Laser shock processing and its effects on microstructure and properties of metal alloys: a review

The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 24; no. 10; pp. 1021 - 1036
Main Authors Montross, Charles S., Wei, Tao, Ye, Lin, Clark, Graham, Mai, Yiu-Wing
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2002
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components.
AbstractList The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components. (The review draws data from articles covering a wide range of metals including aluminum alloys, steels, iron-nickel alloys, iron silicon alloys and zinc.)
The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed. The influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed. Special attention is paid to the residual stresses and improved fatigue performance from laser peening, which are compared with conventional shot peening results. Modification of microstructure, surface morphology, hardness, and strength by laser peening is also discussed. Finally, applications of laser peening are addressed. Results to date indicate that laser peening has great potential as a means of improving the mechanical performance of components.
Author Mai, Yiu-Wing
Clark, Graham
Ye, Lin
Montross, Charles S.
Wei, Tao
Author_xml – sequence: 1
  givenname: Charles S.
  surname: Montross
  fullname: Montross, Charles S.
  organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 2
  givenname: Tao
  surname: Wei
  fullname: Wei, Tao
  organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 3
  givenname: Lin
  surname: Ye
  fullname: Ye, Lin
  email: ye@mech.eng.usyd.edu.au
  organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 4
  givenname: Graham
  surname: Clark
  fullname: Clark, Graham
  organization: Airframes and Engines Division, Aeronautical and Maritime Research Laboratory, 506 Lorimer Street, Fishermens Bend, Victoria 3207, Australia
– sequence: 5
  givenname: Yiu-Wing
  surname: Mai
  fullname: Mai, Yiu-Wing
  organization: Center of Expertise in Damage Mechanics, Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13793626$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-BCEXRQ-rSfYzXkSKX1DwoJ5DTGY1us3WzK7Sf2-2LXr0NASedybvMyEj33og5JCzM854cf7IeCYSzkV6wsQpY0zE1w4Z86qUSZrlYkTGv8gemSC-R0iyMh8TPdcIgeJbaz7oMrQGEJ1_pdpb6jqkUNdg4mw9XTgTWuxCb7o-wJqIgSWEzkEEarqATjdUN027wguqaYAvB9_7ZLfWDcLBdk7J88310-wumT_c3s-u5onJqqJLCgtMWoAqrySHtBQVgyI3wma1FqUAUdjM2kwazjnLmSxzIwuoZJa9WK6lSafkeLM3fuqzB-zUwqGBptEe2h6VKLmMnYsI5htwqIMBarUMbqHDSnGmBqFqLVQNthQTai1U8Zg72h7QaHRTB-2Nw79wWsq0EMP-yw0HsW00EBQaB96AdSG6VLZ1_1z6AQbwjDc
CODEN IJFADB
CitedBy_id crossref_primary_10_1016_j_jmatprotec_2019_116553
crossref_primary_10_2351_1_5035483
crossref_primary_10_3390_ma13061453
crossref_primary_10_1007_s00170_015_6809_8
crossref_primary_10_1016_j_triboint_2014_04_017
crossref_primary_10_1016_j_optlastec_2016_11_022
crossref_primary_10_1016_j_actamat_2012_12_016
crossref_primary_10_1016_j_apsusc_2017_02_146
crossref_primary_10_1016_j_ijfatigue_2021_106581
crossref_primary_10_4028_www_scientific_net_AMR_538_541_1866
crossref_primary_10_1038_s41598_019_43876_2
crossref_primary_10_1063_1_4816487
crossref_primary_10_1016_j_msea_2020_139486
crossref_primary_10_1111_ffe_14231
crossref_primary_10_1179_174328409X453181
crossref_primary_10_1016_j_jmrt_2023_11_168
crossref_primary_10_3390_ma16113944
crossref_primary_10_4028_www_scientific_net_SSP_200_60
crossref_primary_10_3390_ma14051082
crossref_primary_10_1016_j_optlastec_2022_108760
crossref_primary_10_1002_adem_201700641
crossref_primary_10_1007_s00170_020_05058_7
crossref_primary_10_1016_j_optlastec_2021_107391
crossref_primary_10_1002_prep_200800021
crossref_primary_10_1115_1_4007780
crossref_primary_10_1080_01694243_2020_1757584
crossref_primary_10_1016_S1005_0302_11_60144_8
crossref_primary_10_1016_j_ijmecsci_2020_106173
crossref_primary_10_1016_j_optlastec_2022_108528
crossref_primary_10_3390_ma15165503
crossref_primary_10_1016_j_cirp_2012_03_139
crossref_primary_10_1016_j_optlastec_2021_107385
crossref_primary_10_1016_j_msea_2023_144657
crossref_primary_10_1007_s00170_021_07955_x
crossref_primary_10_1002_pssa_200925198
crossref_primary_10_1007_s11665_022_06857_7
crossref_primary_10_1179_026708403225007563
crossref_primary_10_1016_j_msea_2016_08_031
crossref_primary_10_1007_s11665_022_06748_x
crossref_primary_10_1007_s11665_021_05799_w
crossref_primary_10_1016_S1003_6326_14_63150_2
crossref_primary_10_1016_j_optlastec_2015_09_008
crossref_primary_10_1016_j_actamat_2014_09_032
crossref_primary_10_1016_j_optlastec_2019_02_019
crossref_primary_10_3390_photonics8040120
crossref_primary_10_1016_j_msea_2012_08_125
crossref_primary_10_1007_s12666_010_0071_4
crossref_primary_10_1016_j_engfracmech_2021_107918
crossref_primary_10_1016_j_matdes_2013_08_054
crossref_primary_10_1016_j_surfcoat_2017_01_031
crossref_primary_10_1115_1_4003117
crossref_primary_10_1016_j_apsusc_2021_150242
crossref_primary_10_1007_s40735_021_00474_y
crossref_primary_10_1063_5_0079544
crossref_primary_10_3390_ma17040909
crossref_primary_10_1088_0022_3727_44_17_174026
crossref_primary_10_1016_j_compstruct_2020_112249
crossref_primary_10_1016_j_optlastec_2015_09_014
crossref_primary_10_1016_j_jnoncrysol_2019_02_031
crossref_primary_10_1016_j_scriptamat_2007_12_023
crossref_primary_10_1557_s43578_022_00600_7
crossref_primary_10_1016_j_matchar_2021_111620
crossref_primary_10_1016_j_surfcoat_2019_125284
crossref_primary_10_1007_s10812_015_0064_5
crossref_primary_10_1007_s11431_023_2420_x
crossref_primary_10_1007_s40830_015_0004_5
crossref_primary_10_1016_j_ijfatigue_2017_08_006
crossref_primary_10_1016_j_jallcom_2022_168305
crossref_primary_10_1016_j_apsusc_2010_03_043
crossref_primary_10_1016_j_ijfatigue_2018_01_018
crossref_primary_10_1016_j_ijfatigue_2018_01_017
crossref_primary_10_1016_j_mechmat_2017_06_009
crossref_primary_10_1016_j_mspro_2015_11_045
crossref_primary_10_4028_www_scientific_net_SSP_183_215
crossref_primary_10_1016_j_wear_2016_03_027
crossref_primary_10_1016_j_optlastec_2019_02_041
crossref_primary_10_1016_j_jmrt_2023_04_162
crossref_primary_10_1007_s11665_023_08454_8
crossref_primary_10_1016_j_ijmachtools_2010_08_012
crossref_primary_10_1007_s12666_020_01965_1
crossref_primary_10_1016_j_optlastec_2013_05_017
crossref_primary_10_1016_j_optlastec_2023_109722
crossref_primary_10_1016_j_corsci_2023_111794
crossref_primary_10_4028_www_scientific_net_AMR_661_141
crossref_primary_10_3724_SP_J_1037_2011_00577
crossref_primary_10_1016_j_jmrt_2024_05_017
crossref_primary_10_3390_ma12162503
crossref_primary_10_1007_s41871_023_00182_w
crossref_primary_10_1080_14786435_2020_1760390
crossref_primary_10_1007_s12541_019_00147_4
crossref_primary_10_1115_1_4003124
crossref_primary_10_1063_1_4742997
crossref_primary_10_3389_fmech_2020_00056
crossref_primary_10_2184_lsj_42_6_448
crossref_primary_10_4028_www_scientific_net_MSF_783_786_2376
crossref_primary_10_1016_j_ijmachtools_2007_08_021
crossref_primary_10_2184_lsj_42_6_472
crossref_primary_10_1016_j_surfcoat_2016_08_053
crossref_primary_10_4028_www_scientific_net_MSF_1002_21
crossref_primary_10_1007_s11665_023_09098_4
crossref_primary_10_1007_s11340_009_9301_2
crossref_primary_10_1016_j_optlastec_2019_105892
crossref_primary_10_1080_10589759_2019_1573238
crossref_primary_10_1115_1_2386180
crossref_primary_10_1016_j_optlastec_2020_106409
crossref_primary_10_1063_1_5054195
crossref_primary_10_1016_j_cossms_2023_101090
crossref_primary_10_1007_s11661_017_4175_x
crossref_primary_10_3390_met11111716
crossref_primary_10_1007_s11663_020_01902_z
crossref_primary_10_1063_1_1581285
crossref_primary_10_1016_j_ijmecsci_2016_03_022
crossref_primary_10_1016_j_actamat_2012_06_024
crossref_primary_10_4028_www_scientific_net_AMR_97_101_3816
crossref_primary_10_1049_joe_2015_0118
crossref_primary_10_1016_j_ndteint_2021_102457
crossref_primary_10_1016_j_optlaseng_2013_06_011
crossref_primary_10_1016_j_ijsolstr_2022_111422
crossref_primary_10_1016_j_ijimpeng_2010_11_008
crossref_primary_10_1080_10426911003720763
crossref_primary_10_1007_s11665_016_2158_5
crossref_primary_10_1016_j_rinp_2018_08_030
crossref_primary_10_1115_1_3075869
crossref_primary_10_3390_ma17081809
crossref_primary_10_4028_www_scientific_net_MSF_697_698_466
crossref_primary_10_2184_lsj_42_6_494
crossref_primary_10_1016_j_optlaseng_2011_11_013
crossref_primary_10_1080_09205071_2017_1398109
crossref_primary_10_1111_j_1460_2695_2006_01093_x
crossref_primary_10_1016_j_rcim_2022_102389
crossref_primary_10_1016_j_wear_2014_11_016
crossref_primary_10_3390_nano11092223
crossref_primary_10_1063_1_4996846
crossref_primary_10_1007_s40195_017_0555_x
crossref_primary_10_1016_j_optlastec_2019_105669
crossref_primary_10_1016_j_apsusc_2010_08_099
crossref_primary_10_1016_j_optlastec_2012_09_015
crossref_primary_10_3390_ma13163612
crossref_primary_10_1016_j_corsci_2019_04_019
crossref_primary_10_1016_j_jmatprotec_2020_116640
crossref_primary_10_1016_j_jmrt_2023_06_227
crossref_primary_10_2184_lsj_42_6_489
crossref_primary_10_2351_1_4943999
crossref_primary_10_1016_j_msea_2023_144886
crossref_primary_10_1007_s00170_016_8796_9
crossref_primary_10_1007_s11465_019_0581_7
crossref_primary_10_3390_met13050979
crossref_primary_10_1016_j_optlaseng_2019_105913
crossref_primary_10_1016_j_ijfatigue_2021_106544
crossref_primary_10_4131_jshpreview_31_149
crossref_primary_10_1080_01430750_2019_1614987
crossref_primary_10_1520_JAI101713
crossref_primary_10_4028_www_scientific_net_KEM_464_572
crossref_primary_10_1016_j_ijmecsci_2016_02_002
crossref_primary_10_1016_j_ijpvp_2019_103972
crossref_primary_10_1016_j_surfcoat_2016_08_088
crossref_primary_10_1016_j_jallcom_2020_158539
crossref_primary_10_1016_j_jmatprotec_2007_11_147
crossref_primary_10_1016_j_wear_2023_204866
crossref_primary_10_1016_j_engfracmech_2021_107524
crossref_primary_10_1016_j_jmatprotec_2015_07_003
crossref_primary_10_4028_www_scientific_net_AMM_43_467
crossref_primary_10_1016_j_matchar_2021_110935
crossref_primary_10_1103_PhysRevLett_114_174301
crossref_primary_10_24237_djes_2022_15405
crossref_primary_10_1108_17579861111108653
crossref_primary_10_1111_ffe_13390
crossref_primary_10_4028_www_scientific_net_AMR_460_420
crossref_primary_10_4028_www_scientific_net_MSF_561_565_2261
crossref_primary_10_1016_j_proeng_2015_12_247
crossref_primary_10_1016_j_surfcoat_2008_04_080
crossref_primary_10_3390_ma16114124
crossref_primary_10_1007_s11837_007_0021_8
crossref_primary_10_1016_j_msea_2020_140618
crossref_primary_10_3390_ma15207269
crossref_primary_10_1088_1742_6596_2526_1_012044
crossref_primary_10_1016_j_apsusc_2008_10_070
crossref_primary_10_1680_jsuin_20_00015
crossref_primary_10_1007_s12613_021_2322_2
crossref_primary_10_1016_j_surfin_2021_101241
crossref_primary_10_1016_j_apsusc_2014_02_128
crossref_primary_10_1016_j_surfcoat_2012_01_050
crossref_primary_10_1016_j_actamat_2010_10_032
crossref_primary_10_1016_j_proeng_2015_12_258
crossref_primary_10_1016_j_surfcoat_2021_127302
crossref_primary_10_1016_j_cja_2023_03_033
crossref_primary_10_1007_s12540_022_01286_6
crossref_primary_10_1016_j_finmec_2023_100234
crossref_primary_10_1016_j_wear_2019_05_007
crossref_primary_10_1016_j_matdes_2008_11_010
crossref_primary_10_1063_1_2426981
crossref_primary_10_1080_09507116_2021_1894034
crossref_primary_10_1103_PhysRevB_74_224301
crossref_primary_10_1016_j_euromechsol_2022_104844
crossref_primary_10_1088_1748_6041_11_1_015009
crossref_primary_10_4028_www_scientific_net_AMR_460_407
crossref_primary_10_1016_S1875_5372_18_30057_2
crossref_primary_10_1016_j_corsci_2012_03_044
crossref_primary_10_1016_j_apsusc_2019_03_070
crossref_primary_10_3390_ma14143841
crossref_primary_10_1016_j_apsusc_2009_04_011
crossref_primary_10_1016_j_triboint_2009_04_005
crossref_primary_10_1016_j_msea_2010_09_089
crossref_primary_10_1007_s11665_020_04667_3
crossref_primary_10_1007_s00170_018_1849_5
crossref_primary_10_1016_j_matchemphys_2024_129616
crossref_primary_10_4028_www_scientific_net_MSF_537_538_655
crossref_primary_10_1016_j_ijfatigue_2020_105890
crossref_primary_10_1007_s40430_019_1633_y
crossref_primary_10_1016_j_ijmecsci_2022_107289
crossref_primary_10_1134_S1029959920020071
crossref_primary_10_1016_j_surfcoat_2023_129450
crossref_primary_10_1063_1_3486218
crossref_primary_10_1016_j_surfcoat_2018_07_087
crossref_primary_10_1007_s11661_015_3027_9
crossref_primary_10_1016_j_optlastec_2023_110333
crossref_primary_10_1016_j_jma_2019_05_005
crossref_primary_10_1016_j_ijmecsci_2020_105535
crossref_primary_10_1016_j_jmapro_2023_09_067
crossref_primary_10_3390_met13020397
crossref_primary_10_1111_j_1460_2695_2004_00763_x
crossref_primary_10_1088_2631_8695_ab9b16
crossref_primary_10_1016_j_msea_2010_01_076
crossref_primary_10_1016_j_apsusc_2019_03_093
crossref_primary_10_1179_026708403225002568
crossref_primary_10_3390_ma7127925
crossref_primary_10_1088_0965_0393_17_1_015010
crossref_primary_10_4028_www_scientific_net_AMM_217_219_2234
crossref_primary_10_1007_s00542_019_04552_7
crossref_primary_10_1016_j_jmapro_2018_04_006
crossref_primary_10_1016_j_optlastec_2013_08_011
crossref_primary_10_1002_srin_200405819
crossref_primary_10_1016_j_matdes_2009_03_005
crossref_primary_10_1016_j_matchar_2021_111037
crossref_primary_10_1016_j_matdes_2008_09_033
crossref_primary_10_1016_j_surfcoat_2021_127988
crossref_primary_10_1016_j_optlastec_2017_10_022
crossref_primary_10_1080_10402004_2012_686087
crossref_primary_10_4028_www_scientific_net_AMM_217_219_2246
crossref_primary_10_3390_met9111192
crossref_primary_10_1016_j_matpr_2015_07_012
crossref_primary_10_4028_www_scientific_net_KEM_464_552
crossref_primary_10_1016_j_msea_2020_139933
crossref_primary_10_1007_s12206_016_0635_2
crossref_primary_10_1016_j_apsusc_2022_153406
crossref_primary_10_4028_www_scientific_net_AMM_44_47_148
crossref_primary_10_1039_C8NR09747J
crossref_primary_10_1108_17579861111135923
crossref_primary_10_1016_j_optlastec_2023_109398
crossref_primary_10_1016_j_scriptamat_2015_10_027
crossref_primary_10_1016_j_msea_2009_04_049
crossref_primary_10_1016_j_surfcoat_2015_07_049
crossref_primary_10_1016_j_jallcom_2016_12_210
crossref_primary_10_1007_s00170_013_5032_8
crossref_primary_10_1007_s10921_011_0110_z
crossref_primary_10_4028_www_scientific_net_AMR_1016_111
crossref_primary_10_1016_j_apsusc_2015_02_111
crossref_primary_10_1016_j_ijfatigue_2023_107649
crossref_primary_10_1016_j_optlaseng_2011_11_002
crossref_primary_10_3390_ma13235363
crossref_primary_10_1016_j_matdes_2017_05_083
crossref_primary_10_1515_amm_2015_0202
crossref_primary_10_1007_s10409_015_0521_7
crossref_primary_10_1016_j_jcsr_2016_07_010
crossref_primary_10_1016_S1003_6326_12_61763_4
crossref_primary_10_1002_pssb_201800649
crossref_primary_10_1063_1_4799154
crossref_primary_10_1007_s11665_018_3336_4
crossref_primary_10_1002_jbm_b_34278
crossref_primary_10_1016_j_matdes_2008_07_017
crossref_primary_10_1016_j_ijmachtools_2022_103917
crossref_primary_10_1016_j_matdes_2011_10_053
crossref_primary_10_1179_174329407X247208
crossref_primary_10_1007_s11003_014_9676_9
crossref_primary_10_1080_10408436_2018_1492368
crossref_primary_10_1088_1757_899X_114_1_012002
crossref_primary_10_1016_j_corsci_2014_10_045
crossref_primary_10_1016_j_jallcom_2023_171684
crossref_primary_10_1016_j_surfcoat_2007_07_008
crossref_primary_10_1002_admi_202400045
crossref_primary_10_1016_j_jmatprotec_2012_01_023
crossref_primary_10_1016_j_jmrt_2018_09_008
crossref_primary_10_1016_j_mechmat_2014_12_001
crossref_primary_10_1016_j_triboint_2009_04_014
crossref_primary_10_4028_www_scientific_net_AMR_317_319_1614
crossref_primary_10_1179_1743294412Y_0000000029
crossref_primary_10_1088_0031_8949_89_02_025703
crossref_primary_10_1016_j_triboint_2019_106138
crossref_primary_10_1299_mer_14_00192
crossref_primary_10_1016_j_ijmachtools_2023_104061
crossref_primary_10_4028_www_scientific_net_MSF_490_491_328
crossref_primary_10_1016_j_ijfatigue_2012_09_010
crossref_primary_10_1063_1_4904461
crossref_primary_10_1016_j_optlaseng_2012_07_007
crossref_primary_10_1016_j_msea_2024_146388
crossref_primary_10_1016_j_addma_2020_101112
crossref_primary_10_1063_1_3702890
crossref_primary_10_3390_ma15165682
crossref_primary_10_1016_j_ijfatigue_2014_11_001
crossref_primary_10_1039_C7RA05425D
crossref_primary_10_1179_1743284712Y_0000000106
crossref_primary_10_1115_1_4002585
crossref_primary_10_1016_j_mtcomm_2023_107645
crossref_primary_10_1016_j_surfcoat_2015_09_014
crossref_primary_10_1063_1_3598341
crossref_primary_10_1007_s12206_010_0314_7
crossref_primary_10_1016_j_ijmecsci_2021_106757
crossref_primary_10_1111_ffe_12203
crossref_primary_10_1016_j_optlastec_2021_107217
crossref_primary_10_1016_j_ijfatigue_2021_106180
crossref_primary_10_2351_1_3573370
crossref_primary_10_1016_j_surfcoat_2020_125403
crossref_primary_10_1016_j_tafmec_2022_103358
crossref_primary_10_1007_s11665_022_07639_x
crossref_primary_10_2184_lsj_41_2_134
crossref_primary_10_1016_j_matdes_2011_10_001
crossref_primary_10_1177_16878132241232837
crossref_primary_10_3390_s19245503
crossref_primary_10_1007_s00170_023_12354_5
crossref_primary_10_1016_j_surfcoat_2022_128237
crossref_primary_10_1016_j_jallcom_2018_08_161
crossref_primary_10_1088_0957_0233_25_5_055207
crossref_primary_10_1016_j_actamat_2010_06_010
crossref_primary_10_1016_j_optlastec_2018_08_005
crossref_primary_10_1016_j_msea_2013_01_068
crossref_primary_10_1016_j_surfcoat_2011_01_001
crossref_primary_10_1038_s41467_021_25140_2
crossref_primary_10_1016_j_matdes_2021_109754
crossref_primary_10_1063_5_0191028
crossref_primary_10_4028_www_scientific_net_AMM_146_83
crossref_primary_10_1002_adem_202001216
crossref_primary_10_1016_j_ijfatigue_2024_108424
crossref_primary_10_1016_j_matdes_2015_10_128
crossref_primary_10_1002_adem_200900290
crossref_primary_10_1051_matecconf_202032112018
crossref_primary_10_1016_j_mex_2023_102125
crossref_primary_10_4028_www_scientific_net_KEM_465_511
crossref_primary_10_1016_j_jmrt_2020_06_016
crossref_primary_10_1115_1_4049649
crossref_primary_10_4028_www_scientific_net_AMM_437_358
crossref_primary_10_1016_j_jmatprotec_2008_02_002
crossref_primary_10_3390_met13101762
crossref_primary_10_1016_j_actamat_2022_118259
crossref_primary_10_1016_j_ijsolstr_2022_112063
crossref_primary_10_1016_j_apsusc_2021_149097
crossref_primary_10_1364_OE_25_003875
crossref_primary_10_1016_j_addma_2017_05_008
crossref_primary_10_1016_j_optlastec_2018_06_032
crossref_primary_10_1080_00084433_2023_2294551
crossref_primary_10_3390_met6110279
crossref_primary_10_1016_j_surfcoat_2013_06_003
crossref_primary_10_1016_j_matdes_2009_02_015
crossref_primary_10_1007_s40830_018_0179_7
crossref_primary_10_1016_j_apsusc_2024_160334
crossref_primary_10_1016_j_msea_2006_07_020
crossref_primary_10_1016_j_wear_2019_01_112
crossref_primary_10_1016_j_matpr_2020_10_618
crossref_primary_10_1016_j_surfcoat_2021_127070
crossref_primary_10_5781_JWJ_2015_33_4_1
crossref_primary_10_1016_S1875_5372_14_60102_8
crossref_primary_10_1007_s11665_018_3371_1
crossref_primary_10_1016_j_matchar_2017_01_036
crossref_primary_10_1016_j_optlaseng_2017_09_024
crossref_primary_10_1039_D1TC02475B
crossref_primary_10_1088_1757_899X_275_1_012041
crossref_primary_10_1016_j_commatsci_2018_02_030
crossref_primary_10_1016_j_msea_2005_11_017
crossref_primary_10_1016_j_apsusc_2013_08_080
crossref_primary_10_1016_j_mseb_2009_11_011
crossref_primary_10_1007_s11665_007_9091_6
crossref_primary_10_1016_j_surfcoat_2018_06_020
crossref_primary_10_1016_j_jmst_2024_04_075
crossref_primary_10_1088_1361_6528_aadd75
crossref_primary_10_1007_s00339_008_4894_3
crossref_primary_10_1016_j_matdes_2015_04_048
crossref_primary_10_1243_09544054JEM311
crossref_primary_10_1016_j_jallcom_2018_01_070
crossref_primary_10_1007_s00339_018_1675_5
crossref_primary_10_1016_j_jallcom_2018_09_147
crossref_primary_10_1016_j_jma_2023_05_011
crossref_primary_10_1088_1757_899X_700_1_012015
crossref_primary_10_1016_j_apsusc_2017_11_088
crossref_primary_10_3390_ma15155228
crossref_primary_10_1063_1_3558989
crossref_primary_10_1080_00084433_2023_2235128
crossref_primary_10_3390_met6120297
crossref_primary_10_1016_j_compstruct_2019_03_024
crossref_primary_10_2320_matertrans_M2016240
crossref_primary_10_1002_adom_201800444
crossref_primary_10_1007_s11661_021_06294_6
crossref_primary_10_1016_j_ijfatigue_2020_105868
crossref_primary_10_1016_j_surfcoat_2018_06_043
crossref_primary_10_1038_s41598_023_37060_w
crossref_primary_10_1016_j_ijleo_2023_170654
crossref_primary_10_1016_j_apsusc_2010_09_002
crossref_primary_10_1016_j_jmapro_2015_05_007
crossref_primary_10_3390_ma14237111
crossref_primary_10_1016_j_msea_2011_12_053
crossref_primary_10_1016_j_msea_2016_12_073
crossref_primary_10_1016_j_ijengsci_2003_11_001
crossref_primary_10_1016_j_apsusc_2017_09_138
crossref_primary_10_1016_j_msea_2014_03_108
crossref_primary_10_3390_met6080179
crossref_primary_10_4028_www_scientific_net_AMR_891_892_974
crossref_primary_10_1016_j_msea_2012_09_097
crossref_primary_10_1016_j_triboint_2020_106443
crossref_primary_10_1002_smll_202105748
crossref_primary_10_1016_j_msea_2022_144295
crossref_primary_10_2320_matertrans_MT_MF2022040
crossref_primary_10_1016_j_surfin_2023_103757
crossref_primary_10_1016_j_surfcoat_2017_08_069
crossref_primary_10_1088_1361_6463_abc040
crossref_primary_10_1007_s11665_015_1494_1
crossref_primary_10_1016_j_proeng_2014_11_007
crossref_primary_10_1016_j_msea_2013_11_073
crossref_primary_10_5006_3990
crossref_primary_10_1016_j_jmapro_2021_02_062
crossref_primary_10_1016_j_ijfatigue_2016_05_017
crossref_primary_10_1016_j_matchar_2017_07_036
crossref_primary_10_1016_j_matchar_2024_113706
crossref_primary_10_1179_1432891714Z_000000000783
crossref_primary_10_1243_03093247JSA420
crossref_primary_10_1007_s11433_014_5397_1
crossref_primary_10_1016_S1875_5372_15_30082_5
crossref_primary_10_1016_j_jallcom_2022_167530
crossref_primary_10_1016_j_procir_2020_02_062
crossref_primary_10_1115_1_3139214
crossref_primary_10_1520_JAI103188
crossref_primary_10_1016_j_msea_2009_08_045
crossref_primary_10_1016_j_surfcoat_2018_02_009
crossref_primary_10_1680_jemmr_16_00119
crossref_primary_10_3390_ma11040563
crossref_primary_10_1088_1757_899X_73_1_012152
crossref_primary_10_1016_j_ijleo_2019_162940
crossref_primary_10_1007_s40436_018_0218_9
crossref_primary_10_1007_s40516_020_00118_y
crossref_primary_10_1016_j_prostr_2020_01_148
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1016_j_surfcoat_2010_11_031
crossref_primary_10_1016_j_surfcoat_2022_128611
crossref_primary_10_1016_j_corsci_2013_11_003
crossref_primary_10_1016_j_jmapro_2023_05_069
crossref_primary_10_1016_j_pmatsci_2022_100948
crossref_primary_10_1016_j_optlastec_2015_10_011
crossref_primary_10_1364_OL_40_004440
crossref_primary_10_1007_s11665_016_2220_3
crossref_primary_10_1007_s41547_019_00082_7
crossref_primary_10_1016_j_ijleo_2019_01_092
crossref_primary_10_1016_j_ijfatigue_2016_06_010
crossref_primary_10_1016_j_cja_2020_09_004
crossref_primary_10_1016_j_optlastec_2016_09_003
crossref_primary_10_3389_fmats_2021_802973
crossref_primary_10_1115_1_4048397
crossref_primary_10_7735_ksmte_2013_22_4_680
crossref_primary_10_1177_1687814019850945
crossref_primary_10_1111_ffe_12126
crossref_primary_10_1016_j_apmt_2019_01_005
crossref_primary_10_1016_j_msea_2022_144497
crossref_primary_10_1007_s00339_012_7072_6
crossref_primary_10_1016_j_ijimpeng_2011_02_006
crossref_primary_10_1016_j_jmapro_2017_06_017
crossref_primary_10_1007_s12540_023_01517_4
crossref_primary_10_1179_1743676110Y_0000000011
crossref_primary_10_5004_dwt_2010_1665
crossref_primary_10_1016_j_ijfatigue_2013_06_024
crossref_primary_10_1016_j_surfcoat_2018_04_069
crossref_primary_10_1111_ffe_13226
crossref_primary_10_15407_ufm_22_04_562
crossref_primary_10_1016_j_jmapro_2024_01_086
crossref_primary_10_1016_j_ijfatigue_2021_106270
crossref_primary_10_1016_j_ijfatigue_2019_03_042
crossref_primary_10_1016_j_surfcoat_2021_127481
crossref_primary_10_1016_j_scriptamat_2021_114012
crossref_primary_10_1016_S1003_6326_23_66160_6
crossref_primary_10_1016_j_apsusc_2006_02_060
crossref_primary_10_1016_j_apsusc_2020_145755
crossref_primary_10_1016_j_jmatprotec_2018_02_041
crossref_primary_10_1016_j_jsv_2018_12_035
crossref_primary_10_2351_1_5024887
crossref_primary_10_1016_j_msea_2019_138844
crossref_primary_10_3390_cryst13020212
crossref_primary_10_3365_KJMM_2020_58_8_560
crossref_primary_10_1016_j_ijfatigue_2024_108467
crossref_primary_10_2320_matertrans_MT_MF2022028
crossref_primary_10_2351_1_4800444
crossref_primary_10_1016_j_measurement_2022_111560
crossref_primary_10_1016_j_mtcomm_2022_104200
crossref_primary_10_1016_j_apsusc_2014_06_056
crossref_primary_10_1016_j_surfcoat_2010_03_015
crossref_primary_10_1080_21663831_2020_1862933
crossref_primary_10_1016_j_wear_2020_203490
crossref_primary_10_3390_ma15124226
crossref_primary_10_1021_acs_jpcc_9b09884
crossref_primary_10_3901_CJME_2015_0422_046
crossref_primary_10_1016_j_optlastec_2014_05_028
crossref_primary_10_1016_j_optlastec_2018_10_054
crossref_primary_10_1016_j_jallcom_2018_04_029
crossref_primary_10_1088_2053_1591_abc2fc
crossref_primary_10_1089_3dp_2019_0064
crossref_primary_10_1140_epjd_e2013_30767_4
crossref_primary_10_1080_02670844_2023_2206186
crossref_primary_10_1016_j_msea_2007_02_004
crossref_primary_10_1016_j_optlastec_2022_108261
crossref_primary_10_3390_ma6094213
crossref_primary_10_1016_j_mechmat_2021_103882
crossref_primary_10_4028_www_scientific_net_KEM_765_209
crossref_primary_10_3390_met10121669
crossref_primary_10_1016_j_optlastec_2020_106527
crossref_primary_10_1016_j_optlastec_2019_105762
crossref_primary_10_3390_met12040642
crossref_primary_10_1007_s11661_023_07159_w
crossref_primary_10_1115_1_4045500
crossref_primary_10_4028_www_scientific_net_KEM_329_637
crossref_primary_10_1016_j_surfcoat_2009_04_029
crossref_primary_10_3390_ma11081267
crossref_primary_10_1016_j_ijleo_2021_168363
crossref_primary_10_1016_j_jmatprotec_2018_11_024
crossref_primary_10_1016_j_matpr_2022_06_167
crossref_primary_10_1016_j_ijfatigue_2019_02_023
crossref_primary_10_1016_j_matchar_2019_110017
crossref_primary_10_1016_j_surfcoat_2021_127215
crossref_primary_10_1016_j_eswa_2024_123911
crossref_primary_10_1007_s00170_018_3033_3
crossref_primary_10_1016_j_msea_2015_12_007
crossref_primary_10_1007_s11340_014_9940_9
crossref_primary_10_1016_j_optlastec_2016_09_025
crossref_primary_10_1016_j_surfcoat_2018_02_094
crossref_primary_10_1016_j_intermet_2023_108108
crossref_primary_10_4028_www_scientific_net_KEM_375_376_57
crossref_primary_10_1016_j_ijfatigue_2021_106641
crossref_primary_10_1007_s12289_014_1171_1
crossref_primary_10_1016_j_cirp_2011_03_115
crossref_primary_10_1186_s10033_021_00611_1
crossref_primary_10_1088_1757_899X_770_1_012080
crossref_primary_10_1016_j_jallcom_2022_165761
crossref_primary_10_3390_ma12081343
crossref_primary_10_1016_j_jmapro_2023_07_060
crossref_primary_10_1088_2631_7990_aba17c
crossref_primary_10_3390_met8030174
crossref_primary_10_1007_s00170_008_1601_7
crossref_primary_10_1016_j_msea_2013_10_066
crossref_primary_10_1016_j_msea_2021_140824
crossref_primary_10_1016_j_mtla_2019_100265
crossref_primary_10_1063_1_3481858
crossref_primary_10_1016_j_corsci_2021_109364
crossref_primary_10_1016_j_jmatprotec_2018_11_007
crossref_primary_10_1016_j_optlaseng_2017_03_004
crossref_primary_10_4028_www_scientific_net_MSF_471_472_886
crossref_primary_10_3390_ma10050523
crossref_primary_10_1016_j_jclepro_2018_03_187
crossref_primary_10_1016_j_apsusc_2005_12_164
crossref_primary_10_3390_ma16031033
crossref_primary_10_1016_S0921_5093_03_00069_8
crossref_primary_10_1016_j_surfcoat_2013_01_031
crossref_primary_10_4028_www_scientific_net_AMR_271_273_84
crossref_primary_10_1016_j_jallcom_2018_12_294
crossref_primary_10_1016_j_msea_2012_01_125
crossref_primary_10_1016_j_optlastec_2023_109427
crossref_primary_10_1016_j_optlastec_2019_105568
crossref_primary_10_1016_j_ijfatigue_2011_12_014
crossref_primary_10_1063_1_5134813
crossref_primary_10_1007_s11665_021_06049_9
crossref_primary_10_1111_jace_15742
crossref_primary_10_1016_j_surfcoat_2019_124919
crossref_primary_10_1016_j_jmrt_2023_05_018
crossref_primary_10_1016_j_msea_2013_04_058
crossref_primary_10_1016_j_surfcoat_2018_02_083
crossref_primary_10_2478_adms_2023_0022
crossref_primary_10_5781_JWJ_2016_34_6_35
crossref_primary_10_1007_s00170_009_2185_6
crossref_primary_10_1016_j_cplett_2005_12_010
crossref_primary_10_7567_JJAP_57_122703
crossref_primary_10_1016_j_engfracmech_2018_08_004
crossref_primary_10_3390_met9070728
crossref_primary_10_1063_1_1915537
crossref_primary_10_1016_j_ijhydene_2024_06_215
crossref_primary_10_1016_j_msea_2018_11_088
crossref_primary_10_1016_j_surfcoat_2015_06_065
crossref_primary_10_1016_j_vacuum_2023_112078
crossref_primary_10_4028_www_scientific_net_AMR_347_353_1596
crossref_primary_10_1557_PROC_1098_HH08_01
crossref_primary_10_1016_j_ijfatigue_2019_01_020
crossref_primary_10_1080_20421338_2019_1610252
crossref_primary_10_3390_met10010093
crossref_primary_10_1080_14786430412331324662
crossref_primary_10_1016_j_jmatprotec_2006_03_170
crossref_primary_10_1111_jace_14630
crossref_primary_10_1016_j_ijleo_2021_167446
crossref_primary_10_1016_j_engfailanal_2022_106625
crossref_primary_10_1016_j_msea_2013_04_034
crossref_primary_10_1063_5_0196004
crossref_primary_10_1016_j_optlaseng_2012_11_002
crossref_primary_10_4028_www_scientific_net_KEM_765_237
crossref_primary_10_1533_wint_2006_3624
crossref_primary_10_4028_www_scientific_net_KEM_464_478
crossref_primary_10_4028_www_scientific_net_AMR_891_892_969
crossref_primary_10_1016_j_tafmec_2022_103642
crossref_primary_10_3390_ma16051802
crossref_primary_10_1063_1_3633266
crossref_primary_10_1016_j_surfcoat_2017_04_044
crossref_primary_10_1007_s10853_022_07019_9
crossref_primary_10_1016_j_ijfatigue_2022_107035
crossref_primary_10_1088_2631_7990_abb5f3
crossref_primary_10_1016_j_ijmecsci_2009_09_016
crossref_primary_10_4028_www_scientific_net_MSF_699_131
crossref_primary_10_1016_S1875_5372_18_30067_5
crossref_primary_10_4028_www_scientific_net_KEM_353_358_1753
crossref_primary_10_1016_j_msea_2010_10_098
crossref_primary_10_1016_j_ijfatigue_2022_107033
crossref_primary_10_1016_j_msea_2018_10_096
crossref_primary_10_1016_j_matchar_2018_05_010
crossref_primary_10_1016_j_matdes_2009_11_026
crossref_primary_10_1016_j_optlastec_2020_106131
crossref_primary_10_1140_epjp_s13360_022_02638_2
crossref_primary_10_1016_j_jallcom_2023_169209
crossref_primary_10_1021_acsabm_1c00826
crossref_primary_10_1007_s11837_023_06315_2
crossref_primary_10_1002_adem_202201066
crossref_primary_10_1007_s11661_017_4280_x
crossref_primary_10_1016_j_ijleo_2019_163578
crossref_primary_10_4028_www_scientific_net_AMR_189_193_3778
crossref_primary_10_1111_ffe_12732
crossref_primary_10_1016_j_ast_2019_105430
crossref_primary_10_3389_fchem_2022_999630
crossref_primary_10_1007_s42864_021_00087_5
crossref_primary_10_1016_j_ijfatigue_2016_08_005
crossref_primary_10_1016_j_finmec_2022_100080
crossref_primary_10_3390_app11072888
crossref_primary_10_1016_j_surfin_2019_100415
crossref_primary_10_1126_science_aag1768
crossref_primary_10_26599_JAC_2023_9220742
crossref_primary_10_1016_j_vacuum_2018_06_057
crossref_primary_10_1016_j_jksus_2017_07_012
crossref_primary_10_1016_j_ijfatigue_2020_105792
crossref_primary_10_3390_ma9100799
crossref_primary_10_1016_j_msea_2015_10_036
crossref_primary_10_1007_s40830_019_00256_z
crossref_primary_10_4028_www_scientific_net_AMM_44_47_680
crossref_primary_10_1557_opl_2011_329
crossref_primary_10_1016_j_measurement_2023_112590
crossref_primary_10_1088_2051_672X_ad1607
crossref_primary_10_1088_1361_651X_ab4148
crossref_primary_10_3807_JOSK_2016_20_3_407
crossref_primary_10_1063_1_2193036
crossref_primary_10_1016_j_matchemphys_2021_124232
crossref_primary_10_1088_1757_899X_310_1_012015
crossref_primary_10_1016_j_ijfatigue_2011_06_004
crossref_primary_10_1016_j_apsusc_2012_12_174
crossref_primary_10_1016_j_tafmec_2019_102444
crossref_primary_10_2320_matertrans_MF201929
crossref_primary_10_4028_www_scientific_net_KEM_464_677
crossref_primary_10_1016_j_apsusc_2015_11_192
crossref_primary_10_1016_j_surfcoat_2024_130608
crossref_primary_10_1155_2014_620854
crossref_primary_10_1016_j_msea_2015_11_022
crossref_primary_10_1016_j_matpr_2020_03_425
crossref_primary_10_1007_s00170_022_09021_6
crossref_primary_10_3788_CJL231187
crossref_primary_10_1016_j_ijleo_2019_163779
crossref_primary_10_1016_j_ijfatigue_2017_04_002
crossref_primary_10_1007_s11665_008_9212_x
crossref_primary_10_1016_j_actamat_2016_10_044
crossref_primary_10_1007_s00339_017_1209_6
crossref_primary_10_1088_2053_1591_ab0f85
crossref_primary_10_1016_j_surfcoat_2009_01_013
crossref_primary_10_1016_j_msea_2013_08_074
crossref_primary_10_1016_j_ijfatigue_2011_08_011
crossref_primary_10_3390_met9060655
crossref_primary_10_1177_1350650117692707
crossref_primary_10_1016_j_jallcom_2021_163383
crossref_primary_10_3390_coatings12121872
crossref_primary_10_1002_mawe_200390108
crossref_primary_10_1016_j_engfracmech_2013_01_011
crossref_primary_10_1016_j_jmrt_2024_01_252
crossref_primary_10_1016_j_procir_2018_08_124
crossref_primary_10_1520_JTE20180393
crossref_primary_10_1590_0104_9224_si24_08
crossref_primary_10_4028_www_scientific_net_KEM_464_619
crossref_primary_10_1016_j_msea_2008_03_017
crossref_primary_10_4028_www_scientific_net_MSF_681_504
crossref_primary_10_1016_j_msea_2011_03_041
crossref_primary_10_1016_j_jmapro_2020_02_009
crossref_primary_10_1016_j_ijmachtools_2021_103718
crossref_primary_10_1016_j_jallcom_2018_02_353
crossref_primary_10_4028_www_scientific_net_AMR_418_420_1930
crossref_primary_10_1016_j_msea_2019_04_054
crossref_primary_10_35848_1882_0786_abec8f
crossref_primary_10_1063_5_0101634
crossref_primary_10_1088_2053_1591_ab0b0e
crossref_primary_10_1016_j_msea_2021_142238
crossref_primary_10_1016_j_surfcoat_2014_05_015
crossref_primary_10_1007_s11665_023_08099_7
crossref_primary_10_1115_1_2772339
crossref_primary_10_3390_met11081198
crossref_primary_10_1007_s40516_020_00123_1
crossref_primary_10_1115_1_4002849
crossref_primary_10_4028_www_scientific_net_KEM_375_376_603
crossref_primary_10_1016_j_optlastec_2023_109288
crossref_primary_10_1080_14786435_2011_645899
crossref_primary_10_1016_j_ijrmhm_2024_106743
crossref_primary_10_1016_j_ijfatigue_2017_04_016
crossref_primary_10_1016_j_engfailanal_2019_03_012
crossref_primary_10_4028_www_scientific_net_KEM_464_632
crossref_primary_10_1016_j_optlastec_2015_04_027
crossref_primary_10_1016_j_surfcoat_2020_126431
crossref_primary_10_1016_j_jmrt_2020_11_085
crossref_primary_10_1016_j_optlaseng_2016_05_014
crossref_primary_10_5012_jkcs_2013_57_5_547
crossref_primary_10_1007_s42243_018_0047_x
crossref_primary_10_1016_j_msea_2013_08_047
crossref_primary_10_3390_cryst13081279
crossref_primary_10_1016_j_corsci_2013_08_007
crossref_primary_10_1177_09544054231166223
crossref_primary_10_1002_adem_202201451
crossref_primary_10_1016_j_optlastec_2017_03_017
crossref_primary_10_3390_met12071148
crossref_primary_10_1016_j_ijmecsci_2021_106874
crossref_primary_10_1016_j_msea_2018_09_016
crossref_primary_10_1088_1468_6996_14_5_055010
crossref_primary_10_1007_s12206_014_1235_7
crossref_primary_10_14773_cst_2015_14_6_313
crossref_primary_10_1016_j_optlastec_2017_07_020
crossref_primary_10_1016_j_actamat_2017_01_050
crossref_primary_10_4028_www_scientific_net_MSF_628_629_691
crossref_primary_10_1016_j_surfcoat_2015_02_017
crossref_primary_10_1007_s11837_020_04054_2
crossref_primary_10_1016_j_ijfatigue_2014_07_008
crossref_primary_10_1016_j_optlastec_2017_03_003
crossref_primary_10_1016_j_surfcoat_2006_02_018
crossref_primary_10_1007_s11665_008_9303_8
crossref_primary_10_1016_j_optlastec_2015_03_009
crossref_primary_10_1016_j_jallcom_2015_10_238
crossref_primary_10_1016_j_triboint_2019_105996
crossref_primary_10_1088_1757_899X_892_1_012005
crossref_primary_10_1016_j_matdes_2022_110948
crossref_primary_10_1063_1_2168022
crossref_primary_10_1016_j_ijrmhm_2018_12_016
crossref_primary_10_1007_s41871_019_00036_4
crossref_primary_10_1016_j_mtcomm_2023_106699
crossref_primary_10_1088_1757_899X_580_1_012059
crossref_primary_10_1016_j_matchar_2020_110187
crossref_primary_10_1016_j_msea_2010_11_045
crossref_primary_10_1111_jace_18222
crossref_primary_10_1007_s11771_015_3000_1
crossref_primary_10_1088_2053_1591_aaed03
crossref_primary_10_1063_1_3651508
crossref_primary_10_1016_j_jmatprotec_2016_11_038
crossref_primary_10_1016_j_addma_2020_101201
crossref_primary_10_1016_j_matdes_2015_10_022
crossref_primary_10_3390_met9121271
crossref_primary_10_1016_j_surfcoat_2012_03_004
crossref_primary_10_4028_www_scientific_net_AMM_705_169
crossref_primary_10_1016_j_ijfatigue_2012_03_008
crossref_primary_10_1016_j_corsci_2020_108655
crossref_primary_10_1016_j_intermet_2022_107529
crossref_primary_10_4028_www_scientific_net_MSF_524_525_129
crossref_primary_10_1007_s00170_022_08984_w
crossref_primary_10_1016_j_optlastec_2022_108741
crossref_primary_10_2351_7_0000927
crossref_primary_10_1016_j_ijfatigue_2013_10_001
crossref_primary_10_3390_met10111490
crossref_primary_10_1016_j_surfcoat_2006_03_002
crossref_primary_10_1016_j_ijmachtools_2013_01_005
crossref_primary_10_1088_0022_3727_40_21_038
crossref_primary_10_1016_j_optlastec_2021_107127
crossref_primary_10_1080_10426914_2015_1058946
crossref_primary_10_1115_1_3139219
crossref_primary_10_1016_j_jmatprotec_2017_08_033
crossref_primary_10_2351_1_5040625
crossref_primary_10_1016_j_ijfatigue_2020_105969
crossref_primary_10_1063_1_4945709
crossref_primary_10_1016_j_surfcoat_2022_128158
crossref_primary_10_1016_j_ijfatigue_2018_10_012
crossref_primary_10_1016_j_optlastec_2012_06_019
crossref_primary_10_1016_j_surfcoat_2012_05_022
crossref_primary_10_1016_j_surfcoat_2019_125320
crossref_primary_10_4028_www_scientific_net_MSF_546_549_681
crossref_primary_10_1007_s00339_020_3309_y
crossref_primary_10_1007_s11661_019_05455_y
crossref_primary_10_3390_met13101673
crossref_primary_10_1051_matecconf_202236700004
crossref_primary_10_4028_www_scientific_net_AMR_463_464_1363
crossref_primary_10_1016_j_matdes_2016_05_028
crossref_primary_10_3390_cmd2040031
crossref_primary_10_1007_s00170_021_06951_5
crossref_primary_10_1063_1_2734538
crossref_primary_10_1002_admi_202101232
crossref_primary_10_1088_1361_651X_aa7a46
crossref_primary_10_1007_s00339_013_8193_2
crossref_primary_10_1016_j_rio_2024_100658
crossref_primary_10_1016_j_surfcoat_2018_11_007
crossref_primary_10_1016_j_apsusc_2018_06_176
crossref_primary_10_1016_j_msea_2011_10_104
crossref_primary_10_1007_s00170_023_11138_1
crossref_primary_10_1007_s11665_022_07133_4
crossref_primary_10_1016_j_tafmec_2012_05_004
crossref_primary_10_1063_1_2979704
crossref_primary_10_1016_j_fusengdes_2015_03_019
crossref_primary_10_4028_www_scientific_net_AMR_189_193_3755
crossref_primary_10_1016_j_jmatprotec_2020_117016
crossref_primary_10_1016_j_ijmecsci_2015_06_020
crossref_primary_10_1179_1743284715Y_0000000057
crossref_primary_10_1016_S1006_706X_15_60009_7
crossref_primary_10_1016_j_optlastec_2022_107889
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Ltd
– notice: 2002 INIST-CNRS
DBID IQODW
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/S0142-1123(02)00022-1
DatabaseName Pascal-Francis
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3452
EndPage 1036
ExternalDocumentID 10_1016_S0142_1123_02_00022_1
13793626
S0142112302000221
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AAPBV
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
8BQ
8FD
JG9
ID FETCH-LOGICAL-c486t-6de09dee85891e37280e65c2d4fa272e26d4dd49c111050975c96e8944bd1a9c3
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Sat Oct 05 06:22:02 EDT 2024
Thu Sep 26 15:25:25 EDT 2024
Sun Oct 22 16:08:34 EDT 2023
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Laser shock processing
Fatigue
Microstructure
Morphology
Residual stress
Laser peening
Plastic fatigue
Stress analysis
Fretting fatigue
Laser assisted processing
Shot peening
Peening
Review
Stress corrosion cracking
Shock wave
Surface treatment
Shock heating
Strength
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-6de09dee85891e37280e65c2d4fa272e26d4dd49c111050975c96e8944bd1a9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27199076
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_27199076
crossref_primary_10_1016_S0142_1123_02_00022_1
pascalfrancis_primary_13793626
elsevier_sciencedirect_doi_10_1016_S0142_1123_02_00022_1
PublicationCentury 2000
PublicationDate 2002-10-01
PublicationDateYYYYMMDD 2002-10-01
PublicationDate_xml – month: 10
  year: 2002
  text: 2002-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of fatigue
PublicationYear 2002
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Peyre, Berthe, Scherpereel, Fabbro (BIB52) 1998; 33
Cai, Zhang (BIB54) 1996; 23A
Casarcia DA, Cowie WD, Mannava S. US Patent 5,584,586; Cincinnati (OH); General Electric Company, 1996.
Chu, Rigsbee, Banas, Lawrence, Elsayed-Ali (BIB51) 1995; 26A
Zhang, Zang, Zang, Cai, Yang, Ren (BIB53) 1997; 92
Fairand, Clauer, Wilcox (BIB10) 1976; 8A
Gregg, Thomas (BIB3) 1966; 27
Dane CB, Hackel LA, Daly J, Harrison J. Laser peening of metals—enabling laser technology. Advanced Materials and Processes 1997;May:13–27.
Mannava S, Cowie WD. US Patent 5,569,018; General Electric Company (Cincinnati, OH); 1996.
Gerland, Hallouin (BIB64) 1994; 29
Dane, Hackel, Daly, Harrison (BIB33) 1998; 153
Ding K, Ye L, Montross CS. Finite element simulation of multiple laser shock peening of 35CD4 steel. Materials Processing Technology, submitted for publication.
White (BIB2) 1963; 34
Cottet, Boustie (BIB43) 1989; 66
Fabbro, Peyre, Berthe, Sherpereel (BIB56) 1998; 10
Braisted, Brockman (BIB49) 1999; 21
Fairand BP, Clauer AH. Applications of laser-induced stress waves. Presented at Lasers in Modern Industry Seminar; 1978.
Ballard, Frelat, Rougier, Girardot (BIB48) 1995; 14
Clauer, Walters, Ford (BIB62) 1983
Bergstrom (BIB21) 1993; 105
Clauer AH, Fairand BP, Ford SC, Walters CT. US Patent 4,401,477; Battelle Development Corporation; 1983.
Ashley (BIB34) 1998; 120
Mannava S. US Patent 5,756,965; General Electric Company (Cincinnati, OH); 1998.
Mannava S, McDaniel AE, Cowie WD. US Patent 5,492,447; General Electric Company (Cincinnati, OH); 1996.
Yang (BIB25) 1974; 45
Ortiz Jr., AL, Penney CM, Jones MG, Erikson CE. US Patent 4,937,421; General Electric Company, Schenectady, New York; 1990.
Clauer, Holbrook, Fairand (BIB20) 1981
Clauer AH, Dulaney JL, Toller SM, Walters CT. Canada Patent 2226451; LSP Technologies; 1998.
Couturier, de Resseduier, Hallouin, Romain, Bauer (BIB28) 1996; 79
Clauer, Koucky (BIB41) 1991; 6
Bolger, Montross, Rode (BIB57) 1999; 86
Mannava S, Ferrigno SJ. US Patent 5,675,892; General Electric Company (Cincinnati, OH); 1997.
Ferrigno SJ, McAllister KG, Mannava S. US Patent 6,200,689; Cincinnati (OH); General Electric Company, 2001.
Askar yan, Moroz (BIB1) 1963; 16
Fairand, Wilcox, Gallagher, Williams (BIB29) 1972; 43
Banas, Elsayed-Ali, Lawrence, Rigsbee (BIB39) 1990; 67
Fairand, Clauer, Jung, Wilcox (BIB7) 1974; 25
Clauer (BIB22) 1996
Romain JP, Cottet F, Hallouin M, Fabbro R, Faral B, Pepin H. Laser shock experiments at pressures above 100 Mbar. Physica 1986;139,140B:595–598.
Ballard P. Contraintes residuelles induites par impact rapide. Application au choc-laser. In: Metallurgy. Paris (France): Ecole Polytechnique France; 1991, p. 217.
Obata M, Sano Y, Mukai N, Yoda M, Shima S, Kanno M. Effect of laser peening on residual stress and stress corrosion cracking for type 304 stainless steel. Presented at International Conference on Shot Peening—7; 1999.
Peyre, Fabbro, Merrien, Lieurade (BIB58) 1996; A210
Vaccari (BIB68) 1992; July
Jones (BIB6) 1971; 18
Peyre, Fabbro, Berthe, Dubouchet (BIB19) 1996; 8
Mallozi PJ, Fairand BP. US Patent 3,850,698; Industrial Materials Limited; 1974.
O’Keefe, Skeen (BIB23) 1972; 21
Montross, Brandt, Swain (BIB67) 2001; 17
Peyre, Berthe, Scherpereel, Fabbro, Bartnicki (BIB85) 1998; 84
Fairand BP, Clauer AH. Laser generated stress waves: their characteristics and their effects to materials. Presented at Proc. American Inst. of Physics Conf. on ‘Laser Solid Interactions and Laser Processing’; 1978.
Clauer AH, Fairand BP. Interaction of laser-induced stress waves with metals. Presented at Proc. ASM Conference Applications of Lasers in Materials Processing; Washington DC; 1979.
Skeen, York (BIB4) 1968; 12
Masse, Barreau (BIB60) 1995; 11
Ferrigno SJ, Cowie WD, Mannava S. US Patent 5,846,057; General Electric Company (Cincinnati, OH); 1998.
Berthe, Fabbro, Peyre, Bartnicki (BIB32) 1999; 85
Zhang, Yu (BIB36) 1998; 257A
Clauer, Dulaney, Rice, Koucky (BIB37) 1992
Ballard, Fournier, Fabbro, Frelat (BIB47) 1991; 1
Scherpereel X, Peyre P, Fabbro R, Lederer G, Celati N. Modifications of mechanical and electrochemical properties of stainless steels surfaces by laser shock processing. Presented at Proceedings of SPIE-Europto Conference; Munich (Germany); 1997.
Johnson, Rhode (BIB35) 1971; 42
Berthe, Fabbro, Peyre, Tollier, Bartnicki (BIB87) 1997; 82
Montross, Florea, Bolger (BIB30) 1999; 36
Fairand, Clauer (BIB8) 1976; 86
Hoffman (BIB24) 1974; 45
Brown (BIB69) 1998
Cottet, Marty, Hallouin, Romain, Virmont, Fabbro, Faral (BIB42) 1988; 64
Anderholm (BIB5) 1970; 16
Devaux, Fabbro, Tollier, Bartnicki (BIB16) 1993; 74
Grevey, Maiffredy, Vannes (BIB38) 1992; 27
Ling, Wight (BIB27) 1995; 78
Thompson, See, Lykins, Sampson (BIB63) 1997
Takayanagi N. US Patent 5,571,575; Toyota Jidosha Kabushiki Kaisha (Aichi, JP); 1996.
Montross CS, Florea V, Brandt M, Swain MV. The effect of peening with small, high energy, Q-switched laser spots on subsurface properties of aluminum. Journal of Materials Science Letters, submitted for publication.
Fairand, Clauer, Wilcox (BIB9) 1977; 8A
Ruschau, John, Thompson, Nicholas (BIB40) 1999; 21
Banas, Lawrence, Rigsbee (BIB65) 1990
Clauer AH, Dulaney JL, Toller SM. Canada Patent 2226444; LSP Technologies; 1998.
Clauer AH. New life for laser shock processing. Industrial Laser Review 1996;March:7–9.
Gerland, Hallouin, Presles (BIB17) 1992; 156A
Dubouchet C. PhD dissertation in Metallurgy. Orsay (France): Universite d’Orsay; 1993.
Banas, Chu, Rigsbee, Lawrence, Elsayed-Ali (BIB86) 1993
Mannava S, McDaniel AE, Cowie WD, Halila H, Rhoda JE, Gutknecht JE. US Patent 5,591,009; General Electric Company (Cincinnati, OH); 1997.
de Resseguier, Couturier, David, Nierat (BIB44) 1997; 82
Montross, Florea, Swain (BIB31) 2001; 36
Montross CS, Florea V. Unpublished work, Redstone Mining, Sydney (Australia); 1997.
Montross, Florea, Brandt, Swain (BIB66) 2000; 16
Fabbro, Fournier, Ballard, Devaux, Virmont (BIB14) 1990; 68
References_xml – volume: 16
  start-page: 1638
  year: 1963
  end-page: 1644
  ident: BIB1
  article-title: Pressure on evaporation of matter in a radiation beam
  publication-title: Journal of Experimental and Theoretical Physics Letters
  contributor:
    fullname: Moroz
– volume: 14
  start-page: 1005
  year: 1995
  end-page: 1016
  ident: BIB48
  article-title: Plastic strain and residual stress fields induced by a homogeneous impact of the boundary of an elastic half space
  publication-title: European Journal of Mechanics, A/Solids
  contributor:
    fullname: Girardot
– volume: 23A
  start-page: 1117
  year: 1996
  end-page: 1120
  ident: BIB54
  article-title: Study of laser parameters optimum of laser shocking against fatigue and fracture of metal
  publication-title: Chinese Journal of Lasers
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 1421
  year: 1998
  end-page: 1429
  ident: BIB52
  article-title: Laser-shock processing of aluminum coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour
  publication-title: Journal of Materials Science
  contributor:
    fullname: Fabbro
– volume: 8A
  start-page: 119
  year: 1977
  end-page: 125
  ident: BIB9
  article-title: Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy
  publication-title: Metallurgical Transactions A
  contributor:
    fullname: Wilcox
– volume: 27
  start-page: 2110
  year: 1992
  end-page: 2116
  ident: BIB38
  article-title: Laser shock on a TRIP alloy: mechanical and metallurgical consequences
  publication-title: Journal of Materials Science
  contributor:
    fullname: Vannes
– volume: 10
  start-page: 265
  year: 1998
  end-page: 279
  ident: BIB56
  article-title: Physics and applications of laser-shock processing
  publication-title: Journal of Laser Applications
  contributor:
    fullname: Sherpereel
– volume: 8
  start-page: 135
  year: 1996
  end-page: 141
  ident: BIB19
  article-title: Laser shock processing of materials, physical processes involved and examples of applications
  publication-title: Journal of Laser Applications
  contributor:
    fullname: Dubouchet
– volume: 85
  start-page: 7552
  year: 1999
  end-page: 7555
  ident: BIB32
  article-title: Wavelength dependence of laser shock wave generation in the water confinement regime
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Bartnicki
– volume: 21
  start-page: 464
  year: 1972
  end-page: 466
  ident: BIB23
  article-title: Laser-induced stress-wave and impulse augmentation
  publication-title: Applied Physics Letters
  contributor:
    fullname: Skeen
– volume: 36
  start-page: 849
  year: 1999
  end-page: 855
  ident: BIB30
  article-title: Laser-induced shock wave generation and shock wave enhancement in basalt
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  contributor:
    fullname: Bolger
– start-page: 675
  year: 1981
  end-page: 702
  ident: BIB20
  article-title: Effects of laser induced shock waves on metals
  publication-title: Shock waves and high-strain-rate phenomena in metals
  contributor:
    fullname: Fairand
– volume: 156A
  start-page: 175
  year: 1992
  end-page: 182
  ident: BIB17
  article-title: Comparison of two new surface treatment processes, laser induced shock waves and primary explosive: application to fatigue behaviour
  publication-title: Materials Science and Engineering
  contributor:
    fullname: Presles
– volume: 153
  start-page: 37
  year: 1998
  end-page: 38
  ident: BIB33
  article-title: Shot peening with lasers
  publication-title: Advanced Materials and Processes
  contributor:
    fullname: Harrison
– volume: 257A
  start-page: 322
  year: 1998
  end-page: 327
  ident: BIB36
  article-title: Laser shock processing of 2024-T62 aluminum alloy
  publication-title: Materials Science and Engineering
  contributor:
    fullname: Yu
– volume: 21
  start-page: 719
  year: 1999
  end-page: 724
  ident: BIB49
  article-title: Finite element simulation of laser shock peening
  publication-title: International Journal of Fatigue
  contributor:
    fullname: Brockman
– volume: 29
  start-page: 345
  year: 1994
  end-page: 351
  ident: BIB64
  article-title: Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses
  publication-title: Journal of Materials Science
  contributor:
    fullname: Hallouin
– volume: A210
  start-page: 102
  year: 1996
  end-page: 113
  ident: BIB58
  article-title: Laser shock processing of aluminum alloys. Application to high cycle fatigue behaviour
  publication-title: Materials Science and Engineering
  contributor:
    fullname: Lieurade
– volume: 16
  start-page: 116
  year: 2000
  end-page: 121
  ident: BIB66
  article-title: Subsurface properties of laser peened 6061-T6 Al weldments
  publication-title: Surface Engineering
  contributor:
    fullname: Swain
– volume: 79
  start-page: 9338
  year: 1996
  end-page: 9342
  ident: BIB28
  article-title: Shock profile induced by short laser pulses
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Bauer
– volume: 1
  start-page: 487
  year: 1991
  end-page: 494
  ident: BIB47
  article-title: Residual stresses induced by laser shocks
  publication-title: Journal de Physique IV
  contributor:
    fullname: Frelat
– start-page: 350
  year: 1992
  end-page: 361
  ident: BIB37
  article-title: Laser shock processing for treating fastener holes in aging aircraft
  publication-title: Durability of metal aircraft structures
  contributor:
    fullname: Koucky
– volume: 26A
  start-page: 1507
  year: 1995
  end-page: 1517
  ident: BIB51
  article-title: Effects of laser-shock processing on the microstructure and surface mechanical properties of Hadfield manganese steel
  publication-title: Metallurgical and Materials Transactions A
  contributor:
    fullname: Elsayed-Ali
– volume: 36
  start-page: 1801
  year: 2001
  end-page: 1807
  ident: BIB31
  article-title: Influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum
  publication-title: Journal of Materials Science
  contributor:
    fullname: Swain
– volume: 68
  start-page: 775
  year: 1990
  end-page: 784
  ident: BIB14
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Virmont
– volume: 105
  start-page: 49
  year: 1993
  end-page: 51
  ident: BIB21
  article-title: Laser shock processing
  publication-title: Production
  contributor:
    fullname: Bergstrom
– volume: 86
  start-page: 112
  year: 1976
  end-page: 119
  ident: BIB8
  article-title: Use of laser generated shocks to improve the properties of metals and alloys
  publication-title: Industrial Applications of High Power Laser Technology
  contributor:
    fullname: Clauer
– volume: July
  start-page: 62
  year: 1992
  end-page: 64
  ident: BIB68
  article-title: Laser shocking extends fatigue life
  publication-title: American Machinist
  contributor:
    fullname: Vaccari
– volume: 66
  start-page: 4067
  year: 1989
  end-page: 4073
  ident: BIB43
  article-title: Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Boustie
– volume: 78
  start-page: 7022
  year: 1995
  end-page: 7025
  ident: BIB27
  article-title: Laser-generated shock waves in thin films of energetic materials
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Wight
– volume: 64
  start-page: 4474
  year: 1988
  end-page: 4477
  ident: BIB42
  article-title: Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Faral
– start-page: 280
  year: 1990
  end-page: 290
  ident: BIB65
  article-title: Laser shock hardening of weld maraging steel
  publication-title: Surface engineering
  contributor:
    fullname: Rigsbee
– volume: 84
  start-page: 5985
  year: 1998
  end-page: 5992
  ident: BIB85
  article-title: Experimental study of laser driven shock waves in stainless steels
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Bartnicki
– volume: 86
  start-page: 5461
  year: 1999
  end-page: 5466
  ident: BIB57
  article-title: Shock waves in basalt rock generated with high powered lasers in a confined geometry
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Rode
– volume: 25
  start-page: 431
  year: 1974
  end-page: 433
  ident: BIB7
  article-title: Quantitative assessment of laser-induced stress waves generated at confined surfaces
  publication-title: Applied Physics Letters
  contributor:
    fullname: Wilcox
– volume: 34
  start-page: 2123
  year: 1963
  end-page: 2124
  ident: BIB2
  article-title: Elastic wave generation by electron bombardment or electromagnetic wave absorption
  publication-title: Journal of Applied Physics
  contributor:
    fullname: White
– volume: 120
  start-page: 12
  year: 1998
  ident: BIB34
  article-title: Powerful laser means better peening
  publication-title: Mechanical Engineering
  contributor:
    fullname: Ashley
– volume: 11
  start-page: 131
  year: 1995
  end-page: 132
  ident: BIB60
  article-title: Surface modification by laser induced shock waves
  publication-title: Surface Engineering
  contributor:
    fullname: Barreau
– start-page: 171
  year: 1993
  end-page: 184
  ident: BIB86
  article-title: Laser shock processing of low carbon steel
  publication-title: Computer methods and experimental measurements for surface treatment effect
  contributor:
    fullname: Elsayed-Ali
– volume: 42
  start-page: 4171
  year: 1971
  end-page: 4182
  ident: BIB35
  article-title: Dynamic deformation twinning in shock loaded iron
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Rhode
– volume: 67
  start-page: 2380
  year: 1990
  end-page: 2384
  ident: BIB39
  article-title: Laser shock-induced mechanical and microstructural modification of welded maraging steel
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Rigsbee
– start-page: 217
  year: 1996
  end-page: 230
  ident: BIB22
  article-title: Laser shock peening for fatigue resistance
  publication-title: Surface performance of titanium
  contributor:
    fullname: Clauer
– volume: 92
  start-page: 104
  year: 1997
  end-page: 109
  ident: BIB53
  article-title: Investigation of the surface qualities of laser shock processed zones and the effect on fatigue life of aluminum alloy
  publication-title: Surface and Coatings Technology
  contributor:
    fullname: Ren
– volume: 21
  start-page: S199
  year: 1999
  end-page: S209
  ident: BIB40
  article-title: Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium
  publication-title: International Journal of Fatigue
  contributor:
    fullname: Nicholas
– start-page: 239
  year: 1997
  end-page: 251
  ident: BIB63
  article-title: Laser shock peening vs shot peening, a damage tolerance investigation
  publication-title: Surface performance of titanium
  contributor:
    fullname: Sampson
– volume: 45
  start-page: 2125
  year: 1974
  end-page: 2128
  ident: BIB24
  article-title: Laser–target interactions
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Hoffman
– start-page: 7
  year: 1983
  end-page: 22
  ident: BIB62
  article-title: The effects of laser shock processing on the fatigue properties of -T3 aluminum
  publication-title: Lasers in materials processing
  contributor:
    fullname: Ford
– start-page: 21
  year: 1998
  end-page: 23
  ident: BIB69
  article-title: A shocking way to strengthen metal
  publication-title: Aerospace America
  contributor:
    fullname: Brown
– volume: 17
  start-page: 477
  year: 2001
  end-page: 482
  ident: BIB67
  article-title: Self-limiting hardness changes in laser peened 6061-T6 aluminum
  publication-title: Surface Engineering
  contributor:
    fullname: Swain
– volume: 82
  start-page: 2826
  year: 1997
  end-page: 2832
  ident: BIB87
  article-title: Shock waves from a water-confined laser-generated plasma
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Bartnicki
– volume: 8A
  start-page: 1871
  year: 1976
  end-page: 1876
  ident: BIB10
  article-title: Laser shock hardening of weld zones in aluminum alloys
  publication-title: Metallurgical Transactions A
  contributor:
    fullname: Wilcox
– volume: 16
  start-page: 113
  year: 1970
  end-page: 115
  ident: BIB5
  article-title: Laser-generated stress waves
  publication-title: Applied Physics Letters
  contributor:
    fullname: Anderholm
– volume: 18
  start-page: 33
  year: 1971
  end-page: 35
  ident: BIB6
  article-title: Ultrafast laser-induced stress waves in solids
  publication-title: Applied Physics Letters
  contributor:
    fullname: Jones
– volume: 27
  start-page: 2787
  year: 1966
  end-page: 2789
  ident: BIB3
  article-title: Momentum transfer produced by focused laser giant pulses
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Thomas
– volume: 82
  start-page: 2617
  year: 1997
  end-page: 2632
  ident: BIB44
  article-title: Spallation of metal targets subjected to intense laser shocks
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Nierat
– volume: 6
  start-page: 3
  year: 1991
  end-page: 5
  ident: BIB41
  article-title: Laser shock processing increases the fatigue life of metal parts
  publication-title: Materials and Processing
  contributor:
    fullname: Koucky
– volume: 43
  start-page: 3893
  year: 1972
  end-page: 3896
  ident: BIB29
  article-title: Laser shock-induced microstructural and mechanical property changes in 7075 aluminum
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Williams
– volume: 45
  start-page: 2601
  year: 1974
  end-page: 2607
  ident: BIB25
  article-title: Stress waves generated in thin metallic films by a Q-switched ruby laser
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Yang
– volume: 74
  start-page: 2268
  year: 1993
  end-page: 2273
  ident: BIB16
  article-title: Generation of shock waves by laser induced plasma in confined geometry
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Bartnicki
– volume: 12
  start-page: 369
  year: 1968
  end-page: 371
  ident: BIB4
  article-title: Laser-Induced “blow-off” phenomenon
  publication-title: Applied Physics Letters
  contributor:
    fullname: York
SSID ssj0009075
Score 2.3644342
Snippet The current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1021
SubjectTerms Applied sciences
Exact sciences and technology
Fatigue
Laser peening
Laser shock processing
Metals. Metallurgy
Microstructure
Morphology
Other surface treatments
Production techniques
Residual stress
Surface treatment
Title Laser shock processing and its effects on microstructure and properties of metal alloys: a review
URI https://dx.doi.org/10.1016/S0142-1123(02)00022-1
https://search.proquest.com/docview/27199076
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCCEeIryKB4YYAhtHDsPtqoClecEUjfLic-iQ9OoaQcWfjtnO1VBCCGxOn5EZ_u7s_3dHSHnEBYRB2Nwp-Fu4iLtBkpzCEIjVJ4Io3JhvZGfnuPBK78fiuEK6S98YSytssF-j-kOrZuSTiPNTjUadSwtCU8vaEIzF8XFebAL91R79bGkeWQ-2K6tHNjaSy8e34MrvOiyS9dJEP6mnzYrVaPUjE938QO5nTq63SZbjR1Je_5Xd8gKlLtk40t0wT2iHlFDTWn9hpBHK-8QgB-oKjUdzWraUDnopKRjS8vzoWTnU3A1KntLP7XhVunE0DGgkU7tI_17fU0V9R4v--T19ualPwiajApBwdN4FsQaupkGSG0uQYhsaiqIRcE0N4olDFisudY8KxABbWCYRBRZDGnGea5DlRXRAVktJyUcEornJiOY0irKC2wjMg48LhKTWwspTbMWuVrIUVY-cIb8yihj0gpedpl0gpdhi6QLactvK0AiuP_VtP1tdpYDRgg_eGRrkbPFdEncPvZNRJUwmdeSJSHq4yQ--v_ox2Tdp4ixDL8TsoqTBadoqczytluKbbLWu3sYPH8CgvzjqA
link.rule.ids 315,786,790,4516,24137,27946,27947,45609,45703
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcKBVhUqhaoAme-gBDib2etcPbgg1StuEE0jcVmvvrMgBx4rDgQu_nRmvowShqlKv9j6s2d1vZrwz3zD2A6IyluAcnjQ8TVJlYWCshCByyhSpcqZQlI08u0kmd_L3vbrfYdfrXBgKq-yw32N6i9bdk1EnzVE9n48oLAm9FzShRcvigi7QLloDIW3ti5dNnEfu2XapdUDNN2k8foj24VkozttRguhvCupTbRoUm_P1Lt5Bd6uPxp_ZfmdI8iv_rQdsB6ov7OMWveAhM1NUUUvePCDm8dpnBOALbirL56uGd7EcfFHxR4rL81yyT0toW9T0m35JfKt84fgjoJXO6Zb-ubnkhvuUlyN2N_55ez0JupIKQSmzZBUkFsLcAmRUTBBiqk0FiSqFlc6IVIBIrLRW5iVCIDHDpKrME8hyKQsbmbyMv7JetajgG-PoODkljDVxUWIflUuQSZm6gkykLMv77GItR1175gy9HVImNAleh0K3gtdRn2Vraes3W0Ajuv-r6-DN6mwmjBF_0Gfrs-F6uTSeH7oUMRUsnhot0ggVcpoc___sQ7Y3uZ1N9fTXzZ8T9sHXi6Fwv1PWw4WD72i2rIpBuy1fAeFJ5T0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+shock+processing+and+its+effects+on+microstructure+and+properties+of+metal+alloys%3A+a+review&rft.jtitle=International+journal+of+fatigue&rft.au=Montross%2C+C+S&rft.au=Wei%2C+T&rft.au=Ye%2C+L&rft.au=Clark%2C+G&rft.date=2002-10-01&rft.issn=0142-1123&rft.volume=24&rft.issue=10&rft.spage=1021&rft.epage=1036&rft_id=info:doi/10.1016%2FS0142-1123%2802%2900022-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon