQODW E3H F2A 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1016/j.ipm.2011.07.006 |
DatabaseName | CrossRef Pascal-Francis Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Computer and Information Systems Abstracts Materials Business File Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Library and Information Science Abstracts (LISA) Library and Information Science Abstracts (LISA) Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
EndPage | 325 |
ExternalDocumentID | 2593946141 25651747 10_1016_j_ipm_2011_07_006 S0306457311000768 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 08R ABPIF IQODW E3H EFKBS F2A 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c486t-8f20899fd2b70e3cd6ee4cfdce20b0887afb159edc58798abc9e4ed2dfccff033 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Fri Jul 11 11:30:05 EDT 2025 Fri Jul 11 02:59:38 EDT 2025 Mon Jul 14 08:20:43 EDT 2025 Sun Oct 22 16:06:33 EDT 2023 Tue Jul 01 00:44:31 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Fri Feb 23 02:18:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Text mining Aging theory Topic detection and tracking Information retrieval Published volume index Novelty index Volume Ageing Index (documentation) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-8f20899fd2b70e3cd6ee4cfdce20b0887afb159edc58798abc9e4ed2dfccff033 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 923241983 |
PQPubID | 46166 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1221876407 proquest_miscellaneous_1018337603 proquest_journals_923241983 pascalfrancis_primary_25651747 crossref_citationtrail_10_1016_j_ipm_2011_07_006 crossref_primary_10_1016_j_ipm_2011_07_006 elsevier_sciencedirect_doi_10_1016_j_ipm_2011_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Science Ltd |
References | Chou, Chen (b0040) 2008; 20 Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In Franz, M., & McCarley, J. C. (2001). Unsupervised and supervised clustering for topic tracking. In (pp. 811–816). Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive filtering. In (pp. 310–317). Kostoff (b0100) 2008; 75 (pp. 784–793). (pp. 47–59). Wu, Chen, Sun (b0240) 2004; 40 Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and tracking. In Lee, Gosain, Im (b0140) 1997; 36 Yang, Y., Ault, T., Pierce T., & Lattimer, C. W. (2000). Improving text categorization methods for event tracking. In Yang, Y., Zhang, J., Carbonell, J., & Jin, Chun. (2002). Topic-conditioned novelty detection. In Malone, McGarry, Bowerman (b0145) 2006; 30 Daim, Rueda, Martin, Gerdsri (b0060) 2006; 73 Shibata, Kajikawa, Matsushima (b0195) 2007; 58 (pp. 424–425). Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2010). Detection emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Jin, Myaeng, Jung (b0075) 2007; 43 Kostoff, Briggs, Solka, Rushenberg (b0105) 2008; 75 (pp. 49–56). Swan, R., & Allan, J. (2000). Automatic generation of overview timelines. In Ontrup, Ritter, Scholz, Wagner (b0165) 2008; 20 Zhu, Porter (b0270) 2002; 69 (pp. 65–72). (pp. 306–315). Walls, F., Jin, H., Sista, S., & Schwartz, R. (1999). Topic detection in broadcast news. In Braun, Schubert, Kostoff (b0025) 2000; 100 Jo, Y., Lagoze, C., & Giles, C. L. (2007). Detecting research topics via the correlation between graphs and texts. In Ozmutlu, Cavdur (b0170) 2005; 41 Schultz, J. M., & Liberman, M. (1999). Topic detection and tracking using idf-weighted cosine coefficient. In (pp. 1089–1095). (pp. 91–101). . Tu, Seng (b0280) 2009; 36 Yang, Y., Yoo, S., Zhang, J., & Kisiel, B. (2005). Robustness of adaptive filtering methods in a cross-benchmark evaluation. In (pp. 224–231). (pp. 370–379). Manmatha, R., Feng, A., Allan, J. (2002). A critical examination of TDT’s cost function. In (pp. 81–88). Porter, Cunningham (b0180) 2005 Morinaga, S., & Yamanishi, K. (2004). Tracking dynamics of topic trends using a finite mixture model. In Kostoff, Bhattacharya, Pecht (b0120) 2007; 74 (pp. 688–693). (pp. 542–550). Tran, Daim (b0225) 2008; 75 Kostoff, Johnson, Bowles, Bhattacharya, Icenhour, Nikodym (b0125) 2007; 74 1249–1259. Hatzivassiloglou, V., Gravano, L., & Maganti, A. (2000). An investigation of linguistic features and clustering algorithms. In Lee, C., Lee, G. G., Jang, M. (2007). Dependency structure language model for topic detection and tracking. Ozmutlu (b0175) 2006; 42 Kostoff, Briggs, Rushenberg, Bowles, Icenhour, Nikodym (b0110) 2007; 74 (pp. 37–45). Kuramochi, Karypis (b0130) 2004; 16 Nallapati, R., Ahmed, A., Xing, E. P., & Cohen, W. W. (2008). Joint latent topic models for text and citations. In Cunningham, Porter, Newman (b0055) 2006; 73 Shibata, Kajikawa, Takeda, Matsushima (b0200) 2008; 28 Salton, Wong, Yang (b0185) 1975; 18 Zhang, Y., Surendran, A. C., Platt, J. C., & Narasimhan, M. (2008). Learning from multi-topic web documents for contextual advertisement. In Clifton, Cooley, Rennie (b0045) 2004; 16 Berry (b0020) 2004 Kostoff, Briggs, Rushenberg, Bowles, Pecht, Johnson (b0115) 2007; 74 Stokes, N., & Carthy, J. (2001). Combining semantic and syntactic document classifiers to improve first story detection. In (pp. 98–105). Aurora, Rafael, Jose (b0015) 2007; 43 Makkonen, Ahonen-Myka, Salmenkivi (b0275) 2004; 7 Wang, X., Zhai, C., Hu, X., & Sproat, R. (2007). Mining correlated bursty topic patterns from coordinated text streams. In (pp. 403–404). Kollios, Gunopulos, Koudas, Berchtold (b0095) 2003; 15 Chen, Luesukprasert, Chou (b0030) 2007; 19 Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, T. (1998). Topic detection and tracking pilot study: Final report. In Cui, C., & Kitagawa, H. (2005). Topic activation analysis for document streams based on document arrival rate and relevance. In Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In Steyvers, M., Smyth, P., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In (pp. 1051–1059). Chen, C. C., Chen, Y. T., Sun, Y., & Chen, M. C. (2003). Life cycle modeling of news events using aging theory. In Jin (10.1016/j.ipm.2011.07.006_b0075) 2007; 43 Tu (10.1016/j.ipm.2011.07.006_b0280) 2009; 36 10.1016/j.ipm.2011.07.006_b0215 Shibata (10.1016/j.ipm.2011.07.006_b0200) 2008; 28 10.1016/j.ipm.2011.07.006_b0065 Kostoff (10.1016/j.ipm.2011.07.006_b0105) 2008; 75 Malone (10.1016/j.ipm.2011.07.006_b0145) 2006; 30 10.1016/j.ipm.2011.07.006_b0265 10.1016/j.ipm.2011.07.006_b0220 Zhu (10.1016/j.ipm.2011.07.006_b0270) 2002; 69 10.1016/j.ipm.2011.07.006_b0260 Chou (10.1016/j.ipm.2011.07.006_b0040) 2008; 20 Ozmutlu (10.1016/j.ipm.2011.07.006_b0175) 2006; 42 Kostoff (10.1016/j.ipm.2011.07.006_b0110) 2007; 74 Porter (10.1016/j.ipm.2011.07.006_b0180) 2005 Aurora (10.1016/j.ipm.2011.07.006_b0015) 2007; 43 Kostoff (10.1016/j.ipm.2011.07.006_b0100) 2008; 75 10.1016/j.ipm.2011.07.006_b0035 Salton (10.1016/j.ipm.2011.07.006_b0185) 1975; 18 10.1016/j.ipm.2011.07.006_b0235 Braun (10.1016/j.ipm.2011.07.006_b0025) 2000; 100 10.1016/j.ipm.2011.07.006_b0230 10.1016/j.ipm.2011.07.006_b0155 10.1016/j.ipm.2011.07.006_b0150 Kostoff (10.1016/j.ipm.2011.07.006_b0120) 2007; 74 10.1016/j.ipm.2011.07.006_b0070 10.1016/j.ipm.2011.07.006_b0190 Lee (10.1016/j.ipm.2011.07.006_b0140) 1997; 36 Chen (10.1016/j.ipm.2011.07.006_b0030) 2007; 19 Ontrup (10.1016/j.ipm.2011.07.006_b0165) 2008; 20 Berry (10.1016/j.ipm.2011.07.006_b0020) 2004 10.1016/j.ipm.2011.07.006_b0245 10.1016/j.ipm.2011.07.006_b0005 Kostoff (10.1016/j.ipm.2011.07.006_b0115) 2007; 74 Makkonen (10.1016/j.ipm.2011.07.006_b0275) 2004; 7 10.1016/j.ipm.2011.07.006_b0160 10.1016/j.ipm.2011.07.006_b0085 Wu (10.1016/j.ipm.2011.07.006_b0240) 2004; 40 10.1016/j.ipm.2011.07.006_b0080 Ozmutlu (10.1016/j.ipm.2011.07.006_b0170) 2005; 41 Shibata (10.1016/j.ipm.2011.07.006_b0195) 2007; 58 Kuramochi (10.1016/j.ipm.2011.07.006_b0130) 2004; 16 10.1016/j.ipm.2011.07.006_b0205 Clifton (10.1016/j.ipm.2011.07.006_b0045) 2004; 16 10.1016/j.ipm.2011.07.006_b0135 10.1016/j.ipm.2011.07.006_b0255 Tran (10.1016/j.ipm.2011.07.006_b0225) 2008; 75 10.1016/j.ipm.2011.07.006_b0010 Daim (10.1016/j.ipm.2011.07.006_b0060) 2006; 73 Kollios (10.1016/j.ipm.2011.07.006_b0095) 2003; 15 10.1016/j.ipm.2011.07.006_b0210 10.1016/j.ipm.2011.07.006_b0050 Cunningham (10.1016/j.ipm.2011.07.006_b0055) 2006; 73 Kostoff (10.1016/j.ipm.2011.07.006_b0125) 2007; 74 10.1016/j.ipm.2011.07.006_b0250 10.1016/j.ipm.2011.07.006_b0090 |
References_xml | – volume: 75 start-page: 165 year: 2008 end-page: 185 ident: b0100 article-title: Literature-related discovery (LRD): Introduction and background publication-title: Technological Forecasting and Social Change – volume: 41 start-page: 1243 year: 2005 end-page: 1262 ident: b0170 article-title: Application of automatic topic identification on excite web search engine data logs publication-title: Information Processing & Management – volume: 19 start-page: 1016 year: 2007 end-page: 1025 ident: b0030 article-title: Hot topic extraction based on timeline analysis and multidimensional sentence modeling publication-title: IEEE Transactions on knowledge and data enginerting – reference: (pp. 224–231). – reference: (pp. 1051–1059). – volume: 74 start-page: 1538 year: 2007 end-page: 1591 ident: b0120 article-title: Assessment of China’s and India’s science and technology literature-introduction, background, and approach publication-title: Technological Forecasting and Social Change – reference: Hatzivassiloglou, V., Gravano, L., & Maganti, A. (2000). An investigation of linguistic features and clustering algorithms. In – reference: Yang, Y., Yoo, S., Zhang, J., & Kisiel, B. (2005). Robustness of adaptive filtering methods in a cross-benchmark evaluation. In – reference: Cui, C., & Kitagawa, H. (2005). Topic activation analysis for document streams based on document arrival rate and relevance. In – reference: Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2010). Detection emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. – reference: (pp. 688–693). – reference: Wang, X., Zhai, C., Hu, X., & Sproat, R. (2007). Mining correlated bursty topic patterns from coordinated text streams. In – volume: 20 start-page: 289 year: 2008 end-page: 299 ident: b0040 article-title: Using incremental PLSI for threshold-resilient online event analysis publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 49–56). – volume: 36 start-page: 233 year: 1997 end-page: 246 ident: b0140 article-title: Topics of interest in IS: Evolution of themes and differences between research and practice publication-title: Information & Management – volume: 40 start-page: 239 year: 2004 end-page: 255 ident: b0240 article-title: Automatic topics discovery from hyperlinked documents publication-title: Information Processing & Management – volume: 75 start-page: 186 year: 2008 end-page: 202 ident: b0105 article-title: Literature-related discovery (LRD): Methodology publication-title: Technological Forecasting and Social Change – volume: 20 year: 2008 ident: b0165 article-title: Detecting, assessing and monitoring relevant topics in virtual information environments publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 43 start-page: 742 year: 2007 end-page: 768 ident: b0015 article-title: Topic discovery based on text mining techniques publication-title: Information Processing & Management – reference: Zhang, Y., Surendran, A. C., Platt, J. C., & Narasimhan, M. (2008). Learning from multi-topic web documents for contextual advertisement. In – reference: (pp. 424–425). – reference: Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, T. (1998). Topic detection and tracking pilot study: Final report. In – reference: Franz, M., & McCarley, J. C. (2001). Unsupervised and supervised clustering for topic tracking. In – volume: 74 start-page: 1609 year: 2007 end-page: 1630 ident: b0115 article-title: Comparisons of the structure and infrastructure of Chinese and Indian science and technology publication-title: Technological Forecasting and Social Change – reference: (pp. 1089–1095). – reference: (pp. 370–379). – reference: Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive filtering. In – volume: 16 start-page: 949 year: 2004 end-page: 964 ident: b0045 article-title: Topcat: Data mining for topic identification in a text corpus publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 811–816). – reference: Yang, Y., Ault, T., Pierce T., & Lattimer, C. W. (2000). Improving text categorization methods for event tracking. In – reference: (pp. 81–88). – reference: Swan, R., & Allan, J. (2000). Automatic generation of overview timelines. In – volume: 16 start-page: 1038 year: 2004 end-page: 1051 ident: b0130 article-title: An efficient algorithm for discovering frequent subgraphs publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 42 start-page: 934 year: 2006 end-page: 950 ident: b0175 article-title: Automatic new topic identification using multiple linear regression publication-title: Information Processing & Management – reference: Walls, F., Jin, H., Sista, S., & Schwartz, R. (1999). Topic detection in broadcast news. In – volume: 58 start-page: 872 year: 2007 end-page: 882 ident: b0195 article-title: Topological analysis of citation networks to discover the future core articles publication-title: Journal of the American Society for Information Science and Technology – reference: (pp. 542–550). – volume: 30 start-page: 24 year: 2006 end-page: 33 ident: b0145 article-title: Automated trend analysis of proteomics data using an intelligent data mining architecture publication-title: Expert Systems with Applications – year: 2005 ident: b0180 article-title: Tech mining: Exploiting new technologies for competitive advantage – volume: 43 start-page: 365 year: 2007 end-page: 378 ident: b0075 article-title: Use of place information for improved event tracking publication-title: Information Processing & Management – reference: (pp. 310–317). – reference: Steyvers, M., Smyth, P., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In – reference: Lee, C., Lee, G. G., Jang, M. (2007). Dependency structure language model for topic detection and tracking. – reference: (pp. 37–45). – volume: 15 start-page: 1170 year: 2003 end-page: 1187 ident: b0095 article-title: Efficient biased sampling for approximate clustering and outlier detection in large data sets publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 65–72). – volume: 69 start-page: 495 year: 2002 end-page: 506 ident: b0270 article-title: Automated extraction and visualization of information for technological intelligence and forecasting publication-title: Technological Forecasting & Social Change – reference: (pp. 47–59). – reference: Manmatha, R., Feng, A., Allan, J. (2002). A critical examination of TDT’s cost function. In – volume: 7 start-page: 347 year: 2004 end-page: 368 ident: b0275 article-title: Simple semantics in topic detection and tracking publication-title: Information Retrieval – reference: Nallapati, R., Ahmed, A., Xing, E. P., & Cohen, W. W. (2008). Joint latent topic models for text and citations. In – volume: 18 start-page: 613 year: 1975 end-page: 620 ident: b0185 article-title: A vector space model fro automatic indexing publication-title: Communications of the ACM – reference: (pp. 98–105). – volume: 73 start-page: 981 year: 2006 end-page: 1012 ident: b0060 article-title: Forecasting emerging technologies: Use of bibliometrics and patent analysis publication-title: Technological Forecasting & Social Change – reference: (pp. 306–315). – volume: 100 start-page: 23 year: 2000 end-page: 27 ident: b0025 article-title: Grwth and trends of fullerence research as reflected in its journal literature publication-title: Chemical Reviews – volume: 36 start-page: 12151 year: 2009 end-page: 12166 ident: b0280 article-title: Research intelligence involving information retrieval–An example of conferences and journals publication-title: Expert Systems with Applications – reference: Jo, Y., Lagoze, C., & Giles, C. L. (2007). Detecting research topics via the correlation between graphs and texts. In – reference: Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In – volume: 74 start-page: 1574 year: 2007 end-page: 1608 ident: b0125 article-title: Assessment of India’s research literature publication-title: Technological Forecasting and Social Change – reference: Stokes, N., & Carthy, J. (2001). Combining semantic and syntactic document classifiers to improve first story detection. In – reference: (pp. 784–793). – reference: (pp. 91–101). – reference: Chen, C. C., Chen, Y. T., Sun, Y., & Chen, M. C. (2003). Life cycle modeling of news events using aging theory. In – reference: Morinaga, S., & Yamanishi, K. (2004). Tracking dynamics of topic trends using a finite mixture model. In – volume: 74 start-page: 1539 year: 2007 end-page: 1573 ident: b0110 article-title: Chinese science and technology – Structure and infrastructure publication-title: Technological Forecasting and Social Change – year: 2004 ident: b0020 article-title: Survey of text mining-clustering, classification, and retrieval – reference: , 1249–1259. – volume: 73 start-page: 915 year: 2006 end-page: 922 ident: b0055 article-title: Introduction – Special issue on tech mining publication-title: Technological Forecasting & Social Change – reference: Schultz, J. M., & Liberman, M. (1999). Topic detection and tracking using idf-weighted cosine coefficient. In – reference: Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In – reference: Yang, Y., Zhang, J., Carbonell, J., & Jin, Chun. (2002). Topic-conditioned novelty detection. In – reference: . – reference: (pp. 403–404). – volume: 28 start-page: 758 year: 2008 end-page: 775 ident: b0200 article-title: Detection emerging research fronts based on topological measures in citation networks of scientific publications publication-title: Technovation – volume: 75 start-page: 1396 year: 2008 end-page: 1405 ident: b0225 article-title: A taxonomic review of methods and tools applied in technology assessment publication-title: Technological Forecasting & Social Change – reference: Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and tracking. In – ident: 10.1016/j.ipm.2011.07.006_b0190 – ident: 10.1016/j.ipm.2011.07.006_b0230 doi: 10.21437/Eurospeech.1999-539 – volume: 74 start-page: 1609 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0115 article-title: Comparisons of the structure and infrastructure of Chinese and Indian science and technology publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.02.007 – ident: 10.1016/j.ipm.2011.07.006_b0160 doi: 10.1145/1401890.1401957 – ident: 10.1016/j.ipm.2011.07.006_b0250 doi: 10.1145/775047.775150 – ident: 10.1016/j.ipm.2011.07.006_b0010 doi: 10.1145/290941.290954 – ident: 10.1016/j.ipm.2011.07.006_b0080 doi: 10.1145/1281192.1281234 – volume: 28 start-page: 758 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0200 article-title: Detection emerging research fronts based on topological measures in citation networks of scientific publications publication-title: Technovation doi: 10.1016/j.technovation.2008.03.009 – ident: 10.1016/j.ipm.2011.07.006_b0085 doi: 10.1007/BFb0026683 – volume: 18 start-page: 613 issue: 11 year: 1975 ident: 10.1016/j.ipm.2011.07.006_b0185 article-title: A vector space model fro automatic indexing publication-title: Communications of the ACM doi: 10.1145/361219.361220 – volume: 19 start-page: 1016 issue: 8 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0030 article-title: Hot topic extraction based on timeline analysis and multidimensional sentence modeling publication-title: IEEE Transactions on knowledge and data enginerting doi: 10.1109/TKDE.2007.1040 – volume: 43 start-page: 365 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0075 article-title: Use of place information for improved event tracking publication-title: Information Processing & Management doi: 10.1016/j.ipm.2006.07.007 – ident: 10.1016/j.ipm.2011.07.006_b0065 doi: 10.1145/383952.384013 – volume: 75 start-page: 186 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0105 article-title: Literature-related discovery (LRD): Methodology publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.11.010 – volume: 20 start-page: 289 issue: 3 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0040 article-title: Using incremental PLSI for threshold-resilient online event analysis publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190702 – ident: 10.1016/j.ipm.2011.07.006_b0215 doi: 10.1145/383952.384068 – volume: 75 start-page: 1396 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0225 article-title: A taxonomic review of methods and tools applied in technology assessment publication-title: Technological Forecasting & Social Change doi: 10.1016/j.techfore.2008.04.004 – volume: 73 start-page: 981 year: 2006 ident: 10.1016/j.ipm.2011.07.006_b0060 article-title: Forecasting emerging technologies: Use of bibliometrics and patent analysis publication-title: Technological Forecasting & Social Change doi: 10.1016/j.techfore.2006.04.004 – ident: 10.1016/j.ipm.2011.07.006_b0090 doi: 10.1145/775047.775061 – volume: 15 start-page: 1170 issue: 5 year: 2003 ident: 10.1016/j.ipm.2011.07.006_b0095 article-title: Efficient biased sampling for approximate clustering and outlier detection in large data sets publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2003.1232271 – volume: 42 start-page: 934 year: 2006 ident: 10.1016/j.ipm.2011.07.006_b0175 article-title: Automatic new topic identification using multiple linear regression publication-title: Information Processing & Management doi: 10.1016/j.ipm.2005.10.002 – volume: 73 start-page: 915 year: 2006 ident: 10.1016/j.ipm.2011.07.006_b0055 article-title: Introduction – Special issue on tech mining publication-title: Technological Forecasting & Social Change doi: 10.1016/j.techfore.2006.06.004 – volume: 30 start-page: 24 year: 2006 ident: 10.1016/j.ipm.2011.07.006_b0145 article-title: Automated trend analysis of proteomics data using an intelligent data mining architecture publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.047 – ident: 10.1016/j.ipm.2011.07.006_b0155 doi: 10.1145/1014052.1016919 – ident: 10.1016/j.ipm.2011.07.006_b0260 doi: 10.1145/564376.564393 – ident: 10.1016/j.ipm.2011.07.006_b0255 doi: 10.1145/1076034.1076054 – ident: 10.1016/j.ipm.2011.07.006_b0235 doi: 10.1145/1281192.1281276 – volume: 16 start-page: 1038 issue: 9 year: 2004 ident: 10.1016/j.ipm.2011.07.006_b0130 article-title: An efficient algorithm for discovering frequent subgraphs publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2004.33 – volume: 75 start-page: 165 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0100 article-title: Literature-related discovery (LRD): Introduction and background publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.11.004 – ident: 10.1016/j.ipm.2011.07.006_b0220 doi: 10.1145/345508.345546 – volume: 41 start-page: 1243 year: 2005 ident: 10.1016/j.ipm.2011.07.006_b0170 article-title: Application of automatic topic identification on excite web search engine data logs publication-title: Information Processing & Management doi: 10.1016/j.ipm.2004.04.018 – ident: 10.1016/j.ipm.2011.07.006_b0205 – volume: 43 start-page: 742 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0015 article-title: Topic discovery based on text mining techniques publication-title: Information Processing & Management – ident: 10.1016/j.ipm.2011.07.006_b0070 – volume: 36 start-page: 233 year: 1997 ident: 10.1016/j.ipm.2011.07.006_b0140 article-title: Topics of interest in IS: Evolution of themes and differences between research and practice publication-title: Information & Management doi: 10.1016/S0378-7206(99)00022-1 – ident: 10.1016/j.ipm.2011.07.006_b0210 doi: 10.1145/1014052.1014087 – ident: 10.1016/j.ipm.2011.07.006_b0135 doi: 10.1016/j.ipm.2006.02.007 – volume: 100 start-page: 23 issue: 1 year: 2000 ident: 10.1016/j.ipm.2011.07.006_b0025 article-title: Grwth and trends of fullerence research as reflected in its journal literature publication-title: Chemical Reviews doi: 10.1021/cr990096j – volume: 16 start-page: 949 issue: 8 year: 2004 ident: 10.1016/j.ipm.2011.07.006_b0045 article-title: Topcat: Data mining for topic identification in a text corpus publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2004.32 – volume: 40 start-page: 239 year: 2004 ident: 10.1016/j.ipm.2011.07.006_b0240 article-title: Automatic topics discovery from hyperlinked documents publication-title: Information Processing & Management doi: 10.1016/S0306-4573(03)00039-6 – volume: 20 issue: 7 year: 2008 ident: 10.1016/j.ipm.2011.07.006_b0165 article-title: Detecting, assessing and monitoring relevant topics in virtual information environments publication-title: IEEE Transactions on Knowledge and Data Engineering – ident: 10.1016/j.ipm.2011.07.006_b0005 – year: 2004 ident: 10.1016/j.ipm.2011.07.006_b0020 – volume: 74 start-page: 1574 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0125 article-title: Assessment of India’s research literature publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.02.009 – volume: 74 start-page: 1539 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0110 article-title: Chinese science and technology – Structure and infrastructure publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.02.008 – ident: 10.1016/j.ipm.2011.07.006_b0150 doi: 10.1145/564376.564465 – volume: 36 start-page: 12151 issue: 10 year: 2009 ident: 10.1016/j.ipm.2011.07.006_b0280 article-title: Research intelligence involving information retrieval–An example of conferences and journals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.03.015 – volume: 58 start-page: 872 issue: 6 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0195 article-title: Topological analysis of citation networks to discover the future core articles publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.20529 – ident: 10.1016/j.ipm.2011.07.006_b0050 doi: 10.1145/1066677.1066924 – ident: 10.1016/j.ipm.2011.07.006_b0245 doi: 10.1145/345508.345550 – volume: 7 start-page: 347 issue: 3–4 year: 2004 ident: 10.1016/j.ipm.2011.07.006_b0275 article-title: Simple semantics in topic detection and tracking publication-title: Information Retrieval doi: 10.1023/B:INRT.0000011210.12953.86 – volume: 74 start-page: 1538 year: 2007 ident: 10.1016/j.ipm.2011.07.006_b0120 article-title: Assessment of China’s and India’s science and technology literature-introduction, background, and approach publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2007.02.004 – ident: 10.1016/j.ipm.2011.07.006_b0265 doi: 10.1145/1401890.1402015 – ident: 10.1016/j.ipm.2011.07.006_b0035 doi: 10.1007/978-3-540-39857-8_7 – volume: 69 start-page: 495 year: 2002 ident: 10.1016/j.ipm.2011.07.006_b0270 article-title: Automated extraction and visualization of information for technological intelligence and forecasting publication-title: Technological Forecasting & Social Change doi: 10.1016/S0040-1625(01)00157-3 – year: 2005 ident: 10.1016/j.ipm.2011.07.006_b0180 |
SSID | ssj0004512 |
Score | 2.2418752 |
Snippet | ► We develop a new set of indices for emerging topic detection. ► The novelty index (NI) is created based on time. ► The published volume index (PVI) is... Emerging topic detection is a vital research area for researchers and scholars interested in searching for and tracking new research trends and topics. The... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 303 |
SubjectTerms | Aging theory Algorithms Automatic text analysis Collection Conferences Data mining Data processing Digital libraries Digital systems Exact sciences and technology Information and communication sciences Information processing and retrieval Information retrieval Information retrieval systems. Information and document management system Information retrieval. Man machine relationship Information science. Documentation Life span Methods Novelty index Published volume index Research process. Evaluation Sciences and techniques of general use Studies Subject fields Text mining Texts Topic detection and tracking Tracking |
Title | Indices of novelty for emerging topic detection |
URI | https://dx.doi.org/10.1016/j.ipm.2011.07.006 https://www.proquest.com/docview/923241983 https://www.proquest.com/docview/1018337603 https://www.proquest.com/docview/1221876407 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFH-IexGWxdVddnRnyIJ4WKiTfqXtUYaVcUUvKngLTfICs7htcTqCF_9289p0WJGdg8e2L014SX75hfcFcFRihipHh34mxsAxYh6UJVeBRh2KQmmrUgpwvrwS89vk9116twWzIRaG3Co99veY3qG1fzP12pw2i8X0mthukmYxJT0jexJFsCcZrfKT5_CfjOGhtySIgKQHy2bn47Vo_vosnpTIUPzvbPrYlEunMduXuniD2t1RdLYLnzyHZKf9MD_DFlZ7MPYRCOyY-RAjUjnze3cfpueVIVBgtWVV_Yj37RNzYowChKlQEWvrZqGZwbZzzqq-wO3Zr5vZPPDVEgKd5KINchuRCc-aSGUcY20EYqKt0RhxRVhSWuW4Cxqd5lmRl0oXmKCJjNXaWh7HX2G7qiv8BkyEDsGdjDBpnOgoKoX7oeXcCqOtu7CNgA96ktqnEqeKFvdy8Bn7I51qJalWcjJwixH8XDdp-jwam4STQfny1WKQDuc3NZu8mqh1R47WUULubASHw8xJv1WXsiBOGRZ5PIIf669uj5HhpKywXi2puzwm76FNMpEjSxmZRQ_eN_pD2HFPUe_f9h2224cVjh3hadWkW9ET-HB6fjG_egGriACW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7S5GGFUrb-oFnXToOxh4GJ4h-y_VjKSrK2eWkLfROWdIKU1DaNW9h_X10sh5WyPOzVOlnmJH36zN19AvheYIoqQ4d-JsLAMWIeFAVXgUY9FrnSViVU4Hw9E5O7-Pd9ct-D864WhtIqPfa3mL5Ca_9k5L05qufz0Q2x3ThJIxI9o3jSFgxInSrpw-BsejmZ_SUaPvbBBBFQhy64uUrzmtePXsiTtAzFv46nnbpYOqfZ9raLd8C9Oo0uPsKup5HsrP3ST9DDcg9OfBEC-8F8lRF5nfntuw-jaWkIF1hlWVm94KL5w5wZoxphuquINVU918xgs8rPKg_g7uLX7fkk8BcmBDrORBNkNqQonjWhSjlG2gjEWFujMeSK4KSwytEXNDrJ0jwrlM4xRhMaq7W1PIoOoV9WJR4BE2MH4s5GmCSKdRgWwr3Qcm6F0db9sw2Bd36S2quJ06UWC9mljT1I51pJrpWcYtxiCD_XXepWSmOTcdw5X75ZD9JB_aZup28maj2QY3akyZ0O4bibOel361LmRCvHeRYN4du61W0zip0UJVbPSxouiyiBaJNN6PhSSpHRz__39V_hw-T2-kpeTWeXx7DtWsI23e0L9JunZzxx_KdRp359vwJyhQNH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indices+of+novelty+for+emerging+topic+detection&rft.jtitle=Information+processing+%26+management&rft.au=Tu%2C+Yi-Ning&rft.au=Seng%2C+Jia-Lang&rft.date=2012-03-01&rft.issn=0306-4573&rft.volume=48&rft.issue=2&rft.spage=303&rft.epage=325&rft_id=info:doi/10.1016%2Fj.ipm.2011.07.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |