DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis
AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1(HSV-1) glycoprotein C(g C) and glycoprotein D(g D) will achieve better protective effect against herpes simplex keratitis(HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined g D(g D.g C) we...
Saved in:
Published in | International journal of ophthalmology Vol. 10; no. 11; pp. 1633 - 1639 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
China
International Journal of Ophthalmology Press
18.11.2017
Press of International Journal of Ophthalmology (IJO PRESS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1(HSV-1) glycoprotein C(g C) and glycoprotein D(g D) will achieve better protective effect against herpes simplex keratitis(HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined g D(g D.g C) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293 T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2 wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein g D.g C could be expressed successfully in cultured 293 T cells. And, p RSC-g C.g DIL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and s Ig A production, enhanced cytotoxicities of splenocytes and nature killer cells(NK),when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. |
---|---|
Bibliography: | AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1(HSV-1) glycoprotein C(g C) and glycoprotein D(g D) will achieve better protective effect against herpes simplex keratitis(HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined g D(g D.g C) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293 T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2 wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein g D.g C could be expressed successfully in cultured 293 T cells. And, p RSC-g C.g DIL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and s Ig A production, enhanced cytotoxicities of splenocytes and nature killer cells(NK),when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. herpes simplex virus 1 keratitis gC-based DNA vaccine nanocarrier immune response ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2222-3959 2227-4898 |
DOI: | 10.18240/ijo.2017.11.01 |