Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight

Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 9; no. 2; p. 223
Main Authors Huang, Xin, Duan, Songpo, Wu, Qi, Yu, Min, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 09.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure–function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major “controller” of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.
AbstractList Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure−function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.
Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.
Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure–function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major “controller” of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.
Author Wu, Qi
Duan, Songpo
Shabala, Sergey
Huang, Xin
Yu, Min
AuthorAffiliation 1 International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Xin.Huang@utas.edu.au (X.H.); songpo.duan@hotmail.com (S.D.); qi.wu@fosu.edu.cn (Q.W.); yumin@fosu.edu.cn (M.Y.)
2 Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7001, Australia
AuthorAffiliation_xml – name: 1 International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Xin.Huang@utas.edu.au (X.H.); songpo.duan@hotmail.com (S.D.); qi.wu@fosu.edu.cn (Q.W.); yumin@fosu.edu.cn (M.Y.)
– name: 2 Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7001, Australia
Author_xml – sequence: 1
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
– sequence: 2
  givenname: Songpo
  surname: Duan
  fullname: Duan, Songpo
– sequence: 3
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
– sequence: 4
  givenname: Min
  surname: Yu
  fullname: Yu, Min
– sequence: 5
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32050442$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAQxyNUREvpkSvKkUvAsR074YBUrShUqlTUXc6WY092XSV28Eclbpx4Ad6QJ8G7W6ouEmJkaSzP3z_PeOZ5cWSdhaJ4WaM3hHTo7TxKG0OHMMKYPClOcHYV55QfPdofF2ch3KJsbV41e1YcE4waRCk-KX7cgE7K2HW5kHoyaSrPlUpTGmU0zpbGlp93b7wrl9EnFZOHX99_XiSrdvEb2AtDKa0uVyaEBNVyBmUGo8rrGfye44Zy5aUNs_MRfNhy4wbK5eziaNab-KJ4OsgxwNm9Py2-XHxYLT5VV9cfLxfnV5WiLYsVVV2PGt5I0D2muO9kzRhukVSN7FrW1ZwpxIgemn4YasAa1Qgo6XtWU9UySk6Lyz1XO3krZm8m6b8JJ43YHTi_FtJHo0YQ-Ye0bighFDRtFOkzliHUc8kookObWe_3rDn1E2gFNno5HkAPI9ZsxNrdCY44y5YBr-8B3n1NEKKYTFAw5g8Hl4LAlHNG65a3_5eShnLS8Xpb4qvHaT3k86fnWVDtBcq7EDwMD5Iaie1YiYOxynryl16ZuGtrrsqM_7j1G9d21RU
CitedBy_id crossref_primary_10_1016_j_plaphy_2024_109200
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_3390_plants14050707
crossref_primary_10_1007_s11738_022_03501_8
crossref_primary_10_1016_j_jhazmat_2022_128217
crossref_primary_10_1093_jxb_erad349
crossref_primary_10_1016_j_envres_2023_116973
crossref_primary_10_3390_plants12030479
crossref_primary_10_3390_agronomy11101905
crossref_primary_10_1007_s10725_021_00774_w
crossref_primary_10_1007_s42729_023_01528_5
crossref_primary_10_2139_ssrn_4754698
crossref_primary_10_1016_j_heliyon_2024_e29528
crossref_primary_10_1590_0034_737x202269060014
crossref_primary_10_3389_fpls_2020_607615
crossref_primary_10_1016_j_jhazmat_2023_131670
crossref_primary_10_1080_15569543_2024_2414098
crossref_primary_10_1007_s12633_022_02178_5
crossref_primary_10_3390_agriculture13030735
crossref_primary_10_1007_s10311_022_01388_y
crossref_primary_10_1007_s42729_025_02227_z
crossref_primary_10_1007_s12517_021_08639_2
crossref_primary_10_1016_j_jfp_2023_100166
crossref_primary_10_3390_f14010090
crossref_primary_10_1007_s40201_023_00857_y
crossref_primary_10_3390_foods12214026
crossref_primary_10_1007_s00709_022_01758_x
crossref_primary_10_1016_j_ecoenv_2024_116883
crossref_primary_10_1016_j_agee_2023_108631
crossref_primary_10_1016_j_plaphy_2025_109552
crossref_primary_10_1007_s11356_024_34023_0
crossref_primary_10_1177_11786221221114310
crossref_primary_10_1007_s00344_023_11007_x
crossref_primary_10_1016_j_jhazmat_2020_124822
crossref_primary_10_3389_fpls_2022_1097998
crossref_primary_10_1007_s10343_024_01072_x
crossref_primary_10_1016_j_ecoenv_2023_115859
crossref_primary_10_3390_plants10112503
crossref_primary_10_1007_s12011_020_02338_x
crossref_primary_10_3390_ijms242417345
crossref_primary_10_1016_j_ecoenv_2021_112623
crossref_primary_10_1111_1541_4337_13210
crossref_primary_10_1007_s11738_022_03386_7
crossref_primary_10_1007_s11356_025_36061_8
crossref_primary_10_3390_plants12173058
crossref_primary_10_1016_j_scitotenv_2023_166644
crossref_primary_10_3390_plants9040500
crossref_primary_10_1016_j_biortech_2025_132069
crossref_primary_10_1007_s11356_023_28029_3
crossref_primary_10_1007_s11356_021_12912_y
crossref_primary_10_1016_j_jare_2022_05_010
crossref_primary_10_1007_s10265_023_01493_1
crossref_primary_10_1111_nph_17566
crossref_primary_10_3390_ijms22137046
crossref_primary_10_3390_agriculture13081472
crossref_primary_10_1080_15226514_2023_2293892
crossref_primary_10_1007_s11104_022_05547_6
crossref_primary_10_3390_plants10071342
crossref_primary_10_1016_j_envres_2023_118054
crossref_primary_10_1016_j_jhazmat_2024_135777
crossref_primary_10_3390_f14091707
crossref_primary_10_3390_ijms23126841
crossref_primary_10_1016_j_indcrop_2022_115977
crossref_primary_10_3389_fpls_2022_1047410
crossref_primary_10_3390_agronomy11091716
crossref_primary_10_1007_s11356_022_23983_w
crossref_primary_10_1080_15226514_2024_2427928
crossref_primary_10_1016_j_scitotenv_2021_149222
crossref_primary_10_3390_antiox11030456
crossref_primary_10_1186_s12870_021_03125_z
crossref_primary_10_3390_ijms23031734
crossref_primary_10_1016_j_envint_2024_109113
crossref_primary_10_3390_genes13061052
crossref_primary_10_1007_s10653_020_00777_y
crossref_primary_10_1007_s11356_023_28374_3
crossref_primary_10_3390_cells10030640
crossref_primary_10_1016_j_heliyon_2021_e07945
crossref_primary_10_1016_j_envpol_2023_121433
crossref_primary_10_1071_CP21583
crossref_primary_10_1016_j_apsoil_2025_105934
crossref_primary_10_1016_j_stress_2024_100668
crossref_primary_10_32604_phyton_2022_022473
crossref_primary_10_3390_soilsystems5020029
crossref_primary_10_1007_s41748_024_00383_3
crossref_primary_10_1080_26395940_2023_2287710
crossref_primary_10_3390_jof10030182
crossref_primary_10_7554_eLife_74589
crossref_primary_10_3390_plants13040551
crossref_primary_10_3390_biology10060544
crossref_primary_10_1080_15226514_2025_2456095
crossref_primary_10_1016_j_scitotenv_2024_175949
Cites_doi 10.1186/1745-6673-1-22
10.1111/j.1742-4658.2012.08613.x
10.1146/annurev-arplant-043015-112301
10.1104/pp.15.01037
10.1038/srep00286
10.1007/s00425-007-0577-0
10.2135/cropsci2009.11.0664
10.1111/j.1399-3054.1977.tb01509.x
10.1007/s10725-007-9237-4
10.1016/S0168-1656(02)00320-6
10.1007/978-94-007-4470-7
10.1093/jxb/err136
10.7717/peerj.4478
10.1016/0041-008X(82)90013-8
10.1104/pp.106.094532
10.1104/pp.18.01380
10.1093/jxb/erz400
10.2174/1389202917666160331202125
10.1016/j.fcr.2015.08.004
10.1038/ncomms3442
10.1038/35053080
10.1016/j.scitotenv.2018.05.050
10.1111/j.1365-313X.2004.02126.x
10.1038/sj.emboj.7600864
10.3389/fpls.2016.01875
10.1111/j.1365-313X.2006.02714.x
10.1104/pp.108.130294
10.1016/j.scitotenv.2019.06.332
10.1016/j.ecoenv.2011.09.007
10.1073/pnas.1013964107
10.1039/C9RA07137G
10.1093/jxb/ert243
10.1016/S1001-0742(11)60977-7
10.1186/s12284-016-0081-x
10.1111/tpj.13056
10.1111/pce.12227
10.1371/journal.pone.0098816
10.1016/j.toxlet.2005.05.011
10.1111/j.1365-313X.2011.04789.x
10.1016/j.febslet.2005.06.046
10.1016/j.pbi.2013.03.012
10.1046/j.1365-313X.2003.01760.x
10.1002/j.1460-2075.1992.tb05431.x
10.1016/S2095-3119(14)60926-6
10.1093/jxb/eru340
10.1080/01904160701853753
10.1186/1471-2164-8-107
10.4161/psb.27034
10.1016/j.ecoenv.2015.05.019
10.1016/j.plaphy.2012.05.002
10.1016/j.biochi.2006.07.003
10.1074/jbc.M503362200
10.1016/j.envint.2008.06.009
10.1073/pnas.97.9.4991
10.1016/S2095-3119(17)61847-1
10.1105/tpc.112.096925
10.1007/s00425-004-1256-z
10.1104/pp.16.01725
10.1201/b10158
10.1073/pnas.1005396107
10.3390/ijerph14040395
10.1111/j.1469-8137.2010.03575.x
10.1007/s00299-016-2079-7
10.1104/pp.111.183947
10.1016/S0098-8472(98)00058-6
10.1016/S1470-2045(06)70545-9
10.1111/j.1365-3040.2012.02527.x
10.1016/S0048-9697(02)00475-8
10.1016/j.tplants.2012.08.003
10.1371/journal.pone.0177978
10.1016/j.envexpbot.2014.11.008
10.1016/j.biortech.2017.12.070
10.1007/s10681-014-1297-8
10.1038/nplants.2015.170
10.1146/annurev-arplant-042811-105608
10.1385/BTER:104:3:223
10.1104/pp.113.226225
10.1007/s00299-005-0092-3
10.1093/jxb/45.12.1893
10.3389/fpls.2019.00061
10.1111/j.1467-7652.2008.00390.x
10.1016/j.gene.2011.11.037
10.1111/j.1469-8137.2010.03459.x
10.1111/pce.12747
10.1007/s11104-006-0064-6
10.1093/jxb/ery353
10.1073/pnas.1004949107
10.1105/tpc.020487
10.1074/jbc.M111.305649
10.1074/jbc.270.9.4721
10.1016/j.ecoenv.2019.04.081
10.1074/jbc.272.51.32436
10.1242/jcs.064352
10.1016/j.envpol.2018.08.034
10.1093/jxb/eru295
10.1016/j.envexpbot.2016.07.012
10.1093/jxb/eru459
10.1104/pp.16.01189
10.1111/nph.12595
10.1111/j.1365-313X.2004.02146.x
10.1016/j.soilbio.2015.08.038
10.1111/tpj.12296
10.3390/ijerph120201577
10.1093/jxb/erv185
10.1111/j.1469-8137.2008.02694.x
10.1016/j.jhazmat.2014.08.010
10.1104/pp.108.133454
10.1093/aob/mcf228
10.1016/j.envexpbot.2008.11.010
10.1371/journal.pgen.1002923
10.1016/j.ecoenv.2012.08.019
10.1104/pp.107.110247
10.1093/pcp/pcn175
10.1016/j.ecoenv.2014.03.007
10.1093/aob/mcq240
10.1111/nph.15266
10.1046/j.1365-313X.2003.01959.x
10.1016/S0960-8524(00)00043-2
10.1111/j.1469-8137.2009.02784.x
10.1073/pnas.1116531109
10.1038/24066
10.1007/s00425-015-2429-7
10.1111/nph.14622
10.1074/jbc.M707646200
10.1111/ppl.12189
10.1093/pcp/pcp160
10.1042/BJ20090655
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/plants9020223
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8
PMC7076666
32050442
10_3390_plants9020223
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31672228, 31870249
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
NPM
7X8
PQGLB
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c486t-4c9b0575aedb242b9a166280ac5a9869176c063df5bff1e2d010e43bb614c8643
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:26:49 EDT 2025
Thu Aug 21 18:32:30 EDT 2025
Thu Jul 10 18:13:46 EDT 2025
Fri Jul 11 11:11:14 EDT 2025
Thu Jan 02 22:37:24 EST 2025
Tue Jul 01 00:40:05 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NRAMP
tissue tolerance
non-selective cation channel
MTP
cadmium toxicity
membrane transport
IRT
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-4c9b0575aedb242b9a166280ac5a9869176c063df5bff1e2d010e43bb614c8643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants9020223
PMID 32050442
PQID 2354739714
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076666
proquest_miscellaneous_2477641878
proquest_miscellaneous_2354739714
pubmed_primary_32050442
crossref_primary_10_3390_plants9020223
crossref_citationtrail_10_3390_plants9020223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200209
PublicationDateYYYYMMDD 2020-02-09
PublicationDate_xml – month: 2
  year: 2020
  text: 20200209
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Boominathan (ref_138) 2003; 101
Kara (ref_22) 2005; 104
Godt (ref_18) 2016; 1
ref_14
Voigt (ref_99) 2005; 579
Yoshihara (ref_79) 2006; 25
Lu (ref_130) 1998; 10
Price (ref_142) 2013; 12
Wu (ref_83) 2016; 172
ref_97
Zhao (ref_10) 2015; 12
Ortiz (ref_126) 1995; 270
Demidchik (ref_48) 2010; 123
Yamaji (ref_85) 2013; 4
Sun (ref_139) 2006; 285
Clemens (ref_68) 2006; 88
Hussain (ref_106) 2004; 16
Song (ref_29) 2015; 14
Li (ref_45) 2012; 24
Koike (ref_77) 2004; 39
Zu (ref_8) 2005; 1
Thomine (ref_87) 2003; 34
Mohamed (ref_35) 2012; 57
Mathys (ref_124) 1997; 40
ref_25
Sasaki (ref_73) 2012; 24
Kawachi (ref_100) 2012; 279
Chen (ref_30) 2018; 639
Song (ref_132) 2014; 37
Kim (ref_104) 2004; 39
Ueno (ref_102) 2015; 1
Uraguchi (ref_27) 2013; 16
Lux (ref_72) 2011; 107
Yan (ref_55) 2016; 39
Benitez (ref_66) 2010; 50
Tsukahara (ref_20) 2003; 305
Uraguchi (ref_74) 2011; 108
Morel (ref_112) 2009; 149
Deng (ref_105) 2013; 163
Tibbett (ref_16) 2018; 6
Demeyer (ref_13) 2001; 77
Nevo (ref_81) 2006; 1763
Ma (ref_63) 2009; 150
Kawachi (ref_98) 2008; 283
Korenkov (ref_115) 2007; 226
Migocka (ref_101) 2015; 84
Sharma (ref_39) 2018; 252
Takahashi (ref_120) 2012; 35
Sagardoy (ref_50) 2009; 65
Brunetti (ref_110) 2015; 66
Zhang (ref_134) 2016; 243
Kuramata (ref_57) 2009; 50
Jasinski (ref_46) 2008; 147
Li (ref_89) 2012; 75
Alcantara (ref_38) 1994; 45
Podar (ref_119) 2012; 287
DeFalco (ref_91) 2016; 28
Tian (ref_51) 2011; 157
Thomine (ref_88) 2000; 97
Ni (ref_96) 2016; 9
Migocka (ref_117) 2014; 66
Xia (ref_86) 2010; 107
Vollmann (ref_67) 2014; 203
Chen (ref_103) 2013; 64
Kopittke (ref_122) 2013; 201
Korenkov (ref_116) 2009; 7
Liu (ref_28) 2015; 183
ref_84
Ueno (ref_52) 2009; 182
Lanquar (ref_137) 2005; 24
Uraguchi (ref_108) 2014; 151
Jha (ref_92) 2016; 17
Lindberg (ref_44) 2004; 219
Panos (ref_1) 2013; 2013
Wu (ref_43) 2016; 7
Ortiz (ref_125) 1992; 11
Takahashi (ref_42) 2011; 62
Wu (ref_70) 2016; 131
Cailliatte (ref_40) 2009; 422
Hassan (ref_37) 2008; 31
Shi (ref_12) 2015; 111
Davenport (ref_94) 2002; 90
Curie (ref_75) 2001; 409
Liu (ref_69) 2019; 690
Vatamaniuk (ref_129) 2005; 280
Brader (ref_24) 2015; 91
Ruiz (ref_36) 2019; 180
ref_60
Ogawa (ref_78) 2006; 47
Zhang (ref_65) 2019; 180
Nawrot (ref_19) 2006; 7
Clemens (ref_7) 2016; 67
Becher (ref_111) 2004; 37
Oomen (ref_135) 2009; 181
Aouini (ref_95) 2012; 493
Dai (ref_62) 2007; 143
Dudley (ref_23) 1982; 65
Baldantoni (ref_32) 2016; 123
Sasaki (ref_121) 2014; 65
Clemens (ref_26) 2013; 18
ref_34
ref_33
Sun (ref_59) 2019; 70
ref_31
Lanquar (ref_80) 2004; 50
ref_113
Smith (ref_15) 2009; 35
Inaba (ref_21) 2005; 159
Park (ref_131) 2012; 69
Li (ref_71) 2019; 61
Johansen (ref_17) 2018; 242
Lam (ref_93) 1998; 396
Yang (ref_141) 2001; 13
Migocka (ref_118) 2014; 65
Lekeux (ref_107) 2019; 70
Miyadate (ref_133) 2011; 189
Ueno (ref_54) 2010; 107
Hu (ref_56) 2018; 17
Sanita (ref_9) 1999; 41
Martinoia (ref_123) 2012; 63
Ueno (ref_53) 2009; 50
Song (ref_109) 2010; 107
Ehsan (ref_140) 2014; 106
Lv (ref_64) 2017; 173
Yakubov (ref_128) 2009; 284
ref_3
Feng (ref_41) 2017; 36
ref_2
Baliardini (ref_136) 2015; 169
Murata (ref_76) 2006; 46
Liu (ref_114) 2017; 215
Kuriakose (ref_127) 2008; 54
Shabala (ref_49) 2007; 190
Xia (ref_58) 2013; 76
Liu (ref_61) 2009; 10
Xue (ref_6) 2014; 280
ref_5
Bortner (ref_47) 1977; 272
ref_4
Demidchik (ref_90) 2018; 220
Ishimaru (ref_82) 2012; 2
Bauddh (ref_11) 2012; 85
References_xml – volume: 1
  start-page: 22
  year: 2016
  ident: ref_18
  article-title: The toxicity of cadmium and resulting hazards for human health
  publication-title: J. Occup. Med. Toxicol.
  doi: 10.1186/1745-6673-1-22
– volume: 279
  start-page: 2339
  year: 2012
  ident: ref_100
  article-title: Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08613.x
– volume: 67
  start-page: 489
  year: 2016
  ident: ref_7
  article-title: Toxic heavy metal and metalloid accumulation in crop plants and foods
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-112301
– volume: 169
  start-page: 549
  year: 2015
  ident: ref_136
  article-title: CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01037
– volume: 2
  start-page: 286
  year: 2012
  ident: ref_82
  article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport
  publication-title: Sci. Rep.
  doi: 10.1038/srep00286
– volume: 226
  start-page: 1379
  year: 2007
  ident: ref_115
  article-title: Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.
  publication-title: Planta
  doi: 10.1007/s00425-007-0577-0
– volume: 50
  start-page: 1728
  year: 2010
  ident: ref_66
  article-title: A Major QTL controlling seed cadmium accumulation in soybean
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2009.11.0664
– volume: 40
  start-page: 130
  year: 1997
  ident: ref_124
  article-title: The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1977.tb01509.x
– volume: 54
  start-page: 143
  year: 2008
  ident: ref_127
  article-title: Cadmium stress affects seed germination and seedling growth in Sorghumbicolor (L.) Moench by changing the activities of hydrolyzing enzymes
  publication-title: Plant Growth Reg.
  doi: 10.1007/s10725-007-9237-4
– volume: 101
  start-page: 131
  year: 2003
  ident: ref_138
  article-title: Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(02)00320-6
– ident: ref_2
  doi: 10.1007/978-94-007-4470-7
– volume: 62
  start-page: 4843
  year: 2011
  ident: ref_42
  article-title: The OsNRAMP1 iron transporter is involved in Cd accumulation in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err136
– volume: 6
  start-page: e4478
  year: 2018
  ident: ref_16
  article-title: Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture
  publication-title: PeerJ
  doi: 10.7717/peerj.4478
– volume: 65
  start-page: 302
  year: 1982
  ident: ref_23
  article-title: Acute exposure to cadmium causes severe liver injury in rats
  publication-title: Toxicol. Appl. Pharm.
  doi: 10.1016/0041-008X(82)90013-8
– volume: 143
  start-page: 1739
  year: 2007
  ident: ref_62
  article-title: Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.094532
– volume: 180
  start-page: 529
  year: 2019
  ident: ref_65
  article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01380
– volume: 70
  start-page: 6389
  year: 2019
  ident: ref_59
  article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz400
– volume: 17
  start-page: 315
  year: 2016
  ident: ref_92
  article-title: Role of cyclic nucleotide gated channels in stress management in plants
  publication-title: Curr. Genom.
  doi: 10.2174/1389202917666160331202125
– volume: 183
  start-page: 225
  year: 2015
  ident: ref_28
  article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.08.004
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_85
  article-title: A node-based switch for preferential distribution of manganese in rice
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3442
– volume: 409
  start-page: 346
  year: 2001
  ident: ref_75
  article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake
  publication-title: Nature
  doi: 10.1038/35053080
– volume: 639
  start-page: 271
  year: 2018
  ident: ref_30
  article-title: Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.050
– volume: 39
  start-page: 237
  year: 2004
  ident: ref_104
  article-title: The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyce cerevisiae
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02126.x
– volume: 24
  start-page: 4041
  year: 2005
  ident: ref_137
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600864
– volume: 7
  start-page: 1875
  year: 2016
  ident: ref_43
  article-title: Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01875
– ident: ref_4
– volume: 46
  start-page: 563
  year: 2006
  ident: ref_76
  article-title: A specific transporter for iron (III)–phytosiderophore in barley roots
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02714.x
– volume: 149
  start-page: 894
  year: 2009
  ident: ref_112
  article-title: AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.130294
– volume: 690
  start-page: 321
  year: 2019
  ident: ref_69
  article-title: Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.332
– volume: 75
  start-page: 1
  year: 2012
  ident: ref_89
  article-title: Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2011.09.007
– volume: 107
  start-page: 21187
  year: 2010
  ident: ref_109
  article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013964107
– volume: 61
  start-page: 35539
  year: 2019
  ident: ref_71
  article-title: Inhibition of Cd accumulation in grains of wheat and rice under rotation mode using composite silicate amendment
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07137G
– volume: 47
  start-page: S231
  year: 2006
  ident: ref_78
  article-title: Iron deficiency enhanced Cd uptake and translocation by Fe2+ transporters, OsIRT1 and OsIRT2, in rice
  publication-title: Plant Cell Physiol.
– volume: 64
  start-page: 4375
  year: 2013
  ident: ref_103
  article-title: Mn tolerance in rice is mediated by MTP8.1 a member of the cation diffusion facilitator family
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert243
– volume: 1
  start-page: 755
  year: 2005
  ident: ref_8
  article-title: Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China
  publication-title: Environ. Int.
– volume: 24
  start-page: 903
  year: 2012
  ident: ref_45
  article-title: Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(11)60977-7
– volume: 9
  start-page: 9
  year: 2016
  ident: ref_96
  article-title: Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots
  publication-title: Rice
  doi: 10.1186/s12284-016-0081-x
– volume: 84
  start-page: 1045
  year: 2015
  ident: ref_101
  article-title: Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells
  publication-title: Plant J.
  doi: 10.1111/tpj.13056
– volume: 37
  start-page: 1192
  year: 2014
  ident: ref_132
  article-title: Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12227
– ident: ref_84
  doi: 10.1371/journal.pone.0098816
– volume: 159
  start-page: 192
  year: 2005
  ident: ref_21
  article-title: Estimation of cumulative cadmium intake causing Itai-itai disease
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2005.05.011
– volume: 69
  start-page: 278
  year: 2012
  ident: ref_131
  article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04789.x
– volume: 579
  start-page: 4165
  year: 2005
  ident: ref_99
  article-title: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.06.046
– volume: 16
  start-page: 328
  year: 2013
  ident: ref_27
  article-title: Rice breaks ground for cadmium free cereals
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2013.03.012
– volume: 34
  start-page: 685
  year: 2003
  ident: ref_87
  article-title: AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01760.x
– volume: 11
  start-page: 3491
  year: 1992
  ident: ref_125
  article-title: Heavy metal tolerance in the fission yeast requires an ATP-binding cassette type vacuolar membrane transporter
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05431.x
– volume: 14
  start-page: 1845
  year: 2015
  ident: ref_29
  article-title: Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(14)60926-6
– ident: ref_3
– volume: 65
  start-page: 6013
  year: 2014
  ident: ref_121
  article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru340
– volume: 31
  start-page: 251
  year: 2008
  ident: ref_37
  article-title: Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160701853753
– ident: ref_97
  doi: 10.1186/1471-2164-8-107
– volume: 12
  start-page: e27034
  year: 2013
  ident: ref_142
  article-title: Inter-subunit interactions between Glutamate-Like Receptors in Arabidopsis
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.27034
– volume: 2013
  start-page: 158764
  year: 2013
  ident: ref_1
  article-title: Contaminated sites in Europe: Review of the current situation based on data collected through a European network
  publication-title: J. Environ. Public Health
– volume: 50
  start-page: 1141
  year: 2004
  ident: ref_80
  article-title: Regulation and function of AtNRAMP4 metal transporter protein
  publication-title: Soil Sci.
– volume: 123
  start-page: 89
  year: 2016
  ident: ref_32
  article-title: Cadmium accumulation in leaves of leafy vegetables
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.05.019
– volume: 57
  start-page: 15
  year: 2012
  ident: ref_35
  article-title: Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.05.002
– volume: 88
  start-page: 1707
  year: 2006
  ident: ref_68
  article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2006.07.003
– volume: 280
  start-page: 23684
  year: 2005
  ident: ref_129
  article-title: CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhab ditiselegans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M503362200
– volume: 35
  start-page: 142
  year: 2009
  ident: ref_15
  article-title: A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.06.009
– volume: 97
  start-page: 4991
  year: 2000
  ident: ref_88
  article-title: Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.9.4991
– volume: 17
  start-page: 1563
  year: 2018
  ident: ref_56
  article-title: Identification of QTLs associated with cadmium concentration in rice grains
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61847-1
– volume: 24
  start-page: 2155
  year: 2012
  ident: ref_73
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096925
– volume: 219
  start-page: 526
  year: 2004
  ident: ref_44
  article-title: A new method to detect cadmium uptake in protoplasts
  publication-title: Planta
  doi: 10.1007/s00425-004-1256-z
– volume: 173
  start-page: 1475
  year: 2017
  ident: ref_64
  article-title: The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing b-amylase expression
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01725
– ident: ref_14
  doi: 10.1201/b10158
– volume: 107
  start-page: 16500
  year: 2010
  ident: ref_54
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005396107
– ident: ref_25
– ident: ref_33
  doi: 10.3390/ijerph14040395
– volume: 190
  start-page: 289
  year: 2007
  ident: ref_49
  article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03575.x
– volume: 36
  start-page: 281
  year: 2017
  ident: ref_41
  article-title: Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2079-7
– volume: 157
  start-page: 1914
  year: 2011
  ident: ref_51
  article-title: Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.183947
– volume: 41
  start-page: 105
  year: 1999
  ident: ref_9
  article-title: Response to cadmium in higher plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/S0098-8472(98)00058-6
– volume: 7
  start-page: 119
  year: 2006
  ident: ref_19
  article-title: Environmental exposure to cadmium and risk of cancer: A prospective populationbased study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(06)70545-9
– volume: 284
  start-page: 354
  year: 2009
  ident: ref_128
  article-title: Drosophila ABCtransporter, DmHMT-1, confers tolerance to cadmium. DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 267
  year: 1998
  ident: ref_130
  article-title: AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1
  publication-title: Plant Cell
– volume: 35
  start-page: 1948
  year: 2012
  ident: ref_120
  article-title: The OsHMA2 transporter is involved in root to shoot translocation of Zn and Cd in rice
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2012.02527.x
– volume: 305
  start-page: 41
  year: 2003
  ident: ref_20
  article-title: Rice as the most influential source of cadmium intake among general Japanese population
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(02)00475-8
– volume: 18
  start-page: 92
  year: 2013
  ident: ref_26
  article-title: Plant science: The key to preventing slow cadmium poisoning
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.08.003
– ident: ref_31
  doi: 10.1371/journal.pone.0177978
– volume: 111
  start-page: 127
  year: 2015
  ident: ref_12
  article-title: PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.11.008
– volume: 252
  start-page: 188
  year: 2018
  ident: ref_39
  article-title: Structural basis for expanding the application of bioligand in metal bioremediation: A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.12.070
– volume: 203
  start-page: 177
  year: 2014
  ident: ref_67
  article-title: Soybean cadmium concentration: Validation of a QTL affecting seed cadmium accumulation for improved food safety
  publication-title: Euphytica
  doi: 10.1007/s10681-014-1297-8
– volume: 13
  start-page: 368
  year: 2001
  ident: ref_141
  article-title: Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids
  publication-title: J. Environ. Sci.
– volume: 1
  start-page: 1
  year: 2015
  ident: ref_102
  article-title: A polarly localized transporter for efficient manganese uptake in rice
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.170
– volume: 63
  start-page: 183
  year: 2012
  ident: ref_123
  article-title: Vacuolar transporters in their physiological context
  publication-title: Annu. Rev. Plant. Biol.
  doi: 10.1146/annurev-arplant-042811-105608
– volume: 104
  start-page: 223
  year: 2005
  ident: ref_22
  article-title: Effects of exogenous metallothionein on acute cadmium toxicity in rats
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1385/BTER:104:3:223
– ident: ref_5
– volume: 163
  start-page: 1353
  year: 2013
  ident: ref_105
  article-title: A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.226225
– volume: 25
  start-page: 365
  year: 2006
  ident: ref_79
  article-title: Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-005-0092-3
– volume: 45
  start-page: 1893
  year: 1994
  ident: ref_38
  article-title: Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/45.12.1893
– volume: 1763
  start-page: 609
  year: 2006
  ident: ref_81
  article-title: The NRAMP family of metal-ion transporters
  publication-title: BBA-Mol. Cell Res.
– volume: 10
  start-page: 61
  year: 2009
  ident: ref_61
  article-title: Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00061
– volume: 7
  start-page: 219
  year: 2009
  ident: ref_116
  article-title: Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2008.00390.x
– volume: 493
  start-page: 36
  year: 2012
  ident: ref_95
  article-title: Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles
  publication-title: Gene
  doi: 10.1016/j.gene.2011.11.037
– volume: 189
  start-page: 190
  year: 2011
  ident: ref_133
  article-title: OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03459.x
– volume: 39
  start-page: 1941
  year: 2016
  ident: ref_55
  article-title: A loss-of-function allele of associated with high cadmium accumulation in shoots and grain of rice cultivars
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12747
– volume: 285
  start-page: 125
  year: 2006
  ident: ref_139
  article-title: Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0064-6
– volume: 70
  start-page: 329
  year: 2019
  ident: ref_107
  article-title: Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery353
– volume: 28
  start-page: 1738
  year: 2016
  ident: ref_91
  article-title: Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12
  publication-title: Plant Cell
– volume: 107
  start-page: 18381
  year: 2010
  ident: ref_86
  article-title: Plasma membrane-localized transporter for aluminum in rice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004949107
– volume: 16
  start-page: 1327
  year: 2004
  ident: ref_106
  article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.020487
– volume: 287
  start-page: 3185
  year: 2012
  ident: ref_119
  article-title: Metal selectivity determinants in a family of transition metal transporters
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.305649
– volume: 270
  start-page: 4721
  year: 1995
  ident: ref_126
  article-title: Transport of metal- binding peptides by HMT1, a fission Yeast ABC-type vacuolar membrane protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.9.4721
– volume: 180
  start-page: 88
  year: 2019
  ident: ref_36
  article-title: Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.04.081
– volume: 272
  start-page: 32436
  year: 1977
  ident: ref_47
  article-title: A primary role for K+ and Na+ efflux in the activation of apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.51.32436
– volume: 123
  start-page: 1468
  year: 2010
  ident: ref_48
  article-title: Arabidopsis root K+ efflux conductance by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.064352
– volume: 242
  start-page: 1510
  year: 2018
  ident: ref_17
  article-title: Toxicity of cadmium and zinc to small soil protists
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.034
– volume: 65
  start-page: 5367
  year: 2014
  ident: ref_118
  article-title: Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru295
– volume: 131
  start-page: 173
  year: 2016
  ident: ref_70
  article-title: Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress
  publication-title: J. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.07.012
– volume: 66
  start-page: 1001
  year: 2014
  ident: ref_117
  article-title: Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru459
– volume: 172
  start-page: 1899
  year: 2016
  ident: ref_83
  article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01189
– volume: 201
  start-page: 1251
  year: 2013
  ident: ref_122
  article-title: Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging
  publication-title: New Phytol.
  doi: 10.1111/nph.12595
– volume: 39
  start-page: 415
  year: 2004
  ident: ref_77
  article-title: OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02146.x
– volume: 91
  start-page: 140
  year: 2015
  ident: ref_24
  article-title: Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.08.038
– volume: 76
  start-page: 345
  year: 2013
  ident: ref_58
  article-title: A plasma membrane-localized small peptide is involved in rice aluminum tolerance
  publication-title: Plant J.
  doi: 10.1111/tpj.12296
– volume: 12
  start-page: 1577
  year: 2015
  ident: ref_10
  article-title: Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China
  publication-title: J. Environ. Res. Public Health
  doi: 10.3390/ijerph120201577
– volume: 66
  start-page: 3815
  year: 2015
  ident: ref_110
  article-title: Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv185
– volume: 181
  start-page: 637
  year: 2009
  ident: ref_135
  article-title: Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02694.x
– volume: 280
  start-page: 269
  year: 2014
  ident: ref_6
  article-title: Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.010
– volume: 150
  start-page: 244
  year: 2009
  ident: ref_63
  article-title: Enhanced tolerance to chilling stress in OsMYB3R2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.133454
– ident: ref_34
– volume: 90
  start-page: 549
  year: 2002
  ident: ref_94
  article-title: Glutamate receptors in plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcf228
– volume: 65
  start-page: 376
  year: 2009
  ident: ref_50
  article-title: Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2008.11.010
– ident: ref_113
  doi: 10.1371/journal.pgen.1002923
– volume: 85
  start-page: 13
  year: 2012
  ident: ref_11
  article-title: Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2012.08.019
– volume: 147
  start-page: 719
  year: 2008
  ident: ref_46
  article-title: Atosa1, a member of the abc1-like family, as a new factor in cadmium and oxidative stress response
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.110247
– volume: 50
  start-page: 106
  year: 2009
  ident: ref_57
  article-title: Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn175
– volume: 106
  start-page: 164
  year: 2014
  ident: ref_140
  article-title: Citric acid assisted phytoremediation of cadmium by Brassica napus L.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.03.007
– volume: 107
  start-page: 285
  year: 2011
  ident: ref_72
  article-title: Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcq240
– volume: 220
  start-page: 49
  year: 2018
  ident: ref_90
  article-title: Calcium transport across plant membranes: Mechanisms and functions
  publication-title: New Phytol.
  doi: 10.1111/nph.15266
– volume: 37
  start-page: 251
  year: 2004
  ident: ref_111
  article-title: Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01959.x
– volume: 77
  start-page: 287
  year: 2001
  ident: ref_13
  article-title: Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(00)00043-2
– volume: 182
  start-page: 644
  year: 2009
  ident: ref_52
  article-title: A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa)
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02784.x
– volume: 108
  start-page: 20959
  year: 2011
  ident: ref_74
  article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1116531109
– volume: 396
  start-page: 125
  year: 1998
  ident: ref_93
  article-title: Glutamate-receptor genes in plants
  publication-title: Nature
  doi: 10.1038/24066
– volume: 243
  start-page: 577
  year: 2016
  ident: ref_134
  article-title: Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance
  publication-title: Planta
  doi: 10.1007/s00425-015-2429-7
– volume: 215
  start-page: 687
  year: 2017
  ident: ref_114
  article-title: Heavy metal ATPase3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola
  publication-title: New Phytol.
  doi: 10.1111/nph.14622
– ident: ref_60
– volume: 283
  start-page: 8374
  year: 2008
  ident: ref_98
  article-title: Deletion of ahistidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M707646200
– volume: 151
  start-page: 339
  year: 2014
  ident: ref_108
  article-title: Charaterization of OsLCT1, a cadmium transporter from Indica rice (Oryza sativa)
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12189
– volume: 50
  start-page: 2223
  year: 2009
  ident: ref_53
  article-title: Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in Rice
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp160
– volume: 422
  start-page: 217
  year: 2009
  ident: ref_40
  article-title: The NRAMP6 metal transporter contributes to cadmium toxicity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20090655
SSID ssj0000800816
Score 2.4883106
SecondaryResourceType review_article
Snippet Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 223
SubjectTerms cadmium
cadmium toxicity
copper
food chain
ion channels
iron
irt
manganese
membrane transport
mtp
non-selective cation channel
nramp
nutrients
parenchyma (plant tissue)
phloem
Review
roots
soil
tissue tolerance
transporters
xylem
zinc
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4s3ykpEQJ6I69sR2uLUVqwqJh2gr9Rb5KRbtJqt299BbT_wB_iG_hLGTLhvE48I1HiWOZ-L5vmTyDSEvwGqN2z6SnMh9AeBdUTMrCh18CWVUrpfMf_deHp7A29PqdKvVV6oJ6-WB-4XbZRXzvgIhIHionLDCR0zSVhkJDGL-zRdz3haZ-jLgIF3KXlRTIK_fXc5TXUmN6IhzMUpCWav_dwDz1zrJrcQzvUVuDoiR7vUzvU2uhfYOub7fIaq7uEu-fkraq5h_6IHxi9l6QfecWy-Gplx01tKPeUqv6VFWil2fhe-X36aYzfL4phaOmtbT4-yFIvekjzNHPyxDHyC0i_SnDPrZeTovIkd6tOxW80Tv75GT6Zvjg8Ni6K1QONByVYCrbYJqJniLWdrWppSSa2ZcZWotkcRJh-jFx8rGWAbukbcFENZiOncaYcx9stN2bXhIKLqGW9wlGSi0KKP2RinJDONeI12rJuTV1WI3bhAeT_0v5g0SkOSbZuSbCXm5MV_2iht_MtxPntsYJaHsfADDpxnCp_lX-EzI8yu_N_hgpa8lpg3d-rzhIrVlrlUJf7EBvFMotcLzPOhjZTMdwfHaAHxC1CiKRvMdj7Szz1ngWzGFrFI--h83-Jjc4OkVQSo0r5-QHYy18BRx1Mo-y4_MDxjAH8I
  priority: 102
  providerName: Directory of Open Access Journals
Title Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight
URI https://www.ncbi.nlm.nih.gov/pubmed/32050442
https://www.proquest.com/docview/2354739714
https://www.proquest.com/docview/2477641878
https://pubmed.ncbi.nlm.nih.gov/PMC7076666
https://doaj.org/article/050dd54334ed45c3b3df600b7a6404f8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgZcGm4s0UGBkJsSKQx43tICHUqTqqkFqqtiN1F_kJg2aSYR4S3bHiB_hDvoRrJ50SKKzYxteO7WvnnuNY5xLyDJQQ-NlHkuNSEwEYHRWxyiJhTQKJ47qRzD84ZPsjeHeWn11KCrUTuLiS2vl8UqP55OWXz-dvccO_8YwTKfur2cRfGSkQ-GCsu042MShxn8zgoEX6n1pgJBLWqGz-WasTlYJ4_1WI8_eLk79EouEtstVCSLrT-Pw2uWarO-TGoEaYd36XfDv2YqwYkOiuNNPxakp3tF5N2yxddFzRo9Cl1_QkSMeu5vbH1-9DDG-hfH05jsrK0NPgligkqXdjTd_PbLNiaO3opS76fOHbRShJT2b1cuL5_j0yGu6d7u5HbbKFSINgywh0oTx2k9YoDNuqkAljqYilzmUhGLI6phHOGJcr5xKbGiRyFjKlML5rgbjmPtmo6so-JDTLsD5-NmPgaJE4YSTnLJZxagTyt7xHXlxMdqlbJXKfEGNSIiPxvik7vumR52vzWSPB8TfDgffc2sgrZ4cH9fxD2W7EMs5jY3LAPloDuc4UDglBn-KSQQxO9MjTC7-XuNP87xNZ2Xq1KNPM52kueAL_sAEcKSSCYzsPmrWy7k6W4rsB0h7hnVXU6W-3pBp_DIrfPOZIM9n2_xjgI3Iz9WcG_uZ58Zhs4FqzTxBYLVWfbA72Do-O--Fgoh820E-PqCpY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+Cadmium+Accumulation+in+Plants%3A+Structure%E2%80%93Function+Relations+and+Tissue-Specific+Operation+of+Transporters+in+the+Spotlight&rft.jtitle=Plants+%28Basel%29&rft.au=Xin+Huang&rft.au=Songpo+Duan&rft.au=Qi+Wu&rft.au=Min+Yu&rft.date=2020-02-09&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=9&rft.issue=2&rft.spage=223&rft_id=info:doi/10.3390%2Fplants9020223&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050dd54334ed45c3b3df600b7a6404f8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon