Should Root Plasticity Be a Crop Breeding Target?
Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness ar...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 546 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
15.05.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research. |
---|---|
AbstractList | Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research. Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research.Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research. |
Author | Schneider, Hannah M. Lynch, Jonathan P. |
AuthorAffiliation | Department of Plant Science, The Pennsylvania State University , University Park, PA , United States |
AuthorAffiliation_xml | – name: Department of Plant Science, The Pennsylvania State University , University Park, PA , United States |
Author_xml | – sequence: 1 givenname: Hannah M. surname: Schneider fullname: Schneider, Hannah M. – sequence: 2 givenname: Jonathan P. surname: Lynch fullname: Lynch, Jonathan P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32499798$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1618986$$D View this record in Osti.gov |
BookMark | eNp1ks9vFCEUx4mpsT_s2ZuZePKyWx4wDFw0dmO1SRON1sQbAebNLs3ssAJr0v9ettua1kQuEPi-z_vm8T0mB1OckJBXQOecK302bMY8Z5TROaWtkM_IEUgpZkKynwePzofkNOcbWldLqdbdC3LImagHrY4IfF_F7dg332IszdfR5hJ8KLfNOTa2WaS4ac4TYh-mZXNt0xLL-5fk-WDHjKf3-wn5cfHxevF5dvXl0-Xiw9XMCyXLTDgA3zHdawtM9pQ57tzAufRCeEdtb12HnoJTLThvqaPoEQQfeOegbQd-Qi733D7aG7NJYW3TrYk2mLuLmJbGpup2RDOAglYDOu-t4OgVgu6dAsUZdhVfWe_2rM3WrbH3OJVkxyfQpy9TWJll_G06JrjmvALe7AGxDsjkOiL0Kx-nCX0xIEFpJavo7X2XFH9tMRezDtnjONoJ4zYbJoByoVhHq_T1Y0N_nTx8TBW0e4FPMeeEg6k9bQlx5y-MBqjZZcDsMmB2GTB3Gah1Z__UPaD_V_EHdLizPA |
CitedBy_id | crossref_primary_10_1093_jxb_erad421 crossref_primary_10_3389_fpls_2022_960942 crossref_primary_10_1007_s00122_021_03819_w crossref_primary_10_3389_fpls_2022_824720 crossref_primary_10_3390_agronomy12061457 crossref_primary_10_1080_17429145_2024_2323991 crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_3390_plants12234015 crossref_primary_10_1016_j_jplph_2020_153355 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_1016_j_tplants_2022_11_008 crossref_primary_10_1111_1442_1984_12410 crossref_primary_10_1111_pbr_13248 crossref_primary_10_1111_pce_14035 crossref_primary_10_1111_pce_14552 crossref_primary_10_1002_csc2_20312 crossref_primary_10_1007_s11104_023_06066_8 crossref_primary_10_1111_jac_12667 crossref_primary_10_1007_s44372_024_00006_1 crossref_primary_10_3390_plants13233361 crossref_primary_10_1111_tpj_15560 crossref_primary_10_1038_s44264_025_00048_2 crossref_primary_10_1007_s11104_023_06020_8 crossref_primary_10_1016_j_rhisph_2021_100411 crossref_primary_10_1080_1343943X_2021_1883990 crossref_primary_10_1007_s11104_022_05809_3 crossref_primary_10_1002_pld3_521 crossref_primary_10_1007_s00122_024_04728_4 crossref_primary_10_1016_j_eja_2024_127101 crossref_primary_10_3389_fpls_2022_760879 crossref_primary_10_1111_pce_14284 crossref_primary_10_1007_s10722_023_01628_2 crossref_primary_10_1007_s11104_024_06931_0 crossref_primary_10_3389_fpls_2022_1022023 crossref_primary_10_3390_genes13091632 crossref_primary_10_1093_jxb_erae378 crossref_primary_10_1007_s11104_024_06648_0 crossref_primary_10_1111_tpj_15774 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1016_j_jare_2024_11_002 crossref_primary_10_1111_pce_14898 crossref_primary_10_17221_57_2024_CJGPB crossref_primary_10_1111_pce_13840 crossref_primary_10_5194_bg_22_691_2025 crossref_primary_10_1007_s42729_024_01942_3 crossref_primary_10_1007_s11056_022_09917_x crossref_primary_10_1016_j_fcr_2024_109661 crossref_primary_10_5965_223811712312024043 crossref_primary_10_3389_fpls_2024_1383373 crossref_primary_10_3390_plants11111407 crossref_primary_10_1042_BST20200716 crossref_primary_10_1111_ppl_13332 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1007_s11104_025_07242_8 crossref_primary_10_1093_plphys_kiad485 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_3390_agronomy15020353 crossref_primary_10_1590_1807_1929_agriambi_v27n1p9_17 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_3389_fpls_2022_1047563 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_1093_aob_mcac087 crossref_primary_10_1007_s12892_022_00142_8 crossref_primary_10_3390_agriculture12101677 crossref_primary_10_1007_s00572_023_01126_4 crossref_primary_10_1002_tpg2_20395 crossref_primary_10_1007_s11104_024_07185_6 crossref_primary_10_1038_s41598_024_52338_3 crossref_primary_10_1111_aab_12856 crossref_primary_10_1093_jxb_eraf006 crossref_primary_10_1016_j_stress_2025_100751 crossref_primary_10_1016_j_rhisph_2021_100463 crossref_primary_10_3390_plants12020275 crossref_primary_10_1038_s41598_021_89129_z crossref_primary_10_1016_j_heliyon_2024_e27142 crossref_primary_10_1016_j_fcr_2023_108878 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1016_j_mex_2023_102505 crossref_primary_10_1016_j_tplants_2022_02_004 crossref_primary_10_1590_1678_4499_20220160 crossref_primary_10_1007_s11104_024_06903_4 crossref_primary_10_1016_j_envexpbot_2021_104494 crossref_primary_10_1073_pnas_2305517121 crossref_primary_10_1093_plphys_kiae270 crossref_primary_10_3389_fpls_2023_1223961 crossref_primary_10_1111_pce_15457 crossref_primary_10_1016_j_scitotenv_2022_156022 crossref_primary_10_1093_aob_mcac022 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_3389_fpls_2022_865188 crossref_primary_10_1093_jxb_erad488 crossref_primary_10_1080_00380768_2021_2022965 crossref_primary_10_1111_jac_70042 crossref_primary_10_1093_pcp_pcab179 crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_1016_j_geoderma_2024_117061 crossref_primary_10_3389_fpls_2024_1444560 crossref_primary_10_1186_s12870_025_06120_w crossref_primary_10_1093_jxb_erae298 crossref_primary_10_1016_j_geoderma_2021_115405 crossref_primary_10_1007_s11104_024_06582_1 crossref_primary_10_1016_j_fcr_2023_108893 crossref_primary_10_3389_fpls_2024_1443900 crossref_primary_10_1016_j_tplants_2024_01_003 crossref_primary_10_3390_ijms24021143 crossref_primary_10_3390_plants11243520 crossref_primary_10_3389_fpls_2022_830577 crossref_primary_10_3389_fpls_2022_883209 crossref_primary_10_1093_jxb_eraa487 crossref_primary_10_3389_fpls_2021_581127 crossref_primary_10_1093_jxb_erab214 crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1016_j_cub_2023_03_074 crossref_primary_10_17221_254_2023_PSE crossref_primary_10_3390_genes13020181 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_3389_fpls_2021_814110 crossref_primary_10_1111_1365_2745_14088 crossref_primary_10_1016_j_fcr_2025_109774 crossref_primary_10_1016_j_tree_2024_12_007 crossref_primary_10_3390_plants12132404 crossref_primary_10_1016_j_jgg_2024_05_001 crossref_primary_10_1002_ppp3_10534 crossref_primary_10_1111_ejss_13219 crossref_primary_10_3117_rootres_32_4 crossref_primary_10_1007_s00425_023_04262_5 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.1007/BF00193223 10.1007/s11032-010-9450-0 10.1093/aob/mcq199 10.1098/rspb.1999.0656 10.1007/s11104-005-0389-6 10.1023/A:1013324727040 10.1093/jxb/ery252 10.1093/aob/mcy059 10.1007/s10681-011-0585-9 10.1111/j.1365-3040.2012.02547.x 10.1111/pce.13197 10.1111/pce.13190 10.1104/pp.17.00648 10.1626/pps.8.427 10.1046/j.1420-9101.1998.11040465.x 10.1111/pce.12451 10.1104/pp.113.233916 10.1002/j.1537-2197.1992.tb13704.x 10.1093/jxb/ers111 10.1105/tpc.9.7.1181 10.1016/j.tplants.2010.09.008 10.1093/jxb/err269 10.1371/journal.pone.0178059 10.1093/jxb/eru508 10.1146/annurev.es.16.110185.002051 10.1111/nph.14243 10.1007/s11104-009-0275-8 10.1073/pnas.1400966111 10.1093/aob/mct069 10.1111/j.1469-8137.1975.tb01409.x 10.1038/s41467-017-01450-2 10.2993/0278-0771-30.1.52 10.1098/rstb.2010.0172 10.1038/344058a0 10.1007/s11104-010-0675-9 10.1016/S1360-1385(00)01570-3 10.1093/jxb/52.355.329 10.1007/s11104-014-2240-4 10.1086/281736 10.1002/fes3.192 10.1104/pp.17.01583 10.1186/s12284-018-0252-z 10.1093/jxb/erq097 10.1093/jxb/erz383 10.1093/aob/mcs082 10.1270/jsbbs.58.7 10.1078/1433-8319-00083 10.2134/agronj1969.00021962006100040007x 10.1111/j.1420-9101.2009.01754.x 10.1016/S0169-5347(00)89061-8 10.1093/aob/mcs293 10.1071/FP06055 10.1093/aob/mct099 10.2307/2408649 10.1007/s11104-004-1697-y 10.1071/FP05005 10.1016/S0092-8674(00)80126-9 10.2307/2446624 10.1371/journal.pgen.1006889 10.1016/S1360-1385(00)01797-0 10.1104/pp.114.250449 10.1007/s11104-013-1769-y 10.1093/aob/mct164 10.1016/S0378-4290(99)00057-X 10.2307/3079078 10.1104/pp.113.232603 10.1111/j.1469-8137.1996.tb01847.x 10.1016/j.fcr.2010.07.012 10.1093/jxb/24.6.1189 10.1023/A:1010381919003 10.1016/j.tree.2005.06.001 10.1111/j.1420-9101.2004.00744.x 10.1093/jxb/eraa084 10.1098/rstb.2011.0243 10.1038/nrg2207 10.1104/pp.16.00705 10.1071/FPv39n11-IN 10.1371/journal.pgen.1003760 10.1007/BF00029096 10.1007/s11104-005-4268-y 10.1093/jxb/erw472 10.1111/j.1095-8312.1989.tb02099.x 10.1016/j.fcr.2010.10.003 10.3732/ajb.1200474 10.1093/jxb/erw243 10.1007/s11104-007-9266-9 10.1007/s11104-017-3533-1 10.1007/BF00009972 10.1016/j.fcr.2011.03.001 10.1007/s11104-015-2404-x 10.1071/A97035 10.1007/s00122-014-2414-8 10.1007/s11427-010-4097-y 10.1093/aob/mcy092 10.1093/jxb/erq403 10.2307/1941688 10.1104/pp.114.249037 10.1093/aob/mcw112 10.1093/jxb/eru162 10.1016/j.jprot.2017.04.010 10.1046/j.1469-8137.1999.00400.x 10.1002/jpln.201600503 10.1071/FP09197 10.1111/j.1469-8137.2006.01761.x 10.1007/BF00317406 10.1029/2008GL033423 10.1002/tpg2.20003 10.1111/pce.12418 10.1071/FP05043 10.1007/978-3-642-51483-8_5 10.3389/fpls.2013.00355 10.1104/pp.109.1.7 10.1016/j.fcr.2013.01.024 10.1086/285702 10.1016/j.plantsci.2018.09.015 10.1104/pp.15.00145 10.1104/pp.111.175414 10.1007/s00122-014-2353-4 10.1111/j.1365-3040.2009.02099.x 10.1111/pce.12933 10.1016/j.pbi.2008.12.006 10.1093/jxb/ery048 10.1007/s11104-012-1178-7 10.1626/pps.14.307 10.1104/pp.18.00234 10.1104/pp.15.00187 10.1104/pp.16.01257 10.1104/pp.17.00500 10.1046/j.1469-8137.2003.00907.x 10.1007/s00122-005-2051-3 10.1016/j.fcr.2014.10.009 10.1093/aob/mcu191 10.1071/FP04046 10.1111/nph.15738 10.1093/jxb/erq429 10.1093/aob/mcv018 10.1093/jxb/erm097 10.1023/A:1014289121672 10.1016/j.fcr.2012.09.010 10.3389/fpls.2016.00944 10.1093/jxb/erz293 10.1104/pp.114.241711 10.1626/pps.16.205 10.1111/j.1469-8137.2007.02370.x 10.1111/j.1365-313X.2008.03495.x 10.1146/annurev.es.17.110186.003315 10.1007/BF02374754 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Schneider and Lynch. Copyright © 2020 Schneider and Lynch. 2020 Schneider and Lynch |
Copyright_xml | – notice: Copyright © 2020 Schneider and Lynch. – notice: Copyright © 2020 Schneider and Lynch. 2020 Schneider and Lynch |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | AAYXX CITATION NPM 7X8 OTOTI 5PM DOA |
DOI | 10.3389/fpls.2020.00546 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Architecture |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_f181591ebcca43ec8e19db81832e751b PMC7243933 1618986 32499798 10_3389_fpls_2020_00546 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: U.S. Department of Energy |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 IAO IEA IGS ISR ITC OTOTI 5PM |
ID | FETCH-LOGICAL-c486t-4b11c729d9a126d02b3bbf336c44cb0adab7ec01b851bca0b0ece143f37b155f3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:13:26 EDT 2025 Thu Aug 21 18:25:29 EDT 2025 Mon Apr 01 04:55:07 EDT 2024 Fri Jul 11 02:15:29 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Tue Jul 01 03:27:15 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | anatomy root ideotype plasticity crop architecture breeding |
Language | English |
License | Copyright © 2020 Schneider and Lynch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-4b11c729d9a126d02b3bbf336c44cb0adab7ec01b851bca0b0ece143f37b155f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 AR0000821 USDOE Advanced Research Projects Agency - Energy (ARPA-E) Edited by: Idupulapati Madhusudana Rao, International Center for Tropical Agriculture (CIAT), Colombia Reviewed by: Hillel Fromm, Tel Aviv University, Israel; Philip Benfey, Duke University, United States This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | https://doaj.org/article/f181591ebcca43ec8e19db81832e751b |
PMID | 32499798 |
PQID | 2410348270 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f181591ebcca43ec8e19db81832e751b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7243933 osti_scitechconnect_1618986 proquest_miscellaneous_2410348270 pubmed_primary_32499798 crossref_citationtrail_10_3389_fpls_2020_00546 crossref_primary_10_3389_fpls_2020_00546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-15 |
PublicationDateYYYYMMDD | 2020-05-15 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Gage (B31) 2017; 8 Merilä (B73) 2004; 17 Lande (B53) 2009; 22 Chimungu (B12); 166 Lacey (B50) 1997; 84 Drew (B23) 1975; 24 Lynch (B60) 2001; 237 Cooper (B16) 1999; 64 Lynch (B67) 2014; 65 Schneider (B111); 174 Uga (B129) 2011; 62 Lambers (B51) 2013; 100 Pigliucci (B90) 1995; 76 Ho (B41) 2005; 32 Kadam (B45) 2017; 174 Poorter (B91) 2016; 122 Zhu (B151) 2004; 31 Zhu (B146); 33 Burton (B9); 128 Yang (B139) 2019; 70 Jia (B44) 2018; 69 Via (B131) 2006; 39 York (B142) 2013; 4 Mitchell-Olds (B78) 2007; 8 Anderson (B1) 2017; 32 Kirk (B49) 1999; 142 Robinson (B100) 1999; 266 Weiner (B134) 2004; 6 Sun (B118) 2018; 177 Lynch (B65) 2019; 223 Lynch (B64) 2018; 69 Via (B130) 1995; 10 Falconer (B28) 1952; 86 Mt. Pleasant (B79) 2010; 30 Zhan (B144) 2015; 168 Nielsen (B83) 2001; 52 Drew (B21) 1975; 75 Nicotra (B82) 2010; 15 Zargar (B143) 2017; 169 Pigliucci (B89) 2005; 20 Rabbi (B97) 2017; 180 Zhu (B147); 37 Burton (B10); 127 Strock (B115) 2018; 176 Bao (B2) 2014; 111 Saengwilai (B105); 166 Lobet (B57) 2019; 282 Kano (B46) 2011; 342 Lynch (B59) 2013; 112 Postma (B94) 2011; 107 Niones (B85) 2015; 391 Dathe (B18) 2016; 118 Topp (B123) 2016; 172 Walk (B132) 2006; 279 Schneider (B108) Lynch (B68) 2015; 66 Foy (B30) 1969; 61 Miguel (B75) 2013; 112 Relyea (B99) 2002; 159 Henry (B39) 2011; 120 Galindo-Castañeda (B32) 2018; 7 Lynch (B61) 1995; 109 Ryan (B103) 1995; 196 Woods (B136) 2010; 365 Sandhu (B106) 2016; 171 Poot (B92) 2008; 178 Jackson (B42) 1990; 344 Nakamoto (B80) 1993; 152 Schlichting (B107) 1986; 17 Chinnusamy (B15) 2009; 12 Chimungu (B13); 166 Manschadi (B71) 2006; 33 Uga (B127) 2008 Postma (B95) 2012; 110 Mi (B74) 2010; 53 Lynch (B66) 2012; 367 Trachsel (B124) 2013; 140 Gardner (B34) 1983; 70 Dewitt (B20) 1998; 13 Pieruschka (B88) 2012; 39 Gao (B33) 2016; 67 Tebaldi (B122) 2008; 41 Takahashi (B120) 2015; 115 Postma (B93) 2014; 166 Sultan (B116) 1996; 77 Miklos (B77) 1996; 86 Niones (B87) 2013; 16 Schneider (B113) 2018; 28 Zhang (B145) 2014; 114 Dunbabin (B24) 2013; 372 Hirel (B40) 2007; 58 Wilson (B135) 1994; 144 Rostamza (B101) 2013; 112 Gowda (B36) 2011; 122 Ehdaie (B25) 2012; 186 Trewavas (B126) 1997; 9 Feng (B29) 2011; 62 Sultan (B117) 2000; 5 Tardieu (B121) 2018; 63 Hecht (B38) 2016; 7 Schneider (B109) Caldwell (B11) 1992; 89 Suralta (B119) 2010; 332 Ryan (B102) 2012; 35 Evans (B27) 2003; 161 Miguel (B76) 2015; 167 Lambers (B52) 2003; 238 Ye (B141) 2018; 41 Basford (B3) 1998; 49 Hazman (B37) 2018; 11 Saengwilai (B104); 166 Bloom (B4) 1985; 16 Tran (B125) 2014; 386 Kano-Nakata (B48) 2011; 14 Liao (B56) 2001; 232 Prince (B96) 2017; 66 Bradshaw (B6) 2006; 170 DeWitt (B19) 1998; 11 Zhu (B148); 270 El-Soda (B26) 2015; 38 Li (B55) 2017; 13 Marschner (B72) 1995 Niones (B86) 2012; 359 Bonser (B5) 1996; 132 Brisson (B8) 2010; 119 Yano (B140) 2005; 8 Xie (B138) 2019 Zhu (B150); 32 Mano (B69) 2006; 281 Schneider (B110) 2018; 423 Zhu (B149); 111 Chimungu (B14) 2015; 171 Lynch (B62) 2011; 156 Schneider (B112); 40 Uga (B128) 2010; 26 Nielsen (B84) 1994; 165 Lynch (B63) 2015; 38 Rangarajan (B98) 2018; 122 Bradshaw (B7) 1989; 37 Kano-Nakata (B47) 2013; 144 Drew (B22) 2000; 5 Gifford (B35) 2013; 9 Jaramillo (B43) 2013; 112 Negi (B81) 2008; 55 Sharma (B114) 2010; 61 Correa (B17) 2019; 70 Wasson (B133) 2012; 63 Wulff (B137) 1992; 79 Mano (B70) 2007; 295 Lorts (B58) 2019; 9 León (B54) 1993 |
References_xml | – volume: 196 start-page: 103 year: 1995 ident: B103 article-title: Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. publication-title: Planta doi: 10.1007/BF00193223 – volume: 26 start-page: 533 year: 2010 ident: B128 article-title: Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. publication-title: Mol. Breeding doi: 10.1007/s11032-010-9450-0 – volume: 107 start-page: 829 year: 2011 ident: B94 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. publication-title: Ann. Bot. doi: 10.1093/aob/mcq199 – volume: 266 start-page: 431 year: 1999 ident: B100 article-title: Plant root proliferation in nitrogen-rich patches confers competitive advantage. publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspb.1999.0656 – volume: 279 start-page: 347 year: 2006 ident: B132 article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition. publication-title: Plant Soil doi: 10.1007/s11104-005-0389-6 – volume: 237 start-page: 225 year: 2001 ident: B60 article-title: Topsoil foraging – An architectural adaptation of plants to low phosphorus availability. publication-title: Plant Soil doi: 10.1023/A:1013324727040 – volume: 69 start-page: 4961 year: 2018 ident: B44 article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery252 – volume: 28 start-page: 95 year: 2018 ident: B113 article-title: Ethylene modulates root cortical senescence in barley. publication-title: Ann. Bot. doi: 10.1093/aob/mcy059 – volume: 186 start-page: 219 year: 2012 ident: B25 article-title: Root system plasticity to drought influences grain yield in bread wheat. publication-title: Euphytica doi: 10.1007/s10681-011-0585-9 – volume: 35 start-page: 2170 year: 2012 ident: B102 article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02547.x – volume: 7 start-page: 1579 year: 2018 ident: B32 article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. publication-title: Plant Cell Environ. doi: 10.1111/pce.13197 – volume: 41 start-page: 2169 year: 2018 ident: B141 article-title: A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. publication-title: Plant Cell Environ. doi: 10.1111/pce.13190 – volume: 174 start-page: 2333 ident: B111 article-title: Root cortical senescence improves barley growth under suboptimal availability of nitrogen, phosphorus, and potassium. publication-title: Plany Physiol. doi: 10.1104/pp.17.00648 – volume: 8 start-page: 427 year: 2005 ident: B140 article-title: Root morphological plasticity for heterogeneous phosphorus supply in Zea mays L. publication-title: Plant Prod. Sci. doi: 10.1626/pps.8.427 – volume: 11 start-page: 465 year: 1998 ident: B19 article-title: Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. publication-title: J. Evol. Biol. doi: 10.1046/j.1420-9101.1998.11040465.x – volume: 38 start-page: 1775 year: 2015 ident: B63 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. publication-title: Plant Cell Environ. doi: 10.1111/pce.12451 – volume: 166 start-page: 590 year: 2014 ident: B93 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. publication-title: Plant Physiol. doi: 10.1104/pp.113.233916 – volume: 79 start-page: 1102 year: 1992 ident: B137 article-title: Effect of the parental nutrient regime on growth of the progeny in Abutilon theophrasti (Malvaceae). publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1992.tb13704.x – volume: 63 start-page: 3485 year: 2012 ident: B133 article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers111 – volume: 9 start-page: 1181 year: 1997 ident: B126 article-title: Signal perception and transduction: the origin of the phenotype. publication-title: Plant Cell doi: 10.1105/tpc.9.7.1181 – volume: 15 start-page: 684 year: 2010 ident: B82 article-title: Plant phenotypic plasticity in a changing climate. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.09.008 – volume: 63 start-page: 25 year: 2018 ident: B121 article-title: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. publication-title: J. Exp. Bot. doi: 10.1093/jxb/err269 – volume: 32 year: 2017 ident: B1 article-title: Genetic trade-offs and conditional neutrality contribute to local adaptation. publication-title: PLoS ONE doi: 10.1371/journal.pone.0178059 – volume: 66 start-page: 2199 year: 2015 ident: B68 article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru508 – volume: 16 start-page: 363 year: 1985 ident: B4 article-title: Resource limitation in plants-an economic analogy. publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.16.110185.002051 – volume: 122 start-page: 838 year: 2016 ident: B91 article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. publication-title: New Phytol. doi: 10.1111/nph.14243 – volume: 332 start-page: 87 year: 2010 ident: B119 article-title: Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses. publication-title: Plant Soil doi: 10.1007/s11104-009-0275-8 – volume: 111 start-page: 9319 year: 2014 ident: B2 article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1400966111 – volume: 112 start-page: 429 year: 2013 ident: B43 article-title: Root cortical burden influences drought tolerance in maize. publication-title: Ann. Bot. doi: 10.1093/aob/mct069 – volume: 75 start-page: 479 year: 1975 ident: B21 article-title: Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. publication-title: New Phytol. doi: 10.1111/j.1469-8137.1975.tb01409.x – volume: 8 start-page: 1 year: 2017 ident: B31 article-title: The effect of artificial selection on phenotypic plasticity in maize. publication-title: Nat. Commun. doi: 10.1038/s41467-017-01450-2 – volume: 30 start-page: 52 year: 2010 ident: B79 article-title: Estimating productivity of traditional iroquoian cropping systems from field experiments and historical literature. publication-title: J. Ethnobiol. doi: 10.2993/0278-0771-30.1.52 – volume: 365 start-page: 2991 year: 2010 ident: B136 article-title: Energy and the food system. publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2010.0172 – volume: 344 start-page: 58 year: 1990 ident: B42 article-title: Rapid physiological adjustment of roots to localized soil enrichment. publication-title: Nature doi: 10.1038/344058a0 – volume: 342 start-page: 117 year: 2011 ident: B46 article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. publication-title: Plant Soil doi: 10.1007/s11104-010-0675-9 – volume: 5 start-page: 123 year: 2000 ident: B22 article-title: Programmed cell death and aerenchyma formation in roots. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01570-3 – volume: 52 start-page: 329 year: 2001 ident: B83 article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. publication-title: J. Exp. Bot. doi: 10.1093/jxb/52.355.329 – volume: 386 start-page: 65 year: 2014 ident: B125 article-title: Root plasticity and its functional roles were triggered by water deficit but not by the resulting changes in the forms of soil N in rice. publication-title: Plant Soil doi: 10.1007/s11104-014-2240-4 – volume: 86 start-page: 293 year: 1952 ident: B28 article-title: The problem of environment. publication-title: Am. Nat. doi: 10.1086/281736 – volume: 9 year: 2019 ident: B58 article-title: Parental effects and provisioning under drought and low phosphorus stress in common bean. publication-title: Food Energy Secur. doi: 10.1002/fes3.192 – volume: 176 start-page: 691 year: 2018 ident: B115 article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition. publication-title: Plant Physiol. doi: 10.1104/pp.17.01583 – volume: 11 year: 2018 ident: B37 article-title: Progressive drought alters architectural and anatomical traits of rice roots. publication-title: Rice doi: 10.1186/s12284-018-0252-z – volume: 61 start-page: 2623 year: 2010 ident: B114 article-title: Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq097 – year: 1995 ident: B72 publication-title: Mineral Nutrition of Higher Plants – volume: 70 start-page: 6019 year: 2019 ident: B17 article-title: Root system architectural plasticity and soil compaction: a review. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz383 – volume: 110 start-page: 521 year: 2012 ident: B95 article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. publication-title: Ann. Bot. doi: 10.1093/aob/mcs082 – start-page: 7 year: 2008 ident: B127 article-title: QTLs underlying natural variation in stele and xylem structures of rice root. doi: 10.1270/jsbbs.58.7 – volume: 6 start-page: 207 year: 2004 ident: B134 article-title: Allocation, plasticity, and allometry in plants. publication-title: Perspect. Plant Ecol. Evol. Syst. doi: 10.1078/1433-8319-00083 – volume: 61 year: 1969 ident: B30 article-title: Aluminum tolerance of soybean varieties in relation to calcium nutrition. publication-title: Agron. J. doi: 10.2134/agronj1969.00021962006100040007x – volume: 22 start-page: 1435 year: 2009 ident: B53 article-title: Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2009.01754.x – volume: 10 start-page: 212 year: 1995 ident: B130 article-title: Adaptive phenotypic plasticity: consensus and controversy. publication-title: Tree doi: 10.1016/S0169-5347(00)89061-8 – volume: 112 start-page: 347 year: 2013 ident: B59 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. publication-title: Ann. Bot. doi: 10.1093/aob/mcs293 – volume: 33 year: 2006 ident: B71 article-title: The role of root architectural traits in adaptation of wheat to water-limited environments. publication-title: Funct. Plant Biol. doi: 10.1071/FP06055 – volume: 112 start-page: 439 year: 2013 ident: B101 article-title: Response of millet and sorghum to a varying water supply around the primary and nodal roots. publication-title: Ann. Bot. doi: 10.1093/aob/mct099 – volume: 39 year: 2006 ident: B131 article-title: Genotype-environment interaction and the evolution of phenotypic plasticity. publication-title: Evolution (N. Y). doi: 10.2307/2408649 – volume: 270 start-page: 299 ident: B148 article-title: Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. publication-title: Plant Soil doi: 10.1007/s11104-004-1697-y – volume: 32 start-page: 749 ident: B150 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). publication-title: Funct. Plant Biol. doi: 10.1071/FP05005 – volume: 86 start-page: 521 year: 1996 ident: B77 article-title: The role of the genome project in determining gene function: insights from model organisms. publication-title: Cell doi: 10.1016/S0092-8674(00)80126-9 – volume: 84 start-page: 1617 year: 1997 ident: B50 article-title: Parental effects on seed mass: seed coat but not embryo/endosperm effects. publication-title: Am. J. Bot. doi: 10.2307/2446624 – volume: 13 start-page: 1 year: 2017 ident: B55 article-title: Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006889 – volume: 5 start-page: 537 year: 2000 ident: B117 article-title: Phenotypic plasticity for plant development, function and life history. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01797-0 – volume: 166 start-page: 2166 ident: B12 article-title: Large root cortical cell size improves drought tolerance in maize. publication-title: Plant Physiol. doi: 10.1104/pp.114.250449 – volume: 372 start-page: 93 year: 2013 ident: B24 article-title: Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. publication-title: Plant Soil doi: 10.1007/s11104-013-1769-y – volume: 112 start-page: 973 year: 2013 ident: B75 article-title: Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). publication-title: Ann. Bot. doi: 10.1093/aob/mct164 – volume: 64 start-page: 153 year: 1999 ident: B16 article-title: Rainfed lowland rice breeding strategies for Northeast Thailand II. Comparison of intrastation and interstation selection. publication-title: F. Crop. Res. doi: 10.1016/S0378-4290(99)00057-X – volume: 159 start-page: 272 year: 2002 ident: B99 article-title: Costs of phenotypic plasticity. publication-title: Am. Nat. doi: 10.2307/3079078 – volume: 166 start-page: 581 ident: B105 article-title: Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. publication-title: Plant Physiol. doi: 10.1104/pp.113.232603 – volume: 132 start-page: 281 year: 1996 ident: B5 article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. publication-title: New Phytol. doi: 10.1111/j.1469-8137.1996.tb01847.x – volume: 119 start-page: 201 year: 2010 ident: B8 article-title: Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2010.07.012 – volume: 24 start-page: 1189 year: 1975 ident: B23 article-title: Nutrient supply and the growth of the seminal root system in barley. publication-title: J. Exp. Bot. doi: 10.1093/jxb/24.6.1189 – volume: 232 start-page: 69 year: 2001 ident: B56 article-title: Effect of phosphorus availability on basal root shallowness in common bean. publication-title: Plant Soil doi: 10.1023/A:1010381919003 – volume: 20 start-page: 481 year: 2005 ident: B89 article-title: Evolution of phenotypic plasticity: where are we going now? publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.06.001 – volume: 17 start-page: 1132 year: 2004 ident: B73 article-title: Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2004.00744.x – ident: B109 article-title: Genetic control of root architectural plasticity in maize. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa084 – volume: 367 start-page: 1598 year: 2012 ident: B66 article-title: New roots for agriculture: exploiting the root phenome. publication-title: Philos. Trans. R. Soc. Ser. B doi: 10.1098/rstb.2011.0243 – volume: 8 start-page: 845 year: 2007 ident: B78 article-title: Which evolutionary processes influence natural genetic variation for phenotypic traits? publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2207 – volume: 171 start-page: 2562 year: 2016 ident: B106 article-title: Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. publication-title: Plant Physiol. doi: 10.1104/pp.16.00705 – volume: 39 start-page: 813 year: 2012 ident: B88 article-title: Phenotyping plants: genes, phenes and machines. publication-title: Funct. Plant Biol. doi: 10.1071/FPv39n11-IN – volume: 9 year: 2013 ident: B35 article-title: Plasticity regulators modulate specific root traits in discrete nitrogen environments. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003760 – volume: 152 start-page: 261 year: 1993 ident: B80 article-title: Effect of soil water content on the gravitropic behavior of nodal roots in maize. publication-title: Plant Soil doi: 10.1007/BF00029096 – volume: 13 start-page: 77 year: 1998 ident: B20 article-title: Costs and limits of phenotypic plasticity. publication-title: Tree – volume: 281 start-page: 269 year: 2006 ident: B69 article-title: Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings publication-title: Plant Soil doi: 10.1007/s11104-005-4268-y – volume: 66 start-page: 2027 year: 2017 ident: B96 article-title: Root xylem plasticity to improve water use and yield in water-stressed soybean. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw472 – volume: 37 start-page: 137 year: 1989 ident: B7 article-title: Evolution and stress—genotypic and phenotypic components. publication-title: Biol. J. Linn. Soc. doi: 10.1111/j.1095-8312.1989.tb02099.x – volume: 120 start-page: 205 year: 2011 ident: B39 article-title: Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2010.10.003 – volume: 100 start-page: 263 year: 2013 ident: B51 article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus. Fabaceae). publication-title: Am. J. Bot. doi: 10.3732/ajb.1200474 – volume: 67 start-page: 4545 year: 2016 ident: B33 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw243 – volume: 77 start-page: 1791 year: 1996 ident: B116 article-title: Phenotypic plasticity for offspring traits in Polygonum Persicaria. publication-title: Ecol. Monogr. – volume: 295 start-page: 103 year: 2007 ident: B70 article-title: QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “Zea nicaraguensis” cross. publication-title: Plant Soil doi: 10.1007/s11104-007-9266-9 – volume: 423 start-page: 13 year: 2018 ident: B110 article-title: Functional implications of root cortical senescence for soil resource capture. publication-title: Plant Soil doi: 10.1007/s11104-017-3533-1 – volume: 165 start-page: 161 year: 1994 ident: B84 article-title: Carbon cost of root systems: an architectural approach. publication-title: Plant Soil doi: 10.1007/BF00009972 – volume: 122 start-page: 1 year: 2011 ident: B36 article-title: Root biology and genetic improvement for drought avoidance in rice. publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2011.03.001 – volume: 391 start-page: 63 year: 2015 ident: B85 article-title: QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice. publication-title: Plant Soil doi: 10.1007/s11104-015-2404-x – volume: 49 start-page: 153 year: 1998 ident: B3 article-title: Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia. publication-title: Aust. J. Agric. Res. doi: 10.1071/A97035 – volume: 128 start-page: 93 ident: B9 article-title: QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-014-2414-8 – volume: 53 start-page: 1369 year: 2010 ident: B74 article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. publication-title: Sci. China Life Sci. doi: 10.1007/s11427-010-4097-y – volume: 122 start-page: 485 year: 2018 ident: B98 article-title: Co-optimisation of axial root phenotypes for nitrogen and phosphorus acquisition in common bean. publication-title: Ann. Bot. doi: 10.1093/aob/mcy092 – volume: 62 start-page: 2319 year: 2011 ident: B29 article-title: Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq403 – volume: 76 start-page: 2134 year: 1995 ident: B90 article-title: Ontogenetic reaction norms in Lobelia siphilitica (Lobeliaceae): response to shading. publication-title: Ecology doi: 10.2307/1941688 – volume: 166 start-page: 1943 ident: B13 article-title: Reduced root cortical cell file number improves drought tolerance in maize. publication-title: Plant Physiol. doi: 10.1104/pp.114.249037 – volume: 118 start-page: 401 year: 2016 ident: B18 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. publication-title: Ann. Bot. doi: 10.1093/aob/mcw112 – volume: 65 start-page: 6155 year: 2014 ident: B67 article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru162 – volume: 169 start-page: 233 year: 2017 ident: B143 article-title: Aquaporins as potential drought tolerance inducing proteins: toward instigating stress tolerance. publication-title: J. Proteomics. doi: 10.1016/j.jprot.2017.04.010 – volume: 142 start-page: 185 year: 1999 ident: B49 article-title: Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00400.x – volume: 180 start-page: 169 year: 2017 ident: B97 article-title: Root architectural responses of wheat cultivars to localised phosphorus application are phenotypically similar. publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600503 – year: 2019 ident: B138 article-title: The phenotypic spectrum: identifying whole root architecture types in genotypes of common bean (Phaseolus vulgaris L.) publication-title: Poster at CROPS 2019 – volume: 37 start-page: 313 ident: B147 article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition. publication-title: Funct. Plant Biol. doi: 10.1071/FP09197 – volume: 170 start-page: 644 year: 2006 ident: B6 article-title: Unraveling phenotypic plasticity – Why should we bother? publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01761.x – volume: 89 start-page: 305 year: 1992 ident: B11 article-title: Soil solution phosphate, root uptake kinetics and nutrient acquisition: implications for a patchy soil environment. publication-title: Oecologia doi: 10.1007/BF00317406 – volume: 41 start-page: 1 year: 2008 ident: B122 article-title: Towards probabilistic projections of climate change impacts on global crop yields. publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL033423 – ident: B108 article-title: Genetic control of root anatomical plasticity in maize. publication-title: Plant Genome doi: 10.1002/tpg2.20003 – volume: 38 start-page: 585 year: 2015 ident: B26 article-title: Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. publication-title: Plant Cell Environ. doi: 10.1111/pce.12418 – volume: 32 start-page: 737 year: 2005 ident: B41 article-title: Root architectural tradeoffs for water and phosphorus acquisition. publication-title: Funct. Plant Biol. doi: 10.1071/FP05043 – year: 1993 ident: B54 article-title: Plasticity in fluctuating environments publication-title: Adaptation in Stochastic Environments doi: 10.1007/978-3-642-51483-8_5 – volume: 4 year: 2013 ident: B142 article-title: Integration of root phenes for soil resource acquisition. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00355 – volume: 109 start-page: 7 year: 1995 ident: B61 article-title: Root architecture and plant productivity. publication-title: Plant Physiol. doi: 10.1104/pp.109.1.7 – volume: 144 start-page: 288 year: 2013 ident: B47 article-title: Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2013.01.024 – volume: 144 start-page: 692 year: 1994 ident: B135 article-title: On the coexistence of specialists and generalists. publication-title: Am. Nat. doi: 10.1086/285702 – volume: 282 start-page: 11 year: 2019 ident: B57 article-title: Demystifying roots: a need for clarification and extended concepts in root phenotyping. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.09.015 – volume: 167 start-page: 1430 year: 2015 ident: B76 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. publication-title: Plant Physiol. doi: 10.1104/pp.15.00145 – volume: 156 start-page: 1041 year: 2011 ident: B62 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. publication-title: Plant Physiol. doi: 10.1104/pp.111.175414 – volume: 127 start-page: 2293 ident: B10 article-title: QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-014-2353-4 – volume: 33 start-page: 740 ident: B146 article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). publication-title: Plant. Cell Environ. doi: 10.1111/j.1365-3040.2009.02099.x – volume: 40 start-page: 1392 ident: B112 article-title: Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. publication-title: Plant Cell Environ. doi: 10.1111/pce.12933 – volume: 12 start-page: 133 year: 2009 ident: B15 article-title: Epigenetic regulation of stress responses in plants. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.12.006 – volume: 69 start-page: 3279 year: 2018 ident: B64 article-title: Rightsizing root phenotypes for drought resistance. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery048 – volume: 359 start-page: 107 year: 2012 ident: B86 article-title: Field evaluation on functional roles of root plastic responses on dry matter production and grain yield of rice under cycles of transient soil moisture stresses using chromosome segment substitution lines. publication-title: Plant Soil doi: 10.1007/s11104-012-1178-7 – volume: 14 start-page: 307 year: 2011 ident: B48 article-title: Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: functional roles of root plasticity. publication-title: Plant Prod. Sci. doi: 10.1626/pps.14.307 – volume: 177 start-page: 90 year: 2018 ident: B118 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition. publication-title: Plant Physiol. doi: 10.1104/pp.18.00234 – volume: 168 start-page: 1603 year: 2015 ident: B144 article-title: Reduced lateral root branching density improves drought tolerance in maize. publication-title: Plant Physiol. doi: 10.1104/pp.15.00187 – volume: 172 start-page: 5 year: 2016 ident: B123 article-title: Hope in change: the role of root plasticity in crop yield stability. publication-title: Plant Physiol. doi: 10.1104/pp.16.01257 – volume: 174 start-page: 2302 year: 2017 ident: B45 article-title: Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. publication-title: Plant Physiol. doi: 10.1104/pp.17.00500 – volume: 161 start-page: 35 year: 2003 ident: B27 article-title: Aerenchyma formation. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00907.x – volume: 111 start-page: 688 ident: B149 article-title: Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-2051-3 – volume: 171 start-page: 86 year: 2015 ident: B14 article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2014.10.009 – volume: 114 start-page: 1719 year: 2014 ident: B145 article-title: Root foraging elicits niche complementarity-dependent yield advantage in the ancient “three sisters” (maize/bean/squash) polyculture. publication-title: Ann. Bot. doi: 10.1093/aob/mcu191 – volume: 31 start-page: 949 year: 2004 ident: B151 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. publication-title: Funct. Plant Biol. doi: 10.1071/FP04046 – volume: 223 start-page: 548 year: 2019 ident: B65 article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. publication-title: New Phytol. doi: 10.1111/nph.15738 – volume: 62 start-page: 2485 year: 2011 ident: B129 article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq429 – volume: 115 start-page: 879 year: 2015 ident: B120 article-title: Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. publication-title: Ann. Bot. doi: 10.1093/aob/mcv018 – volume: 58 start-page: 2369 year: 2007 ident: B40 article-title: The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm097 – volume: 238 start-page: 111 year: 2003 ident: B52 article-title: The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. publication-title: Plant Soil doi: 10.1023/A:1014289121672 – volume: 140 start-page: 18 year: 2013 ident: B124 article-title: Maize root growth angles become steeper under low N conditions. publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2012.09.010 – volume: 7 year: 2016 ident: B38 article-title: Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum Vulgare L.). publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00944 – volume: 70 start-page: 5311 year: 2019 ident: B139 article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz293 – volume: 166 start-page: 726 ident: B104 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. publication-title: Plant Physiol. doi: 10.1104/pp.114.241711 – volume: 16 start-page: 205 year: 2013 ident: B87 article-title: Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice. publication-title: Plant Prod. Sci. doi: 10.1626/pps.16.205 – volume: 178 start-page: 371 year: 2008 ident: B92 article-title: Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02370.x – volume: 55 start-page: 175 year: 2008 ident: B81 article-title: Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03495.x – volume: 17 start-page: 667 year: 1986 ident: B107 article-title: The evolution of phenotypic plasticity in plants. publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.17.110186.003315 – volume: 70 start-page: 107 year: 1983 ident: B34 article-title: The acquisition of phosphorus by Lupinus albus L. – III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. publication-title: Plant Soil doi: 10.1007/BF02374754 |
SSID | ssj0000500997 |
Score | 2.5785275 |
SecondaryResourceType | review_article |
Snippet | Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 546 |
SubjectTerms | anatomy architecture BASIC BIOLOGICAL SCIENCES breeding crop crop, ideotype ideotype Plant Science plasticity root |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEB6K9FCE0tpqo1W24KGXaDa7ye6eik8UKbQUq-Btyf5CQZLHIx787zuTPB95Remlp0CyIZtvZjPfZIdvAA51isoLqfMqlSGXZdnkpnY-r1TDdYjSy0C_Bn78rC-u5feb6mbS6otqwkZ54BG444QhqDI8OnyUFNHryE1wmjwxqoo7-vpizJskU6OqN1EfNWr5YBZmjtP8ntS5S6rkqojuTsLQoNaPhw5X1XNM8--CyUkEOn8Hb5fUkZ2MU34Pr2K7BZsnk52ALXg965DtPX4A_vuWmlezy67r2S-kyFQ93T-yWWQNO110czZbjIGLXQ3F4N8-wvX52dXpRb5sj5B7qes-l45zj9w4mIaXdShKJ5xLQtReSu-KJjRORV9wh6TK-aZwRfQR6VESyiGLSGIbNtqujZ-AyZqnELwLpq6kjJQxa4PkJaU64HiZwdETWtYvtcOphcW9xRyC4LUEryV47QBvBl9XN8xH2YyXh84I_tUw0rseTqAX2KUX2H95QQZ7ZDyLtIG0bz0VCfneUjcAo_ERX55sanH10JZI08buAacheUHyPqrIYGe08WoiSDXRhYzOQK1Zf22m61fau9tBoVuVyPOE2P0fr7YHbwgsqljg1WfY6BcPcR-JUO8OBp__A20tBeY priority: 102 providerName: Directory of Open Access Journals |
Title | Should Root Plasticity Be a Crop Breeding Target? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32499798 https://www.proquest.com/docview/2410348270 https://www.osti.gov/biblio/1618986 https://pubmed.ncbi.nlm.nih.gov/PMC7243933 https://doaj.org/article/f181591ebcca43ec8e19db81832e751b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60-iCCaL3FXhjBB19SM5nJzOShlG6xFqEi2oV9GzK3VliSNabg_nvPSdK1W1ZfEkgmycm55HwzOXyHkHc6BuW40GkRc5-KPK_SUlqXFqpi2gfhhMelgfMv8mwqPs-K2d92QKMCf22c2mE_qWk7P_j9c3kEAX-IM07Itx_iYo7E2zkWaRVC3icPIC0pjNLzEesPRN-IhvpmK1KKVMh8NlD9bLrHWpbqyfxh10DQbQKid-spbyWo06fkyYgs6fHgCs_IvVBvk8fHt34UbJOHkwbA4PI5Yd-vsLc1_dY0Hf0KCBqLq7slnQRa0ZO2WdBJO-Q1etHXih-9INPTjxcnZ-nYPSF1QssuFZYxB9DZlxXLpc9yy62NnEsnhLNZ5SurgsuYBcxlXZXZLLgA6ClyZQFkRP6SbNVNHV4TKiSL3jvrS1kIEXBCrUvANjFKD-NFQg5utGXcSC2OHS7mBqYYqF6D6jWoXtOrNyHvVxcsBlaNfw-doPpXw5AOuz_QtJdmjC4TAacUJQsW_FHw4HRgpbcaP1dBweslZAeNZwBVIDWuwxoi1xlsFlBqeMTbG5saCC78Y1LVobkGMQTLkP1HZQl5Ndh4JQggUXCnUidErVl_TdL1M_WPq57AW-UAAzl_81-pdsgj1AJWKrBil2x17XXYAwDU2f1-4QC2n2Zsv3fyPxKvBBU |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Should+Root+Plasticity+Be+a+Crop+Breeding+Target%3F&rft.jtitle=Frontiers+in+plant+science&rft.au=Schneider%2C+Hannah+M.&rft.au=Lynch%2C+Jonathan+P.&rft.date=2020-05-15&rft.pub=Frontiers+Research+Foundation&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft_id=info:doi/10.3389%2Ffpls.2020.00546&rft.externalDocID=1618986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |