A review of electric load classification in smart grid environment

The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 24; pp. 103 - 110
Main Authors Zhou, Kai-le, Yang, Shan-lin, Shen, Chao
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies about load classification in smart grid environment. Then, the commonly used clustering methods for load classification are summarized and briefly reviewed, and the well-known evaluation methods for load classification are also introduced. Besides, the applications of load classification, including bad data identification and correction, load forecasting and tariff setting, are discussed. Finally, an example of load classification based on Fuzzy c-means (FCM) is presented.
AbstractList The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies about load classification in smart grid environment. Then, the commonly used clustering methods for load classification are summarized and briefly reviewed, and the well-known evaluation methods for load classification are also introduced. Besides, the applications of load classification, including bad data identification and correction, load forecasting and tariff setting, are discussed. Finally, an example of load classification based on Fuzzy c-means (FCM) is presented.
Author Shen, Chao
Yang, Shan-lin
Zhou, Kai-le
Author_xml – sequence: 1
  givenname: Kai-le
  surname: Zhou
  fullname: Zhou, Kai-le
  email: kailezhou@gmail.com, zhoukaile@mail.hfut.edu.cn
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
– sequence: 2
  givenname: Shan-lin
  surname: Yang
  fullname: Yang, Shan-lin
  email: hgdysl@gmail.com
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
– sequence: 3
  givenname: Chao
  surname: Shen
  fullname: Shen, Chao
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27406893$$DView record in Pascal Francis
BookMark eNqFkc1LHTEUxYMo-NV_oBuzEbqZ500y-Rhwo9IvEFy0rkNeckfymJfYZLT43zfTZzcuLFxIFr9zbnLOMdlPOSEhHxmsGDB1sVmVimXFgYkVtOFijxwxo4cO1AD77S5U34Hg7JAc17oBYNJocUSur2jB54i_aR4pTujnEj2dsgvUT67WOEbv5pgTjYnWrSszfSgxUEzPseS0xTSfkoPRTRU_vJ4n5P7L558337rbu6_fb65uO98bNXc6qLBGqQEVKMeMYVKttQzKB6eVCD0INQ7Ye6d7J9nIuBzWvHdGrHtQUooT8mnn-1jyryess93G6nGaXML8VC1T2kjZC2n-j0oAPfBBLa7nr6ir3k1jccnHah9LbJ99sVy35WYQjTM7zpdca8HR-jj_TWYuLk6WgV2asBu7NGGXJiy04YuUv5H-c39XdLYTjS5b1zKv9v5HA9rLGVcaoBGXOwJb6K3CYquPmDyGWFqPNuT43oI_BNSryQ
CitedBy_id crossref_primary_10_1016_j_rser_2015_03_036
crossref_primary_10_1016_j_rser_2015_05_041
crossref_primary_10_1016_j_apenergy_2022_119525
crossref_primary_10_1016_j_epsr_2023_109859
crossref_primary_10_1049_cps2_12057
crossref_primary_10_1109_TPWRS_2019_2936293
crossref_primary_10_2174_2405463104666210427112311
crossref_primary_10_3390_en12203935
crossref_primary_10_1016_j_segan_2024_101319
crossref_primary_10_1016_j_adapen_2020_100007
crossref_primary_10_1016_j_jpdc_2020_05_004
crossref_primary_10_1016_j_bdr_2015_03_003
crossref_primary_10_1016_j_apenergy_2018_12_025
crossref_primary_10_3389_fenrg_2022_1012721
crossref_primary_10_1007_s11227_023_05793_0
crossref_primary_10_1016_j_rser_2015_12_001
crossref_primary_10_2166_ws_2023_208
crossref_primary_10_1007_s12182_016_0136_z
crossref_primary_10_1016_j_rser_2017_06_093
crossref_primary_10_1016_j_rser_2019_109628
crossref_primary_10_1007_s42044_019_00043_0
crossref_primary_10_1016_j_applthermaleng_2016_09_041
crossref_primary_10_3390_app12178914
crossref_primary_10_1109_ACCESS_2022_3194674
crossref_primary_10_1016_j_suscom_2020_100427
crossref_primary_10_1016_j_apenergy_2019_113919
crossref_primary_10_3390_electronics10030290
crossref_primary_10_1016_j_rser_2015_07_040
crossref_primary_10_1155_2018_1503092
crossref_primary_10_1016_j_rser_2016_12_095
crossref_primary_10_1016_j_egyr_2022_08_256
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_1016_j_energy_2018_05_127
crossref_primary_10_21122_1029_7448_2020_63_3_212_222
crossref_primary_10_1016_j_cie_2024_110329
crossref_primary_10_1016_j_scs_2020_102693
crossref_primary_10_1016_j_rser_2014_08_036
crossref_primary_10_1016_j_mfglet_2024_03_004
crossref_primary_10_1016_j_egyr_2022_09_023
crossref_primary_10_1016_j_enbuild_2018_01_017
crossref_primary_10_1016_j_scs_2021_103380
crossref_primary_10_1049_iet_gtd_2019_1085
crossref_primary_10_54644_jte_68_2022_1079
crossref_primary_10_3390_info10070224
crossref_primary_10_1109_JSYST_2019_2931879
crossref_primary_10_3390_info15030142
crossref_primary_10_3390_en12204016
crossref_primary_10_1002_etep_2265
crossref_primary_10_1109_TSG_2016_2548565
crossref_primary_10_1145_3485128
crossref_primary_10_3233_ICA_230728
crossref_primary_10_1002_asmb_2453
crossref_primary_10_1016_j_apenergy_2017_06_096
crossref_primary_10_1016_j_rser_2015_01_056
crossref_primary_10_1142_S0218126622501067
crossref_primary_10_3390_en11071893
crossref_primary_10_1016_j_enpol_2020_111732
crossref_primary_10_1016_j_enbuild_2021_111071
crossref_primary_10_3390_en11092235
crossref_primary_10_1016_j_epsr_2023_109149
crossref_primary_10_1109_ACCESS_2017_2712258
crossref_primary_10_2166_hydro_2020_133
crossref_primary_10_1016_j_rser_2023_114151
crossref_primary_10_48084_etasr_4862
crossref_primary_10_1088_1755_1315_514_4_042047
crossref_primary_10_1051_e3sconf_202125701032
crossref_primary_10_1016_j_rser_2016_04_009
crossref_primary_10_1016_j_scs_2017_07_016
crossref_primary_10_1109_TSG_2018_2818167
crossref_primary_10_3390_s21165650
crossref_primary_10_1109_TSG_2022_3146489
crossref_primary_10_1016_j_enconman_2014_10_062
crossref_primary_10_3390_app11083598
crossref_primary_10_1002_cpe_7518
crossref_primary_10_1007_s11269_018_2012_7
crossref_primary_10_2139_ssrn_3982129
crossref_primary_10_3390_en10122047
crossref_primary_10_1016_j_rser_2017_05_124
crossref_primary_10_1186_s43067_020_00021_8
crossref_primary_10_1016_j_engappai_2014_10_013
crossref_primary_10_1002_tee_22767
crossref_primary_10_1109_ICJECE_2020_3018433
crossref_primary_10_1016_j_knosys_2016_01_001
crossref_primary_10_1109_TPWRS_2015_2493083
crossref_primary_10_1016_j_segan_2020_100308
crossref_primary_10_3390_app7111160
crossref_primary_10_1016_j_rser_2018_03_088
crossref_primary_10_1016_j_rser_2020_109967
crossref_primary_10_1016_j_apenergy_2021_116721
crossref_primary_10_1016_j_apenergy_2022_120328
crossref_primary_10_1016_j_epsr_2018_10_006
crossref_primary_10_1109_ACCESS_2020_3041178
crossref_primary_10_1109_JIOT_2021_3138541
crossref_primary_10_3390_electronics11152302
crossref_primary_10_1016_j_rser_2014_04_028
crossref_primary_10_1016_j_autcon_2022_104303
crossref_primary_10_1155_2020_1953461
crossref_primary_10_1016_j_apenergy_2019_03_134
crossref_primary_10_1016_j_rser_2018_04_037
crossref_primary_10_1049_iet_stg_2018_0261
crossref_primary_10_1016_j_energy_2023_129920
crossref_primary_10_1016_j_heliyon_2024_e36951
crossref_primary_10_1016_j_scs_2021_103618
crossref_primary_10_1016_j_apenergy_2019_114246
crossref_primary_10_1088_1742_6596_2310_1_012079
crossref_primary_10_1016_j_apenergy_2023_122518
crossref_primary_10_1016_j_egypro_2017_09_545
crossref_primary_10_1016_j_rser_2016_11_132
crossref_primary_10_3390_en13071723
crossref_primary_10_1049_stg2_12161
crossref_primary_10_3390_en12214137
crossref_primary_10_1016_j_rser_2015_11_050
crossref_primary_10_1016_j_egypro_2015_11_754
crossref_primary_10_1016_j_segan_2021_100446
crossref_primary_10_1007_s00202_020_00949_0
crossref_primary_10_1007_s12053_017_9554_z
crossref_primary_10_1109_ACCESS_2019_2914216
crossref_primary_10_1109_TSG_2023_3253824
crossref_primary_10_1016_j_apenergy_2016_06_052
crossref_primary_10_1016_j_rser_2016_10_054
crossref_primary_10_3390_app9152993
crossref_primary_10_1016_j_energy_2022_125999
crossref_primary_10_1109_TSG_2022_3184252
crossref_primary_10_1016_j_segan_2018_100181
crossref_primary_10_3390_en14092502
crossref_primary_10_1007_s12053_020_09922_z
crossref_primary_10_1080_10789669_2014_929887
crossref_primary_10_1016_j_enbuild_2021_111663
crossref_primary_10_1109_ACCESS_2023_3286020
crossref_primary_10_3390_en13082050
crossref_primary_10_1016_j_asoc_2023_110395
crossref_primary_10_1007_s40313_022_00956_5
crossref_primary_10_1016_j_eswa_2017_05_049
crossref_primary_10_1016_j_rineng_2025_104001
crossref_primary_10_1016_j_solener_2024_112885
crossref_primary_10_3390_iot3010002
crossref_primary_10_1016_j_jclepro_2016_09_165
crossref_primary_10_1109_TSG_2018_2825335
crossref_primary_10_1016_j_jclepro_2020_120747
crossref_primary_10_1016_j_rser_2014_05_049
crossref_primary_10_1109_TPWRS_2016_2604389
crossref_primary_10_1016_j_apenergy_2014_08_111
crossref_primary_10_1016_j_epsr_2020_106788
Cites_doi 10.1016/j.rser.2012.03.008
10.1109/5.58325
10.1109/91.493905
10.1016/j.rser.2010.09.009
10.1109/TPWRS.2004.826810
10.1109/TPWRS.2002.807085
10.1007/BF02339490
10.1007/BF02289588
10.1049/cp:20020061
10.1080/01969727308546046
10.1016/0098-3004(84)90020-7
10.1016/j.fss.2007.03.004
10.1016/j.epsr.2010.01.010
10.1109/PTC.2005.4524366
10.1016/j.fss.2005.04.009
10.1109/DRPT.2008.4523624
10.1080/01621459.1975.10480256
10.1016/j.rser.2012.08.013
10.1109/CIMSA.2010.5611759
10.1016/j.patrec.2004.11.022
10.1109/ECTICON.2011.5947960
10.1109/NEUREL.2008.4685564
10.1109/91.413225
10.1109/TPWRS.2009.2023009
10.1016/j.apenergy.2010.05.015
10.1016/j.patcog.2010.04.025
10.1007/BF02294245
10.1111/j.2044-8317.1976.tb00714.x
10.1109/TNN.2005.845141
10.1109/CIASG.2011.5953331
10.1007/978-3-540-73499-4_14
10.1109/WKDD.2008.30
10.1109/5326.923275
10.1016/j.epsr.2010.10.036
10.1109/3477.678624
10.1109/TD-ASIA.2009.5356926
10.1016/j.rser.2011.07.129
10.1016/j.patrec.2005.04.007
10.1016/j.ijepes.2011.06.034
10.1016/j.rser.2007.04.010
10.1007/s10044-004-0218-1
10.1109/34.85677
10.1016/j.patcog.2010.04.021
10.1109/TPWRD.2011.2142198
10.1049/iet-gtd:20060183
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7ST
7U6
C1K
SOI
7S9
L.6
DOI 10.1016/j.rser.2013.03.023
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Environment Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0690
EndPage 110
ExternalDocumentID 27406893
10_1016_j_rser_2013_03_023
US201500126700
S1364032113001822
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
ABPIF
ABPTK
FBQ
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7ST
7U6
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c486t-7d6dbe570e606a188156b75d6cda763d4036f9e4ca74a51f1259b24a83b406553
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Fri Jul 11 02:22:01 EDT 2025
Fri Jul 11 04:08:53 EDT 2025
Wed Apr 02 07:26:07 EDT 2025
Tue Jul 01 01:56:25 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Wed Dec 27 19:26:19 EST 2023
Fri Feb 23 02:17:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process model
Clustering methods and result evaluation methods
Load classification
Load classification applications
Smart grid
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-7d6dbe570e606a188156b75d6cda763d4036f9e4ca74a51f1259b24a83b406553
Notes http://dx.doi.org/10.1016/j.rser.2013.03.023
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500792965
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1678554358
proquest_miscellaneous_1500792965
pascalfrancis_primary_27406893
crossref_citationtrail_10_1016_j_rser_2013_03_023
crossref_primary_10_1016_j_rser_2013_03_023
fao_agris_US201500126700
elsevier_sciencedirect_doi_10_1016_j_rser_2013_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gavrilas M, Gavrilas G, Sfintes CV. Application of honey bee mating optimization algorithm to load profile clustering. In: IEEE international conference on computational intelligence for measurement systems and applications (CIMSA). IEEE; 2010. p. 113–118.
Sathiracheewin S, Surapatana V. Daily typical load clustering of residential consumers. In: Eighth international conference on electrical engineering/electronics, computer, telecommunications and international technology (ECTI-CON); 2011. p. 797–800.
Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Transactions on Neural Networks 2005;16(3):645–78
Ju, Jin, Wu (bib19) 2004; 28
Li, Jiang, Qian (bib20) 2010; 34
Zhang, Cheng, Zhou (bib60) 2010; 38
Ozveren CS, Vechakanjana C, Birch AP. Fuzzy classification of electrical load demand profiles-a case study. In: fifth international conference on power system management and control; 2002. p. 353–358.
Chou, Su, Lai (bib47) 2004; 7
Bezdek (bib51) 1974; 7
Zhang ZH. Study on load classification in power system. Thesis. Tianjin University; 2007.
Valero, Ortiz, Senabre (bib2) 2007; 1
Dunn (bib43) 1973; 3
Grandjean, Adnot, Binet (bib3) 2012; 16
Jota, Silva, Jota (bib28) 2011; 33
Bidoki SM, Mahmoudi-Kohan N, Gerami S. Comparison of several clustering methods in the case of electrical load curves classification. In: 16th conference on electrical power distribution networks (EPDC); 2011. p. 1–7.
Chicco G, Napoli R, Piglione F. Application of clustering algorithms and self organising maps to classify electricity consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26.
Zhou, Yang (bib24) 2012; 40
Wang, Duan, Zhai (bib61) 2010; 3
Huang, Kang, Xia (bib70) 2004; 37
Li PQ, Li XR, Chen HH, et al. The characteristics classification and synthesis of power load based on fuzzy clustering. In: Proceedings of the Csee; 2005. 25(24): p. 73–78.
Kale, Pohekar (bib73) 2012; 16
Zhao, Zhou, Jiang (bib9) 2011
Johnson (bib13) 1967; 32
Jain A, Dubes R. Algorithms for clustering data. Prentice Hall. 1988.
Gavrilas M, Ivanov O, Gavrilas G. Load profiling with fuzzy self-organizing algorithms. In: Ninth symposium on neural network application in electrical engineering (NEUREL); 2008. p. 25–27.
Mahmoudi-Kohan, Moghaddam, Sheikh-El-Eslami (bib68) 2010; 80
Bezdek, Pal (bib44) 1998; 28
Liu, Zhai, Jiang (bib59) 2010; 38
Hubert, Schultz (bib45) 1976; 29
Mutanen, Ruska, Repo (bib39) 2011; 26
Beccali, Cellura, Lo Brano (bib64) 2008; 12
Wu, Chen, Liu (bib7) 2011; 15
Liu, Wang, Zhai (bib16) 2011; 23
Baker, Hubert (bib46) 1975; 70
Kim YI, Ko JM, Choi SH. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In: IEEE symposium on computational intelligence applications in smart grid(CIASG), IEEE; 2011. p. 1–6.
Bensaid, Hall, Bezdek (bib55) 1996; 4
Batrinu, Chicco, Napoli (bib38) 2005
Macqueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967. p. 281–97
Zokaria Z, Lo KL. Two-stage fuzzy clustering approach for load profiling. In: Proceedings of the 44th international universities power engineering conference (UPEC) 2009; 9: p. 1–5.
Kohonen (bib14) 1990; 78
Chicco, Napoli, Postolache (bib69) 2003; 18
Fukuyama Y, Sugeno M. A new method of choosing the number of cluster for the fuzzy c-means method. In: Proceedings of the fifth fuzzy systems symposium; 1989. p. 247–250.
Milligan, Cooper (bib40) 1985; 50
Zhang HB, He RM, Liu YM. The characteristics clustering and synthesis of electric dynamic loads based on Kohonen neural network. In: Proceedings of the Csee; 2003. 23(5): p. 1–5,43.
Bezdek, Ehrlish, Full (bib8) 1984; 10
Chua, Oh, Goh (bib67) 2011; 15
Misiti, Misiti, Oppenheim (bib65) 2010; 8
Chicco, Llie (bib33) 2009; 24
Li, Wu, Wu (bib31) 2008; 15
Pal, Bezdek (bib54) 1995; 3
Pakhira, Bandyopadhyay, Maulik (bib56) 2005; 155
Li XR, Lin SJ, Liu YH, et al. A new classification method for aggregate load dynamic characteristics based on field measured response. In: Proceedings of the Csee; 2006. 26(8): p. 39–44.
Räsänen, Voukantsis, Niska (bib17) 2010; 87
Gu DZ, Ai Q, Chen C. The application of artificial immune network in load classification. In: Third international conference on electric unility deregulation and restructuring and power technologies; 2008. p. 1394–1398.
Jiang, Wang, Wang (bib63) 2011; 21
Kim, Ramakrishna (bib41) 2005; 26
Verdu SU, Garcia MO, Franco FJG, et al. Characterization and identification of electrical consumers through the use of self-organizing maps and daily load parameters. IEEE power systems conference and exposition. IEEE; 2004. p. 899–906.
Žalik (bib58) 2010; 43
Li W, Han ZH. Short-term power load forecasting using improved ant colony clustering. In: First international workshop on knowledge discovery and data mining; 2008. p. 221–224.
Chicco, Napoli, Piglione (bib37) 2004; 19
Saitta, Raphael, Smith (bib49) 2007; 4571
Xie, Beni (bib53) 1991; 13
López, Aguado, Martín (bib18) 2011; 81
Gurrutxaga, Albisua, Arbelaitz (bib50) 2010; 43
Lin, Li, Liu (bib6) 2005; 29
Wang, Zhang (bib42) 2007; 158
Gerbec D, Gasperic S, Gubina F. Determination and allocation of typical load profiles to the eligible consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26.
Bandyopadhyay, Maulik (bib48) 2001; 31
Sun YM, Wang CL, Zhang ZS, et al. Clustering analysis of power system load series based on ant colony optimization algorithm. In: Proceedings of the Csee; 2005. 25(18): p. 40–45.
Liu, Wang, Zhai (bib62) 2011; 23
Kim YI, Shin JH, Song JJ, et al. Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In: Asia and Pacific transmission & distribution conference & exposition 2009; 10:1–4.
Yang, Zhang, He (bib23) 2010; 16
Wu, Yang (bib57) 2005; 26
Lin (10.1016/j.rser.2013.03.023_bib6) 2005; 29
Wu (10.1016/j.rser.2013.03.023_bib7) 2011; 15
10.1016/j.rser.2013.03.023_bib12
10.1016/j.rser.2013.03.023_bib11
Jota (10.1016/j.rser.2013.03.023_bib28) 2011; 33
Mutanen (10.1016/j.rser.2013.03.023_bib39) 2011; 26
10.1016/j.rser.2013.03.023_bib15
Pakhira (10.1016/j.rser.2013.03.023_bib56) 2005; 155
Beccali (10.1016/j.rser.2013.03.023_bib64) 2008; 12
Chicco (10.1016/j.rser.2013.03.023_bib37) 2004; 19
Bezdek (10.1016/j.rser.2013.03.023_bib44) 1998; 28
Bandyopadhyay (10.1016/j.rser.2013.03.023_bib48) 2001; 31
Huang (10.1016/j.rser.2013.03.023_bib70) 2004; 37
Ju (10.1016/j.rser.2013.03.023_bib19) 2004; 28
Batrinu (10.1016/j.rser.2013.03.023_bib38) 2005
Chou (10.1016/j.rser.2013.03.023_bib47) 2004; 7
10.1016/j.rser.2013.03.023_bib52
Chicco (10.1016/j.rser.2013.03.023_bib33) 2009; 24
10.1016/j.rser.2013.03.023_bib10
Kohonen (10.1016/j.rser.2013.03.023_bib14) 1990; 78
10.1016/j.rser.2013.03.023_bib22
10.1016/j.rser.2013.03.023_bib66
10.1016/j.rser.2013.03.023_bib25
10.1016/j.rser.2013.03.023_bib27
Räsänen (10.1016/j.rser.2013.03.023_bib17) 2010; 87
10.1016/j.rser.2013.03.023_bib26
10.1016/j.rser.2013.03.023_bib29
Valero (10.1016/j.rser.2013.03.023_bib2) 2007; 1
López (10.1016/j.rser.2013.03.023_bib18) 2011; 81
Wang (10.1016/j.rser.2013.03.023_bib42) 2007; 158
Yang (10.1016/j.rser.2013.03.023_bib23) 2010; 16
Bensaid (10.1016/j.rser.2013.03.023_bib55) 1996; 4
Dunn (10.1016/j.rser.2013.03.023_bib43) 1973; 3
Chicco (10.1016/j.rser.2013.03.023_bib69) 2003; 18
10.1016/j.rser.2013.03.023_bib21
Žalik (10.1016/j.rser.2013.03.023_bib58) 2010; 43
10.1016/j.rser.2013.03.023_bib34
10.1016/j.rser.2013.03.023_bib36
Liu (10.1016/j.rser.2013.03.023_bib16) 2011; 23
10.1016/j.rser.2013.03.023_bib35
Chua (10.1016/j.rser.2013.03.023_bib67) 2011; 15
Milligan (10.1016/j.rser.2013.03.023_bib40) 1985; 50
Zhou (10.1016/j.rser.2013.03.023_bib24) 2012; 40
Saitta (10.1016/j.rser.2013.03.023_bib49) 2007; 4571
Gurrutxaga (10.1016/j.rser.2013.03.023_bib50) 2010; 43
Liu (10.1016/j.rser.2013.03.023_bib59) 2010; 38
Baker (10.1016/j.rser.2013.03.023_bib46) 1975; 70
Mahmoudi-Kohan (10.1016/j.rser.2013.03.023_bib68) 2010; 80
Jiang (10.1016/j.rser.2013.03.023_bib63) 2011; 21
10.1016/j.rser.2013.03.023_bib72
10.1016/j.rser.2013.03.023_bib71
10.1016/j.rser.2013.03.023_bib30
10.1016/j.rser.2013.03.023_bib32
Liu (10.1016/j.rser.2013.03.023_bib62) 2011; 23
Pal (10.1016/j.rser.2013.03.023_bib54) 1995; 3
Li (10.1016/j.rser.2013.03.023_bib31) 2008; 15
Wu (10.1016/j.rser.2013.03.023_bib57) 2005; 26
Li (10.1016/j.rser.2013.03.023_bib20) 2010; 34
10.1016/j.rser.2013.03.023_bib1
Kim (10.1016/j.rser.2013.03.023_bib41) 2005; 26
10.1016/j.rser.2013.03.023_bib4
10.1016/j.rser.2013.03.023_bib5
Bezdek (10.1016/j.rser.2013.03.023_bib8) 1984; 10
Grandjean (10.1016/j.rser.2013.03.023_bib3) 2012; 16
Bezdek (10.1016/j.rser.2013.03.023_bib51) 1974; 7
Kale (10.1016/j.rser.2013.03.023_bib73) 2012; 16
Misiti (10.1016/j.rser.2013.03.023_bib65) 2010; 8
Zhao (10.1016/j.rser.2013.03.023_bib9) 2011
Wang (10.1016/j.rser.2013.03.023_bib61) 2010; 3
Johnson (10.1016/j.rser.2013.03.023_bib13) 1967; 32
Hubert (10.1016/j.rser.2013.03.023_bib45) 1976; 29
Xie (10.1016/j.rser.2013.03.023_bib53) 1991; 13
Zhang (10.1016/j.rser.2013.03.023_bib60) 2010; 38
References_xml – reference: Zhang HB, He RM, Liu YM. The characteristics clustering and synthesis of electric dynamic loads based on Kohonen neural network. In: Proceedings of the Csee; 2003. 23(5): p. 1–5,43.
– volume: 155
  start-page: 191
  year: 2005
  end-page: 214
  ident: bib56
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets and Systems
– volume: 23
  start-page: 73
  year: 2011
  ident: bib16
  article-title: Application of k-means clustering algorithm in load curve classification
  publication-title: Power System Protection and Control
– volume: 43
  start-page: 3364
  year: 2010
  end-page: 3373
  ident: bib50
  article-title: SEP/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index
  publication-title: Pattern Recognition
– volume: 37
  start-page: 24
  year: 2004
  end-page: 28
  ident: bib70
  article-title: Study on consumer classification differentiated pricing of electricity
  publication-title: Electric Power
– volume: 28
  start-page: 64
  year: 2004
  end-page: 68
  ident: bib19
  article-title: Studies on classification and synthesis of composite dynamic loads
  publication-title: Automation of Electric Power Systems
– reference: Kim YI, Ko JM, Choi SH. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In: IEEE symposium on computational intelligence applications in smart grid(CIASG), IEEE; 2011. p. 1–6.
– volume: 15
  start-page: 4236
  year: 2011
  end-page: 4241
  ident: bib7
  article-title: Construction of China's smart grid information system analysis
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 81
  start-page: 716
  year: 2011
  end-page: 724
  ident: bib18
  article-title: Hopfield–K-means clustering algorithm: a proposal for the segmentation of electricity consumers
  publication-title: Electric Power System Research
– reference: Chicco G, Napoli R, Piglione F. Application of clustering algorithms and self organising maps to classify electricity consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26.
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: bib14
  article-title: The self-organization maps
  publication-title: Proceedings of the IEEE
– volume: 70
  start-page: 31
  year: 1975
  end-page: 38
  ident: bib46
  article-title: Measuring the power of hierarchical cluster analysis
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 57
  year: 1974
  end-page: 71
  ident: bib51
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: Journal of Mathematical Biology
– reference: Verdu SU, Garcia MO, Franco FJG, et al. Characterization and identification of electrical consumers through the use of self-organizing maps and daily load parameters. IEEE power systems conference and exposition. IEEE; 2004. p. 899–906.
– volume: 50
  start-page: 159
  year: 1985
  end-page: 179
  ident: bib40
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
– volume: 4
  start-page: 112
  year: 1996
  end-page: 123
  ident: bib55
  article-title: Validity-guided (re)clustering with applications to image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: Zokaria Z, Lo KL. Two-stage fuzzy clustering approach for load profiling. In: Proceedings of the 44th international universities power engineering conference (UPEC) 2009; 9: p. 1–5.
– reference: Bidoki SM, Mahmoudi-Kohan N, Gerami S. Comparison of several clustering methods in the case of electrical load curves classification. In: 16th conference on electrical power distribution networks (EPDC); 2011. p. 1–7.
– reference: Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Transactions on Neural Networks 2005;16(3):645–78
– volume: 38
  start-page: 143
  year: 2010
  end-page: 152
  ident: bib60
  article-title: Dynamic intelligent cleaning for dirty electric load data based on data mining
  publication-title: Automation of Electric Power Systems
– volume: 24
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bib33
  article-title: Support vector clustering of electrical load pattern data
  publication-title: IEEE Transactions on Power Systems
– reference: Gerbec D, Gasperic S, Gubina F. Determination and allocation of typical load profiles to the eligible consumers. In: IEEE Bologna power tech conference proceedings. IEEE; 2003. p. 23–26.
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: bib53
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 15
  start-page: 705
  year: 2011
  end-page: 712
  ident: bib67
  article-title: Feed-in tariff outlook in Malaysia
  publication-title: Renewable and Sustainable Energy Reviews
– reference: Li PQ, Li XR, Chen HH, et al. The characteristics classification and synthesis of power load based on fuzzy clustering. In: Proceedings of the Csee; 2005. 25(24): p. 73–78.
– year: 2011
  ident: bib9
  article-title: Analysis and forecast of China's electricity load characteristics
  publication-title: China Electric Power Press
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  ident: bib54
  article-title: On cluster validity for fuzzy c-means model
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 1
  start-page: 104
  year: 2007
  end-page: 110
  ident: bib2
  article-title: Methods for customer and demand response policies selection in new electricity markets
  publication-title: IET Generation, Transmission & Distribution
– reference: Sathiracheewin S, Surapatana V. Daily typical load clustering of residential consumers. In: Eighth international conference on electrical engineering/electronics, computer, telecommunications and international technology (ECTI-CON); 2011. p. 797–800.
– reference: Sun YM, Wang CL, Zhang ZS, et al. Clustering analysis of power system load series based on ant colony optimization algorithm. In: Proceedings of the Csee; 2005. 25(18): p. 40–45.
– volume: 26
  start-page: 1755
  year: 2011
  end-page: 1763
  ident: bib39
  article-title: Customer classification and load profiling method for distribution systems
  publication-title: IEEE Transactions on Power Delivery
– start-page: 1
  year: 2005
  end-page: 7
  ident: bib38
  article-title: Efficient iterative refinement clustering for electricity customer classification
  publication-title: IEEE Russia Power Technology IEEE
– volume: 29
  start-page: 190
  year: 1976
  end-page: 241
  ident: bib45
  article-title: Quadratic assignment as a general data-analysis strategy
  publication-title: British Journal of Mathematical and Statistical Psychology
– reference: Ozveren CS, Vechakanjana C, Birch AP. Fuzzy classification of electrical load demand profiles-a case study. In: fifth international conference on power system management and control; 2002. p. 353–358.
– volume: 16
  start-page: 6539
  year: 2012
  end-page: 6565
  ident: bib3
  article-title: A review and an analysis of the residential electric load curve models
  publication-title: Renewable and Sustainable Energy Reviews
– reference: Fukuyama Y, Sugeno M. A new method of choosing the number of cluster for the fuzzy c-means method. In: Proceedings of the fifth fuzzy systems symposium; 1989. p. 247–250.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib8
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Computers and Geosciences
– volume: 16
  start-page: 3960
  year: 2012
  end-page: 3966
  ident: bib73
  article-title: Electricity demand supply analysis: current status and future prospects for Maharashtra, India
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 43
  start-page: 3374
  year: 2010
  end-page: 3390
  ident: bib58
  article-title: Cluster validity index for estimation of fuzzy clusters of different sizes and densities
  publication-title: Pattern Recognition
– reference: Macqueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967. p. 281–97
– reference: Gavrilas M, Gavrilas G, Sfintes CV. Application of honey bee mating optimization algorithm to load profile clustering. In: IEEE international conference on computational intelligence for measurement systems and applications (CIMSA). IEEE; 2010. p. 113–118.
– reference: Gavrilas M, Ivanov O, Gavrilas G. Load profiling with fuzzy self-organizing algorithms. In: Ninth symposium on neural network application in electrical engineering (NEUREL); 2008. p. 25–27.
– volume: 15
  start-page: 8
  year: 2008
  ident: bib31
  article-title: Power consumers load profile clustering using the SOM neural network
  publication-title: Automation of Electric Power Systems
– reference: Jain A, Dubes R. Algorithms for clustering data. Prentice Hall. 1988.
– reference: Zhang ZH. Study on load classification in power system. Thesis. Tianjin University; 2007.
– volume: 16
  start-page: 22
  year: 2010
  ident: bib23
  article-title: Study of power load classification based on adaptive fuzzy C means
  publication-title: Power System Protection and Control
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: bib43
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
– volume: 34
  start-page: 56
  year: 2010
  end-page: 61
  ident: bib20
  article-title: A classifying and synthesizing method of power consumer industry based on the daily load profile
  publication-title: Automation of Electric Power Systems
– volume: 4571
  start-page: 174
  year: 2007
  end-page: 187
  ident: bib49
  article-title: A bounded index for cluster validity
  publication-title: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science
– volume: 3
  start-page: 31
  year: 2010
  ident: bib61
  article-title: Application of k-means algorithm based on effective index to identifying bad data of the power system
  publication-title: Northeast Electric Power Technology
– volume: 40
  start-page: 58
  year: 2012
  end-page: 63
  ident: bib24
  article-title: An improved fuzzy c-means algorithm for power load characteristics classification
  publication-title: Power System Protection and Control
– volume: 7
  start-page: 205
  year: 2004
  end-page: 220
  ident: bib47
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Analysis and Applications
– volume: 28
  start-page: 301
  year: 1998
  end-page: 315
  ident: bib44
  article-title: Some new indexes of cluster validity
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 29
  start-page: 33
  year: 2005
  end-page: 38
  ident: bib6
  article-title: A classification method for aggregated load dynamic characteristics
  publication-title: Automation of Electric Power Systems
– volume: 19
  start-page: 1232
  year: 2004
  end-page: 1239
  ident: bib37
  article-title: Load pattern-based classification of electricity consumers
  publication-title: IEEE Transactions on Power Systems
– volume: 38
  start-page: 143
  year: 2010
  end-page: 152
  ident: bib59
  article-title: Current situation and development of the methods on bad-data detection and identification of power system
  publication-title: Power System Protection and Control
– volume: 158
  start-page: 2095
  year: 2007
  end-page: 2117
  ident: bib42
  article-title: On fuzzy cluster validity indices
  publication-title: Fuzzy Sets and Systems
– volume: 18
  start-page: 381
  year: 2003
  end-page: 387
  ident: bib69
  article-title: Customer characterization options for improving the tariff offer
  publication-title: IEEE Transactions on Power Systems
– reference: Li XR, Lin SJ, Liu YH, et al. A new classification method for aggregate load dynamic characteristics based on field measured response. In: Proceedings of the Csee; 2006. 26(8): p. 39–44.
– volume: 80
  start-page: 1042
  year: 2010
  end-page: 1048
  ident: bib68
  article-title: An annual framework for clustering-based pricing for an electricity retailer
  publication-title: Electric Power Systems Research
– volume: 26
  start-page: 1275
  year: 2005
  end-page: 1291
  ident: bib57
  article-title: A cluster validity index for fuzzy clustering
  publication-title: Pattern Recognition Letters
– volume: 26
  start-page: 2353
  year: 2005
  end-page: 2363
  ident: bib41
  article-title: New indices for cluster validity assessment
  publication-title: Pattern Recognition Letters
– volume: 33
  start-page: 1498
  year: 2011
  end-page: 1505
  ident: bib28
  article-title: Building load management using cluster and statistical analyses
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 8
  start-page: 105
  year: 2010
  end-page: 124
  ident: bib65
  article-title: Optimized clusters for disaggregated electricity load forecasting
  publication-title: Statistical Journal
– reference: Li W, Han ZH. Short-term power load forecasting using improved ant colony clustering. In: First international workshop on knowledge discovery and data mining; 2008. p. 221–224.
– reference: Kim YI, Shin JH, Song JJ, et al. Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In: Asia and Pacific transmission & distribution conference & exposition 2009; 10:1–4.
– volume: 87
  start-page: 3538
  year: 2010
  end-page: 3545
  ident: bib17
  article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data
  publication-title: Applied Energy
– volume: 12
  start-page: 2040
  year: 2008
  end-page: 2065
  ident: bib64
  article-title: Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 31
  start-page: 120
  year: 2001
  end-page: 125
  ident: bib48
  article-title: Nonparametric genetic clustering: comparison of validity indices
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: bib13
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– volume: 23
  start-page: 73
  year: 2011
  ident: bib62
  article-title: Application of k-means clustering algorithm in load curve classification
  publication-title: Power System Protection and Control
– volume: 21
  start-page: 11
  year: 2011
  ident: bib63
  article-title: Clustering method of fuzzy equivalence matrix to bad-data detection and identification
  publication-title: Power System Protection and Control
– reference: Gu DZ, Ai Q, Chen C. The application of artificial immune network in load classification. In: Third international conference on electric unility deregulation and restructuring and power technologies; 2008. p. 1394–1398.
– volume: 16
  start-page: 3960
  issue: 6
  year: 2012
  ident: 10.1016/j.rser.2013.03.023_bib73
  article-title: Electricity demand supply analysis: current status and future prospects for Maharashtra, India
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2012.03.008
– ident: 10.1016/j.rser.2013.03.023_bib5
– ident: 10.1016/j.rser.2013.03.023_bib32
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 10.1016/j.rser.2013.03.023_bib14
  article-title: The self-organization maps
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58325
– ident: 10.1016/j.rser.2013.03.023_bib36
– volume: 29
  start-page: 33
  issue: 22
  year: 2005
  ident: 10.1016/j.rser.2013.03.023_bib6
  article-title: A classification method for aggregated load dynamic characteristics
  publication-title: Automation of Electric Power Systems
– volume: 4
  start-page: 112
  issue: 2
  year: 1996
  ident: 10.1016/j.rser.2013.03.023_bib55
  article-title: Validity-guided (re)clustering with applications to image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.493905
– volume: 3
  start-page: 31
  issue: 16–18
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib61
  article-title: Application of k-means algorithm based on effective index to identifying bad data of the power system
  publication-title: Northeast Electric Power Technology
– volume: 15
  start-page: 705
  issue: 1
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib67
  article-title: Feed-in tariff outlook in Malaysia
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2010.09.009
– volume: 19
  start-page: 1232
  issue: 2
  year: 2004
  ident: 10.1016/j.rser.2013.03.023_bib37
  article-title: Load pattern-based classification of electricity consumers
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2004.826810
– volume: 18
  start-page: 381
  issue: 1
  year: 2003
  ident: 10.1016/j.rser.2013.03.023_bib69
  article-title: Customer characterization options for improving the tariff offer
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2002.807085
– volume: 7
  start-page: 57
  issue: 1
  year: 1974
  ident: 10.1016/j.rser.2013.03.023_bib51
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/BF02339490
– volume: 21
  start-page: 11
  issue: 1–6
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib63
  article-title: Clustering method of fuzzy equivalence matrix to bad-data detection and identification
  publication-title: Power System Protection and Control
– volume: 8
  start-page: 105
  issue: 2
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib65
  article-title: Optimized clusters for disaggregated electricity load forecasting
  publication-title: Statistical Journal
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10.1016/j.rser.2013.03.023_bib13
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 34
  start-page: 56
  issue: 10
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib20
  article-title: A classifying and synthesizing method of power consumer industry based on the daily load profile
  publication-title: Automation of Electric Power Systems
– ident: 10.1016/j.rser.2013.03.023_bib71
  doi: 10.1049/cp:20020061
– ident: 10.1016/j.rser.2013.03.023_bib22
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.rser.2013.03.023_bib43
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546046
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.rser.2013.03.023_bib8
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Computers and Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 158
  start-page: 2095
  issue: 19
  year: 2007
  ident: 10.1016/j.rser.2013.03.023_bib42
  article-title: On fuzzy cluster validity indices
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2007.03.004
– ident: 10.1016/j.rser.2013.03.023_bib52
– volume: 80
  start-page: 1042
  issue: 9
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib68
  article-title: An annual framework for clustering-based pricing for an electricity retailer
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2010.01.010
– start-page: 1
  year: 2005
  ident: 10.1016/j.rser.2013.03.023_bib38
  article-title: Efficient iterative refinement clustering for electricity customer classification
  publication-title: IEEE Russia Power Technology IEEE
  doi: 10.1109/PTC.2005.4524366
– volume: 155
  start-page: 191
  year: 2005
  ident: 10.1016/j.rser.2013.03.023_bib56
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2005.04.009
– ident: 10.1016/j.rser.2013.03.023_bib4
– ident: 10.1016/j.rser.2013.03.023_bib12
– ident: 10.1016/j.rser.2013.03.023_bib34
  doi: 10.1109/DRPT.2008.4523624
– volume: 23
  start-page: 73
  issue: 65–68
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib62
  article-title: Application of k-means clustering algorithm in load curve classification
  publication-title: Power System Protection and Control
– volume: 70
  start-page: 31
  year: 1975
  ident: 10.1016/j.rser.2013.03.023_bib46
  article-title: Measuring the power of hierarchical cluster analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1975.10480256
– volume: 16
  start-page: 6539
  issue: 9
  year: 2012
  ident: 10.1016/j.rser.2013.03.023_bib3
  article-title: A review and an analysis of the residential electric load curve models
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2012.08.013
– ident: 10.1016/j.rser.2013.03.023_bib35
  doi: 10.1109/CIMSA.2010.5611759
– volume: 26
  start-page: 1275
  issue: 9
  year: 2005
  ident: 10.1016/j.rser.2013.03.023_bib57
  article-title: A cluster validity index for fuzzy clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2004.11.022
– volume: 15
  start-page: 8
  issue: 66–70
  year: 2008
  ident: 10.1016/j.rser.2013.03.023_bib31
  article-title: Power consumers load profile clustering using the SOM neural network
  publication-title: Automation of Electric Power Systems
– ident: 10.1016/j.rser.2013.03.023_bib72
– ident: 10.1016/j.rser.2013.03.023_bib1
  doi: 10.1109/ECTICON.2011.5947960
– ident: 10.1016/j.rser.2013.03.023_bib30
  doi: 10.1109/NEUREL.2008.4685564
– volume: 3
  start-page: 370
  issue: 3
  year: 1995
  ident: 10.1016/j.rser.2013.03.023_bib54
  article-title: On cluster validity for fuzzy c-means model
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.413225
– volume: 16
  start-page: 22
  issue: 111–115
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib23
  article-title: Study of power load classification based on adaptive fuzzy C means
  publication-title: Power System Protection and Control
– volume: 40
  start-page: 58
  issue: 22
  year: 2012
  ident: 10.1016/j.rser.2013.03.023_bib24
  article-title: An improved fuzzy c-means algorithm for power load characteristics classification
  publication-title: Power System Protection and Control
– ident: 10.1016/j.rser.2013.03.023_bib27
– volume: 24
  start-page: 1619
  issue: 3
  year: 2009
  ident: 10.1016/j.rser.2013.03.023_bib33
  article-title: Support vector clustering of electrical load pattern data
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2009.2023009
– volume: 87
  start-page: 3538
  issue: 11
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib17
  article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.05.015
– volume: 43
  start-page: 3374
  issue: 10
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib58
  article-title: Cluster validity index for estimation of fuzzy clusters of different sizes and densities
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.04.025
– volume: 50
  start-page: 159
  issue: 2
  year: 1985
  ident: 10.1016/j.rser.2013.03.023_bib40
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– volume: 23
  start-page: 73
  issue: 65–68
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib16
  article-title: Application of k-means clustering algorithm in load curve classification
  publication-title: Power System Protection and Control
– volume: 29
  start-page: 190
  year: 1976
  ident: 10.1016/j.rser.2013.03.023_bib45
  article-title: Quadratic assignment as a general data-analysis strategy
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1976.tb00714.x
– ident: 10.1016/j.rser.2013.03.023_bib11
  doi: 10.1109/TNN.2005.845141
– year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib9
  article-title: Analysis and forecast of China's electricity load characteristics
  publication-title: China Electric Power Press
– ident: 10.1016/j.rser.2013.03.023_bib26
  doi: 10.1109/CIASG.2011.5953331
– volume: 4571
  start-page: 174
  year: 2007
  ident: 10.1016/j.rser.2013.03.023_bib49
  article-title: A bounded index for cluster validity
  publication-title: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-73499-4_14
– ident: 10.1016/j.rser.2013.03.023_bib66
  doi: 10.1109/WKDD.2008.30
– volume: 31
  start-page: 120
  issue: 1
  year: 2001
  ident: 10.1016/j.rser.2013.03.023_bib48
  article-title: Nonparametric genetic clustering: comparison of validity indices
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  doi: 10.1109/5326.923275
– volume: 37
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.rser.2013.03.023_bib70
  article-title: Study on consumer classification differentiated pricing of electricity
  publication-title: Electric Power
– volume: 81
  start-page: 716
  issue: 2
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib18
  article-title: Hopfield–K-means clustering algorithm: a proposal for the segmentation of electricity consumers
  publication-title: Electric Power System Research
  doi: 10.1016/j.epsr.2010.10.036
– volume: 38
  start-page: 143
  issue: 5
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib60
  article-title: Dynamic intelligent cleaning for dirty electric load data based on data mining
  publication-title: Automation of Electric Power Systems
– ident: 10.1016/j.rser.2013.03.023_bib10
– volume: 28
  start-page: 301
  year: 1998
  ident: 10.1016/j.rser.2013.03.023_bib44
  article-title: Some new indexes of cluster validity
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/3477.678624
– ident: 10.1016/j.rser.2013.03.023_bib15
  doi: 10.1109/TD-ASIA.2009.5356926
– volume: 38
  start-page: 143
  issue: 5
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib59
  article-title: Current situation and development of the methods on bad-data detection and identification of power system
  publication-title: Power System Protection and Control
– volume: 15
  start-page: 4236
  issue: 9
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib7
  article-title: Construction of China's smart grid information system analysis
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2011.07.129
– volume: 26
  start-page: 2353
  issue: 15
  year: 2005
  ident: 10.1016/j.rser.2013.03.023_bib41
  article-title: New indices for cluster validity assessment
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.04.007
– volume: 33
  start-page: 1498
  issue: 8
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib28
  article-title: Building load management using cluster and statistical analyses
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2011.06.034
– volume: 12
  start-page: 2040
  issue: 8
  year: 2008
  ident: 10.1016/j.rser.2013.03.023_bib64
  article-title: Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2007.04.010
– volume: 7
  start-page: 205
  year: 2004
  ident: 10.1016/j.rser.2013.03.023_bib47
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-004-0218-1
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 10.1016/j.rser.2013.03.023_bib53
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.85677
– ident: 10.1016/j.rser.2013.03.023_bib21
– volume: 43
  start-page: 3364
  year: 2010
  ident: 10.1016/j.rser.2013.03.023_bib50
  article-title: SEP/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.04.021
– volume: 28
  start-page: 64
  issue: 1
  year: 2004
  ident: 10.1016/j.rser.2013.03.023_bib19
  article-title: Studies on classification and synthesis of composite dynamic loads
  publication-title: Automation of Electric Power Systems
– ident: 10.1016/j.rser.2013.03.023_bib25
– ident: 10.1016/j.rser.2013.03.023_bib29
– volume: 26
  start-page: 1755
  issue: 3
  year: 2011
  ident: 10.1016/j.rser.2013.03.023_bib39
  article-title: Customer classification and load profiling method for distribution systems
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2011.2142198
– volume: 1
  start-page: 104
  issue: 1
  year: 2007
  ident: 10.1016/j.rser.2013.03.023_bib2
  article-title: Methods for customer and demand response policies selection in new electricity markets
  publication-title: IET Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd:20060183
SSID ssj0015873
Score 2.50472
SecondaryResourceType review_article
Snippet The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Applied sciences
Clustering methods and result evaluation methods
Economic data
Electric energy
electricity
Energy
Energy economics
Exact sciences and technology
General, economic and professional studies
Load classification
Load classification applications
Methodology. Modelling
Process model
Smart grid
tariffs
Title A review of electric load classification in smart grid environment
URI https://dx.doi.org/10.1016/j.rser.2013.03.023
https://www.proquest.com/docview/1500792965
https://www.proquest.com/docview/1678554358
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5cvewexMcujo-hhb1JdpL0I8lxHJTxybLugLemO-lIRBOZGa_-dqvyGBRxDkIgEKpDd1WnHumvqgB-C-ViG6jEM5Y7TxhnPOMr5zkXBPidW8d9yne-ulbjiTi_lbcrMOpyYQhW2er-RqfX2rp9Mmi5OXgqisFNwJXwOQYwnDrLhaSHhYhol_95WcA8AhnXp8xE7BF1mzjTYLymKGaCd_G60GnIPzNO33JTEWrSzJBxedPx4oPyri3S6Qast64kGzaz3YQVV27BjzcFBrfheMia3BRW5azpeFOk7KEyGUvJbSacUC0aVpRs9ogLZ3fTImNv0t9-wuT05P9o7LVdE7xUxGruRdQiysnIdxibmCCmcjA2kplKM4PKJEOeqTxxIjWRMDLI0cNJbChMzC0adyn5L1gtq9LtALM2z1I_slTCRsgks1T7PqNc2wQDL5X2IOjYpdO2pDh1tnjQHXbsXhOLNbFY-3iFvAdHizFPTUGNpdSyk4J-ty00avyl43ZQZNogz2Z6chPSfx00xZST1IP-OzkuZoHxua_QfevBYSdYjd8aHaCY0lXPM00vwaUnSi6hQeuPLhqX8e4X574H38O65wahDPdhdT59dgfo-cxtv97afVgbjv5d_qX72cX4-hVXyAGQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcEOwuojy9EjcUNYkfSY4FgcoCvUAlbpadOCioJKgt_5-ZPCoQ2h5WyimyI3vGnkdm5huAM6FcbAOVeMZy5wnjjGd85TznggDvuXXcp3rn-7EaTcTfJ_m0BpddLQylVbayv5HptbRu3wxaag7eimLwEHAlfI4ODKfOciHK4Q1Cp5I92Bje3I7Gy2CCjOtAM433aEJbO9Okec2Q05ThxWus05D_Sz-t56aixEkzR9rlTdOLb_K7VkrXO7DdWpNs2Cx4F9Zc-RO2PmEM_oKLIWvKU1iVs6bpTZGyaWUylpLlTKlCNXdYUbL5K-6dPc-KjH2qgPsNk-urx8uR1zZO8FIRq4UXUZcoJyPfoXtigpgQYWwkM5VmBuVJhmRTeeJEaiJhZJCjkZPYUJiYW9TvUvI96JVV6faBWZtnqR9ZQrERMskswd9nVG6boO-l0j4EHbl02qKKU3OLqe7Sx140kVgTibWPT8j7cL6c89ZgaqwcLTsu6C8nQ6PQXzlvH1mmDdJsricPIf3aQW1MZUl9OPnCx-Uq0EX3FVpwffjTMVbjdaMYiild9T7X9BHceqLkijFoAKCVxmV88J9rP4Ufo8f7O313M749hM2wbsFBSYdH0FvM3t0xGkILe9Ie9A8cCQKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+electric+load+classification+in+smart+grid+environment&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Zhou%2C+Kai-le&rft.au=Yang%2C+Shan-lin&rft.au=Shen%2C+Chao&rft.date=2013-08-01&rft.issn=1364-0321&rft.volume=24+p.103-110&rft.spage=103&rft.epage=110&rft_id=info:doi/10.1016%2Fj.rser.2013.03.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon