Laser shock processing and its effects on microstructure and properties of metal alloys: a review
The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention i...
Saved in:
Published in | International journal of fatigue Vol. 24; no. 10; pp. 1021 - 1036 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2002
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components. |
---|---|
AbstractList | The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components. (The review draws data from articles covering a wide range of metals including aluminum alloys, steels, iron-nickel alloys, iron silicon alloys and zinc.) The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components. |
Author | Mai, Yiu-Wing Clark, Graham Ye, Lin Montross, Charles S. Wei, Tao |
Author_xml | – sequence: 1 givenname: Charles S. surname: Montross fullname: Montross, Charles S. organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia – sequence: 2 givenname: Tao surname: Wei fullname: Wei, Tao organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia – sequence: 3 givenname: Lin surname: Ye fullname: Ye, Lin email: ye@mech.eng.usyd.edu.au organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia – sequence: 4 givenname: Graham surname: Clark fullname: Clark, Graham organization: Airframes and Engines Division, Aeronautical and Maritime Research Laboratory, 506 Lorimer Street, Fishermens Bend, Victoria 3207, Australia – sequence: 5 givenname: Yiu-Wing surname: Mai fullname: Mai, Yiu-Wing organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13793626$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsK3-BCEXRQ-rSfYzXkSKX1DwoJ5DTGY1us3WzK7Sf2-2LXr0NASedybvMyEj33og5JCzM854cf7IeCYSzkV6wsQpY0zE1w4Z86qUSZrlYkTGv8gemSC-R0iyMh8TPdcIgeJbaz7oMrQGEJ1_pdpb6jqkUNdg4mw9XTgTWuxCb7o-wJqIgSWEzkEEarqATjdUN027wguqaYAvB9_7ZLfWDcLBdk7J88310-wumT_c3s-u5onJqqJLCgtMWoAqrySHtBQVgyI3wma1FqUAUdjM2kwazjnLmSxzIwuoZJa9WK6lSafkeLM3fuqzB-zUwqGBptEe2h6VKLmMnYsI5htwqIMBarUMbqHDSnGmBqFqLVQNthQTai1U8Zg72h7QaHRTB-2Nw79wWsq0EMP-yw0HsW00EBQaB96AdSG6VLZ1_1z6AQbwjDc |
CODEN | IJFADB |
CitedBy_id | crossref_primary_10_1016_j_jmatprotec_2019_116553 crossref_primary_10_2351_1_5035483 crossref_primary_10_3390_ma13061453 crossref_primary_10_1007_s00170_015_6809_8 crossref_primary_10_1016_j_triboint_2014_04_017 crossref_primary_10_1016_j_optlastec_2016_11_022 crossref_primary_10_1016_j_actamat_2012_12_016 crossref_primary_10_1016_j_apsusc_2017_02_146 crossref_primary_10_1016_j_ijfatigue_2021_106581 crossref_primary_10_4028_www_scientific_net_AMR_538_541_1866 crossref_primary_10_1038_s41598_019_43876_2 crossref_primary_10_1063_1_4816487 crossref_primary_10_1016_j_msea_2020_139486 crossref_primary_10_1111_ffe_14231 crossref_primary_10_1179_174328409X453181 crossref_primary_10_1016_j_jmrt_2023_11_168 crossref_primary_10_3390_ma16113944 crossref_primary_10_4028_www_scientific_net_SSP_200_60 crossref_primary_10_3390_ma14051082 crossref_primary_10_1016_j_optlastec_2022_108760 crossref_primary_10_1002_adem_201700641 crossref_primary_10_1007_s00170_020_05058_7 crossref_primary_10_1016_j_optlastec_2021_107391 crossref_primary_10_1002_prep_200800021 crossref_primary_10_1115_1_4007780 crossref_primary_10_1080_01694243_2020_1757584 crossref_primary_10_1016_S1005_0302_11_60144_8 crossref_primary_10_1016_j_ijmecsci_2020_106173 crossref_primary_10_1016_j_optlastec_2022_108528 crossref_primary_10_3390_ma15165503 crossref_primary_10_1016_j_cirp_2012_03_139 crossref_primary_10_1016_j_optlastec_2021_107385 crossref_primary_10_1016_j_msea_2023_144657 crossref_primary_10_1007_s00170_021_07955_x crossref_primary_10_1002_pssa_200925198 crossref_primary_10_1007_s11665_022_06857_7 crossref_primary_10_1179_026708403225007563 crossref_primary_10_1016_j_msea_2016_08_031 crossref_primary_10_1007_s11665_022_06748_x crossref_primary_10_1007_s11665_021_05799_w crossref_primary_10_1016_S1003_6326_14_63150_2 crossref_primary_10_1016_j_optlastec_2015_09_008 crossref_primary_10_1016_j_actamat_2014_09_032 crossref_primary_10_1016_j_optlastec_2019_02_019 crossref_primary_10_3390_photonics8040120 crossref_primary_10_1016_j_msea_2012_08_125 crossref_primary_10_1007_s12666_010_0071_4 crossref_primary_10_1016_j_engfracmech_2021_107918 crossref_primary_10_1016_j_matdes_2013_08_054 crossref_primary_10_1016_j_surfcoat_2017_01_031 crossref_primary_10_1115_1_4003117 crossref_primary_10_1016_j_apsusc_2021_150242 crossref_primary_10_1007_s40735_021_00474_y crossref_primary_10_1063_5_0079544 crossref_primary_10_3390_ma17040909 crossref_primary_10_1088_0022_3727_44_17_174026 crossref_primary_10_1016_j_compstruct_2020_112249 crossref_primary_10_1016_j_optlastec_2015_09_014 crossref_primary_10_1016_j_jnoncrysol_2019_02_031 crossref_primary_10_1016_j_scriptamat_2007_12_023 crossref_primary_10_1557_s43578_022_00600_7 crossref_primary_10_1016_j_matchar_2021_111620 crossref_primary_10_1016_j_surfcoat_2019_125284 crossref_primary_10_1007_s10812_015_0064_5 crossref_primary_10_1007_s11431_023_2420_x crossref_primary_10_1007_s40830_015_0004_5 crossref_primary_10_1016_j_ijfatigue_2017_08_006 crossref_primary_10_1016_j_jallcom_2022_168305 crossref_primary_10_1016_j_apsusc_2010_03_043 crossref_primary_10_1016_j_ijfatigue_2018_01_018 crossref_primary_10_1016_j_ijfatigue_2018_01_017 crossref_primary_10_1016_j_mechmat_2017_06_009 crossref_primary_10_1016_j_mspro_2015_11_045 crossref_primary_10_4028_www_scientific_net_SSP_183_215 crossref_primary_10_1016_j_wear_2016_03_027 crossref_primary_10_1016_j_optlastec_2019_02_041 crossref_primary_10_1016_j_jmrt_2023_04_162 crossref_primary_10_1007_s11665_023_08454_8 crossref_primary_10_1016_j_ijmachtools_2010_08_012 crossref_primary_10_1007_s12666_020_01965_1 crossref_primary_10_1016_j_optlastec_2013_05_017 crossref_primary_10_1016_j_optlastec_2023_109722 crossref_primary_10_1016_j_corsci_2023_111794 crossref_primary_10_4028_www_scientific_net_AMR_661_141 crossref_primary_10_3724_SP_J_1037_2011_00577 crossref_primary_10_1016_j_jmrt_2024_05_017 crossref_primary_10_3390_ma12162503 crossref_primary_10_1007_s41871_023_00182_w crossref_primary_10_1080_14786435_2020_1760390 crossref_primary_10_1007_s12541_019_00147_4 crossref_primary_10_1115_1_4003124 crossref_primary_10_1063_1_4742997 crossref_primary_10_3389_fmech_2020_00056 crossref_primary_10_2184_lsj_42_6_448 crossref_primary_10_4028_www_scientific_net_MSF_783_786_2376 crossref_primary_10_1016_j_ijmachtools_2007_08_021 crossref_primary_10_2184_lsj_42_6_472 crossref_primary_10_1016_j_surfcoat_2016_08_053 crossref_primary_10_4028_www_scientific_net_MSF_1002_21 crossref_primary_10_1007_s11665_023_09098_4 crossref_primary_10_1007_s11340_009_9301_2 crossref_primary_10_1016_j_optlastec_2019_105892 crossref_primary_10_1080_10589759_2019_1573238 crossref_primary_10_1115_1_2386180 crossref_primary_10_1016_j_optlastec_2020_106409 crossref_primary_10_1063_1_5054195 crossref_primary_10_1016_j_cossms_2023_101090 crossref_primary_10_1007_s11661_017_4175_x crossref_primary_10_3390_met11111716 crossref_primary_10_1007_s11663_020_01902_z crossref_primary_10_1063_1_1581285 crossref_primary_10_1016_j_ijmecsci_2016_03_022 crossref_primary_10_1016_j_actamat_2012_06_024 crossref_primary_10_4028_www_scientific_net_AMR_97_101_3816 crossref_primary_10_1049_joe_2015_0118 crossref_primary_10_1016_j_ndteint_2021_102457 crossref_primary_10_1016_j_optlaseng_2013_06_011 crossref_primary_10_1016_j_ijsolstr_2022_111422 crossref_primary_10_1016_j_ijimpeng_2010_11_008 crossref_primary_10_1080_10426911003720763 crossref_primary_10_1007_s11665_016_2158_5 crossref_primary_10_1016_j_rinp_2018_08_030 crossref_primary_10_1115_1_3075869 crossref_primary_10_3390_ma17081809 crossref_primary_10_4028_www_scientific_net_MSF_697_698_466 crossref_primary_10_2184_lsj_42_6_494 crossref_primary_10_1016_j_optlaseng_2011_11_013 crossref_primary_10_1080_09205071_2017_1398109 crossref_primary_10_1111_j_1460_2695_2006_01093_x crossref_primary_10_1016_j_rcim_2022_102389 crossref_primary_10_1016_j_wear_2014_11_016 crossref_primary_10_3390_nano11092223 crossref_primary_10_1063_1_4996846 crossref_primary_10_1007_s40195_017_0555_x crossref_primary_10_1016_j_optlastec_2019_105669 crossref_primary_10_1016_j_apsusc_2010_08_099 crossref_primary_10_1016_j_optlastec_2012_09_015 crossref_primary_10_3390_ma13163612 crossref_primary_10_1016_j_corsci_2019_04_019 crossref_primary_10_1016_j_jmatprotec_2020_116640 crossref_primary_10_1016_j_jmrt_2023_06_227 crossref_primary_10_2184_lsj_42_6_489 crossref_primary_10_2351_1_4943999 crossref_primary_10_1016_j_msea_2023_144886 crossref_primary_10_1007_s00170_016_8796_9 crossref_primary_10_1007_s11465_019_0581_7 crossref_primary_10_3390_met13050979 crossref_primary_10_1016_j_optlaseng_2019_105913 crossref_primary_10_1016_j_ijfatigue_2021_106544 crossref_primary_10_4131_jshpreview_31_149 crossref_primary_10_1080_01430750_2019_1614987 crossref_primary_10_1520_JAI101713 crossref_primary_10_4028_www_scientific_net_KEM_464_572 crossref_primary_10_1016_j_ijmecsci_2016_02_002 crossref_primary_10_1016_j_ijpvp_2019_103972 crossref_primary_10_1016_j_surfcoat_2016_08_088 crossref_primary_10_1016_j_jallcom_2020_158539 crossref_primary_10_1016_j_jmatprotec_2007_11_147 crossref_primary_10_1016_j_wear_2023_204866 crossref_primary_10_1016_j_engfracmech_2021_107524 crossref_primary_10_1016_j_jmatprotec_2015_07_003 crossref_primary_10_4028_www_scientific_net_AMM_43_467 crossref_primary_10_1016_j_matchar_2021_110935 crossref_primary_10_1103_PhysRevLett_114_174301 crossref_primary_10_24237_djes_2022_15405 crossref_primary_10_1108_17579861111108653 crossref_primary_10_1111_ffe_13390 crossref_primary_10_4028_www_scientific_net_AMR_460_420 crossref_primary_10_4028_www_scientific_net_MSF_561_565_2261 crossref_primary_10_1016_j_proeng_2015_12_247 crossref_primary_10_1016_j_surfcoat_2008_04_080 crossref_primary_10_3390_ma16114124 crossref_primary_10_1007_s11837_007_0021_8 crossref_primary_10_1016_j_msea_2020_140618 crossref_primary_10_3390_ma15207269 crossref_primary_10_1088_1742_6596_2526_1_012044 crossref_primary_10_1016_j_apsusc_2008_10_070 crossref_primary_10_1680_jsuin_20_00015 crossref_primary_10_1007_s12613_021_2322_2 crossref_primary_10_1016_j_surfin_2021_101241 crossref_primary_10_1016_j_apsusc_2014_02_128 crossref_primary_10_1016_j_surfcoat_2012_01_050 crossref_primary_10_1016_j_actamat_2010_10_032 crossref_primary_10_1016_j_proeng_2015_12_258 crossref_primary_10_1016_j_surfcoat_2021_127302 crossref_primary_10_1016_j_cja_2023_03_033 crossref_primary_10_1007_s12540_022_01286_6 crossref_primary_10_1016_j_finmec_2023_100234 crossref_primary_10_1016_j_wear_2019_05_007 crossref_primary_10_1016_j_matdes_2008_11_010 crossref_primary_10_1063_1_2426981 crossref_primary_10_1080_09507116_2021_1894034 crossref_primary_10_1103_PhysRevB_74_224301 crossref_primary_10_1016_j_euromechsol_2022_104844 crossref_primary_10_1088_1748_6041_11_1_015009 crossref_primary_10_4028_www_scientific_net_AMR_460_407 crossref_primary_10_1016_S1875_5372_18_30057_2 crossref_primary_10_1016_j_corsci_2012_03_044 crossref_primary_10_1016_j_apsusc_2019_03_070 crossref_primary_10_3390_ma14143841 crossref_primary_10_1016_j_apsusc_2009_04_011 crossref_primary_10_1016_j_triboint_2009_04_005 crossref_primary_10_1016_j_msea_2010_09_089 crossref_primary_10_1007_s11665_020_04667_3 crossref_primary_10_1007_s00170_018_1849_5 crossref_primary_10_1016_j_matchemphys_2024_129616 crossref_primary_10_4028_www_scientific_net_MSF_537_538_655 crossref_primary_10_1016_j_ijfatigue_2020_105890 crossref_primary_10_1007_s40430_019_1633_y crossref_primary_10_1016_j_ijmecsci_2022_107289 crossref_primary_10_1134_S1029959920020071 crossref_primary_10_1016_j_surfcoat_2023_129450 crossref_primary_10_1063_1_3486218 crossref_primary_10_1016_j_surfcoat_2018_07_087 crossref_primary_10_1007_s11661_015_3027_9 crossref_primary_10_1016_j_optlastec_2023_110333 crossref_primary_10_1016_j_jma_2019_05_005 crossref_primary_10_1016_j_ijmecsci_2020_105535 crossref_primary_10_1016_j_jmapro_2023_09_067 crossref_primary_10_3390_met13020397 crossref_primary_10_1111_j_1460_2695_2004_00763_x crossref_primary_10_1088_2631_8695_ab9b16 crossref_primary_10_1016_j_msea_2010_01_076 crossref_primary_10_1016_j_apsusc_2019_03_093 crossref_primary_10_1179_026708403225002568 crossref_primary_10_3390_ma7127925 crossref_primary_10_1088_0965_0393_17_1_015010 crossref_primary_10_4028_www_scientific_net_AMM_217_219_2234 crossref_primary_10_1007_s00542_019_04552_7 crossref_primary_10_1016_j_jmapro_2018_04_006 crossref_primary_10_1016_j_optlastec_2013_08_011 crossref_primary_10_1002_srin_200405819 crossref_primary_10_1016_j_matdes_2009_03_005 crossref_primary_10_1016_j_matchar_2021_111037 crossref_primary_10_1016_j_matdes_2008_09_033 crossref_primary_10_1016_j_surfcoat_2021_127988 crossref_primary_10_1016_j_optlastec_2017_10_022 crossref_primary_10_1080_10402004_2012_686087 crossref_primary_10_4028_www_scientific_net_AMM_217_219_2246 crossref_primary_10_3390_met9111192 crossref_primary_10_1016_j_matpr_2015_07_012 crossref_primary_10_4028_www_scientific_net_KEM_464_552 crossref_primary_10_1016_j_msea_2020_139933 crossref_primary_10_1007_s12206_016_0635_2 crossref_primary_10_1016_j_apsusc_2022_153406 crossref_primary_10_4028_www_scientific_net_AMM_44_47_148 crossref_primary_10_1039_C8NR09747J crossref_primary_10_1108_17579861111135923 crossref_primary_10_1016_j_optlastec_2023_109398 crossref_primary_10_1016_j_scriptamat_2015_10_027 crossref_primary_10_1016_j_msea_2009_04_049 crossref_primary_10_1016_j_surfcoat_2015_07_049 crossref_primary_10_1016_j_jallcom_2016_12_210 crossref_primary_10_1007_s00170_013_5032_8 crossref_primary_10_1007_s10921_011_0110_z crossref_primary_10_4028_www_scientific_net_AMR_1016_111 crossref_primary_10_1016_j_apsusc_2015_02_111 crossref_primary_10_1016_j_ijfatigue_2023_107649 crossref_primary_10_1016_j_optlaseng_2011_11_002 crossref_primary_10_3390_ma13235363 crossref_primary_10_1016_j_matdes_2017_05_083 crossref_primary_10_1515_amm_2015_0202 crossref_primary_10_1007_s10409_015_0521_7 crossref_primary_10_1016_j_jcsr_2016_07_010 crossref_primary_10_1016_S1003_6326_12_61763_4 crossref_primary_10_1002_pssb_201800649 crossref_primary_10_1063_1_4799154 crossref_primary_10_1007_s11665_018_3336_4 crossref_primary_10_1002_jbm_b_34278 crossref_primary_10_1016_j_matdes_2008_07_017 crossref_primary_10_1016_j_ijmachtools_2022_103917 crossref_primary_10_1016_j_matdes_2011_10_053 crossref_primary_10_1179_174329407X247208 crossref_primary_10_1007_s11003_014_9676_9 crossref_primary_10_1080_10408436_2018_1492368 crossref_primary_10_1088_1757_899X_114_1_012002 crossref_primary_10_1016_j_corsci_2014_10_045 crossref_primary_10_1016_j_jallcom_2023_171684 crossref_primary_10_1016_j_surfcoat_2007_07_008 crossref_primary_10_1002_admi_202400045 crossref_primary_10_1016_j_jmatprotec_2012_01_023 crossref_primary_10_1016_j_jmrt_2018_09_008 crossref_primary_10_1016_j_mechmat_2014_12_001 crossref_primary_10_1016_j_triboint_2009_04_014 crossref_primary_10_4028_www_scientific_net_AMR_317_319_1614 crossref_primary_10_1179_1743294412Y_0000000029 crossref_primary_10_1088_0031_8949_89_02_025703 crossref_primary_10_1016_j_triboint_2019_106138 crossref_primary_10_1299_mer_14_00192 crossref_primary_10_1016_j_ijmachtools_2023_104061 crossref_primary_10_4028_www_scientific_net_MSF_490_491_328 crossref_primary_10_1016_j_ijfatigue_2012_09_010 crossref_primary_10_1063_1_4904461 crossref_primary_10_1016_j_optlaseng_2012_07_007 crossref_primary_10_1016_j_msea_2024_146388 crossref_primary_10_1016_j_addma_2020_101112 crossref_primary_10_1063_1_3702890 crossref_primary_10_3390_ma15165682 crossref_primary_10_1016_j_ijfatigue_2014_11_001 crossref_primary_10_1039_C7RA05425D crossref_primary_10_1179_1743284712Y_0000000106 crossref_primary_10_1115_1_4002585 crossref_primary_10_1016_j_mtcomm_2023_107645 crossref_primary_10_1016_j_surfcoat_2015_09_014 crossref_primary_10_1063_1_3598341 crossref_primary_10_1007_s12206_010_0314_7 crossref_primary_10_1016_j_ijmecsci_2021_106757 crossref_primary_10_1111_ffe_12203 crossref_primary_10_1016_j_optlastec_2021_107217 crossref_primary_10_1016_j_ijfatigue_2021_106180 crossref_primary_10_2351_1_3573370 crossref_primary_10_1016_j_surfcoat_2020_125403 crossref_primary_10_1016_j_tafmec_2022_103358 crossref_primary_10_1007_s11665_022_07639_x crossref_primary_10_2184_lsj_41_2_134 crossref_primary_10_1016_j_matdes_2011_10_001 crossref_primary_10_1177_16878132241232837 crossref_primary_10_3390_s19245503 crossref_primary_10_1007_s00170_023_12354_5 crossref_primary_10_1016_j_surfcoat_2022_128237 crossref_primary_10_1016_j_jallcom_2018_08_161 crossref_primary_10_1088_0957_0233_25_5_055207 crossref_primary_10_1016_j_actamat_2010_06_010 crossref_primary_10_1016_j_optlastec_2018_08_005 crossref_primary_10_1016_j_msea_2013_01_068 crossref_primary_10_1016_j_surfcoat_2011_01_001 crossref_primary_10_1038_s41467_021_25140_2 crossref_primary_10_1016_j_matdes_2021_109754 crossref_primary_10_1063_5_0191028 crossref_primary_10_4028_www_scientific_net_AMM_146_83 crossref_primary_10_1002_adem_202001216 crossref_primary_10_1016_j_ijfatigue_2024_108424 crossref_primary_10_1016_j_matdes_2015_10_128 crossref_primary_10_1002_adem_200900290 crossref_primary_10_1051_matecconf_202032112018 crossref_primary_10_1016_j_mex_2023_102125 crossref_primary_10_4028_www_scientific_net_KEM_465_511 crossref_primary_10_1016_j_jmrt_2020_06_016 crossref_primary_10_1115_1_4049649 crossref_primary_10_4028_www_scientific_net_AMM_437_358 crossref_primary_10_1016_j_jmatprotec_2008_02_002 crossref_primary_10_3390_met13101762 crossref_primary_10_1016_j_actamat_2022_118259 crossref_primary_10_1016_j_ijsolstr_2022_112063 crossref_primary_10_1016_j_apsusc_2021_149097 crossref_primary_10_1364_OE_25_003875 crossref_primary_10_1016_j_addma_2017_05_008 crossref_primary_10_1016_j_optlastec_2018_06_032 crossref_primary_10_1080_00084433_2023_2294551 crossref_primary_10_3390_met6110279 crossref_primary_10_1016_j_surfcoat_2013_06_003 crossref_primary_10_1016_j_matdes_2009_02_015 crossref_primary_10_1007_s40830_018_0179_7 crossref_primary_10_1016_j_apsusc_2024_160334 crossref_primary_10_1016_j_msea_2006_07_020 crossref_primary_10_1016_j_wear_2019_01_112 crossref_primary_10_1016_j_matpr_2020_10_618 crossref_primary_10_1016_j_surfcoat_2021_127070 crossref_primary_10_5781_JWJ_2015_33_4_1 crossref_primary_10_1016_S1875_5372_14_60102_8 crossref_primary_10_1007_s11665_018_3371_1 crossref_primary_10_1016_j_matchar_2017_01_036 crossref_primary_10_1016_j_optlaseng_2017_09_024 crossref_primary_10_1039_D1TC02475B crossref_primary_10_1088_1757_899X_275_1_012041 crossref_primary_10_1016_j_commatsci_2018_02_030 crossref_primary_10_1016_j_msea_2005_11_017 crossref_primary_10_1016_j_apsusc_2013_08_080 crossref_primary_10_1016_j_mseb_2009_11_011 crossref_primary_10_1007_s11665_007_9091_6 crossref_primary_10_1016_j_surfcoat_2018_06_020 crossref_primary_10_1016_j_jmst_2024_04_075 crossref_primary_10_1088_1361_6528_aadd75 crossref_primary_10_1007_s00339_008_4894_3 crossref_primary_10_1016_j_matdes_2015_04_048 crossref_primary_10_1243_09544054JEM311 crossref_primary_10_1016_j_jallcom_2018_01_070 crossref_primary_10_1007_s00339_018_1675_5 crossref_primary_10_1016_j_jallcom_2018_09_147 crossref_primary_10_1016_j_jma_2023_05_011 crossref_primary_10_1088_1757_899X_700_1_012015 crossref_primary_10_1016_j_apsusc_2017_11_088 crossref_primary_10_3390_ma15155228 crossref_primary_10_1063_1_3558989 crossref_primary_10_1080_00084433_2023_2235128 crossref_primary_10_3390_met6120297 crossref_primary_10_1016_j_compstruct_2019_03_024 crossref_primary_10_2320_matertrans_M2016240 crossref_primary_10_1002_adom_201800444 crossref_primary_10_1007_s11661_021_06294_6 crossref_primary_10_1016_j_ijfatigue_2020_105868 crossref_primary_10_1016_j_surfcoat_2018_06_043 crossref_primary_10_1038_s41598_023_37060_w crossref_primary_10_1016_j_ijleo_2023_170654 crossref_primary_10_1016_j_apsusc_2010_09_002 crossref_primary_10_1016_j_jmapro_2015_05_007 crossref_primary_10_3390_ma14237111 crossref_primary_10_1016_j_msea_2011_12_053 crossref_primary_10_1016_j_msea_2016_12_073 crossref_primary_10_1016_j_ijengsci_2003_11_001 crossref_primary_10_1016_j_apsusc_2017_09_138 crossref_primary_10_1016_j_msea_2014_03_108 crossref_primary_10_3390_met6080179 crossref_primary_10_4028_www_scientific_net_AMR_891_892_974 crossref_primary_10_1016_j_msea_2012_09_097 crossref_primary_10_1016_j_triboint_2020_106443 crossref_primary_10_1002_smll_202105748 crossref_primary_10_1016_j_msea_2022_144295 crossref_primary_10_2320_matertrans_MT_MF2022040 crossref_primary_10_1016_j_surfin_2023_103757 crossref_primary_10_1016_j_surfcoat_2017_08_069 crossref_primary_10_1088_1361_6463_abc040 crossref_primary_10_1007_s11665_015_1494_1 crossref_primary_10_1016_j_proeng_2014_11_007 crossref_primary_10_1016_j_msea_2013_11_073 crossref_primary_10_5006_3990 crossref_primary_10_1016_j_jmapro_2021_02_062 crossref_primary_10_1016_j_ijfatigue_2016_05_017 crossref_primary_10_1016_j_matchar_2017_07_036 crossref_primary_10_1016_j_matchar_2024_113706 crossref_primary_10_1179_1432891714Z_000000000783 crossref_primary_10_1243_03093247JSA420 crossref_primary_10_1007_s11433_014_5397_1 crossref_primary_10_1016_S1875_5372_15_30082_5 crossref_primary_10_1016_j_jallcom_2022_167530 crossref_primary_10_1016_j_procir_2020_02_062 crossref_primary_10_1115_1_3139214 crossref_primary_10_1520_JAI103188 crossref_primary_10_1016_j_msea_2009_08_045 crossref_primary_10_1016_j_surfcoat_2018_02_009 crossref_primary_10_1680_jemmr_16_00119 crossref_primary_10_3390_ma11040563 crossref_primary_10_1088_1757_899X_73_1_012152 crossref_primary_10_1016_j_ijleo_2019_162940 crossref_primary_10_1007_s40436_018_0218_9 crossref_primary_10_1007_s40516_020_00118_y crossref_primary_10_1016_j_prostr_2020_01_148 crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_1016_j_surfcoat_2010_11_031 crossref_primary_10_1016_j_surfcoat_2022_128611 crossref_primary_10_1016_j_corsci_2013_11_003 crossref_primary_10_1016_j_jmapro_2023_05_069 crossref_primary_10_1016_j_pmatsci_2022_100948 crossref_primary_10_1016_j_optlastec_2015_10_011 crossref_primary_10_1364_OL_40_004440 crossref_primary_10_1007_s11665_016_2220_3 crossref_primary_10_1007_s41547_019_00082_7 crossref_primary_10_1016_j_ijleo_2019_01_092 crossref_primary_10_1016_j_ijfatigue_2016_06_010 crossref_primary_10_1016_j_cja_2020_09_004 crossref_primary_10_1016_j_optlastec_2016_09_003 crossref_primary_10_3389_fmats_2021_802973 crossref_primary_10_1115_1_4048397 crossref_primary_10_7735_ksmte_2013_22_4_680 crossref_primary_10_1177_1687814019850945 crossref_primary_10_1111_ffe_12126 crossref_primary_10_1016_j_apmt_2019_01_005 crossref_primary_10_1016_j_msea_2022_144497 crossref_primary_10_1007_s00339_012_7072_6 crossref_primary_10_1016_j_ijimpeng_2011_02_006 crossref_primary_10_1016_j_jmapro_2017_06_017 crossref_primary_10_1007_s12540_023_01517_4 crossref_primary_10_1179_1743676110Y_0000000011 crossref_primary_10_5004_dwt_2010_1665 crossref_primary_10_1016_j_ijfatigue_2013_06_024 crossref_primary_10_1016_j_surfcoat_2018_04_069 crossref_primary_10_1111_ffe_13226 crossref_primary_10_15407_ufm_22_04_562 crossref_primary_10_1016_j_jmapro_2024_01_086 crossref_primary_10_1016_j_ijfatigue_2021_106270 crossref_primary_10_1016_j_ijfatigue_2019_03_042 crossref_primary_10_1016_j_surfcoat_2021_127481 crossref_primary_10_1016_j_scriptamat_2021_114012 crossref_primary_10_1016_S1003_6326_23_66160_6 crossref_primary_10_1016_j_apsusc_2006_02_060 crossref_primary_10_1016_j_apsusc_2020_145755 crossref_primary_10_1016_j_jmatprotec_2018_02_041 crossref_primary_10_1016_j_jsv_2018_12_035 crossref_primary_10_2351_1_5024887 crossref_primary_10_1016_j_msea_2019_138844 crossref_primary_10_3390_cryst13020212 crossref_primary_10_3365_KJMM_2020_58_8_560 crossref_primary_10_1016_j_ijfatigue_2024_108467 crossref_primary_10_2320_matertrans_MT_MF2022028 crossref_primary_10_2351_1_4800444 crossref_primary_10_1016_j_measurement_2022_111560 crossref_primary_10_1016_j_mtcomm_2022_104200 crossref_primary_10_1016_j_apsusc_2014_06_056 crossref_primary_10_1016_j_surfcoat_2010_03_015 crossref_primary_10_1080_21663831_2020_1862933 crossref_primary_10_1016_j_wear_2020_203490 crossref_primary_10_3390_ma15124226 crossref_primary_10_1021_acs_jpcc_9b09884 crossref_primary_10_3901_CJME_2015_0422_046 crossref_primary_10_1016_j_optlastec_2014_05_028 crossref_primary_10_1016_j_optlastec_2018_10_054 crossref_primary_10_1016_j_jallcom_2018_04_029 crossref_primary_10_1088_2053_1591_abc2fc crossref_primary_10_1089_3dp_2019_0064 crossref_primary_10_1140_epjd_e2013_30767_4 crossref_primary_10_1080_02670844_2023_2206186 crossref_primary_10_1016_j_msea_2007_02_004 crossref_primary_10_1016_j_optlastec_2022_108261 crossref_primary_10_3390_ma6094213 crossref_primary_10_1016_j_mechmat_2021_103882 crossref_primary_10_4028_www_scientific_net_KEM_765_209 crossref_primary_10_3390_met10121669 crossref_primary_10_1016_j_optlastec_2020_106527 crossref_primary_10_1016_j_optlastec_2019_105762 crossref_primary_10_3390_met12040642 crossref_primary_10_1007_s11661_023_07159_w crossref_primary_10_1115_1_4045500 crossref_primary_10_4028_www_scientific_net_KEM_329_637 crossref_primary_10_1016_j_surfcoat_2009_04_029 crossref_primary_10_3390_ma11081267 crossref_primary_10_1016_j_ijleo_2021_168363 crossref_primary_10_1016_j_jmatprotec_2018_11_024 crossref_primary_10_1016_j_matpr_2022_06_167 crossref_primary_10_1016_j_ijfatigue_2019_02_023 crossref_primary_10_1016_j_matchar_2019_110017 crossref_primary_10_1016_j_surfcoat_2021_127215 crossref_primary_10_1016_j_eswa_2024_123911 crossref_primary_10_1007_s00170_018_3033_3 crossref_primary_10_1016_j_msea_2015_12_007 crossref_primary_10_1007_s11340_014_9940_9 crossref_primary_10_1016_j_optlastec_2016_09_025 crossref_primary_10_1016_j_surfcoat_2018_02_094 crossref_primary_10_1016_j_intermet_2023_108108 crossref_primary_10_4028_www_scientific_net_KEM_375_376_57 crossref_primary_10_1016_j_ijfatigue_2021_106641 crossref_primary_10_1007_s12289_014_1171_1 crossref_primary_10_1016_j_cirp_2011_03_115 crossref_primary_10_1186_s10033_021_00611_1 crossref_primary_10_1088_1757_899X_770_1_012080 crossref_primary_10_1016_j_jallcom_2022_165761 crossref_primary_10_3390_ma12081343 crossref_primary_10_1016_j_jmapro_2023_07_060 crossref_primary_10_1088_2631_7990_aba17c crossref_primary_10_3390_met8030174 crossref_primary_10_1007_s00170_008_1601_7 crossref_primary_10_1016_j_msea_2013_10_066 crossref_primary_10_1016_j_msea_2021_140824 crossref_primary_10_1016_j_mtla_2019_100265 crossref_primary_10_1063_1_3481858 crossref_primary_10_1016_j_corsci_2021_109364 crossref_primary_10_1016_j_jmatprotec_2018_11_007 crossref_primary_10_1016_j_optlaseng_2017_03_004 crossref_primary_10_4028_www_scientific_net_MSF_471_472_886 crossref_primary_10_3390_ma10050523 crossref_primary_10_1016_j_jclepro_2018_03_187 crossref_primary_10_1016_j_apsusc_2005_12_164 crossref_primary_10_3390_ma16031033 crossref_primary_10_1016_S0921_5093_03_00069_8 crossref_primary_10_1016_j_surfcoat_2013_01_031 crossref_primary_10_4028_www_scientific_net_AMR_271_273_84 crossref_primary_10_1016_j_jallcom_2018_12_294 crossref_primary_10_1016_j_msea_2012_01_125 crossref_primary_10_1016_j_optlastec_2023_109427 crossref_primary_10_1016_j_optlastec_2019_105568 crossref_primary_10_1016_j_ijfatigue_2011_12_014 crossref_primary_10_1063_1_5134813 crossref_primary_10_1007_s11665_021_06049_9 crossref_primary_10_1111_jace_15742 crossref_primary_10_1016_j_surfcoat_2019_124919 crossref_primary_10_1016_j_jmrt_2023_05_018 crossref_primary_10_1016_j_msea_2013_04_058 crossref_primary_10_1016_j_surfcoat_2018_02_083 crossref_primary_10_2478_adms_2023_0022 crossref_primary_10_5781_JWJ_2016_34_6_35 crossref_primary_10_1007_s00170_009_2185_6 crossref_primary_10_1016_j_cplett_2005_12_010 crossref_primary_10_7567_JJAP_57_122703 crossref_primary_10_1016_j_engfracmech_2018_08_004 crossref_primary_10_3390_met9070728 crossref_primary_10_1063_1_1915537 crossref_primary_10_1016_j_ijhydene_2024_06_215 crossref_primary_10_1016_j_msea_2018_11_088 crossref_primary_10_1016_j_surfcoat_2015_06_065 crossref_primary_10_1016_j_vacuum_2023_112078 crossref_primary_10_4028_www_scientific_net_AMR_347_353_1596 crossref_primary_10_1557_PROC_1098_HH08_01 crossref_primary_10_1016_j_ijfatigue_2019_01_020 crossref_primary_10_1080_20421338_2019_1610252 crossref_primary_10_3390_met10010093 crossref_primary_10_1080_14786430412331324662 crossref_primary_10_1016_j_jmatprotec_2006_03_170 crossref_primary_10_1111_jace_14630 crossref_primary_10_1016_j_ijleo_2021_167446 crossref_primary_10_1016_j_engfailanal_2022_106625 crossref_primary_10_1016_j_msea_2013_04_034 crossref_primary_10_1063_5_0196004 crossref_primary_10_1016_j_optlaseng_2012_11_002 crossref_primary_10_4028_www_scientific_net_KEM_765_237 crossref_primary_10_1533_wint_2006_3624 crossref_primary_10_4028_www_scientific_net_KEM_464_478 crossref_primary_10_4028_www_scientific_net_AMR_891_892_969 crossref_primary_10_1016_j_tafmec_2022_103642 crossref_primary_10_3390_ma16051802 crossref_primary_10_1063_1_3633266 crossref_primary_10_1016_j_surfcoat_2017_04_044 crossref_primary_10_1007_s10853_022_07019_9 crossref_primary_10_1016_j_ijfatigue_2022_107035 crossref_primary_10_1088_2631_7990_abb5f3 crossref_primary_10_1016_j_ijmecsci_2009_09_016 crossref_primary_10_4028_www_scientific_net_MSF_699_131 crossref_primary_10_1016_S1875_5372_18_30067_5 crossref_primary_10_4028_www_scientific_net_KEM_353_358_1753 crossref_primary_10_1016_j_msea_2010_10_098 crossref_primary_10_1016_j_ijfatigue_2022_107033 crossref_primary_10_1016_j_msea_2018_10_096 crossref_primary_10_1016_j_matchar_2018_05_010 crossref_primary_10_1016_j_matdes_2009_11_026 crossref_primary_10_1016_j_optlastec_2020_106131 crossref_primary_10_1140_epjp_s13360_022_02638_2 crossref_primary_10_1016_j_jallcom_2023_169209 crossref_primary_10_1021_acsabm_1c00826 crossref_primary_10_1007_s11837_023_06315_2 crossref_primary_10_1002_adem_202201066 crossref_primary_10_1007_s11661_017_4280_x crossref_primary_10_1016_j_ijleo_2019_163578 crossref_primary_10_4028_www_scientific_net_AMR_189_193_3778 crossref_primary_10_1111_ffe_12732 crossref_primary_10_1016_j_ast_2019_105430 crossref_primary_10_3389_fchem_2022_999630 crossref_primary_10_1007_s42864_021_00087_5 crossref_primary_10_1016_j_ijfatigue_2016_08_005 crossref_primary_10_1016_j_finmec_2022_100080 crossref_primary_10_3390_app11072888 crossref_primary_10_1016_j_surfin_2019_100415 crossref_primary_10_1126_science_aag1768 crossref_primary_10_26599_JAC_2023_9220742 crossref_primary_10_1016_j_vacuum_2018_06_057 crossref_primary_10_1016_j_jksus_2017_07_012 crossref_primary_10_1016_j_ijfatigue_2020_105792 crossref_primary_10_3390_ma9100799 crossref_primary_10_1016_j_msea_2015_10_036 crossref_primary_10_1007_s40830_019_00256_z crossref_primary_10_4028_www_scientific_net_AMM_44_47_680 crossref_primary_10_1557_opl_2011_329 crossref_primary_10_1016_j_measurement_2023_112590 crossref_primary_10_1088_2051_672X_ad1607 crossref_primary_10_1088_1361_651X_ab4148 crossref_primary_10_3807_JOSK_2016_20_3_407 crossref_primary_10_1063_1_2193036 crossref_primary_10_1016_j_matchemphys_2021_124232 crossref_primary_10_1088_1757_899X_310_1_012015 crossref_primary_10_1016_j_ijfatigue_2011_06_004 crossref_primary_10_1016_j_apsusc_2012_12_174 crossref_primary_10_1016_j_tafmec_2019_102444 crossref_primary_10_2320_matertrans_MF201929 crossref_primary_10_4028_www_scientific_net_KEM_464_677 crossref_primary_10_1016_j_apsusc_2015_11_192 crossref_primary_10_1016_j_surfcoat_2024_130608 crossref_primary_10_1155_2014_620854 crossref_primary_10_1016_j_msea_2015_11_022 crossref_primary_10_1016_j_matpr_2020_03_425 crossref_primary_10_1007_s00170_022_09021_6 crossref_primary_10_3788_CJL231187 crossref_primary_10_1016_j_ijleo_2019_163779 crossref_primary_10_1016_j_ijfatigue_2017_04_002 crossref_primary_10_1007_s11665_008_9212_x crossref_primary_10_1016_j_actamat_2016_10_044 crossref_primary_10_1007_s00339_017_1209_6 crossref_primary_10_1088_2053_1591_ab0f85 crossref_primary_10_1016_j_surfcoat_2009_01_013 crossref_primary_10_1016_j_msea_2013_08_074 crossref_primary_10_1016_j_ijfatigue_2011_08_011 crossref_primary_10_3390_met9060655 crossref_primary_10_1177_1350650117692707 crossref_primary_10_1016_j_jallcom_2021_163383 crossref_primary_10_3390_coatings12121872 crossref_primary_10_1002_mawe_200390108 crossref_primary_10_1016_j_engfracmech_2013_01_011 crossref_primary_10_1016_j_jmrt_2024_01_252 crossref_primary_10_1016_j_procir_2018_08_124 crossref_primary_10_1520_JTE20180393 crossref_primary_10_1590_0104_9224_si24_08 crossref_primary_10_4028_www_scientific_net_KEM_464_619 crossref_primary_10_1016_j_msea_2008_03_017 crossref_primary_10_4028_www_scientific_net_MSF_681_504 crossref_primary_10_1016_j_msea_2011_03_041 crossref_primary_10_1016_j_jmapro_2020_02_009 crossref_primary_10_1016_j_ijmachtools_2021_103718 crossref_primary_10_1016_j_jallcom_2018_02_353 crossref_primary_10_4028_www_scientific_net_AMR_418_420_1930 crossref_primary_10_1016_j_msea_2019_04_054 crossref_primary_10_35848_1882_0786_abec8f crossref_primary_10_1063_5_0101634 crossref_primary_10_1088_2053_1591_ab0b0e crossref_primary_10_1016_j_msea_2021_142238 crossref_primary_10_1016_j_surfcoat_2014_05_015 crossref_primary_10_1007_s11665_023_08099_7 crossref_primary_10_1115_1_2772339 crossref_primary_10_3390_met11081198 crossref_primary_10_1007_s40516_020_00123_1 crossref_primary_10_1115_1_4002849 crossref_primary_10_4028_www_scientific_net_KEM_375_376_603 crossref_primary_10_1016_j_optlastec_2023_109288 crossref_primary_10_1080_14786435_2011_645899 crossref_primary_10_1016_j_ijrmhm_2024_106743 crossref_primary_10_1016_j_ijfatigue_2017_04_016 crossref_primary_10_1016_j_engfailanal_2019_03_012 crossref_primary_10_4028_www_scientific_net_KEM_464_632 crossref_primary_10_1016_j_optlastec_2015_04_027 crossref_primary_10_1016_j_surfcoat_2020_126431 crossref_primary_10_1016_j_jmrt_2020_11_085 crossref_primary_10_1016_j_optlaseng_2016_05_014 crossref_primary_10_5012_jkcs_2013_57_5_547 crossref_primary_10_1007_s42243_018_0047_x crossref_primary_10_1016_j_msea_2013_08_047 crossref_primary_10_3390_cryst13081279 crossref_primary_10_1016_j_corsci_2013_08_007 crossref_primary_10_1177_09544054231166223 crossref_primary_10_1002_adem_202201451 crossref_primary_10_1016_j_optlastec_2017_03_017 crossref_primary_10_3390_met12071148 crossref_primary_10_1016_j_ijmecsci_2021_106874 crossref_primary_10_1016_j_msea_2018_09_016 crossref_primary_10_1088_1468_6996_14_5_055010 crossref_primary_10_1007_s12206_014_1235_7 crossref_primary_10_14773_cst_2015_14_6_313 crossref_primary_10_1016_j_optlastec_2017_07_020 crossref_primary_10_1016_j_actamat_2017_01_050 crossref_primary_10_4028_www_scientific_net_MSF_628_629_691 crossref_primary_10_1016_j_surfcoat_2015_02_017 crossref_primary_10_1007_s11837_020_04054_2 crossref_primary_10_1016_j_ijfatigue_2014_07_008 crossref_primary_10_1016_j_optlastec_2017_03_003 crossref_primary_10_1016_j_surfcoat_2006_02_018 crossref_primary_10_1007_s11665_008_9303_8 crossref_primary_10_1016_j_optlastec_2015_03_009 crossref_primary_10_1016_j_jallcom_2015_10_238 crossref_primary_10_1016_j_triboint_2019_105996 crossref_primary_10_1088_1757_899X_892_1_012005 crossref_primary_10_1016_j_matdes_2022_110948 crossref_primary_10_1063_1_2168022 crossref_primary_10_1016_j_ijrmhm_2018_12_016 crossref_primary_10_1007_s41871_019_00036_4 crossref_primary_10_1016_j_mtcomm_2023_106699 crossref_primary_10_1088_1757_899X_580_1_012059 crossref_primary_10_1016_j_matchar_2020_110187 crossref_primary_10_1016_j_msea_2010_11_045 crossref_primary_10_1111_jace_18222 crossref_primary_10_1007_s11771_015_3000_1 crossref_primary_10_1088_2053_1591_aaed03 crossref_primary_10_1063_1_3651508 crossref_primary_10_1016_j_jmatprotec_2016_11_038 crossref_primary_10_1016_j_addma_2020_101201 crossref_primary_10_1016_j_matdes_2015_10_022 crossref_primary_10_3390_met9121271 crossref_primary_10_1016_j_surfcoat_2012_03_004 crossref_primary_10_4028_www_scientific_net_AMM_705_169 crossref_primary_10_1016_j_ijfatigue_2012_03_008 crossref_primary_10_1016_j_corsci_2020_108655 crossref_primary_10_1016_j_intermet_2022_107529 crossref_primary_10_4028_www_scientific_net_MSF_524_525_129 crossref_primary_10_1007_s00170_022_08984_w crossref_primary_10_1016_j_optlastec_2022_108741 crossref_primary_10_2351_7_0000927 crossref_primary_10_1016_j_ijfatigue_2013_10_001 crossref_primary_10_3390_met10111490 crossref_primary_10_1016_j_surfcoat_2006_03_002 crossref_primary_10_1016_j_ijmachtools_2013_01_005 crossref_primary_10_1088_0022_3727_40_21_038 crossref_primary_10_1016_j_optlastec_2021_107127 crossref_primary_10_1080_10426914_2015_1058946 crossref_primary_10_1115_1_3139219 crossref_primary_10_1016_j_jmatprotec_2017_08_033 crossref_primary_10_2351_1_5040625 crossref_primary_10_1016_j_ijfatigue_2020_105969 crossref_primary_10_1063_1_4945709 crossref_primary_10_1016_j_surfcoat_2022_128158 crossref_primary_10_1016_j_ijfatigue_2018_10_012 crossref_primary_10_1016_j_optlastec_2012_06_019 crossref_primary_10_1016_j_surfcoat_2012_05_022 crossref_primary_10_1016_j_surfcoat_2019_125320 crossref_primary_10_4028_www_scientific_net_MSF_546_549_681 crossref_primary_10_1007_s00339_020_3309_y crossref_primary_10_1007_s11661_019_05455_y crossref_primary_10_3390_met13101673 crossref_primary_10_1051_matecconf_202236700004 crossref_primary_10_4028_www_scientific_net_AMR_463_464_1363 crossref_primary_10_1016_j_matdes_2016_05_028 crossref_primary_10_3390_cmd2040031 crossref_primary_10_1007_s00170_021_06951_5 crossref_primary_10_1063_1_2734538 crossref_primary_10_1002_admi_202101232 crossref_primary_10_1088_1361_651X_aa7a46 crossref_primary_10_1007_s00339_013_8193_2 crossref_primary_10_1016_j_rio_2024_100658 crossref_primary_10_1016_j_surfcoat_2018_11_007 crossref_primary_10_1016_j_apsusc_2018_06_176 crossref_primary_10_1016_j_msea_2011_10_104 crossref_primary_10_1007_s00170_023_11138_1 crossref_primary_10_1007_s11665_022_07133_4 crossref_primary_10_1016_j_tafmec_2012_05_004 crossref_primary_10_1063_1_2979704 crossref_primary_10_1016_j_fusengdes_2015_03_019 crossref_primary_10_4028_www_scientific_net_AMR_189_193_3755 crossref_primary_10_1016_j_jmatprotec_2020_117016 crossref_primary_10_1016_j_ijmecsci_2015_06_020 crossref_primary_10_1179_1743284715Y_0000000057 crossref_primary_10_1016_S1006_706X_15_60009_7 crossref_primary_10_1016_j_optlastec_2022_107889 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science Ltd 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science Ltd – notice: 2002 INIST-CNRS |
DBID | IQODW AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/S0142-1123(02)00022-1 |
DatabaseName | Pascal-Francis CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3452 |
EndPage | 1036 |
ExternalDocumentID | 10_1016_S0142_1123_02_00022_1 13793626 S0142112302000221 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AAPBV ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c486t-6de09dee85891e37280e65c2d4fa272e26d4dd49c111050975c96e8944bd1a9c3 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Sat Oct 05 06:22:02 EDT 2024 Thu Sep 26 15:25:25 EDT 2024 Sun Oct 22 16:08:34 EDT 2023 Fri Feb 23 02:29:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Laser shock processing Fatigue Microstructure Morphology Residual stress Laser peening Plastic fatigue Stress analysis Fretting fatigue Laser assisted processing Shot peening Peening Review Stress corrosion cracking Shock wave Surface treatment Shock heating Strength |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-6de09dee85891e37280e65c2d4fa272e26d4dd49c111050975c96e8944bd1a9c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27199076 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_27199076 crossref_primary_10_1016_S0142_1123_02_00022_1 pascalfrancis_primary_13793626 elsevier_sciencedirect_doi_10_1016_S0142_1123_02_00022_1 |
PublicationCentury | 2000 |
PublicationDate | 2002-10-01 |
PublicationDateYYYYMMDD | 2002-10-01 |
PublicationDate_xml | – month: 10 year: 2002 text: 2002-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of fatigue |
PublicationYear | 2002 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Peyre, Berthe, Scherpereel, Fabbro (BIB52) 1998; 33 Cai, Zhang (BIB54) 1996; 23A Casarcia DA, Cowie WD, Mannava S. US Patent 5,584,586; Cincinnati (OH); General Electric Company, 1996. Chu, Rigsbee, Banas, Lawrence, Elsayed-Ali (BIB51) 1995; 26A Zhang, Zang, Zang, Cai, Yang, Ren (BIB53) 1997; 92 Fairand, Clauer, Wilcox (BIB10) 1976; 8A Gregg, Thomas (BIB3) 1966; 27 Dane CB, Hackel LA, Daly J, Harrison J. Laser peening of metals—enabling laser technology. Advanced Materials and Processes 1997;May:13–27. Mannava S, Cowie WD. US Patent 5,569,018; General Electric Company (Cincinnati, OH); 1996. Gerland, Hallouin (BIB64) 1994; 29 Dane, Hackel, Daly, Harrison (BIB33) 1998; 153 Ding K, Ye L, Montross CS. Finite element simulation of multiple laser shock peening of 35CD4 steel. Materials Processing Technology, submitted for publication. White (BIB2) 1963; 34 Cottet, Boustie (BIB43) 1989; 66 Fabbro, Peyre, Berthe, Sherpereel (BIB56) 1998; 10 Braisted, Brockman (BIB49) 1999; 21 Fairand BP, Clauer AH. Applications of laser-induced stress waves. Presented at Lasers in Modern Industry Seminar; 1978. Ballard, Frelat, Rougier, Girardot (BIB48) 1995; 14 Clauer, Walters, Ford (BIB62) 1983 Bergstrom (BIB21) 1993; 105 Clauer AH, Fairand BP, Ford SC, Walters CT. US Patent 4,401,477; Battelle Development Corporation; 1983. Ashley (BIB34) 1998; 120 Mannava S. US Patent 5,756,965; General Electric Company (Cincinnati, OH); 1998. Mannava S, McDaniel AE, Cowie WD. US Patent 5,492,447; General Electric Company (Cincinnati, OH); 1996. Yang (BIB25) 1974; 45 Ortiz Jr., AL, Penney CM, Jones MG, Erikson CE. US Patent 4,937,421; General Electric Company, Schenectady, New York; 1990. Clauer, Holbrook, Fairand (BIB20) 1981 Clauer AH, Dulaney JL, Toller SM, Walters CT. Canada Patent 2226451; LSP Technologies; 1998. Couturier, de Resseduier, Hallouin, Romain, Bauer (BIB28) 1996; 79 Clauer, Koucky (BIB41) 1991; 6 Bolger, Montross, Rode (BIB57) 1999; 86 Mannava S, Ferrigno SJ. US Patent 5,675,892; General Electric Company (Cincinnati, OH); 1997. Ferrigno SJ, McAllister KG, Mannava S. US Patent 6,200,689; Cincinnati (OH); General Electric Company, 2001. Askar yan, Moroz (BIB1) 1963; 16 Fairand, Wilcox, Gallagher, Williams (BIB29) 1972; 43 Banas, Elsayed-Ali, Lawrence, Rigsbee (BIB39) 1990; 67 Fairand, Clauer, Jung, Wilcox (BIB7) 1974; 25 Clauer (BIB22) 1996 Romain JP, Cottet F, Hallouin M, Fabbro R, Faral B, Pepin H. Laser shock experiments at pressures above 100 Mbar. Physica 1986;139,140B:595–598. Ballard P. Contraintes residuelles induites par impact rapide. Application au choc-laser. In: Metallurgy. Paris (France): Ecole Polytechnique France; 1991, p. 217. Obata M, Sano Y, Mukai N, Yoda M, Shima S, Kanno M. Effect of laser peening on residual stress and stress corrosion cracking for type 304 stainless steel. Presented at International Conference on Shot Peening—7; 1999. Peyre, Fabbro, Merrien, Lieurade (BIB58) 1996; A210 Vaccari (BIB68) 1992; July Jones (BIB6) 1971; 18 Peyre, Fabbro, Berthe, Dubouchet (BIB19) 1996; 8 Mallozi PJ, Fairand BP. US Patent 3,850,698; Industrial Materials Limited; 1974. O’Keefe, Skeen (BIB23) 1972; 21 Montross, Brandt, Swain (BIB67) 2001; 17 Peyre, Berthe, Scherpereel, Fabbro, Bartnicki (BIB85) 1998; 84 Fairand BP, Clauer AH. Laser generated stress waves: their characteristics and their effects to materials. Presented at Proc. American Inst. of Physics Conf. on ‘Laser Solid Interactions and Laser Processing’; 1978. Clauer AH, Fairand BP. Interaction of laser-induced stress waves with metals. Presented at Proc. ASM Conference Applications of Lasers in Materials Processing; Washington DC; 1979. Skeen, York (BIB4) 1968; 12 Masse, Barreau (BIB60) 1995; 11 Ferrigno SJ, Cowie WD, Mannava S. US Patent 5,846,057; General Electric Company (Cincinnati, OH); 1998. Berthe, Fabbro, Peyre, Bartnicki (BIB32) 1999; 85 Zhang, Yu (BIB36) 1998; 257A Clauer, Dulaney, Rice, Koucky (BIB37) 1992 Ballard, Fournier, Fabbro, Frelat (BIB47) 1991; 1 Scherpereel X, Peyre P, Fabbro R, Lederer G, Celati N. Modifications of mechanical and electrochemical properties of stainless steels surfaces by laser shock processing. Presented at Proceedings of SPIE-Europto Conference; Munich (Germany); 1997. Johnson, Rhode (BIB35) 1971; 42 Berthe, Fabbro, Peyre, Tollier, Bartnicki (BIB87) 1997; 82 Montross, Florea, Bolger (BIB30) 1999; 36 Fairand, Clauer (BIB8) 1976; 86 Hoffman (BIB24) 1974; 45 Brown (BIB69) 1998 Cottet, Marty, Hallouin, Romain, Virmont, Fabbro, Faral (BIB42) 1988; 64 Anderholm (BIB5) 1970; 16 Devaux, Fabbro, Tollier, Bartnicki (BIB16) 1993; 74 Grevey, Maiffredy, Vannes (BIB38) 1992; 27 Ling, Wight (BIB27) 1995; 78 Thompson, See, Lykins, Sampson (BIB63) 1997 Takayanagi N. US Patent 5,571,575; Toyota Jidosha Kabushiki Kaisha (Aichi, JP); 1996. Montross CS, Florea V, Brandt M, Swain MV. The effect of peening with small, high energy, Q-switched laser spots on subsurface properties of aluminum. Journal of Materials Science Letters, submitted for publication. Fairand, Clauer, Wilcox (BIB9) 1977; 8A Ruschau, John, Thompson, Nicholas (BIB40) 1999; 21 Banas, Lawrence, Rigsbee (BIB65) 1990 Clauer AH, Dulaney JL, Toller SM. Canada Patent 2226444; LSP Technologies; 1998. Clauer AH. New life for laser shock processing. Industrial Laser Review 1996;March:7–9. Gerland, Hallouin, Presles (BIB17) 1992; 156A Dubouchet C. PhD dissertation in Metallurgy. Orsay (France): Universite d’Orsay; 1993. Banas, Chu, Rigsbee, Lawrence, Elsayed-Ali (BIB86) 1993 Mannava S, McDaniel AE, Cowie WD, Halila H, Rhoda JE, Gutknecht JE. US Patent 5,591,009; General Electric Company (Cincinnati, OH); 1997. de Resseguier, Couturier, David, Nierat (BIB44) 1997; 82 Montross, Florea, Swain (BIB31) 2001; 36 Montross CS, Florea V. Unpublished work, Redstone Mining, Sydney (Australia); 1997. Montross, Florea, Brandt, Swain (BIB66) 2000; 16 Fabbro, Fournier, Ballard, Devaux, Virmont (BIB14) 1990; 68 |
References_xml | – volume: 16 start-page: 1638 year: 1963 end-page: 1644 ident: BIB1 article-title: Pressure on evaporation of matter in a radiation beam publication-title: Journal of Experimental and Theoretical Physics Letters contributor: fullname: Moroz – volume: 14 start-page: 1005 year: 1995 end-page: 1016 ident: BIB48 article-title: Plastic strain and residual stress fields induced by a homogeneous impact of the boundary of an elastic half space publication-title: European Journal of Mechanics, A/Solids contributor: fullname: Girardot – volume: 23A start-page: 1117 year: 1996 end-page: 1120 ident: BIB54 article-title: Study of laser parameters optimum of laser shocking against fatigue and fracture of metal publication-title: Chinese Journal of Lasers contributor: fullname: Zhang – volume: 33 start-page: 1421 year: 1998 end-page: 1429 ident: BIB52 article-title: Laser-shock processing of aluminum coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour publication-title: Journal of Materials Science contributor: fullname: Fabbro – volume: 8A start-page: 119 year: 1977 end-page: 125 ident: BIB9 article-title: Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy publication-title: Metallurgical Transactions A contributor: fullname: Wilcox – volume: 27 start-page: 2110 year: 1992 end-page: 2116 ident: BIB38 article-title: Laser shock on a TRIP alloy: mechanical and metallurgical consequences publication-title: Journal of Materials Science contributor: fullname: Vannes – volume: 10 start-page: 265 year: 1998 end-page: 279 ident: BIB56 article-title: Physics and applications of laser-shock processing publication-title: Journal of Laser Applications contributor: fullname: Sherpereel – volume: 8 start-page: 135 year: 1996 end-page: 141 ident: BIB19 article-title: Laser shock processing of materials, physical processes involved and examples of applications publication-title: Journal of Laser Applications contributor: fullname: Dubouchet – volume: 85 start-page: 7552 year: 1999 end-page: 7555 ident: BIB32 article-title: Wavelength dependence of laser shock wave generation in the water confinement regime publication-title: Journal of Applied Physics contributor: fullname: Bartnicki – volume: 21 start-page: 464 year: 1972 end-page: 466 ident: BIB23 article-title: Laser-induced stress-wave and impulse augmentation publication-title: Applied Physics Letters contributor: fullname: Skeen – volume: 36 start-page: 849 year: 1999 end-page: 855 ident: BIB30 article-title: Laser-induced shock wave generation and shock wave enhancement in basalt publication-title: International Journal of Rock Mechanics and Mining Sciences contributor: fullname: Bolger – start-page: 675 year: 1981 end-page: 702 ident: BIB20 article-title: Effects of laser induced shock waves on metals publication-title: Shock waves and high-strain-rate phenomena in metals contributor: fullname: Fairand – volume: 156A start-page: 175 year: 1992 end-page: 182 ident: BIB17 article-title: Comparison of two new surface treatment processes, laser induced shock waves and primary explosive: application to fatigue behaviour publication-title: Materials Science and Engineering contributor: fullname: Presles – volume: 153 start-page: 37 year: 1998 end-page: 38 ident: BIB33 article-title: Shot peening with lasers publication-title: Advanced Materials and Processes contributor: fullname: Harrison – volume: 257A start-page: 322 year: 1998 end-page: 327 ident: BIB36 article-title: Laser shock processing of 2024-T62 aluminum alloy publication-title: Materials Science and Engineering contributor: fullname: Yu – volume: 21 start-page: 719 year: 1999 end-page: 724 ident: BIB49 article-title: Finite element simulation of laser shock peening publication-title: International Journal of Fatigue contributor: fullname: Brockman – volume: 29 start-page: 345 year: 1994 end-page: 351 ident: BIB64 article-title: Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses publication-title: Journal of Materials Science contributor: fullname: Hallouin – volume: A210 start-page: 102 year: 1996 end-page: 113 ident: BIB58 article-title: Laser shock processing of aluminum alloys. Application to high cycle fatigue behaviour publication-title: Materials Science and Engineering contributor: fullname: Lieurade – volume: 16 start-page: 116 year: 2000 end-page: 121 ident: BIB66 article-title: Subsurface properties of laser peened 6061-T6 Al weldments publication-title: Surface Engineering contributor: fullname: Swain – volume: 79 start-page: 9338 year: 1996 end-page: 9342 ident: BIB28 article-title: Shock profile induced by short laser pulses publication-title: Journal of Applied Physics contributor: fullname: Bauer – volume: 1 start-page: 487 year: 1991 end-page: 494 ident: BIB47 article-title: Residual stresses induced by laser shocks publication-title: Journal de Physique IV contributor: fullname: Frelat – start-page: 350 year: 1992 end-page: 361 ident: BIB37 article-title: Laser shock processing for treating fastener holes in aging aircraft publication-title: Durability of metal aircraft structures contributor: fullname: Koucky – volume: 26A start-page: 1507 year: 1995 end-page: 1517 ident: BIB51 article-title: Effects of laser-shock processing on the microstructure and surface mechanical properties of Hadfield manganese steel publication-title: Metallurgical and Materials Transactions A contributor: fullname: Elsayed-Ali – volume: 36 start-page: 1801 year: 2001 end-page: 1807 ident: BIB31 article-title: Influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum publication-title: Journal of Materials Science contributor: fullname: Swain – volume: 68 start-page: 775 year: 1990 end-page: 784 ident: BIB14 article-title: Physical study of laser-produced plasma in confined geometry publication-title: Journal of Applied Physics contributor: fullname: Virmont – volume: 105 start-page: 49 year: 1993 end-page: 51 ident: BIB21 article-title: Laser shock processing publication-title: Production contributor: fullname: Bergstrom – volume: 86 start-page: 112 year: 1976 end-page: 119 ident: BIB8 article-title: Use of laser generated shocks to improve the properties of metals and alloys publication-title: Industrial Applications of High Power Laser Technology contributor: fullname: Clauer – volume: July start-page: 62 year: 1992 end-page: 64 ident: BIB68 article-title: Laser shocking extends fatigue life publication-title: American Machinist contributor: fullname: Vaccari – volume: 66 start-page: 4067 year: 1989 end-page: 4073 ident: BIB43 article-title: Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations publication-title: Journal of Applied Physics contributor: fullname: Boustie – volume: 78 start-page: 7022 year: 1995 end-page: 7025 ident: BIB27 article-title: Laser-generated shock waves in thin films of energetic materials publication-title: Journal of Applied Physics contributor: fullname: Wight – volume: 64 start-page: 4474 year: 1988 end-page: 4477 ident: BIB42 article-title: Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets publication-title: Journal of Applied Physics contributor: fullname: Faral – start-page: 280 year: 1990 end-page: 290 ident: BIB65 article-title: Laser shock hardening of weld maraging steel publication-title: Surface engineering contributor: fullname: Rigsbee – volume: 84 start-page: 5985 year: 1998 end-page: 5992 ident: BIB85 article-title: Experimental study of laser driven shock waves in stainless steels publication-title: Journal of Applied Physics contributor: fullname: Bartnicki – volume: 86 start-page: 5461 year: 1999 end-page: 5466 ident: BIB57 article-title: Shock waves in basalt rock generated with high powered lasers in a confined geometry publication-title: Journal of Applied Physics contributor: fullname: Rode – volume: 25 start-page: 431 year: 1974 end-page: 433 ident: BIB7 article-title: Quantitative assessment of laser-induced stress waves generated at confined surfaces publication-title: Applied Physics Letters contributor: fullname: Wilcox – volume: 34 start-page: 2123 year: 1963 end-page: 2124 ident: BIB2 article-title: Elastic wave generation by electron bombardment or electromagnetic wave absorption publication-title: Journal of Applied Physics contributor: fullname: White – volume: 120 start-page: 12 year: 1998 ident: BIB34 article-title: Powerful laser means better peening publication-title: Mechanical Engineering contributor: fullname: Ashley – volume: 11 start-page: 131 year: 1995 end-page: 132 ident: BIB60 article-title: Surface modification by laser induced shock waves publication-title: Surface Engineering contributor: fullname: Barreau – start-page: 171 year: 1993 end-page: 184 ident: BIB86 article-title: Laser shock processing of low carbon steel publication-title: Computer methods and experimental measurements for surface treatment effect contributor: fullname: Elsayed-Ali – volume: 42 start-page: 4171 year: 1971 end-page: 4182 ident: BIB35 article-title: Dynamic deformation twinning in shock loaded iron publication-title: Journal of Applied Physics contributor: fullname: Rhode – volume: 67 start-page: 2380 year: 1990 end-page: 2384 ident: BIB39 article-title: Laser shock-induced mechanical and microstructural modification of welded maraging steel publication-title: Journal of Applied Physics contributor: fullname: Rigsbee – start-page: 217 year: 1996 end-page: 230 ident: BIB22 article-title: Laser shock peening for fatigue resistance publication-title: Surface performance of titanium contributor: fullname: Clauer – volume: 92 start-page: 104 year: 1997 end-page: 109 ident: BIB53 article-title: Investigation of the surface qualities of laser shock processed zones and the effect on fatigue life of aluminum alloy publication-title: Surface and Coatings Technology contributor: fullname: Ren – volume: 21 start-page: S199 year: 1999 end-page: S209 ident: BIB40 article-title: Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium publication-title: International Journal of Fatigue contributor: fullname: Nicholas – start-page: 239 year: 1997 end-page: 251 ident: BIB63 article-title: Laser shock peening vs shot peening, a damage tolerance investigation publication-title: Surface performance of titanium contributor: fullname: Sampson – volume: 45 start-page: 2125 year: 1974 end-page: 2128 ident: BIB24 article-title: Laser–target interactions publication-title: Journal of Applied Physics contributor: fullname: Hoffman – start-page: 7 year: 1983 end-page: 22 ident: BIB62 article-title: The effects of laser shock processing on the fatigue properties of -T3 aluminum publication-title: Lasers in materials processing contributor: fullname: Ford – start-page: 21 year: 1998 end-page: 23 ident: BIB69 article-title: A shocking way to strengthen metal publication-title: Aerospace America contributor: fullname: Brown – volume: 17 start-page: 477 year: 2001 end-page: 482 ident: BIB67 article-title: Self-limiting hardness changes in laser peened 6061-T6 aluminum publication-title: Surface Engineering contributor: fullname: Swain – volume: 82 start-page: 2826 year: 1997 end-page: 2832 ident: BIB87 article-title: Shock waves from a water-confined laser-generated plasma publication-title: Journal of Applied Physics contributor: fullname: Bartnicki – volume: 8A start-page: 1871 year: 1976 end-page: 1876 ident: BIB10 article-title: Laser shock hardening of weld zones in aluminum alloys publication-title: Metallurgical Transactions A contributor: fullname: Wilcox – volume: 16 start-page: 113 year: 1970 end-page: 115 ident: BIB5 article-title: Laser-generated stress waves publication-title: Applied Physics Letters contributor: fullname: Anderholm – volume: 18 start-page: 33 year: 1971 end-page: 35 ident: BIB6 article-title: Ultrafast laser-induced stress waves in solids publication-title: Applied Physics Letters contributor: fullname: Jones – volume: 27 start-page: 2787 year: 1966 end-page: 2789 ident: BIB3 article-title: Momentum transfer produced by focused laser giant pulses publication-title: Journal of Applied Physics contributor: fullname: Thomas – volume: 82 start-page: 2617 year: 1997 end-page: 2632 ident: BIB44 article-title: Spallation of metal targets subjected to intense laser shocks publication-title: Journal of Applied Physics contributor: fullname: Nierat – volume: 6 start-page: 3 year: 1991 end-page: 5 ident: BIB41 article-title: Laser shock processing increases the fatigue life of metal parts publication-title: Materials and Processing contributor: fullname: Koucky – volume: 43 start-page: 3893 year: 1972 end-page: 3896 ident: BIB29 article-title: Laser shock-induced microstructural and mechanical property changes in 7075 aluminum publication-title: Journal of Applied Physics contributor: fullname: Williams – volume: 45 start-page: 2601 year: 1974 end-page: 2607 ident: BIB25 article-title: Stress waves generated in thin metallic films by a Q-switched ruby laser publication-title: Journal of Applied Physics contributor: fullname: Yang – volume: 74 start-page: 2268 year: 1993 end-page: 2273 ident: BIB16 article-title: Generation of shock waves by laser induced plasma in confined geometry publication-title: Journal of Applied Physics contributor: fullname: Bartnicki – volume: 12 start-page: 369 year: 1968 end-page: 371 ident: BIB4 article-title: Laser-Induced “blow-off” phenomenon publication-title: Applied Physics Letters contributor: fullname: York |
SSID | ssj0009075 |
Score | 2.3644342 |
Snippet | The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1021 |
SubjectTerms | Applied sciences Exact sciences and technology Fatigue Laser peening Laser shock processing Metals. Metallurgy Microstructure Morphology Other surface treatments Production techniques Residual stress Surface treatment |
Title | Laser shock processing and its effects on microstructure and properties of metal alloys: a review |
URI | https://dx.doi.org/10.1016/S0142-1123(02)00022-1 https://search.proquest.com/docview/27199076 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCCEeIryKB4YYAhtHDsPtqoClecEUjfLic-iQ9OoaQcWfjtnO1VBCCGxOn5EZ_u7s_3dHSHnEBYRB2Nwp-Fu4iLtBkpzCEIjVJ4Io3JhvZGfnuPBK78fiuEK6S98YSytssF-j-kOrZuSTiPNTjUadSwtCU8vaEIzF8XFebAL91R79bGkeWQ-2K6tHNjaSy8e34MrvOiyS9dJEP6mnzYrVaPUjE938QO5nTq63SZbjR1Je_5Xd8gKlLtk40t0wT2iHlFDTWn9hpBHK-8QgB-oKjUdzWraUDnopKRjS8vzoWTnU3A1KntLP7XhVunE0DGgkU7tI_17fU0V9R4v--T19ualPwiajApBwdN4FsQaupkGSG0uQYhsaiqIRcE0N4olDFisudY8KxABbWCYRBRZDGnGea5DlRXRAVktJyUcEornJiOY0irKC2wjMg48LhKTWwspTbMWuVrIUVY-cIb8yihj0gpedpl0gpdhi6QLactvK0AiuP_VtP1tdpYDRgg_eGRrkbPFdEncPvZNRJUwmdeSJSHq4yQ--v_ox2Tdp4ixDL8TsoqTBadoqczytluKbbLWu3sYPH8CgvzjqA |
link.rule.ids | 315,786,790,4516,24137,27946,27947,45609,45703 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcKBVhUqhaoAme-gBDib2etcPbgg1StuEE0jcVmvvrMgBx4rDgQu_nRmvowShqlKv9j6s2d1vZrwz3zD2A6IyluAcnjQ8TVJlYWCshCByyhSpcqZQlI08u0kmd_L3vbrfYdfrXBgKq-yw32N6i9bdk1EnzVE9n48oLAm9FzShRcvigi7QLloDIW3ti5dNnEfu2XapdUDNN2k8foj24VkozttRguhvCupTbRoUm_P1Lt5Bd6uPxp_ZfmdI8iv_rQdsB6ov7OMWveAhM1NUUUvePCDm8dpnBOALbirL56uGd7EcfFHxR4rL81yyT0toW9T0m35JfKt84fgjoJXO6Zb-ubnkhvuUlyN2N_55ez0JupIKQSmzZBUkFsLcAmRUTBBiqk0FiSqFlc6IVIBIrLRW5iVCIDHDpKrME8hyKQsbmbyMv7JetajgG-PoODkljDVxUWIflUuQSZm6gkykLMv77GItR1175gy9HVImNAleh0K3gtdRn2Vraes3W0Ajuv-r6-DN6mwmjBF_0Gfrs-F6uTSeH7oUMRUsnhot0ggVcpoc___sQ7Y3uZ1N9fTXzZ8T9sHXi6Fwv1PWw4WD72i2rIpBuy1fAeFJ5T0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+shock+processing+and+its+effects+on+microstructure+and+properties+of+metal+alloys%3A+a+review&rft.jtitle=International+journal+of+fatigue&rft.au=Montross%2C+C+S&rft.au=Wei%2C+T&rft.au=Ye%2C+L&rft.au=Clark%2C+G&rft.date=2002-10-01&rft.issn=0142-1123&rft.volume=24&rft.issue=10&rft.spage=1021&rft.epage=1036&rft_id=info:doi/10.1016%2FS0142-1123%2802%2900022-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |