Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight
Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work...
Saved in:
Published in | Plants (Basel) Vol. 9; no. 2; p. 223 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
09.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure–function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major “controller” of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation. |
---|---|
AbstractList | Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure−function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation. Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation. Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure–function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major “controller” of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation. |
Author | Wu, Qi Duan, Songpo Shabala, Sergey Huang, Xin Yu, Min |
AuthorAffiliation | 1 International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Xin.Huang@utas.edu.au (X.H.); songpo.duan@hotmail.com (S.D.); qi.wu@fosu.edu.cn (Q.W.); yumin@fosu.edu.cn (M.Y.) 2 Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7001, Australia |
AuthorAffiliation_xml | – name: 1 International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Xin.Huang@utas.edu.au (X.H.); songpo.duan@hotmail.com (S.D.); qi.wu@fosu.edu.cn (Q.W.); yumin@fosu.edu.cn (M.Y.) – name: 2 Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7001, Australia |
Author_xml | – sequence: 1 givenname: Xin surname: Huang fullname: Huang, Xin – sequence: 2 givenname: Songpo surname: Duan fullname: Duan, Songpo – sequence: 3 givenname: Qi surname: Wu fullname: Wu, Qi – sequence: 4 givenname: Min surname: Yu fullname: Yu, Min – sequence: 5 givenname: Sergey surname: Shabala fullname: Shabala, Sergey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32050442$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAQxyNUREvpkSvKkUvAsR074YBUrShUqlTUXc6WY092XSV28Eclbpx4Ad6QJ8G7W6ouEmJkaSzP3z_PeOZ5cWSdhaJ4WaM3hHTo7TxKG0OHMMKYPClOcHYV55QfPdofF2ch3KJsbV41e1YcE4waRCk-KX7cgE7K2HW5kHoyaSrPlUpTGmU0zpbGlp93b7wrl9EnFZOHX99_XiSrdvEb2AtDKa0uVyaEBNVyBmUGo8rrGfye44Zy5aUNs_MRfNhy4wbK5eziaNab-KJ4OsgxwNm9Py2-XHxYLT5VV9cfLxfnV5WiLYsVVV2PGt5I0D2muO9kzRhukVSN7FrW1ZwpxIgemn4YasAa1Qgo6XtWU9UySk6Lyz1XO3krZm8m6b8JJ43YHTi_FtJHo0YQ-Ye0bighFDRtFOkzliHUc8kookObWe_3rDn1E2gFNno5HkAPI9ZsxNrdCY44y5YBr-8B3n1NEKKYTFAw5g8Hl4LAlHNG65a3_5eShnLS8Xpb4qvHaT3k86fnWVDtBcq7EDwMD5Iaie1YiYOxynryl16ZuGtrrsqM_7j1G9d21RU |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2024_109200 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_3390_plants14050707 crossref_primary_10_1007_s11738_022_03501_8 crossref_primary_10_1016_j_jhazmat_2022_128217 crossref_primary_10_1093_jxb_erad349 crossref_primary_10_1016_j_envres_2023_116973 crossref_primary_10_3390_plants12030479 crossref_primary_10_3390_agronomy11101905 crossref_primary_10_1007_s10725_021_00774_w crossref_primary_10_1007_s42729_023_01528_5 crossref_primary_10_2139_ssrn_4754698 crossref_primary_10_1016_j_heliyon_2024_e29528 crossref_primary_10_1590_0034_737x202269060014 crossref_primary_10_3389_fpls_2020_607615 crossref_primary_10_1016_j_jhazmat_2023_131670 crossref_primary_10_1080_15569543_2024_2414098 crossref_primary_10_1007_s12633_022_02178_5 crossref_primary_10_3390_agriculture13030735 crossref_primary_10_1007_s10311_022_01388_y crossref_primary_10_1007_s42729_025_02227_z crossref_primary_10_1007_s12517_021_08639_2 crossref_primary_10_1016_j_jfp_2023_100166 crossref_primary_10_3390_f14010090 crossref_primary_10_1007_s40201_023_00857_y crossref_primary_10_3390_foods12214026 crossref_primary_10_1007_s00709_022_01758_x crossref_primary_10_1016_j_ecoenv_2024_116883 crossref_primary_10_1016_j_agee_2023_108631 crossref_primary_10_1016_j_plaphy_2025_109552 crossref_primary_10_1007_s11356_024_34023_0 crossref_primary_10_1177_11786221221114310 crossref_primary_10_1007_s00344_023_11007_x crossref_primary_10_1016_j_jhazmat_2020_124822 crossref_primary_10_3389_fpls_2022_1097998 crossref_primary_10_1007_s10343_024_01072_x crossref_primary_10_1016_j_ecoenv_2023_115859 crossref_primary_10_3390_plants10112503 crossref_primary_10_1007_s12011_020_02338_x crossref_primary_10_3390_ijms242417345 crossref_primary_10_1016_j_ecoenv_2021_112623 crossref_primary_10_1111_1541_4337_13210 crossref_primary_10_1007_s11738_022_03386_7 crossref_primary_10_1007_s11356_025_36061_8 crossref_primary_10_3390_plants12173058 crossref_primary_10_1016_j_scitotenv_2023_166644 crossref_primary_10_3390_plants9040500 crossref_primary_10_1016_j_biortech_2025_132069 crossref_primary_10_1007_s11356_023_28029_3 crossref_primary_10_1007_s11356_021_12912_y crossref_primary_10_1016_j_jare_2022_05_010 crossref_primary_10_1007_s10265_023_01493_1 crossref_primary_10_1111_nph_17566 crossref_primary_10_3390_ijms22137046 crossref_primary_10_3390_agriculture13081472 crossref_primary_10_1080_15226514_2023_2293892 crossref_primary_10_1007_s11104_022_05547_6 crossref_primary_10_3390_plants10071342 crossref_primary_10_1016_j_envres_2023_118054 crossref_primary_10_1016_j_jhazmat_2024_135777 crossref_primary_10_3390_f14091707 crossref_primary_10_3390_ijms23126841 crossref_primary_10_1016_j_indcrop_2022_115977 crossref_primary_10_3389_fpls_2022_1047410 crossref_primary_10_3390_agronomy11091716 crossref_primary_10_1007_s11356_022_23983_w crossref_primary_10_1080_15226514_2024_2427928 crossref_primary_10_1016_j_scitotenv_2021_149222 crossref_primary_10_3390_antiox11030456 crossref_primary_10_1186_s12870_021_03125_z crossref_primary_10_3390_ijms23031734 crossref_primary_10_1016_j_envint_2024_109113 crossref_primary_10_3390_genes13061052 crossref_primary_10_1007_s10653_020_00777_y crossref_primary_10_1007_s11356_023_28374_3 crossref_primary_10_3390_cells10030640 crossref_primary_10_1016_j_heliyon_2021_e07945 crossref_primary_10_1016_j_envpol_2023_121433 crossref_primary_10_1071_CP21583 crossref_primary_10_1016_j_apsoil_2025_105934 crossref_primary_10_1016_j_stress_2024_100668 crossref_primary_10_32604_phyton_2022_022473 crossref_primary_10_3390_soilsystems5020029 crossref_primary_10_1007_s41748_024_00383_3 crossref_primary_10_1080_26395940_2023_2287710 crossref_primary_10_3390_jof10030182 crossref_primary_10_7554_eLife_74589 crossref_primary_10_3390_plants13040551 crossref_primary_10_3390_biology10060544 crossref_primary_10_1080_15226514_2025_2456095 crossref_primary_10_1016_j_scitotenv_2024_175949 |
Cites_doi | 10.1186/1745-6673-1-22 10.1111/j.1742-4658.2012.08613.x 10.1146/annurev-arplant-043015-112301 10.1104/pp.15.01037 10.1038/srep00286 10.1007/s00425-007-0577-0 10.2135/cropsci2009.11.0664 10.1111/j.1399-3054.1977.tb01509.x 10.1007/s10725-007-9237-4 10.1016/S0168-1656(02)00320-6 10.1007/978-94-007-4470-7 10.1093/jxb/err136 10.7717/peerj.4478 10.1016/0041-008X(82)90013-8 10.1104/pp.106.094532 10.1104/pp.18.01380 10.1093/jxb/erz400 10.2174/1389202917666160331202125 10.1016/j.fcr.2015.08.004 10.1038/ncomms3442 10.1038/35053080 10.1016/j.scitotenv.2018.05.050 10.1111/j.1365-313X.2004.02126.x 10.1038/sj.emboj.7600864 10.3389/fpls.2016.01875 10.1111/j.1365-313X.2006.02714.x 10.1104/pp.108.130294 10.1016/j.scitotenv.2019.06.332 10.1016/j.ecoenv.2011.09.007 10.1073/pnas.1013964107 10.1039/C9RA07137G 10.1093/jxb/ert243 10.1016/S1001-0742(11)60977-7 10.1186/s12284-016-0081-x 10.1111/tpj.13056 10.1111/pce.12227 10.1371/journal.pone.0098816 10.1016/j.toxlet.2005.05.011 10.1111/j.1365-313X.2011.04789.x 10.1016/j.febslet.2005.06.046 10.1016/j.pbi.2013.03.012 10.1046/j.1365-313X.2003.01760.x 10.1002/j.1460-2075.1992.tb05431.x 10.1016/S2095-3119(14)60926-6 10.1093/jxb/eru340 10.1080/01904160701853753 10.1186/1471-2164-8-107 10.4161/psb.27034 10.1016/j.ecoenv.2015.05.019 10.1016/j.plaphy.2012.05.002 10.1016/j.biochi.2006.07.003 10.1074/jbc.M503362200 10.1016/j.envint.2008.06.009 10.1073/pnas.97.9.4991 10.1016/S2095-3119(17)61847-1 10.1105/tpc.112.096925 10.1007/s00425-004-1256-z 10.1104/pp.16.01725 10.1201/b10158 10.1073/pnas.1005396107 10.3390/ijerph14040395 10.1111/j.1469-8137.2010.03575.x 10.1007/s00299-016-2079-7 10.1104/pp.111.183947 10.1016/S0098-8472(98)00058-6 10.1016/S1470-2045(06)70545-9 10.1111/j.1365-3040.2012.02527.x 10.1016/S0048-9697(02)00475-8 10.1016/j.tplants.2012.08.003 10.1371/journal.pone.0177978 10.1016/j.envexpbot.2014.11.008 10.1016/j.biortech.2017.12.070 10.1007/s10681-014-1297-8 10.1038/nplants.2015.170 10.1146/annurev-arplant-042811-105608 10.1385/BTER:104:3:223 10.1104/pp.113.226225 10.1007/s00299-005-0092-3 10.1093/jxb/45.12.1893 10.3389/fpls.2019.00061 10.1111/j.1467-7652.2008.00390.x 10.1016/j.gene.2011.11.037 10.1111/j.1469-8137.2010.03459.x 10.1111/pce.12747 10.1007/s11104-006-0064-6 10.1093/jxb/ery353 10.1073/pnas.1004949107 10.1105/tpc.020487 10.1074/jbc.M111.305649 10.1074/jbc.270.9.4721 10.1016/j.ecoenv.2019.04.081 10.1074/jbc.272.51.32436 10.1242/jcs.064352 10.1016/j.envpol.2018.08.034 10.1093/jxb/eru295 10.1016/j.envexpbot.2016.07.012 10.1093/jxb/eru459 10.1104/pp.16.01189 10.1111/nph.12595 10.1111/j.1365-313X.2004.02146.x 10.1016/j.soilbio.2015.08.038 10.1111/tpj.12296 10.3390/ijerph120201577 10.1093/jxb/erv185 10.1111/j.1469-8137.2008.02694.x 10.1016/j.jhazmat.2014.08.010 10.1104/pp.108.133454 10.1093/aob/mcf228 10.1016/j.envexpbot.2008.11.010 10.1371/journal.pgen.1002923 10.1016/j.ecoenv.2012.08.019 10.1104/pp.107.110247 10.1093/pcp/pcn175 10.1016/j.ecoenv.2014.03.007 10.1093/aob/mcq240 10.1111/nph.15266 10.1046/j.1365-313X.2003.01959.x 10.1016/S0960-8524(00)00043-2 10.1111/j.1469-8137.2009.02784.x 10.1073/pnas.1116531109 10.1038/24066 10.1007/s00425-015-2429-7 10.1111/nph.14622 10.1074/jbc.M707646200 10.1111/ppl.12189 10.1093/pcp/pcp160 10.1042/BJ20090655 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants9020223 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8 PMC7076666 32050442 10_3390_plants9020223 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31672228, 31870249 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM 7X8 PQGLB 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-4c9b0575aedb242b9a166280ac5a9869176c063df5bff1e2d010e43bb614c8643 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Thu Aug 21 18:32:30 EDT 2025 Thu Jul 10 18:13:46 EDT 2025 Fri Jul 11 11:11:14 EDT 2025 Thu Jan 02 22:37:24 EST 2025 Tue Jul 01 00:40:05 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | NRAMP tissue tolerance non-selective cation channel MTP cadmium toxicity membrane transport IRT |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-4c9b0575aedb242b9a166280ac5a9869176c063df5bff1e2d010e43bb614c8643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants9020223 |
PMID | 32050442 |
PQID | 2354739714 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076666 proquest_miscellaneous_2477641878 proquest_miscellaneous_2354739714 pubmed_primary_32050442 crossref_primary_10_3390_plants9020223 crossref_citationtrail_10_3390_plants9020223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200209 |
PublicationDateYYYYMMDD | 2020-02-09 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200209 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Boominathan (ref_138) 2003; 101 Kara (ref_22) 2005; 104 Godt (ref_18) 2016; 1 ref_14 Voigt (ref_99) 2005; 579 Yoshihara (ref_79) 2006; 25 Lu (ref_130) 1998; 10 Price (ref_142) 2013; 12 Wu (ref_83) 2016; 172 ref_97 Zhao (ref_10) 2015; 12 Ortiz (ref_126) 1995; 270 Demidchik (ref_48) 2010; 123 Yamaji (ref_85) 2013; 4 Sun (ref_139) 2006; 285 Clemens (ref_68) 2006; 88 Hussain (ref_106) 2004; 16 Song (ref_29) 2015; 14 Li (ref_45) 2012; 24 Koike (ref_77) 2004; 39 Zu (ref_8) 2005; 1 Thomine (ref_87) 2003; 34 Mohamed (ref_35) 2012; 57 Mathys (ref_124) 1997; 40 ref_25 Sasaki (ref_73) 2012; 24 Kawachi (ref_100) 2012; 279 Chen (ref_30) 2018; 639 Song (ref_132) 2014; 37 Kim (ref_104) 2004; 39 Ueno (ref_102) 2015; 1 Uraguchi (ref_27) 2013; 16 Lux (ref_72) 2011; 107 Yan (ref_55) 2016; 39 Benitez (ref_66) 2010; 50 Tsukahara (ref_20) 2003; 305 Uraguchi (ref_74) 2011; 108 Morel (ref_112) 2009; 149 Deng (ref_105) 2013; 163 Tibbett (ref_16) 2018; 6 Demeyer (ref_13) 2001; 77 Nevo (ref_81) 2006; 1763 Ma (ref_63) 2009; 150 Kawachi (ref_98) 2008; 283 Korenkov (ref_115) 2007; 226 Migocka (ref_101) 2015; 84 Sharma (ref_39) 2018; 252 Takahashi (ref_120) 2012; 35 Sagardoy (ref_50) 2009; 65 Brunetti (ref_110) 2015; 66 Zhang (ref_134) 2016; 243 Kuramata (ref_57) 2009; 50 Jasinski (ref_46) 2008; 147 Li (ref_89) 2012; 75 Alcantara (ref_38) 1994; 45 Podar (ref_119) 2012; 287 DeFalco (ref_91) 2016; 28 Tian (ref_51) 2011; 157 Thomine (ref_88) 2000; 97 Ni (ref_96) 2016; 9 Migocka (ref_117) 2014; 66 Xia (ref_86) 2010; 107 Vollmann (ref_67) 2014; 203 Chen (ref_103) 2013; 64 Kopittke (ref_122) 2013; 201 Korenkov (ref_116) 2009; 7 Liu (ref_28) 2015; 183 ref_84 Ueno (ref_52) 2009; 182 Lanquar (ref_137) 2005; 24 Uraguchi (ref_108) 2014; 151 Jha (ref_92) 2016; 17 Lindberg (ref_44) 2004; 219 Panos (ref_1) 2013; 2013 Wu (ref_43) 2016; 7 Ortiz (ref_125) 1992; 11 Takahashi (ref_42) 2011; 62 Wu (ref_70) 2016; 131 Cailliatte (ref_40) 2009; 422 Hassan (ref_37) 2008; 31 Shi (ref_12) 2015; 111 Davenport (ref_94) 2002; 90 Curie (ref_75) 2001; 409 Liu (ref_69) 2019; 690 Vatamaniuk (ref_129) 2005; 280 Brader (ref_24) 2015; 91 Ruiz (ref_36) 2019; 180 ref_60 Ogawa (ref_78) 2006; 47 Zhang (ref_65) 2019; 180 Nawrot (ref_19) 2006; 7 Clemens (ref_7) 2016; 67 Becher (ref_111) 2004; 37 Oomen (ref_135) 2009; 181 Aouini (ref_95) 2012; 493 Dai (ref_62) 2007; 143 Dudley (ref_23) 1982; 65 Baldantoni (ref_32) 2016; 123 Sasaki (ref_121) 2014; 65 Clemens (ref_26) 2013; 18 ref_34 ref_33 Sun (ref_59) 2019; 70 ref_31 Lanquar (ref_80) 2004; 50 ref_113 Smith (ref_15) 2009; 35 Inaba (ref_21) 2005; 159 Park (ref_131) 2012; 69 Li (ref_71) 2019; 61 Johansen (ref_17) 2018; 242 Lam (ref_93) 1998; 396 Yang (ref_141) 2001; 13 Migocka (ref_118) 2014; 65 Lekeux (ref_107) 2019; 70 Miyadate (ref_133) 2011; 189 Ueno (ref_54) 2010; 107 Hu (ref_56) 2018; 17 Sanita (ref_9) 1999; 41 Martinoia (ref_123) 2012; 63 Ueno (ref_53) 2009; 50 Song (ref_109) 2010; 107 Ehsan (ref_140) 2014; 106 Lv (ref_64) 2017; 173 Yakubov (ref_128) 2009; 284 ref_3 Feng (ref_41) 2017; 36 ref_2 Baliardini (ref_136) 2015; 169 Murata (ref_76) 2006; 46 Liu (ref_114) 2017; 215 Kuriakose (ref_127) 2008; 54 Shabala (ref_49) 2007; 190 Xia (ref_58) 2013; 76 Liu (ref_61) 2009; 10 Xue (ref_6) 2014; 280 ref_5 Bortner (ref_47) 1977; 272 ref_4 Demidchik (ref_90) 2018; 220 Ishimaru (ref_82) 2012; 2 Bauddh (ref_11) 2012; 85 |
References_xml | – volume: 1 start-page: 22 year: 2016 ident: ref_18 article-title: The toxicity of cadmium and resulting hazards for human health publication-title: J. Occup. Med. Toxicol. doi: 10.1186/1745-6673-1-22 – volume: 279 start-page: 2339 year: 2012 ident: ref_100 article-title: Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08613.x – volume: 67 start-page: 489 year: 2016 ident: ref_7 article-title: Toxic heavy metal and metalloid accumulation in crop plants and foods publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-112301 – volume: 169 start-page: 549 year: 2015 ident: ref_136 article-title: CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. publication-title: Plant Physiol. doi: 10.1104/pp.15.01037 – volume: 2 start-page: 286 year: 2012 ident: ref_82 article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport publication-title: Sci. Rep. doi: 10.1038/srep00286 – volume: 226 start-page: 1379 year: 2007 ident: ref_115 article-title: Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. publication-title: Planta doi: 10.1007/s00425-007-0577-0 – volume: 50 start-page: 1728 year: 2010 ident: ref_66 article-title: A Major QTL controlling seed cadmium accumulation in soybean publication-title: Crop Sci. doi: 10.2135/cropsci2009.11.0664 – volume: 40 start-page: 130 year: 1997 ident: ref_124 article-title: The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1977.tb01509.x – volume: 54 start-page: 143 year: 2008 ident: ref_127 article-title: Cadmium stress affects seed germination and seedling growth in Sorghumbicolor (L.) Moench by changing the activities of hydrolyzing enzymes publication-title: Plant Growth Reg. doi: 10.1007/s10725-007-9237-4 – volume: 101 start-page: 131 year: 2003 ident: ref_138 article-title: Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(02)00320-6 – ident: ref_2 doi: 10.1007/978-94-007-4470-7 – volume: 62 start-page: 4843 year: 2011 ident: ref_42 article-title: The OsNRAMP1 iron transporter is involved in Cd accumulation in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/err136 – volume: 6 start-page: e4478 year: 2018 ident: ref_16 article-title: Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture publication-title: PeerJ doi: 10.7717/peerj.4478 – volume: 65 start-page: 302 year: 1982 ident: ref_23 article-title: Acute exposure to cadmium causes severe liver injury in rats publication-title: Toxicol. Appl. Pharm. doi: 10.1016/0041-008X(82)90013-8 – volume: 143 start-page: 1739 year: 2007 ident: ref_62 article-title: Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.106.094532 – volume: 180 start-page: 529 year: 2019 ident: ref_65 article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation publication-title: Plant Physiol. doi: 10.1104/pp.18.01380 – volume: 70 start-page: 6389 year: 2019 ident: ref_59 article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz400 – volume: 17 start-page: 315 year: 2016 ident: ref_92 article-title: Role of cyclic nucleotide gated channels in stress management in plants publication-title: Curr. Genom. doi: 10.2174/1389202917666160331202125 – volume: 183 start-page: 225 year: 2015 ident: ref_28 article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.08.004 – volume: 4 start-page: 1 year: 2013 ident: ref_85 article-title: A node-based switch for preferential distribution of manganese in rice publication-title: Nat. Commun. doi: 10.1038/ncomms3442 – volume: 409 start-page: 346 year: 2001 ident: ref_75 article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake publication-title: Nature doi: 10.1038/35053080 – volume: 639 start-page: 271 year: 2018 ident: ref_30 article-title: Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.050 – volume: 39 start-page: 237 year: 2004 ident: ref_104 article-title: The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyce cerevisiae publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02126.x – volume: 24 start-page: 4041 year: 2005 ident: ref_137 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO J. doi: 10.1038/sj.emboj.7600864 – volume: 7 start-page: 1875 year: 2016 ident: ref_43 article-title: Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01875 – ident: ref_4 – volume: 46 start-page: 563 year: 2006 ident: ref_76 article-title: A specific transporter for iron (III)–phytosiderophore in barley roots publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02714.x – volume: 149 start-page: 894 year: 2009 ident: ref_112 article-title: AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.130294 – volume: 690 start-page: 321 year: 2019 ident: ref_69 article-title: Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.332 – volume: 75 start-page: 1 year: 2012 ident: ref_89 article-title: Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2011.09.007 – volume: 107 start-page: 21187 year: 2010 ident: ref_109 article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013964107 – volume: 61 start-page: 35539 year: 2019 ident: ref_71 article-title: Inhibition of Cd accumulation in grains of wheat and rice under rotation mode using composite silicate amendment publication-title: RSC Adv. doi: 10.1039/C9RA07137G – volume: 47 start-page: S231 year: 2006 ident: ref_78 article-title: Iron deficiency enhanced Cd uptake and translocation by Fe2+ transporters, OsIRT1 and OsIRT2, in rice publication-title: Plant Cell Physiol. – volume: 64 start-page: 4375 year: 2013 ident: ref_103 article-title: Mn tolerance in rice is mediated by MTP8.1 a member of the cation diffusion facilitator family publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert243 – volume: 1 start-page: 755 year: 2005 ident: ref_8 article-title: Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China publication-title: Environ. Int. – volume: 24 start-page: 903 year: 2012 ident: ref_45 article-title: Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(11)60977-7 – volume: 9 start-page: 9 year: 2016 ident: ref_96 article-title: Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots publication-title: Rice doi: 10.1186/s12284-016-0081-x – volume: 84 start-page: 1045 year: 2015 ident: ref_101 article-title: Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells publication-title: Plant J. doi: 10.1111/tpj.13056 – volume: 37 start-page: 1192 year: 2014 ident: ref_132 article-title: Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/pce.12227 – ident: ref_84 doi: 10.1371/journal.pone.0098816 – volume: 159 start-page: 192 year: 2005 ident: ref_21 article-title: Estimation of cumulative cadmium intake causing Itai-itai disease publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2005.05.011 – volume: 69 start-page: 278 year: 2012 ident: ref_131 article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04789.x – volume: 579 start-page: 4165 year: 2005 ident: ref_99 article-title: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.06.046 – volume: 16 start-page: 328 year: 2013 ident: ref_27 article-title: Rice breaks ground for cadmium free cereals publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2013.03.012 – volume: 34 start-page: 685 year: 2003 ident: ref_87 article-title: AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01760.x – volume: 11 start-page: 3491 year: 1992 ident: ref_125 article-title: Heavy metal tolerance in the fission yeast requires an ATP-binding cassette type vacuolar membrane transporter publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05431.x – volume: 14 start-page: 1845 year: 2015 ident: ref_29 article-title: Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(14)60926-6 – ident: ref_3 – volume: 65 start-page: 6013 year: 2014 ident: ref_121 article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru340 – volume: 31 start-page: 251 year: 2008 ident: ref_37 article-title: Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form publication-title: J. Plant Nutr. doi: 10.1080/01904160701853753 – ident: ref_97 doi: 10.1186/1471-2164-8-107 – volume: 12 start-page: e27034 year: 2013 ident: ref_142 article-title: Inter-subunit interactions between Glutamate-Like Receptors in Arabidopsis publication-title: Plant Signal. Behav. doi: 10.4161/psb.27034 – volume: 2013 start-page: 158764 year: 2013 ident: ref_1 article-title: Contaminated sites in Europe: Review of the current situation based on data collected through a European network publication-title: J. Environ. Public Health – volume: 50 start-page: 1141 year: 2004 ident: ref_80 article-title: Regulation and function of AtNRAMP4 metal transporter protein publication-title: Soil Sci. – volume: 123 start-page: 89 year: 2016 ident: ref_32 article-title: Cadmium accumulation in leaves of leafy vegetables publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.05.019 – volume: 57 start-page: 15 year: 2012 ident: ref_35 article-title: Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.05.002 – volume: 88 start-page: 1707 year: 2006 ident: ref_68 article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants publication-title: Biochimie doi: 10.1016/j.biochi.2006.07.003 – volume: 280 start-page: 23684 year: 2005 ident: ref_129 article-title: CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhab ditiselegans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503362200 – volume: 35 start-page: 142 year: 2009 ident: ref_15 article-title: A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge publication-title: Environ. Int. doi: 10.1016/j.envint.2008.06.009 – volume: 97 start-page: 4991 year: 2000 ident: ref_88 article-title: Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.9.4991 – volume: 17 start-page: 1563 year: 2018 ident: ref_56 article-title: Identification of QTLs associated with cadmium concentration in rice grains publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61847-1 – volume: 24 start-page: 2155 year: 2012 ident: ref_73 article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice publication-title: Plant Cell doi: 10.1105/tpc.112.096925 – volume: 219 start-page: 526 year: 2004 ident: ref_44 article-title: A new method to detect cadmium uptake in protoplasts publication-title: Planta doi: 10.1007/s00425-004-1256-z – volume: 173 start-page: 1475 year: 2017 ident: ref_64 article-title: The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing b-amylase expression publication-title: Plant Physiol. doi: 10.1104/pp.16.01725 – ident: ref_14 doi: 10.1201/b10158 – volume: 107 start-page: 16500 year: 2010 ident: ref_54 article-title: Gene limiting cadmium accumulation in rice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005396107 – ident: ref_25 – ident: ref_33 doi: 10.3390/ijerph14040395 – volume: 190 start-page: 289 year: 2007 ident: ref_49 article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03575.x – volume: 36 start-page: 281 year: 2017 ident: ref_41 article-title: Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2079-7 – volume: 157 start-page: 1914 year: 2011 ident: ref_51 article-title: Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii publication-title: Plant Physiol. doi: 10.1104/pp.111.183947 – volume: 41 start-page: 105 year: 1999 ident: ref_9 article-title: Response to cadmium in higher plants publication-title: Environ. Exp. Bot. doi: 10.1016/S0098-8472(98)00058-6 – volume: 7 start-page: 119 year: 2006 ident: ref_19 article-title: Environmental exposure to cadmium and risk of cancer: A prospective populationbased study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(06)70545-9 – volume: 284 start-page: 354 year: 2009 ident: ref_128 article-title: Drosophila ABCtransporter, DmHMT-1, confers tolerance to cadmium. DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration publication-title: J. Biol. Chem. – volume: 10 start-page: 267 year: 1998 ident: ref_130 article-title: AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1 publication-title: Plant Cell – volume: 35 start-page: 1948 year: 2012 ident: ref_120 article-title: The OsHMA2 transporter is involved in root to shoot translocation of Zn and Cd in rice publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02527.x – volume: 305 start-page: 41 year: 2003 ident: ref_20 article-title: Rice as the most influential source of cadmium intake among general Japanese population publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(02)00475-8 – volume: 18 start-page: 92 year: 2013 ident: ref_26 article-title: Plant science: The key to preventing slow cadmium poisoning publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.08.003 – ident: ref_31 doi: 10.1371/journal.pone.0177978 – volume: 111 start-page: 127 year: 2015 ident: ref_12 article-title: PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.11.008 – volume: 252 start-page: 188 year: 2018 ident: ref_39 article-title: Structural basis for expanding the application of bioligand in metal bioremediation: A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.070 – volume: 203 start-page: 177 year: 2014 ident: ref_67 article-title: Soybean cadmium concentration: Validation of a QTL affecting seed cadmium accumulation for improved food safety publication-title: Euphytica doi: 10.1007/s10681-014-1297-8 – volume: 13 start-page: 368 year: 2001 ident: ref_141 article-title: Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids publication-title: J. Environ. Sci. – volume: 1 start-page: 1 year: 2015 ident: ref_102 article-title: A polarly localized transporter for efficient manganese uptake in rice publication-title: Nat. Plants doi: 10.1038/nplants.2015.170 – volume: 63 start-page: 183 year: 2012 ident: ref_123 article-title: Vacuolar transporters in their physiological context publication-title: Annu. Rev. Plant. Biol. doi: 10.1146/annurev-arplant-042811-105608 – volume: 104 start-page: 223 year: 2005 ident: ref_22 article-title: Effects of exogenous metallothionein on acute cadmium toxicity in rats publication-title: Biol. Trace Elem. Res. doi: 10.1385/BTER:104:3:223 – ident: ref_5 – volume: 163 start-page: 1353 year: 2013 ident: ref_105 article-title: A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice publication-title: Plant Physiol. doi: 10.1104/pp.113.226225 – volume: 25 start-page: 365 year: 2006 ident: ref_79 article-title: Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants publication-title: Plant Cell Rep. doi: 10.1007/s00299-005-0092-3 – volume: 45 start-page: 1893 year: 1994 ident: ref_38 article-title: Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/45.12.1893 – volume: 1763 start-page: 609 year: 2006 ident: ref_81 article-title: The NRAMP family of metal-ion transporters publication-title: BBA-Mol. Cell Res. – volume: 10 start-page: 61 year: 2009 ident: ref_61 article-title: Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00061 – volume: 7 start-page: 219 year: 2009 ident: ref_116 article-title: Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2008.00390.x – volume: 493 start-page: 36 year: 2012 ident: ref_95 article-title: Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles publication-title: Gene doi: 10.1016/j.gene.2011.11.037 – volume: 189 start-page: 190 year: 2011 ident: ref_133 article-title: OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03459.x – volume: 39 start-page: 1941 year: 2016 ident: ref_55 article-title: A loss-of-function allele of associated with high cadmium accumulation in shoots and grain of rice cultivars publication-title: Plant Cell Environ. doi: 10.1111/pce.12747 – volume: 285 start-page: 125 year: 2006 ident: ref_139 article-title: Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator publication-title: Plant Soil doi: 10.1007/s11104-006-0064-6 – volume: 70 start-page: 329 year: 2019 ident: ref_107 article-title: Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery353 – volume: 28 start-page: 1738 year: 2016 ident: ref_91 article-title: Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12 publication-title: Plant Cell – volume: 107 start-page: 18381 year: 2010 ident: ref_86 article-title: Plasma membrane-localized transporter for aluminum in rice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004949107 – volume: 16 start-page: 1327 year: 2004 ident: ref_106 article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.020487 – volume: 287 start-page: 3185 year: 2012 ident: ref_119 article-title: Metal selectivity determinants in a family of transition metal transporters publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.305649 – volume: 270 start-page: 4721 year: 1995 ident: ref_126 article-title: Transport of metal- binding peptides by HMT1, a fission Yeast ABC-type vacuolar membrane protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.9.4721 – volume: 180 start-page: 88 year: 2019 ident: ref_36 article-title: Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.04.081 – volume: 272 start-page: 32436 year: 1977 ident: ref_47 article-title: A primary role for K+ and Na+ efflux in the activation of apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.51.32436 – volume: 123 start-page: 1468 year: 2010 ident: ref_48 article-title: Arabidopsis root K+ efflux conductance by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death publication-title: J. Cell Sci. doi: 10.1242/jcs.064352 – volume: 242 start-page: 1510 year: 2018 ident: ref_17 article-title: Toxicity of cadmium and zinc to small soil protists publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.034 – volume: 65 start-page: 5367 year: 2014 ident: ref_118 article-title: Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru295 – volume: 131 start-page: 173 year: 2016 ident: ref_70 article-title: Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress publication-title: J. Exp. Bot. doi: 10.1016/j.envexpbot.2016.07.012 – volume: 66 start-page: 1001 year: 2014 ident: ref_117 article-title: Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru459 – volume: 172 start-page: 1899 year: 2016 ident: ref_83 article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron publication-title: Plant Physiol. doi: 10.1104/pp.16.01189 – volume: 201 start-page: 1251 year: 2013 ident: ref_122 article-title: Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging publication-title: New Phytol. doi: 10.1111/nph.12595 – volume: 39 start-page: 415 year: 2004 ident: ref_77 article-title: OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02146.x – volume: 91 start-page: 140 year: 2015 ident: ref_24 article-title: Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.08.038 – volume: 76 start-page: 345 year: 2013 ident: ref_58 article-title: A plasma membrane-localized small peptide is involved in rice aluminum tolerance publication-title: Plant J. doi: 10.1111/tpj.12296 – volume: 12 start-page: 1577 year: 2015 ident: ref_10 article-title: Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China publication-title: J. Environ. Res. Public Health doi: 10.3390/ijerph120201577 – volume: 66 start-page: 3815 year: 2015 ident: ref_110 article-title: Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv185 – volume: 181 start-page: 637 year: 2009 ident: ref_135 article-title: Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02694.x – volume: 280 start-page: 269 year: 2014 ident: ref_6 article-title: Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.010 – volume: 150 start-page: 244 year: 2009 ident: ref_63 article-title: Enhanced tolerance to chilling stress in OsMYB3R2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes publication-title: Plant Physiol. doi: 10.1104/pp.108.133454 – ident: ref_34 – volume: 90 start-page: 549 year: 2002 ident: ref_94 article-title: Glutamate receptors in plants publication-title: Ann. Bot. doi: 10.1093/aob/mcf228 – volume: 65 start-page: 376 year: 2009 ident: ref_50 article-title: Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2008.11.010 – ident: ref_113 doi: 10.1371/journal.pgen.1002923 – volume: 85 start-page: 13 year: 2012 ident: ref_11 article-title: Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2012.08.019 – volume: 147 start-page: 719 year: 2008 ident: ref_46 article-title: Atosa1, a member of the abc1-like family, as a new factor in cadmium and oxidative stress response publication-title: Plant Physiol. doi: 10.1104/pp.107.110247 – volume: 50 start-page: 106 year: 2009 ident: ref_57 article-title: Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn175 – volume: 106 start-page: 164 year: 2014 ident: ref_140 article-title: Citric acid assisted phytoremediation of cadmium by Brassica napus L. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.03.007 – volume: 107 start-page: 285 year: 2011 ident: ref_72 article-title: Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea publication-title: Ann. Bot. doi: 10.1093/aob/mcq240 – volume: 220 start-page: 49 year: 2018 ident: ref_90 article-title: Calcium transport across plant membranes: Mechanisms and functions publication-title: New Phytol. doi: 10.1111/nph.15266 – volume: 37 start-page: 251 year: 2004 ident: ref_111 article-title: Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01959.x – volume: 77 start-page: 287 year: 2001 ident: ref_13 article-title: Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(00)00043-2 – volume: 182 start-page: 644 year: 2009 ident: ref_52 article-title: A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa) publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02784.x – volume: 108 start-page: 20959 year: 2011 ident: ref_74 article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1116531109 – volume: 396 start-page: 125 year: 1998 ident: ref_93 article-title: Glutamate-receptor genes in plants publication-title: Nature doi: 10.1038/24066 – volume: 243 start-page: 577 year: 2016 ident: ref_134 article-title: Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance publication-title: Planta doi: 10.1007/s00425-015-2429-7 – volume: 215 start-page: 687 year: 2017 ident: ref_114 article-title: Heavy metal ATPase3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola publication-title: New Phytol. doi: 10.1111/nph.14622 – ident: ref_60 – volume: 283 start-page: 8374 year: 2008 ident: ref_98 article-title: Deletion of ahistidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707646200 – volume: 151 start-page: 339 year: 2014 ident: ref_108 article-title: Charaterization of OsLCT1, a cadmium transporter from Indica rice (Oryza sativa) publication-title: Physiol. Plant. doi: 10.1111/ppl.12189 – volume: 50 start-page: 2223 year: 2009 ident: ref_53 article-title: Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in Rice publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp160 – volume: 422 start-page: 217 year: 2009 ident: ref_40 article-title: The NRAMP6 metal transporter contributes to cadmium toxicity publication-title: Biochem. J. doi: 10.1042/BJ20090655 |
SSID | ssj0000800816 |
Score | 2.4883106 |
SecondaryResourceType | review_article |
Snippet | Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 223 |
SubjectTerms | cadmium cadmium toxicity copper food chain ion channels iron irt manganese membrane transport mtp non-selective cation channel nramp nutrients parenchyma (plant tissue) phloem Review roots soil tissue tolerance transporters xylem zinc |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4s3ykpEQJ6I69sR2uLUVqwqJh2gr9Rb5KRbtJqt299BbT_wB_iG_hLGTLhvE48I1HiWOZ-L5vmTyDSEvwGqN2z6SnMh9AeBdUTMrCh18CWVUrpfMf_deHp7A29PqdKvVV6oJ6-WB-4XbZRXzvgIhIHionLDCR0zSVhkJDGL-zRdz3haZ-jLgIF3KXlRTIK_fXc5TXUmN6IhzMUpCWav_dwDz1zrJrcQzvUVuDoiR7vUzvU2uhfYOub7fIaq7uEu-fkraq5h_6IHxi9l6QfecWy-Gplx01tKPeUqv6VFWil2fhe-X36aYzfL4phaOmtbT4-yFIvekjzNHPyxDHyC0i_SnDPrZeTovIkd6tOxW80Tv75GT6Zvjg8Ni6K1QONByVYCrbYJqJniLWdrWppSSa2ZcZWotkcRJh-jFx8rGWAbukbcFENZiOncaYcx9stN2bXhIKLqGW9wlGSi0KKP2RinJDONeI12rJuTV1WI3bhAeT_0v5g0SkOSbZuSbCXm5MV_2iht_MtxPntsYJaHsfADDpxnCp_lX-EzI8yu_N_hgpa8lpg3d-rzhIrVlrlUJf7EBvFMotcLzPOhjZTMdwfHaAHxC1CiKRvMdj7Szz1ngWzGFrFI--h83-Jjc4OkVQSo0r5-QHYy18BRx1Mo-y4_MDxjAH8I priority: 102 providerName: Directory of Open Access Journals |
Title | Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32050442 https://www.proquest.com/docview/2354739714 https://www.proquest.com/docview/2477641878 https://pubmed.ncbi.nlm.nih.gov/PMC7076666 https://doaj.org/article/050dd54334ed45c3b3df600b7a6404f8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgZcGm4s0UGBkJsSKQx43tICHUqTqqkFqqtiN1F_kJg2aSYR4S3bHiB_hDvoRrJ50SKKzYxteO7WvnnuNY5xLyDJQQ-NlHkuNSEwEYHRWxyiJhTQKJ47qRzD84ZPsjeHeWn11KCrUTuLiS2vl8UqP55OWXz-dvccO_8YwTKfur2cRfGSkQ-GCsu042MShxn8zgoEX6n1pgJBLWqGz-WasTlYJ4_1WI8_eLk79EouEtstVCSLrT-Pw2uWarO-TGoEaYd36XfDv2YqwYkOiuNNPxakp3tF5N2yxddFzRo9Cl1_QkSMeu5vbH1-9DDG-hfH05jsrK0NPgligkqXdjTd_PbLNiaO3opS76fOHbRShJT2b1cuL5_j0yGu6d7u5HbbKFSINgywh0oTx2k9YoDNuqkAljqYilzmUhGLI6phHOGJcr5xKbGiRyFjKlML5rgbjmPtmo6so-JDTLsD5-NmPgaJE4YSTnLJZxagTyt7xHXlxMdqlbJXKfEGNSIiPxvik7vumR52vzWSPB8TfDgffc2sgrZ4cH9fxD2W7EMs5jY3LAPloDuc4UDglBn-KSQQxO9MjTC7-XuNP87xNZ2Xq1KNPM52kueAL_sAEcKSSCYzsPmrWy7k6W4rsB0h7hnVXU6W-3pBp_DIrfPOZIM9n2_xjgI3Iz9WcG_uZ58Zhs4FqzTxBYLVWfbA72Do-O--Fgoh820E-PqCpY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+Cadmium+Accumulation+in+Plants%3A+Structure%E2%80%93Function+Relations+and+Tissue-Specific+Operation+of+Transporters+in+the+Spotlight&rft.jtitle=Plants+%28Basel%29&rft.au=Xin+Huang&rft.au=Songpo+Duan&rft.au=Qi+Wu&rft.au=Min+Yu&rft.date=2020-02-09&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=9&rft.issue=2&rft.spage=223&rft_id=info:doi/10.3390%2Fplants9020223&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |