A review of electric load classification in smart grid environment
The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 24; pp. 103 - 110 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies about load classification in smart grid environment. Then, the commonly used clustering methods for load classification are summarized and briefly reviewed, and the well-known evaluation methods for load classification are also introduced. Besides, the applications of load classification, including bad data identification and correction, load forecasting and tariff setting, are discussed. Finally, an example of load classification based on Fuzzy c-means (FCM) is presented. |
---|---|
AbstractList | The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies about load classification in smart grid environment. Then, the commonly used clustering methods for load classification are summarized and briefly reviewed, and the well-known evaluation methods for load classification are also introduced. Besides, the applications of load classification, including bad data identification and correction, load forecasting and tariff setting, are discussed. Finally, an example of load classification based on Fuzzy c-means (FCM) is presented. |
Author | Shen, Chao Yang, Shan-lin Zhou, Kai-le |
Author_xml | – sequence: 1 givenname: Kai-le surname: Zhou fullname: Zhou, Kai-le email: kailezhou@gmail.com, zhoukaile@mail.hfut.edu.cn organization: School of Management, Hefei University of Technology, Hefei 230009, China – sequence: 2 givenname: Shan-lin surname: Yang fullname: Yang, Shan-lin email: hgdysl@gmail.com organization: School of Management, Hefei University of Technology, Hefei 230009, China – sequence: 3 givenname: Chao surname: Shen fullname: Shen, Chao organization: School of Management, Hefei University of Technology, Hefei 230009, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27406893$$DView record in Pascal Francis |
BookMark | eNqFkc1LHTEUxYMo-NV_oBuzEbqZ500y-Rhwo9IvEFy0rkNeckfymJfYZLT43zfTZzcuLFxIFr9zbnLOMdlPOSEhHxmsGDB1sVmVimXFgYkVtOFijxwxo4cO1AD77S5U34Hg7JAc17oBYNJocUSur2jB54i_aR4pTujnEj2dsgvUT67WOEbv5pgTjYnWrSszfSgxUEzPseS0xTSfkoPRTRU_vJ4n5P7L558337rbu6_fb65uO98bNXc6qLBGqQEVKMeMYVKttQzKB6eVCD0INQ7Ye6d7J9nIuBzWvHdGrHtQUooT8mnn-1jyryess93G6nGaXML8VC1T2kjZC2n-j0oAPfBBLa7nr6ir3k1jccnHah9LbJ99sVy35WYQjTM7zpdca8HR-jj_TWYuLk6WgV2asBu7NGGXJiy04YuUv5H-c39XdLYTjS5b1zKv9v5HA9rLGVcaoBGXOwJb6K3CYquPmDyGWFqPNuT43oI_BNSryQ |
CitedBy_id | crossref_primary_10_1016_j_rser_2015_03_036 crossref_primary_10_1016_j_rser_2015_05_041 crossref_primary_10_1016_j_apenergy_2022_119525 crossref_primary_10_1016_j_epsr_2023_109859 crossref_primary_10_1049_cps2_12057 crossref_primary_10_1109_TPWRS_2019_2936293 crossref_primary_10_2174_2405463104666210427112311 crossref_primary_10_3390_en12203935 crossref_primary_10_1016_j_segan_2024_101319 crossref_primary_10_1016_j_adapen_2020_100007 crossref_primary_10_1016_j_jpdc_2020_05_004 crossref_primary_10_1016_j_bdr_2015_03_003 crossref_primary_10_1016_j_apenergy_2018_12_025 crossref_primary_10_3389_fenrg_2022_1012721 crossref_primary_10_1007_s11227_023_05793_0 crossref_primary_10_1016_j_rser_2015_12_001 crossref_primary_10_2166_ws_2023_208 crossref_primary_10_1007_s12182_016_0136_z crossref_primary_10_1016_j_rser_2017_06_093 crossref_primary_10_1016_j_rser_2019_109628 crossref_primary_10_1007_s42044_019_00043_0 crossref_primary_10_1016_j_applthermaleng_2016_09_041 crossref_primary_10_3390_app12178914 crossref_primary_10_1109_ACCESS_2022_3194674 crossref_primary_10_1016_j_suscom_2020_100427 crossref_primary_10_1016_j_apenergy_2019_113919 crossref_primary_10_3390_electronics10030290 crossref_primary_10_1016_j_rser_2015_07_040 crossref_primary_10_1155_2018_1503092 crossref_primary_10_1016_j_rser_2016_12_095 crossref_primary_10_1016_j_egyr_2022_08_256 crossref_primary_10_1016_j_measurement_2022_110939 crossref_primary_10_1016_j_energy_2018_05_127 crossref_primary_10_21122_1029_7448_2020_63_3_212_222 crossref_primary_10_1016_j_cie_2024_110329 crossref_primary_10_1016_j_scs_2020_102693 crossref_primary_10_1016_j_rser_2014_08_036 crossref_primary_10_1016_j_mfglet_2024_03_004 crossref_primary_10_1016_j_egyr_2022_09_023 crossref_primary_10_1016_j_enbuild_2018_01_017 crossref_primary_10_1016_j_scs_2021_103380 crossref_primary_10_1049_iet_gtd_2019_1085 crossref_primary_10_54644_jte_68_2022_1079 crossref_primary_10_3390_info10070224 crossref_primary_10_1109_JSYST_2019_2931879 crossref_primary_10_3390_info15030142 crossref_primary_10_3390_en12204016 crossref_primary_10_1002_etep_2265 crossref_primary_10_1109_TSG_2016_2548565 crossref_primary_10_1145_3485128 crossref_primary_10_3233_ICA_230728 crossref_primary_10_1002_asmb_2453 crossref_primary_10_1016_j_apenergy_2017_06_096 crossref_primary_10_1016_j_rser_2015_01_056 crossref_primary_10_1142_S0218126622501067 crossref_primary_10_3390_en11071893 crossref_primary_10_1016_j_enpol_2020_111732 crossref_primary_10_1016_j_enbuild_2021_111071 crossref_primary_10_3390_en11092235 crossref_primary_10_1016_j_epsr_2023_109149 crossref_primary_10_1109_ACCESS_2017_2712258 crossref_primary_10_2166_hydro_2020_133 crossref_primary_10_1016_j_rser_2023_114151 crossref_primary_10_48084_etasr_4862 crossref_primary_10_1088_1755_1315_514_4_042047 crossref_primary_10_1051_e3sconf_202125701032 crossref_primary_10_1016_j_rser_2016_04_009 crossref_primary_10_1016_j_scs_2017_07_016 crossref_primary_10_1109_TSG_2018_2818167 crossref_primary_10_3390_s21165650 crossref_primary_10_1109_TSG_2022_3146489 crossref_primary_10_1016_j_enconman_2014_10_062 crossref_primary_10_3390_app11083598 crossref_primary_10_1002_cpe_7518 crossref_primary_10_1007_s11269_018_2012_7 crossref_primary_10_2139_ssrn_3982129 crossref_primary_10_3390_en10122047 crossref_primary_10_1016_j_rser_2017_05_124 crossref_primary_10_1186_s43067_020_00021_8 crossref_primary_10_1016_j_engappai_2014_10_013 crossref_primary_10_1002_tee_22767 crossref_primary_10_1109_ICJECE_2020_3018433 crossref_primary_10_1016_j_knosys_2016_01_001 crossref_primary_10_1109_TPWRS_2015_2493083 crossref_primary_10_1016_j_segan_2020_100308 crossref_primary_10_3390_app7111160 crossref_primary_10_1016_j_rser_2018_03_088 crossref_primary_10_1016_j_rser_2020_109967 crossref_primary_10_1016_j_apenergy_2021_116721 crossref_primary_10_1016_j_apenergy_2022_120328 crossref_primary_10_1016_j_epsr_2018_10_006 crossref_primary_10_1109_ACCESS_2020_3041178 crossref_primary_10_1109_JIOT_2021_3138541 crossref_primary_10_3390_electronics11152302 crossref_primary_10_1016_j_rser_2014_04_028 crossref_primary_10_1016_j_autcon_2022_104303 crossref_primary_10_1155_2020_1953461 crossref_primary_10_1016_j_apenergy_2019_03_134 crossref_primary_10_1016_j_rser_2018_04_037 crossref_primary_10_1049_iet_stg_2018_0261 crossref_primary_10_1016_j_energy_2023_129920 crossref_primary_10_1016_j_heliyon_2024_e36951 crossref_primary_10_1016_j_scs_2021_103618 crossref_primary_10_1016_j_apenergy_2019_114246 crossref_primary_10_1088_1742_6596_2310_1_012079 crossref_primary_10_1016_j_apenergy_2023_122518 crossref_primary_10_1016_j_egypro_2017_09_545 crossref_primary_10_1016_j_rser_2016_11_132 crossref_primary_10_3390_en13071723 crossref_primary_10_1049_stg2_12161 crossref_primary_10_3390_en12214137 crossref_primary_10_1016_j_rser_2015_11_050 crossref_primary_10_1016_j_egypro_2015_11_754 crossref_primary_10_1016_j_segan_2021_100446 crossref_primary_10_1007_s00202_020_00949_0 crossref_primary_10_1007_s12053_017_9554_z crossref_primary_10_1109_ACCESS_2019_2914216 crossref_primary_10_1109_TSG_2023_3253824 crossref_primary_10_1016_j_apenergy_2016_06_052 crossref_primary_10_1016_j_rser_2016_10_054 crossref_primary_10_3390_app9152993 crossref_primary_10_1016_j_energy_2022_125999 crossref_primary_10_1109_TSG_2022_3184252 crossref_primary_10_1016_j_segan_2018_100181 crossref_primary_10_3390_en14092502 crossref_primary_10_1007_s12053_020_09922_z crossref_primary_10_1080_10789669_2014_929887 crossref_primary_10_1016_j_enbuild_2021_111663 crossref_primary_10_1109_ACCESS_2023_3286020 crossref_primary_10_3390_en13082050 crossref_primary_10_1016_j_asoc_2023_110395 crossref_primary_10_1007_s40313_022_00956_5 crossref_primary_10_1016_j_eswa_2017_05_049 crossref_primary_10_1016_j_rineng_2025_104001 crossref_primary_10_1016_j_solener_2024_112885 crossref_primary_10_3390_iot3010002 crossref_primary_10_1016_j_jclepro_2016_09_165 crossref_primary_10_1109_TSG_2018_2825335 crossref_primary_10_1016_j_jclepro_2020_120747 crossref_primary_10_1016_j_rser_2014_05_049 crossref_primary_10_1109_TPWRS_2016_2604389 crossref_primary_10_1016_j_apenergy_2014_08_111 crossref_primary_10_1016_j_epsr_2020_106788 |
Cites_doi | 10.1016/j.rser.2012.03.008 10.1109/5.58325 10.1109/91.493905 10.1016/j.rser.2010.09.009 10.1109/TPWRS.2004.826810 10.1109/TPWRS.2002.807085 10.1007/BF02339490 10.1007/BF02289588 10.1049/cp:20020061 10.1080/01969727308546046 10.1016/0098-3004(84)90020-7 10.1016/j.fss.2007.03.004 10.1016/j.epsr.2010.01.010 10.1109/PTC.2005.4524366 10.1016/j.fss.2005.04.009 10.1109/DRPT.2008.4523624 10.1080/01621459.1975.10480256 10.1016/j.rser.2012.08.013 10.1109/CIMSA.2010.5611759 10.1016/j.patrec.2004.11.022 10.1109/ECTICON.2011.5947960 10.1109/NEUREL.2008.4685564 10.1109/91.413225 10.1109/TPWRS.2009.2023009 10.1016/j.apenergy.2010.05.015 10.1016/j.patcog.2010.04.025 10.1007/BF02294245 10.1111/j.2044-8317.1976.tb00714.x 10.1109/TNN.2005.845141 10.1109/CIASG.2011.5953331 10.1007/978-3-540-73499-4_14 10.1109/WKDD.2008.30 10.1109/5326.923275 10.1016/j.epsr.2010.10.036 10.1109/3477.678624 10.1109/TD-ASIA.2009.5356926 10.1016/j.rser.2011.07.129 10.1016/j.patrec.2005.04.007 10.1016/j.ijepes.2011.06.034 10.1016/j.rser.2007.04.010 10.1007/s10044-004-0218-1 10.1109/34.85677 10.1016/j.patcog.2010.04.021 10.1109/TPWRD.2011.2142198 10.1049/iet-gtd:20060183 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7ST 7U6 C1K SOI 7S9 L.6 |
DOI | 10.1016/j.rser.2013.03.023 |
DatabaseName | AGRIS CrossRef Pascal-Francis Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-0690 |
EndPage | 110 |
ExternalDocumentID | 27406893 10_1016_j_rser_2013_03_023 US201500126700 S1364032113001822 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- ABPIF ABPTK FBQ AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7ST 7U6 C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c486t-7d6dbe570e606a188156b75d6cda763d4036f9e4ca74a51f1259b24a83b406553 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Fri Jul 11 02:22:01 EDT 2025 Fri Jul 11 04:08:53 EDT 2025 Wed Apr 02 07:26:07 EDT 2025 Tue Jul 01 01:56:25 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Wed Dec 27 19:26:19 EST 2023 Fri Feb 23 02:17:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process model Clustering methods and result evaluation methods Load classification Load classification applications Smart grid |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-7d6dbe570e606a188156b75d6cda763d4036f9e4ca74a51f1259b24a83b406553 |
Notes | http://dx.doi.org/10.1016/j.rser.2013.03.023 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1500792965 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1678554358 proquest_miscellaneous_1500792965 pascalfrancis_primary_27406893 crossref_citationtrail_10_1016_j_rser_2013_03_023 crossref_primary_10_1016_j_rser_2013_03_023 fao_agris_US201500126700 elsevier_sciencedirect_doi_10_1016_j_rser_2013_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gavrilas M, Gavrilas G, Sfintes CV. Application of honey bee mating optimization algorithm to load profile clustering. In: IEEE international conference on computational intelligence for measurement systems and applications (CIMSA). IEEE; 2010. p. 113–118. Sathiracheewin S, Surapatana V. Daily typical load clustering of residential consumers. In: Eighth international conference on electrical engineering/electronics, computer, telecommunications and international technology (ECTI-CON); 2011. p. 797–800. Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Transactions on Neural Networks 2005;16(3):645–78 Ju, Jin, Wu (bib19) 2004; 28 Li, Jiang, Qian (bib20) 2010; 34 Zhang, Cheng, Zhou (bib60) 2010; 38 Ozveren CS, Vechakanjana C, Birch AP. Fuzzy classification of electrical load demand profiles-a case study. In: fifth international conference on power system management and control; 2002. p. 353–358. Chou, Su, Lai (bib47) 2004; 7 Bezdek (bib51) 1974; 7 Zhang ZH. Study on load classification in power system. Thesis. Tianjin University; 2007. Valero, Ortiz, Senabre (bib2) 2007; 1 Dunn (bib43) 1973; 3 Grandjean, Adnot, Binet (bib3) 2012; 16 Jota, Silva, Jota (bib28) 2011; 33 Bidoki SM, Mahmoudi-Kohan N, Gerami S. Comparison of several clustering methods in the case of electrical load curves classification. In: 16th conference on electrical power distribution networks (EPDC); 2011. p. 1–7. Chicco G, Napoli R, Piglione F. Application of clustering algorithms and self organising maps to classify electricity consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26. Zhou, Yang (bib24) 2012; 40 Wang, Duan, Zhai (bib61) 2010; 3 Huang, Kang, Xia (bib70) 2004; 37 Li PQ, Li XR, Chen HH, et al. The characteristics classification and synthesis of power load based on fuzzy clustering. In: Proceedings of the Csee; 2005. 25(24): p. 73–78. Kale, Pohekar (bib73) 2012; 16 Zhao, Zhou, Jiang (bib9) 2011 Johnson (bib13) 1967; 32 Jain A, Dubes R. Algorithms for clustering data. Prentice Hall. 1988. Gavrilas M, Ivanov O, Gavrilas G. Load profiling with fuzzy self-organizing algorithms. In: Ninth symposium on neural network application in electrical engineering (NEUREL); 2008. p. 25–27. Mahmoudi-Kohan, Moghaddam, Sheikh-El-Eslami (bib68) 2010; 80 Bezdek, Pal (bib44) 1998; 28 Liu, Zhai, Jiang (bib59) 2010; 38 Hubert, Schultz (bib45) 1976; 29 Mutanen, Ruska, Repo (bib39) 2011; 26 Beccali, Cellura, Lo Brano (bib64) 2008; 12 Wu, Chen, Liu (bib7) 2011; 15 Liu, Wang, Zhai (bib16) 2011; 23 Baker, Hubert (bib46) 1975; 70 Kim YI, Ko JM, Choi SH. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In: IEEE symposium on computational intelligence applications in smart grid(CIASG), IEEE; 2011. p. 1–6. Bensaid, Hall, Bezdek (bib55) 1996; 4 Batrinu, Chicco, Napoli (bib38) 2005 Macqueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967. p. 281–97 Zokaria Z, Lo KL. Two-stage fuzzy clustering approach for load profiling. In: Proceedings of the 44th international universities power engineering conference (UPEC) 2009; 9: p. 1–5. Kohonen (bib14) 1990; 78 Chicco, Napoli, Postolache (bib69) 2003; 18 Fukuyama Y, Sugeno M. A new method of choosing the number of cluster for the fuzzy c-means method. In: Proceedings of the fifth fuzzy systems symposium; 1989. p. 247–250. Milligan, Cooper (bib40) 1985; 50 Zhang HB, He RM, Liu YM. The characteristics clustering and synthesis of electric dynamic loads based on Kohonen neural network. In: Proceedings of the Csee; 2003. 23(5): p. 1–5,43. Bezdek, Ehrlish, Full (bib8) 1984; 10 Chua, Oh, Goh (bib67) 2011; 15 Misiti, Misiti, Oppenheim (bib65) 2010; 8 Chicco, Llie (bib33) 2009; 24 Li, Wu, Wu (bib31) 2008; 15 Pal, Bezdek (bib54) 1995; 3 Pakhira, Bandyopadhyay, Maulik (bib56) 2005; 155 Li XR, Lin SJ, Liu YH, et al. A new classification method for aggregate load dynamic characteristics based on field measured response. In: Proceedings of the Csee; 2006. 26(8): p. 39–44. Räsänen, Voukantsis, Niska (bib17) 2010; 87 Gu DZ, Ai Q, Chen C. The application of artificial immune network in load classification. In: Third international conference on electric unility deregulation and restructuring and power technologies; 2008. p. 1394–1398. Jiang, Wang, Wang (bib63) 2011; 21 Kim, Ramakrishna (bib41) 2005; 26 Verdu SU, Garcia MO, Franco FJG, et al. Characterization and identification of electrical consumers through the use of self-organizing maps and daily load parameters. IEEE power systems conference and exposition. IEEE; 2004. p. 899–906. Žalik (bib58) 2010; 43 Li W, Han ZH. Short-term power load forecasting using improved ant colony clustering. In: First international workshop on knowledge discovery and data mining; 2008. p. 221–224. Chicco, Napoli, Piglione (bib37) 2004; 19 Saitta, Raphael, Smith (bib49) 2007; 4571 Xie, Beni (bib53) 1991; 13 López, Aguado, Martín (bib18) 2011; 81 Gurrutxaga, Albisua, Arbelaitz (bib50) 2010; 43 Lin, Li, Liu (bib6) 2005; 29 Wang, Zhang (bib42) 2007; 158 Gerbec D, Gasperic S, Gubina F. Determination and allocation of typical load profiles to the eligible consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26. Bandyopadhyay, Maulik (bib48) 2001; 31 Sun YM, Wang CL, Zhang ZS, et al. Clustering analysis of power system load series based on ant colony optimization algorithm. In: Proceedings of the Csee; 2005. 25(18): p. 40–45. Liu, Wang, Zhai (bib62) 2011; 23 Kim YI, Shin JH, Song JJ, et al. Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In: Asia and Pacific transmission & distribution conference & exposition 2009; 10:1–4. Yang, Zhang, He (bib23) 2010; 16 Wu, Yang (bib57) 2005; 26 Lin (10.1016/j.rser.2013.03.023_bib6) 2005; 29 Wu (10.1016/j.rser.2013.03.023_bib7) 2011; 15 10.1016/j.rser.2013.03.023_bib12 10.1016/j.rser.2013.03.023_bib11 Jota (10.1016/j.rser.2013.03.023_bib28) 2011; 33 Mutanen (10.1016/j.rser.2013.03.023_bib39) 2011; 26 10.1016/j.rser.2013.03.023_bib15 Pakhira (10.1016/j.rser.2013.03.023_bib56) 2005; 155 Beccali (10.1016/j.rser.2013.03.023_bib64) 2008; 12 Chicco (10.1016/j.rser.2013.03.023_bib37) 2004; 19 Bezdek (10.1016/j.rser.2013.03.023_bib44) 1998; 28 Bandyopadhyay (10.1016/j.rser.2013.03.023_bib48) 2001; 31 Huang (10.1016/j.rser.2013.03.023_bib70) 2004; 37 Ju (10.1016/j.rser.2013.03.023_bib19) 2004; 28 Batrinu (10.1016/j.rser.2013.03.023_bib38) 2005 Chou (10.1016/j.rser.2013.03.023_bib47) 2004; 7 10.1016/j.rser.2013.03.023_bib52 Chicco (10.1016/j.rser.2013.03.023_bib33) 2009; 24 10.1016/j.rser.2013.03.023_bib10 Kohonen (10.1016/j.rser.2013.03.023_bib14) 1990; 78 10.1016/j.rser.2013.03.023_bib22 10.1016/j.rser.2013.03.023_bib66 10.1016/j.rser.2013.03.023_bib25 10.1016/j.rser.2013.03.023_bib27 Räsänen (10.1016/j.rser.2013.03.023_bib17) 2010; 87 10.1016/j.rser.2013.03.023_bib26 10.1016/j.rser.2013.03.023_bib29 Valero (10.1016/j.rser.2013.03.023_bib2) 2007; 1 López (10.1016/j.rser.2013.03.023_bib18) 2011; 81 Wang (10.1016/j.rser.2013.03.023_bib42) 2007; 158 Yang (10.1016/j.rser.2013.03.023_bib23) 2010; 16 Bensaid (10.1016/j.rser.2013.03.023_bib55) 1996; 4 Dunn (10.1016/j.rser.2013.03.023_bib43) 1973; 3 Chicco (10.1016/j.rser.2013.03.023_bib69) 2003; 18 10.1016/j.rser.2013.03.023_bib21 Žalik (10.1016/j.rser.2013.03.023_bib58) 2010; 43 10.1016/j.rser.2013.03.023_bib34 10.1016/j.rser.2013.03.023_bib36 Liu (10.1016/j.rser.2013.03.023_bib16) 2011; 23 10.1016/j.rser.2013.03.023_bib35 Chua (10.1016/j.rser.2013.03.023_bib67) 2011; 15 Milligan (10.1016/j.rser.2013.03.023_bib40) 1985; 50 Zhou (10.1016/j.rser.2013.03.023_bib24) 2012; 40 Saitta (10.1016/j.rser.2013.03.023_bib49) 2007; 4571 Gurrutxaga (10.1016/j.rser.2013.03.023_bib50) 2010; 43 Liu (10.1016/j.rser.2013.03.023_bib59) 2010; 38 Baker (10.1016/j.rser.2013.03.023_bib46) 1975; 70 Mahmoudi-Kohan (10.1016/j.rser.2013.03.023_bib68) 2010; 80 Jiang (10.1016/j.rser.2013.03.023_bib63) 2011; 21 10.1016/j.rser.2013.03.023_bib72 10.1016/j.rser.2013.03.023_bib71 10.1016/j.rser.2013.03.023_bib30 10.1016/j.rser.2013.03.023_bib32 Liu (10.1016/j.rser.2013.03.023_bib62) 2011; 23 Pal (10.1016/j.rser.2013.03.023_bib54) 1995; 3 Li (10.1016/j.rser.2013.03.023_bib31) 2008; 15 Wu (10.1016/j.rser.2013.03.023_bib57) 2005; 26 Li (10.1016/j.rser.2013.03.023_bib20) 2010; 34 10.1016/j.rser.2013.03.023_bib1 Kim (10.1016/j.rser.2013.03.023_bib41) 2005; 26 10.1016/j.rser.2013.03.023_bib4 10.1016/j.rser.2013.03.023_bib5 Bezdek (10.1016/j.rser.2013.03.023_bib8) 1984; 10 Grandjean (10.1016/j.rser.2013.03.023_bib3) 2012; 16 Bezdek (10.1016/j.rser.2013.03.023_bib51) 1974; 7 Kale (10.1016/j.rser.2013.03.023_bib73) 2012; 16 Misiti (10.1016/j.rser.2013.03.023_bib65) 2010; 8 Zhao (10.1016/j.rser.2013.03.023_bib9) 2011 Wang (10.1016/j.rser.2013.03.023_bib61) 2010; 3 Johnson (10.1016/j.rser.2013.03.023_bib13) 1967; 32 Hubert (10.1016/j.rser.2013.03.023_bib45) 1976; 29 Xie (10.1016/j.rser.2013.03.023_bib53) 1991; 13 Zhang (10.1016/j.rser.2013.03.023_bib60) 2010; 38 |
References_xml | – reference: Zhang HB, He RM, Liu YM. The characteristics clustering and synthesis of electric dynamic loads based on Kohonen neural network. In: Proceedings of the Csee; 2003. 23(5): p. 1–5,43. – volume: 155 start-page: 191 year: 2005 end-page: 214 ident: bib56 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets and Systems – volume: 23 start-page: 73 year: 2011 ident: bib16 article-title: Application of k-means clustering algorithm in load curve classification publication-title: Power System Protection and Control – volume: 43 start-page: 3364 year: 2010 end-page: 3373 ident: bib50 article-title: SEP/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index publication-title: Pattern Recognition – volume: 37 start-page: 24 year: 2004 end-page: 28 ident: bib70 article-title: Study on consumer classification differentiated pricing of electricity publication-title: Electric Power – volume: 28 start-page: 64 year: 2004 end-page: 68 ident: bib19 article-title: Studies on classification and synthesis of composite dynamic loads publication-title: Automation of Electric Power Systems – reference: Kim YI, Ko JM, Choi SH. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In: IEEE symposium on computational intelligence applications in smart grid(CIASG), IEEE; 2011. p. 1–6. – volume: 15 start-page: 4236 year: 2011 end-page: 4241 ident: bib7 article-title: Construction of China's smart grid information system analysis publication-title: Renewable and Sustainable Energy Reviews – volume: 81 start-page: 716 year: 2011 end-page: 724 ident: bib18 article-title: Hopfield–K-means clustering algorithm: a proposal for the segmentation of electricity consumers publication-title: Electric Power System Research – reference: Chicco G, Napoli R, Piglione F. Application of clustering algorithms and self organising maps to classify electricity consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26. – volume: 78 start-page: 1464 year: 1990 end-page: 1480 ident: bib14 article-title: The self-organization maps publication-title: Proceedings of the IEEE – volume: 70 start-page: 31 year: 1975 end-page: 38 ident: bib46 article-title: Measuring the power of hierarchical cluster analysis publication-title: Journal of the American Statistical Association – volume: 7 start-page: 57 year: 1974 end-page: 71 ident: bib51 article-title: Numerical taxonomy with fuzzy sets publication-title: Journal of Mathematical Biology – reference: Verdu SU, Garcia MO, Franco FJG, et al. Characterization and identification of electrical consumers through the use of self-organizing maps and daily load parameters. IEEE power systems conference and exposition. IEEE; 2004. p. 899–906. – volume: 50 start-page: 159 year: 1985 end-page: 179 ident: bib40 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika – volume: 4 start-page: 112 year: 1996 end-page: 123 ident: bib55 article-title: Validity-guided (re)clustering with applications to image segmentation publication-title: IEEE Transactions on Fuzzy Systems – reference: Zokaria Z, Lo KL. Two-stage fuzzy clustering approach for load profiling. In: Proceedings of the 44th international universities power engineering conference (UPEC) 2009; 9: p. 1–5. – reference: Bidoki SM, Mahmoudi-Kohan N, Gerami S. Comparison of several clustering methods in the case of electrical load curves classification. In: 16th conference on electrical power distribution networks (EPDC); 2011. p. 1–7. – reference: Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Transactions on Neural Networks 2005;16(3):645–78 – volume: 38 start-page: 143 year: 2010 end-page: 152 ident: bib60 article-title: Dynamic intelligent cleaning for dirty electric load data based on data mining publication-title: Automation of Electric Power Systems – volume: 24 start-page: 1619 year: 2009 end-page: 1628 ident: bib33 article-title: Support vector clustering of electrical load pattern data publication-title: IEEE Transactions on Power Systems – reference: Gerbec D, Gasperic S, Gubina F. Determination and allocation of typical load profiles to the eligible consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26. – volume: 13 start-page: 841 year: 1991 end-page: 847 ident: bib53 article-title: A validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 15 start-page: 705 year: 2011 end-page: 712 ident: bib67 article-title: Feed-in tariff outlook in Malaysia publication-title: Renewable and Sustainable Energy Reviews – reference: Li PQ, Li XR, Chen HH, et al. The characteristics classification and synthesis of power load based on fuzzy clustering. In: Proceedings of the Csee; 2005. 25(24): p. 73–78. – year: 2011 ident: bib9 article-title: Analysis and forecast of China's electricity load characteristics publication-title: China Electric Power Press – volume: 3 start-page: 370 year: 1995 end-page: 379 ident: bib54 article-title: On cluster validity for fuzzy c-means model publication-title: IEEE Transactions on Fuzzy Systems – volume: 1 start-page: 104 year: 2007 end-page: 110 ident: bib2 article-title: Methods for customer and demand response policies selection in new electricity markets publication-title: IET Generation, Transmission & Distribution – reference: Sathiracheewin S, Surapatana V. Daily typical load clustering of residential consumers. In: Eighth international conference on electrical engineering/electronics, computer, telecommunications and international technology (ECTI-CON); 2011. p. 797–800. – reference: Sun YM, Wang CL, Zhang ZS, et al. Clustering analysis of power system load series based on ant colony optimization algorithm. In: Proceedings of the Csee; 2005. 25(18): p. 40–45. – volume: 26 start-page: 1755 year: 2011 end-page: 1763 ident: bib39 article-title: Customer classification and load profiling method for distribution systems publication-title: IEEE Transactions on Power Delivery – start-page: 1 year: 2005 end-page: 7 ident: bib38 article-title: Efficient iterative refinement clustering for electricity customer classification publication-title: IEEE Russia Power Technology IEEE – volume: 29 start-page: 190 year: 1976 end-page: 241 ident: bib45 article-title: Quadratic assignment as a general data-analysis strategy publication-title: British Journal of Mathematical and Statistical Psychology – reference: Ozveren CS, Vechakanjana C, Birch AP. Fuzzy classification of electrical load demand profiles-a case study. In: fifth international conference on power system management and control; 2002. p. 353–358. – volume: 16 start-page: 6539 year: 2012 end-page: 6565 ident: bib3 article-title: A review and an analysis of the residential electric load curve models publication-title: Renewable and Sustainable Energy Reviews – reference: Fukuyama Y, Sugeno M. A new method of choosing the number of cluster for the fuzzy c-means method. In: Proceedings of the fifth fuzzy systems symposium; 1989. p. 247–250. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: bib8 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Computers and Geosciences – volume: 16 start-page: 3960 year: 2012 end-page: 3966 ident: bib73 article-title: Electricity demand supply analysis: current status and future prospects for Maharashtra, India publication-title: Renewable and Sustainable Energy Reviews – volume: 43 start-page: 3374 year: 2010 end-page: 3390 ident: bib58 article-title: Cluster validity index for estimation of fuzzy clusters of different sizes and densities publication-title: Pattern Recognition – reference: Macqueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967. p. 281–97 – reference: Gavrilas M, Gavrilas G, Sfintes CV. Application of honey bee mating optimization algorithm to load profile clustering. In: IEEE international conference on computational intelligence for measurement systems and applications (CIMSA). IEEE; 2010. p. 113–118. – reference: Gavrilas M, Ivanov O, Gavrilas G. Load profiling with fuzzy self-organizing algorithms. In: Ninth symposium on neural network application in electrical engineering (NEUREL); 2008. p. 25–27. – volume: 15 start-page: 8 year: 2008 ident: bib31 article-title: Power consumers load profile clustering using the SOM neural network publication-title: Automation of Electric Power Systems – reference: Jain A, Dubes R. Algorithms for clustering data. Prentice Hall. 1988. – reference: Zhang ZH. Study on load classification in power system. Thesis. Tianjin University; 2007. – volume: 16 start-page: 22 year: 2010 ident: bib23 article-title: Study of power load classification based on adaptive fuzzy C means publication-title: Power System Protection and Control – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: bib43 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics – volume: 34 start-page: 56 year: 2010 end-page: 61 ident: bib20 article-title: A classifying and synthesizing method of power consumer industry based on the daily load profile publication-title: Automation of Electric Power Systems – volume: 4571 start-page: 174 year: 2007 end-page: 187 ident: bib49 article-title: A bounded index for cluster validity publication-title: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science – volume: 3 start-page: 31 year: 2010 ident: bib61 article-title: Application of k-means algorithm based on effective index to identifying bad data of the power system publication-title: Northeast Electric Power Technology – volume: 40 start-page: 58 year: 2012 end-page: 63 ident: bib24 article-title: An improved fuzzy c-means algorithm for power load characteristics classification publication-title: Power System Protection and Control – volume: 7 start-page: 205 year: 2004 end-page: 220 ident: bib47 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Analysis and Applications – volume: 28 start-page: 301 year: 1998 end-page: 315 ident: bib44 article-title: Some new indexes of cluster validity publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – volume: 29 start-page: 33 year: 2005 end-page: 38 ident: bib6 article-title: A classification method for aggregated load dynamic characteristics publication-title: Automation of Electric Power Systems – volume: 19 start-page: 1232 year: 2004 end-page: 1239 ident: bib37 article-title: Load pattern-based classification of electricity consumers publication-title: IEEE Transactions on Power Systems – volume: 38 start-page: 143 year: 2010 end-page: 152 ident: bib59 article-title: Current situation and development of the methods on bad-data detection and identification of power system publication-title: Power System Protection and Control – volume: 158 start-page: 2095 year: 2007 end-page: 2117 ident: bib42 article-title: On fuzzy cluster validity indices publication-title: Fuzzy Sets and Systems – volume: 18 start-page: 381 year: 2003 end-page: 387 ident: bib69 article-title: Customer characterization options for improving the tariff offer publication-title: IEEE Transactions on Power Systems – reference: Li XR, Lin SJ, Liu YH, et al. A new classification method for aggregate load dynamic characteristics based on field measured response. In: Proceedings of the Csee; 2006. 26(8): p. 39–44. – volume: 80 start-page: 1042 year: 2010 end-page: 1048 ident: bib68 article-title: An annual framework for clustering-based pricing for an electricity retailer publication-title: Electric Power Systems Research – volume: 26 start-page: 1275 year: 2005 end-page: 1291 ident: bib57 article-title: A cluster validity index for fuzzy clustering publication-title: Pattern Recognition Letters – volume: 26 start-page: 2353 year: 2005 end-page: 2363 ident: bib41 article-title: New indices for cluster validity assessment publication-title: Pattern Recognition Letters – volume: 33 start-page: 1498 year: 2011 end-page: 1505 ident: bib28 article-title: Building load management using cluster and statistical analyses publication-title: International Journal of Electrical Power & Energy Systems – volume: 8 start-page: 105 year: 2010 end-page: 124 ident: bib65 article-title: Optimized clusters for disaggregated electricity load forecasting publication-title: Statistical Journal – reference: Li W, Han ZH. Short-term power load forecasting using improved ant colony clustering. In: First international workshop on knowledge discovery and data mining; 2008. p. 221–224. – reference: Kim YI, Shin JH, Song JJ, et al. Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In: Asia and Pacific transmission & distribution conference & exposition 2009; 10:1–4. – volume: 87 start-page: 3538 year: 2010 end-page: 3545 ident: bib17 article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data publication-title: Applied Energy – volume: 12 start-page: 2040 year: 2008 end-page: 2065 ident: bib64 article-title: Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area publication-title: Renewable and Sustainable Energy Reviews – volume: 31 start-page: 120 year: 2001 end-page: 125 ident: bib48 article-title: Nonparametric genetic clustering: comparison of validity indices publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews – volume: 32 start-page: 241 year: 1967 end-page: 254 ident: bib13 article-title: Hierarchical clustering schemes publication-title: Psychometrika – volume: 23 start-page: 73 year: 2011 ident: bib62 article-title: Application of k-means clustering algorithm in load curve classification publication-title: Power System Protection and Control – volume: 21 start-page: 11 year: 2011 ident: bib63 article-title: Clustering method of fuzzy equivalence matrix to bad-data detection and identification publication-title: Power System Protection and Control – reference: Gu DZ, Ai Q, Chen C. The application of artificial immune network in load classification. In: Third international conference on electric unility deregulation and restructuring and power technologies; 2008. p. 1394–1398. – volume: 16 start-page: 3960 issue: 6 year: 2012 ident: 10.1016/j.rser.2013.03.023_bib73 article-title: Electricity demand supply analysis: current status and future prospects for Maharashtra, India publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2012.03.008 – ident: 10.1016/j.rser.2013.03.023_bib5 – ident: 10.1016/j.rser.2013.03.023_bib32 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: 10.1016/j.rser.2013.03.023_bib14 article-title: The self-organization maps publication-title: Proceedings of the IEEE doi: 10.1109/5.58325 – ident: 10.1016/j.rser.2013.03.023_bib36 – volume: 29 start-page: 33 issue: 22 year: 2005 ident: 10.1016/j.rser.2013.03.023_bib6 article-title: A classification method for aggregated load dynamic characteristics publication-title: Automation of Electric Power Systems – volume: 4 start-page: 112 issue: 2 year: 1996 ident: 10.1016/j.rser.2013.03.023_bib55 article-title: Validity-guided (re)clustering with applications to image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.493905 – volume: 3 start-page: 31 issue: 16–18 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib61 article-title: Application of k-means algorithm based on effective index to identifying bad data of the power system publication-title: Northeast Electric Power Technology – volume: 15 start-page: 705 issue: 1 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib67 article-title: Feed-in tariff outlook in Malaysia publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2010.09.009 – volume: 19 start-page: 1232 issue: 2 year: 2004 ident: 10.1016/j.rser.2013.03.023_bib37 article-title: Load pattern-based classification of electricity consumers publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2004.826810 – volume: 18 start-page: 381 issue: 1 year: 2003 ident: 10.1016/j.rser.2013.03.023_bib69 article-title: Customer characterization options for improving the tariff offer publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2002.807085 – volume: 7 start-page: 57 issue: 1 year: 1974 ident: 10.1016/j.rser.2013.03.023_bib51 article-title: Numerical taxonomy with fuzzy sets publication-title: Journal of Mathematical Biology doi: 10.1007/BF02339490 – volume: 21 start-page: 11 issue: 1–6 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib63 article-title: Clustering method of fuzzy equivalence matrix to bad-data detection and identification publication-title: Power System Protection and Control – volume: 8 start-page: 105 issue: 2 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib65 article-title: Optimized clusters for disaggregated electricity load forecasting publication-title: Statistical Journal – volume: 32 start-page: 241 issue: 3 year: 1967 ident: 10.1016/j.rser.2013.03.023_bib13 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – volume: 34 start-page: 56 issue: 10 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib20 article-title: A classifying and synthesizing method of power consumer industry based on the daily load profile publication-title: Automation of Electric Power Systems – ident: 10.1016/j.rser.2013.03.023_bib71 doi: 10.1049/cp:20020061 – ident: 10.1016/j.rser.2013.03.023_bib22 – volume: 3 start-page: 32 year: 1973 ident: 10.1016/j.rser.2013.03.023_bib43 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.rser.2013.03.023_bib8 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Computers and Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 158 start-page: 2095 issue: 19 year: 2007 ident: 10.1016/j.rser.2013.03.023_bib42 article-title: On fuzzy cluster validity indices publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2007.03.004 – ident: 10.1016/j.rser.2013.03.023_bib52 – volume: 80 start-page: 1042 issue: 9 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib68 article-title: An annual framework for clustering-based pricing for an electricity retailer publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2010.01.010 – start-page: 1 year: 2005 ident: 10.1016/j.rser.2013.03.023_bib38 article-title: Efficient iterative refinement clustering for electricity customer classification publication-title: IEEE Russia Power Technology IEEE doi: 10.1109/PTC.2005.4524366 – volume: 155 start-page: 191 year: 2005 ident: 10.1016/j.rser.2013.03.023_bib56 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.04.009 – ident: 10.1016/j.rser.2013.03.023_bib4 – ident: 10.1016/j.rser.2013.03.023_bib12 – ident: 10.1016/j.rser.2013.03.023_bib34 doi: 10.1109/DRPT.2008.4523624 – volume: 23 start-page: 73 issue: 65–68 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib62 article-title: Application of k-means clustering algorithm in load curve classification publication-title: Power System Protection and Control – volume: 70 start-page: 31 year: 1975 ident: 10.1016/j.rser.2013.03.023_bib46 article-title: Measuring the power of hierarchical cluster analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1975.10480256 – volume: 16 start-page: 6539 issue: 9 year: 2012 ident: 10.1016/j.rser.2013.03.023_bib3 article-title: A review and an analysis of the residential electric load curve models publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2012.08.013 – ident: 10.1016/j.rser.2013.03.023_bib35 doi: 10.1109/CIMSA.2010.5611759 – volume: 26 start-page: 1275 issue: 9 year: 2005 ident: 10.1016/j.rser.2013.03.023_bib57 article-title: A cluster validity index for fuzzy clustering publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2004.11.022 – volume: 15 start-page: 8 issue: 66–70 year: 2008 ident: 10.1016/j.rser.2013.03.023_bib31 article-title: Power consumers load profile clustering using the SOM neural network publication-title: Automation of Electric Power Systems – ident: 10.1016/j.rser.2013.03.023_bib72 – ident: 10.1016/j.rser.2013.03.023_bib1 doi: 10.1109/ECTICON.2011.5947960 – ident: 10.1016/j.rser.2013.03.023_bib30 doi: 10.1109/NEUREL.2008.4685564 – volume: 3 start-page: 370 issue: 3 year: 1995 ident: 10.1016/j.rser.2013.03.023_bib54 article-title: On cluster validity for fuzzy c-means model publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.413225 – volume: 16 start-page: 22 issue: 111–115 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib23 article-title: Study of power load classification based on adaptive fuzzy C means publication-title: Power System Protection and Control – volume: 40 start-page: 58 issue: 22 year: 2012 ident: 10.1016/j.rser.2013.03.023_bib24 article-title: An improved fuzzy c-means algorithm for power load characteristics classification publication-title: Power System Protection and Control – ident: 10.1016/j.rser.2013.03.023_bib27 – volume: 24 start-page: 1619 issue: 3 year: 2009 ident: 10.1016/j.rser.2013.03.023_bib33 article-title: Support vector clustering of electrical load pattern data publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2009.2023009 – volume: 87 start-page: 3538 issue: 11 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib17 article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.05.015 – volume: 43 start-page: 3374 issue: 10 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib58 article-title: Cluster validity index for estimation of fuzzy clusters of different sizes and densities publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.04.025 – volume: 50 start-page: 159 issue: 2 year: 1985 ident: 10.1016/j.rser.2013.03.023_bib40 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika doi: 10.1007/BF02294245 – volume: 23 start-page: 73 issue: 65–68 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib16 article-title: Application of k-means clustering algorithm in load curve classification publication-title: Power System Protection and Control – volume: 29 start-page: 190 year: 1976 ident: 10.1016/j.rser.2013.03.023_bib45 article-title: Quadratic assignment as a general data-analysis strategy publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/j.2044-8317.1976.tb00714.x – ident: 10.1016/j.rser.2013.03.023_bib11 doi: 10.1109/TNN.2005.845141 – year: 2011 ident: 10.1016/j.rser.2013.03.023_bib9 article-title: Analysis and forecast of China's electricity load characteristics publication-title: China Electric Power Press – ident: 10.1016/j.rser.2013.03.023_bib26 doi: 10.1109/CIASG.2011.5953331 – volume: 4571 start-page: 174 year: 2007 ident: 10.1016/j.rser.2013.03.023_bib49 article-title: A bounded index for cluster validity publication-title: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science doi: 10.1007/978-3-540-73499-4_14 – ident: 10.1016/j.rser.2013.03.023_bib66 doi: 10.1109/WKDD.2008.30 – volume: 31 start-page: 120 issue: 1 year: 2001 ident: 10.1016/j.rser.2013.03.023_bib48 article-title: Nonparametric genetic clustering: comparison of validity indices publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews doi: 10.1109/5326.923275 – volume: 37 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.rser.2013.03.023_bib70 article-title: Study on consumer classification differentiated pricing of electricity publication-title: Electric Power – volume: 81 start-page: 716 issue: 2 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib18 article-title: Hopfield–K-means clustering algorithm: a proposal for the segmentation of electricity consumers publication-title: Electric Power System Research doi: 10.1016/j.epsr.2010.10.036 – volume: 38 start-page: 143 issue: 5 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib60 article-title: Dynamic intelligent cleaning for dirty electric load data based on data mining publication-title: Automation of Electric Power Systems – ident: 10.1016/j.rser.2013.03.023_bib10 – volume: 28 start-page: 301 year: 1998 ident: 10.1016/j.rser.2013.03.023_bib44 article-title: Some new indexes of cluster validity publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/3477.678624 – ident: 10.1016/j.rser.2013.03.023_bib15 doi: 10.1109/TD-ASIA.2009.5356926 – volume: 38 start-page: 143 issue: 5 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib59 article-title: Current situation and development of the methods on bad-data detection and identification of power system publication-title: Power System Protection and Control – volume: 15 start-page: 4236 issue: 9 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib7 article-title: Construction of China's smart grid information system analysis publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2011.07.129 – volume: 26 start-page: 2353 issue: 15 year: 2005 ident: 10.1016/j.rser.2013.03.023_bib41 article-title: New indices for cluster validity assessment publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.04.007 – volume: 33 start-page: 1498 issue: 8 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib28 article-title: Building load management using cluster and statistical analyses publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2011.06.034 – volume: 12 start-page: 2040 issue: 8 year: 2008 ident: 10.1016/j.rser.2013.03.023_bib64 article-title: Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2007.04.010 – volume: 7 start-page: 205 year: 2004 ident: 10.1016/j.rser.2013.03.023_bib47 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-004-0218-1 – volume: 13 start-page: 841 issue: 8 year: 1991 ident: 10.1016/j.rser.2013.03.023_bib53 article-title: A validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.85677 – ident: 10.1016/j.rser.2013.03.023_bib21 – volume: 43 start-page: 3364 year: 2010 ident: 10.1016/j.rser.2013.03.023_bib50 article-title: SEP/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.04.021 – volume: 28 start-page: 64 issue: 1 year: 2004 ident: 10.1016/j.rser.2013.03.023_bib19 article-title: Studies on classification and synthesis of composite dynamic loads publication-title: Automation of Electric Power Systems – ident: 10.1016/j.rser.2013.03.023_bib25 – ident: 10.1016/j.rser.2013.03.023_bib29 – volume: 26 start-page: 1755 issue: 3 year: 2011 ident: 10.1016/j.rser.2013.03.023_bib39 article-title: Customer classification and load profiling method for distribution systems publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2011.2142198 – volume: 1 start-page: 104 issue: 1 year: 2007 ident: 10.1016/j.rser.2013.03.023_bib2 article-title: Methods for customer and demand response policies selection in new electricity markets publication-title: IET Generation, Transmission & Distribution doi: 10.1049/iet-gtd:20060183 |
SSID | ssj0015873 |
Score | 2.50472 |
SecondaryResourceType | review_article |
Snippet | The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Applied sciences Clustering methods and result evaluation methods Economic data Electric energy electricity Energy Energy economics Exact sciences and technology General, economic and professional studies Load classification Load classification applications Methodology. Modelling Process model Smart grid tariffs |
Title | A review of electric load classification in smart grid environment |
URI | https://dx.doi.org/10.1016/j.rser.2013.03.023 https://www.proquest.com/docview/1500792965 https://www.proquest.com/docview/1678554358 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5cvewexMcujo-hhb1JdpL0I8lxHJTxybLugLemO-lIRBOZGa_-dqvyGBRxDkIgEKpDd1WnHumvqgB-C-ViG6jEM5Y7TxhnPOMr5zkXBPidW8d9yne-ulbjiTi_lbcrMOpyYQhW2er-RqfX2rp9Mmi5OXgqisFNwJXwOQYwnDrLhaSHhYhol_95WcA8AhnXp8xE7BF1mzjTYLymKGaCd_G60GnIPzNO33JTEWrSzJBxedPx4oPyri3S6Qast64kGzaz3YQVV27BjzcFBrfheMia3BRW5azpeFOk7KEyGUvJbSacUC0aVpRs9ogLZ3fTImNv0t9-wuT05P9o7LVdE7xUxGruRdQiysnIdxibmCCmcjA2kplKM4PKJEOeqTxxIjWRMDLI0cNJbChMzC0adyn5L1gtq9LtALM2z1I_slTCRsgks1T7PqNc2wQDL5X2IOjYpdO2pDh1tnjQHXbsXhOLNbFY-3iFvAdHizFPTUGNpdSyk4J-ty00avyl43ZQZNogz2Z6chPSfx00xZST1IP-OzkuZoHxua_QfevBYSdYjd8aHaCY0lXPM00vwaUnSi6hQeuPLhqX8e4X574H38O65wahDPdhdT59dgfo-cxtv97afVgbjv5d_qX72cX4-hVXyAGQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcEOwuojy9EjcUNYkfSY4FgcoCvUAlbpadOCioJKgt_5-ZPCoQ2h5WyimyI3vGnkdm5huAM6FcbAOVeMZy5wnjjGd85TznggDvuXXcp3rn-7EaTcTfJ_m0BpddLQylVbayv5HptbRu3wxaag7eimLwEHAlfI4ODKfOciHK4Q1Cp5I92Bje3I7Gy2CCjOtAM433aEJbO9Okec2Q05ThxWus05D_Sz-t56aixEkzR9rlTdOLb_K7VkrXO7DdWpNs2Cx4F9Zc-RO2PmEM_oKLIWvKU1iVs6bpTZGyaWUylpLlTKlCNXdYUbL5K-6dPc-KjH2qgPsNk-urx8uR1zZO8FIRq4UXUZcoJyPfoXtigpgQYWwkM5VmBuVJhmRTeeJEaiJhZJCjkZPYUJiYW9TvUvI96JVV6faBWZtnqR9ZQrERMskswd9nVG6boO-l0j4EHbl02qKKU3OLqe7Sx140kVgTibWPT8j7cL6c89ZgaqwcLTsu6C8nQ6PQXzlvH1mmDdJsricPIf3aQW1MZUl9OPnCx-Uq0EX3FVpwffjTMVbjdaMYiild9T7X9BHceqLkijFoAKCVxmV88J9rP4Ufo8f7O313M749hM2wbsFBSYdH0FvM3t0xGkILe9Ie9A8cCQKs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+electric+load+classification+in+smart+grid+environment&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Zhou%2C+Kai-le&rft.au=Yang%2C+Shan-lin&rft.au=Shen%2C+Chao&rft.date=2013-08-01&rft.issn=1364-0321&rft.volume=24+p.103-110&rft.spage=103&rft.epage=110&rft_id=info:doi/10.1016%2Fj.rser.2013.03.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |