UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7190 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23167190 |
Cover
Loading…
Abstract | Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is difficult to strike a good balance between detection performance and resource consumption. To alleviate the above problems, we optimize YOLOv8 and propose an object detection model based on UAV aerial photography scenarios, called UAV-YOLOv8. Firstly, Wise-IoU (WIoU) v3 is used as a bounding box regression loss, and a wise gradient allocation strategy makes the model focus more on common-quality samples, thus improving the localization ability of the model. Secondly, an attention mechanism called BiFormer is introduced to optimize the backbone network, which improves the model’s attention to critical information. Finally, we design a feature processing module named Focal FasterNet block (FFNB) and propose two new detection scales based on this module, which makes the shallow features and deep features fully integrated. The proposed multiscale feature fusion network substantially increased the detection performance of the model and reduces the missed detection rate of small objects. The experimental results show that our model has fewer parameters compared to the baseline model and has a mean detection accuracy higher than the baseline model by 7.7%. Compared with other mainstream models, the overall performance of our model is much better. The proposed method effectively improves the ability to detect small objects. There is room to optimize the detection effectiveness of our model for small and feature-less objects (such as bicycle-type vehicles), as we will address in subsequent research. |
---|---|
AbstractList | Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is difficult to strike a good balance between detection performance and resource consumption. To alleviate the above problems, we optimize YOLOv8 and propose an object detection model based on UAV aerial photography scenarios, called UAV-YOLOv8. Firstly, Wise-IoU (WIoU) v3 is used as a bounding box regression loss, and a wise gradient allocation strategy makes the model focus more on common-quality samples, thus improving the localization ability of the model. Secondly, an attention mechanism called BiFormer is introduced to optimize the backbone network, which improves the model’s attention to critical information. Finally, we design a feature processing module named Focal FasterNet block (FFNB) and propose two new detection scales based on this module, which makes the shallow features and deep features fully integrated. The proposed multiscale feature fusion network substantially increased the detection performance of the model and reduces the missed detection rate of small objects. The experimental results show that our model has fewer parameters compared to the baseline model and has a mean detection accuracy higher than the baseline model by 7.7%. Compared with other mainstream models, the overall performance of our model is much better. The proposed method effectively improves the ability to detect small objects. There is room to optimize the detection effectiveness of our model for small and feature-less objects (such as bicycle-type vehicles), as we will address in subsequent research. Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is difficult to strike a good balance between detection performance and resource consumption. To alleviate the above problems, we optimize YOLOv8 and propose an object detection model based on UAV aerial photography scenarios, called UAV-YOLOv8. Firstly, Wise-IoU (WIoU) v3 is used as a bounding box regression loss, and a wise gradient allocation strategy makes the model focus more on common-quality samples, thus improving the localization ability of the model. Secondly, an attention mechanism called BiFormer is introduced to optimize the backbone network, which improves the model's attention to critical information. Finally, we design a feature processing module named Focal FasterNet block (FFNB) and propose two new detection scales based on this module, which makes the shallow features and deep features fully integrated. The proposed multiscale feature fusion network substantially increased the detection performance of the model and reduces the missed detection rate of small objects. The experimental results show that our model has fewer parameters compared to the baseline model and has a mean detection accuracy higher than the baseline model by 7.7%. Compared with other mainstream models, the overall performance of our model is much better. The proposed method effectively improves the ability to detect small objects. There is room to optimize the detection effectiveness of our model for small and feature-less objects (such as bicycle-type vehicles), as we will address in subsequent research.Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects in UAV images and the limited platform resources lead to the low accuracy of most of the existing detection models embedded in UAVs, and it is difficult to strike a good balance between detection performance and resource consumption. To alleviate the above problems, we optimize YOLOv8 and propose an object detection model based on UAV aerial photography scenarios, called UAV-YOLOv8. Firstly, Wise-IoU (WIoU) v3 is used as a bounding box regression loss, and a wise gradient allocation strategy makes the model focus more on common-quality samples, thus improving the localization ability of the model. Secondly, an attention mechanism called BiFormer is introduced to optimize the backbone network, which improves the model's attention to critical information. Finally, we design a feature processing module named Focal FasterNet block (FFNB) and propose two new detection scales based on this module, which makes the shallow features and deep features fully integrated. The proposed multiscale feature fusion network substantially increased the detection performance of the model and reduces the missed detection rate of small objects. The experimental results show that our model has fewer parameters compared to the baseline model and has a mean detection accuracy higher than the baseline model by 7.7%. Compared with other mainstream models, the overall performance of our model is much better. The proposed method effectively improves the ability to detect small objects. There is room to optimize the detection effectiveness of our model for small and feature-less objects (such as bicycle-type vehicles), as we will address in subsequent research. |
Audience | Academic |
Author | Huang, Tiange Hong, Hanyu Wang, Gang Chen, Yanfei Hu, Jinghu An, Pei |
AuthorAffiliation | Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China; wanggang@stu.wit.edu.cn (G.W.); anpei@wit.edu.cn (P.A.); hhyhong@wit.edu.cn (H.H.); jinhuhu@stu.wit.edu.cn (J.H.); huangtg@wit.edu.cn (T.H.) |
AuthorAffiliation_xml | – name: Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China; wanggang@stu.wit.edu.cn (G.W.); anpei@wit.edu.cn (P.A.); hhyhong@wit.edu.cn (H.H.); jinhuhu@stu.wit.edu.cn (J.H.); huangtg@wit.edu.cn (T.H.) |
Author_xml | – sequence: 1 givenname: Gang surname: Wang fullname: Wang, Gang – sequence: 2 givenname: Yanfei surname: Chen fullname: Chen, Yanfei – sequence: 3 givenname: Pei surname: An fullname: An, Pei – sequence: 4 givenname: Hanyu surname: Hong fullname: Hong, Hanyu – sequence: 5 givenname: Jinghu surname: Hu fullname: Hu, Jinghu – sequence: 6 givenname: Tiange surname: Huang fullname: Huang, Tiange |
BookMark | eNplUk1vGyEQRVWqJnF76D9YqZf2sAkLLLC9VNv0y5IrV0pTqSfEsmBjsYsLa0v59x3HadWk4jAwvPeGN8w5OhnjaBF6WeELSht8mQmtuKga_ASdVYywUhKCT_7Zn6LznDcYE0qpfIZOqeC0EkScofVN-6P8uVws9_Jt0RbXgw6hXHYba6byg50g-DgWX2NvQ_FeZ9sXcJwP2xT3sD8SCxdTATpFa5PXofi2jlNcJb1d3xbXxo46-Zifo6dOh2xf3McZuvn08fvVl3Kx_Dy_ahelYZJPJZO4qxkzzlHbU2up07U7RFYL2rGmZh0lmEhNSCUacGQq3nVEk0Y4xmhDZ2h-1O2j3qht8oNOtypqr-4SMa2UTpM3wSpKmDSCuMbxjllTa8EbXUEZxy1zWIPWu6PWdtcNtgcrU9LhgejDm9Gv1SruVYVZLSUWoPD6XiHFXzubJzX4bGwIerRxlxWRtZCMsgYD9NUj6Cbu0gi9ukMxxiWXgLo4olYaHPjRRShsYPV28AbGwnnIt4KTGloJHZmhyyPBpJhzsk4ZP-nDrwLRB3iqOsyQ-jtDwHjziPHH8P_Y3wMIw5U |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_126206 crossref_primary_10_1007_s10341_024_01085_w crossref_primary_10_3390_electronics13122383 crossref_primary_10_3390_drones8110691 crossref_primary_10_1038_s41598_024_68446_z crossref_primary_10_1109_TCPMT_2024_3491163 crossref_primary_10_3390_drones9040230 crossref_primary_10_3390_s24216955 crossref_primary_10_3390_app14167073 crossref_primary_10_1016_j_jksuci_2024_102113 crossref_primary_10_3390_aerospace11050392 crossref_primary_10_1016_j_aquaculture_2025_742395 crossref_primary_10_1016_j_imavis_2024_105276 crossref_primary_10_1016_j_autcon_2025_106108 crossref_primary_10_1038_s41598_024_83241_6 crossref_primary_10_1049_ipr2_13274 crossref_primary_10_1016_j_wasman_2024_11_002 crossref_primary_10_1109_JRFID_2024_3384483 crossref_primary_10_1109_TGRS_2024_3443856 crossref_primary_10_3390_electronics14010093 crossref_primary_10_1016_j_ajodo_2024_03_012 crossref_primary_10_1007_s00217_024_04516_w crossref_primary_10_1109_LGRS_2024_3432329 crossref_primary_10_1186_s44147_025_00584_1 crossref_primary_10_1016_j_compag_2024_109481 crossref_primary_10_1016_j_asoc_2024_112329 crossref_primary_10_1016_j_rsase_2024_101260 crossref_primary_10_1038_s41598_024_71238_0 crossref_primary_10_1007_s11760_024_03661_9 crossref_primary_10_1016_j_heliyon_2024_e37605 crossref_primary_10_1016_j_measurement_2024_116624 crossref_primary_10_3390_agronomy14112734 crossref_primary_10_61186_itrc_16_4_9 crossref_primary_10_3390_agronomy15010151 crossref_primary_10_1049_esi2_12158 crossref_primary_10_1016_j_heliyon_2024_e34782 crossref_primary_10_20295_2412_9186_2024_10_03_254_268 crossref_primary_10_1016_j_imavis_2024_105054 crossref_primary_10_3390_s24196209 crossref_primary_10_3390_electronics13173500 crossref_primary_10_3390_en17143518 crossref_primary_10_3390_s24082483 crossref_primary_10_3390_rs16173338 crossref_primary_10_3390_bdcc8010009 crossref_primary_10_3390_s24196330 crossref_primary_10_3233_IDT_240040 crossref_primary_10_3390_buildings14071929 crossref_primary_10_3390_s25051595 crossref_primary_10_3390_e27020165 crossref_primary_10_3390_app142411926 crossref_primary_10_1016_j_imavis_2025_105469 crossref_primary_10_3390_agriculture14081359 crossref_primary_10_3390_en17174359 crossref_primary_10_1016_j_eswa_2024_125830 crossref_primary_10_1016_j_envpol_2024_124292 crossref_primary_10_3390_s25010214 crossref_primary_10_1007_s11554_024_01514_9 crossref_primary_10_1109_ACCESS_2024_3355018 crossref_primary_10_3390_fire8020066 crossref_primary_10_1109_ACCESS_2025_3547825 crossref_primary_10_3788_LOP241149 crossref_primary_10_3390_s23218723 crossref_primary_10_3390_a17120595 crossref_primary_10_1016_j_engappai_2024_109686 crossref_primary_10_3389_fpls_2024_1387350 crossref_primary_10_3390_app14209156 crossref_primary_10_1117_1_JEI_34_2_023014 crossref_primary_10_3390_electronics14050989 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1109_JSTARS_2024_3427017 crossref_primary_10_1109_ACCESS_2024_3403491 crossref_primary_10_1002_ima_23130 crossref_primary_10_3390_electronics14010054 crossref_primary_10_3390_drones9030214 crossref_primary_10_3390_electronics13020305 crossref_primary_10_3390_vision8030048 crossref_primary_10_1109_ACCESS_2025_3546622 crossref_primary_10_1007_s11517_024_03187_9 crossref_primary_10_3390_app14031100 crossref_primary_10_3390_nano14131115 crossref_primary_10_3390_agronomy15010187 crossref_primary_10_1007_s00607_024_01379_7 crossref_primary_10_3390_electronics13112149 crossref_primary_10_1038_s41598_024_81430_x crossref_primary_10_32604_cmc_2024_048998 crossref_primary_10_3390_app14156710 crossref_primary_10_7717_peerj_cs_2271 crossref_primary_10_1016_j_imavis_2025_105485 crossref_primary_10_1007_s11227_024_06527_6 crossref_primary_10_1371_journal_pone_0310818 crossref_primary_10_3390_rs17050745 crossref_primary_10_1016_j_compag_2024_109475 crossref_primary_10_1109_ACCESS_2024_3495540 crossref_primary_10_1007_s00371_024_03796_3 crossref_primary_10_1007_s11042_024_20471_w crossref_primary_10_3390_drones8120750 crossref_primary_10_1016_j_asej_2024_103227 crossref_primary_10_1007_s13369_025_09997_9 crossref_primary_10_3390_biomimetics9100647 crossref_primary_10_3390_electronics13091706 crossref_primary_10_3390_electronics13203989 crossref_primary_10_4236_jcc_2025_133006 crossref_primary_10_1016_j_neucom_2024_127685 crossref_primary_10_3390_agriculture14071125 crossref_primary_10_1038_s41598_024_78598_7 crossref_primary_10_1134_S1064562424601951 crossref_primary_10_3390_pr12061211 crossref_primary_10_1007_s11554_024_01599_2 crossref_primary_10_1049_ipr2_13300 crossref_primary_10_3389_fpls_2024_1492504 crossref_primary_10_3390_electronics13061068 crossref_primary_10_4018_JOEUC_338214 crossref_primary_10_1109_JSEN_2024_3524537 crossref_primary_10_1038_s41598_025_92344_7 crossref_primary_10_3390_rs16132416 crossref_primary_10_3390_rs16163046 crossref_primary_10_3390_s24092896 crossref_primary_10_3390_s24144747 crossref_primary_10_3788_LOP240932 crossref_primary_10_3390_buildings14123883 crossref_primary_10_58769_joinssr_1542886 crossref_primary_10_3390_buildings14020531 crossref_primary_10_3390_s24113553 crossref_primary_10_1186_s40537_024_00941_6 crossref_primary_10_1016_j_jnlest_2025_100300 crossref_primary_10_9728_dcs_2024_25_6_1525 crossref_primary_10_54939_1859_1043_j_mst_FEE_2024_65_71 crossref_primary_10_3390_s24144751 crossref_primary_10_3390_s24186030 crossref_primary_10_1016_j_measurement_2024_114975 crossref_primary_10_3390_app132011344 crossref_primary_10_3390_rs16163057 crossref_primary_10_1038_s41598_024_84747_9 crossref_primary_10_1109_JSTARS_2024_3474689 crossref_primary_10_3390_rs16203810 crossref_primary_10_1109_ACCESS_2025_3546946 crossref_primary_10_1109_ACCESS_2025_3547914 crossref_primary_10_1016_j_engappai_2025_110111 crossref_primary_10_3233_IDA_230929 crossref_primary_10_3390_su162310172 crossref_primary_10_1007_s11554_024_01592_9 crossref_primary_10_3390_s24123918 crossref_primary_10_3390_electronics13112182 crossref_primary_10_1016_j_plaphy_2024_108769 crossref_primary_10_1109_TIM_2024_3396833 crossref_primary_10_3390_jimaging10100248 crossref_primary_10_1002_tee_24221 crossref_primary_10_3390_s24248134 crossref_primary_10_3390_plants13172435 crossref_primary_10_1371_journal_pone_0306436 crossref_primary_10_1016_j_jobe_2024_111046 crossref_primary_10_1109_ACCESS_2024_3396224 crossref_primary_10_3390_s24103064 crossref_primary_10_1016_j_engappai_2025_110488 crossref_primary_10_3390_rs16030600 crossref_primary_10_3390_rs17020346 crossref_primary_10_3390_app14177703 crossref_primary_10_1007_s11554_024_01485_x crossref_primary_10_1049_ipr2_13314 crossref_primary_10_3390_electronics13234837 crossref_primary_10_3390_su16208954 crossref_primary_10_1049_ell2_70206 crossref_primary_10_3390_su16114759 crossref_primary_10_3390_electronics13234824 crossref_primary_10_3390_rs16142590 crossref_primary_10_3390_electronics13091620 crossref_primary_10_1016_j_atech_2024_100720 crossref_primary_10_12677_MOS_2024_131028 crossref_primary_10_5194_amt_17_3765_2024 crossref_primary_10_1007_s11760_025_03901_6 crossref_primary_10_1016_j_rineng_2025_104045 crossref_primary_10_1016_j_psj_2024_104289 crossref_primary_10_3390_fire8030104 crossref_primary_10_3390_drones8090453 crossref_primary_10_1038_s41598_024_81201_8 crossref_primary_10_1109_ACCESS_2025_3550539 crossref_primary_10_3390_f15071096 crossref_primary_10_1016_j_psj_2024_104281 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1016_j_ecoinf_2024_102691 crossref_primary_10_1088_1361_6501_ada0d1 crossref_primary_10_3390_ani14233415 crossref_primary_10_3390_plants14050786 crossref_primary_10_3390_rs16010025 crossref_primary_10_3390_drones8060226 crossref_primary_10_1007_s42401_025_00352_2 crossref_primary_10_3390_s24072321 crossref_primary_10_3390_rs16132465 crossref_primary_10_32604_cmc_2025_060873 crossref_primary_10_1088_1361_6501_ad866a crossref_primary_10_1109_ACCESS_2024_3459868 crossref_primary_10_1111_tgis_70021 crossref_primary_10_1038_s41598_025_85488_z crossref_primary_10_3389_fpls_2024_1409194 crossref_primary_10_1109_TFUZZ_2024_3370995 crossref_primary_10_3390_rs16224175 crossref_primary_10_1007_s11227_024_06703_8 crossref_primary_10_1109_JIOT_2024_3435130 crossref_primary_10_3390_agriculture14101789 crossref_primary_10_1016_j_measurement_2024_115587 crossref_primary_10_1007_s13369_024_09419_2 crossref_primary_10_14358_PERS_24_00065R2 crossref_primary_10_3390_s24185945 crossref_primary_10_3390_app14198595 crossref_primary_10_3390_rs17071118 crossref_primary_10_3390_rs17040685 crossref_primary_10_1186_s13007_024_01238_8 crossref_primary_10_1038_s41598_025_88089_y crossref_primary_10_3390_app142311293 crossref_primary_10_1088_1742_6596_2816_1_012067 crossref_primary_10_3389_fnbot_2024_1430155 crossref_primary_10_1109_ACCESS_2024_3426040 crossref_primary_10_1109_ACCESS_2024_3356048 crossref_primary_10_3390_s25010196 crossref_primary_10_1016_j_aiia_2024_07_001 crossref_primary_10_1007_s11554_024_01519_4 crossref_primary_10_1007_s10499_024_01422_6 crossref_primary_10_3390_app14188357 crossref_primary_10_3390_app15020924 crossref_primary_10_3389_fpls_2024_1348402 crossref_primary_10_1007_s11554_023_01405_5 crossref_primary_10_3390_s25020436 crossref_primary_10_1007_s40430_024_05370_3 crossref_primary_10_1109_ACCESS_2024_3439230 crossref_primary_10_1016_j_aej_2024_11_064 crossref_primary_10_1016_j_inffus_2024_102647 crossref_primary_10_1111_jph_13433 crossref_primary_10_3390_rs16050906 crossref_primary_10_3390_drones9030159 crossref_primary_10_1016_j_infrared_2024_105487 crossref_primary_10_3390_pathogens13121032 crossref_primary_10_1088_1361_6501_ad71e5 crossref_primary_10_1007_s10586_024_04474_8 crossref_primary_10_1364_OE_528687 crossref_primary_10_1016_j_displa_2024_102903 |
Cites_doi | 10.3390/rs14195063 10.1109/CVPR.2018.00644 10.1109/CVPR.2017.690 10.3390/drones6100308 10.1109/CVPR46437.2021.01146 10.1109/CVPR.2019.00075 10.20944/preprints202305.0796.v1 10.3390/rs15030865 10.1109/ICCV.2017.74 10.1109/CVPR52729.2023.01157 10.1109/ACCESS.2020.3014910 10.1109/CVPR.2016.91 10.3390/s23063061 10.1109/UV56588.2022.10185474 10.3390/s23073634 10.3390/s20082238 10.1109/CVPR42600.2020.00165 10.3390/electronics11152330 10.1109/CVPR52729.2023.01291 10.1109/TPAMI.2021.3119563 10.3390/s23083847 10.3390/s23135786 10.1007/978-3-030-01234-2_1 10.1016/j.neucom.2022.07.042 10.1109/CVPR.2018.00913 10.1109/ICCV.2017.324 10.1109/ICCV.2015.169 10.1109/CVPR.2016.90 10.1109/ICCV48922.2021.00349 10.1109/TPAMI.2015.2389824 10.1007/978-3-030-58452-8_13 10.1016/j.ijepes.2022.108054 10.1109/CVPR.2019.00093 10.1609/aaai.v34i07.6999 10.3390/rs13204027 10.1109/TPAMI.2009.167 10.1109/CVPR.2014.81 10.1109/CVPR.2018.00716 10.1007/s10586-022-03627-x 10.1109/CVPR42600.2020.00978 10.1109/TPAMI.2016.2577031 10.1109/CVPRW50498.2020.00203 10.1007/978-3-319-46448-0_2 10.1016/j.isprsjprs.2021.01.008 10.1109/CVPR52729.2023.00995 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23167190 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3248c72f9f6b4ec5a769a173bf6e4f0a PMC10458807 A762548044 10_3390_s23167190 |
GrantInformation_xml | – fundername: Graduate Innovative Fund of Wuhan Institute of Technology grantid: CX2022148 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-480b544cff3ed3ee3fa5f3ee34573b4954b32028a22179002c16bb2a297f44393 |
IEDL.DBID | 8FG |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:09 EDT 2025 Thu Aug 21 18:36:37 EDT 2025 Thu Jul 10 23:36:45 EDT 2025 Fri Jul 25 03:10:25 EDT 2025 Tue Jun 10 21:29:30 EDT 2025 Tue Jul 01 01:20:19 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-480b544cff3ed3ee3fa5f3ee34573b4954b32028a22179002c16bb2a297f44393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2857446868?pq-origsite=%requestingapplication% |
PMID | 37631727 |
PQID | 2857446868 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3248c72f9f6b4ec5a769a173bf6e4f0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458807 proquest_miscellaneous_2857843490 proquest_journals_2857446868 gale_infotracacademiconefile_A762548044 crossref_citationtrail_10_3390_s23167190 crossref_primary_10_3390_s23167190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 ref_14 ref_13 ref_12 ref_11 ref_10 ref_54 ref_53 ref_52 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 He (ref_32) 2015; 37 Felzenszwalb (ref_4) 2010; 32 ref_25 ref_24 ref_23 ref_21 ref_29 ref_27 ref_26 Zhang (ref_37) 2022; 506 ref_36 ref_35 ref_34 ref_33 Bouguettaya (ref_3) 2022; 26 ref_31 ref_30 ref_39 ref_38 Deng (ref_20) 2022; 139 ref_47 ref_45 Liu (ref_28) 2020; 8 ref_44 ref_43 ref_42 ref_41 Zhu (ref_46) 2021; 44 ref_40 ref_1 Zheng (ref_22) 2021; 173 ref_2 ref_49 ref_48 ref_9 ref_8 Ren (ref_7) 2017; 39 ref_5 ref_6 |
References_xml | – ident: ref_17 doi: 10.3390/rs14195063 – ident: ref_49 doi: 10.1109/CVPR.2018.00644 – ident: ref_9 doi: 10.1109/CVPR.2017.690 – ident: ref_51 – ident: ref_18 doi: 10.3390/drones6100308 – ident: ref_34 doi: 10.1109/CVPR46437.2021.01146 – ident: ref_47 doi: 10.1109/CVPR.2019.00075 – ident: ref_41 doi: 10.20944/preprints202305.0796.v1 – ident: ref_1 doi: 10.3390/rs15030865 – ident: ref_54 doi: 10.1109/ICCV.2017.74 – ident: ref_29 doi: 10.1109/CVPR52729.2023.01157 – volume: 8 start-page: 145740 year: 2020 ident: ref_28 article-title: Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014910 – ident: ref_8 doi: 10.1109/CVPR.2016.91 – ident: ref_31 – ident: ref_40 doi: 10.3390/s23063061 – ident: ref_13 doi: 10.1109/UV56588.2022.10185474 – ident: ref_39 doi: 10.3390/s23073634 – ident: ref_23 doi: 10.3390/s20082238 – ident: ref_10 – ident: ref_45 doi: 10.1109/CVPR42600.2020.00165 – ident: ref_25 doi: 10.3390/electronics11152330 – ident: ref_19 doi: 10.1109/CVPR52729.2023.01291 – ident: ref_38 – volume: 44 start-page: 7380 year: 2021 ident: ref_46 article-title: Detection and Tracking Meet Drones Challenge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3119563 – ident: ref_42 doi: 10.3390/s23083847 – ident: ref_26 doi: 10.3390/s23135786 – ident: ref_27 doi: 10.1007/978-3-030-01234-2_1 – volume: 506 start-page: 146 year: 2022 ident: ref_37 article-title: Focal and efficient IOU loss for accurate bounding box regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – ident: ref_33 doi: 10.1109/CVPR.2018.00913 – ident: ref_50 doi: 10.1109/ICCV.2017.324 – ident: ref_6 doi: 10.1109/ICCV.2015.169 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_11 – ident: ref_36 doi: 10.1109/ICCV48922.2021.00349 – volume: 37 start-page: 1904 year: 2015 ident: ref_32 article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2015.2389824 – ident: ref_16 doi: 10.1007/978-3-030-58452-8_13 – volume: 139 start-page: 108054 year: 2022 ident: ref_20 article-title: Research on edge intelligent recognition method oriented to transmission line insulator fault detection publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108054 – ident: ref_52 doi: 10.1109/CVPR.2019.00093 – ident: ref_21 – ident: ref_35 doi: 10.1609/aaai.v34i07.6999 – ident: ref_2 doi: 10.3390/rs13204027 – volume: 32 start-page: 1627 year: 2010 ident: ref_4 article-title: Object Detection with Discriminatively Trained Part-Based Models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – ident: ref_12 – ident: ref_5 doi: 10.1109/CVPR.2014.81 – ident: ref_44 doi: 10.1109/CVPR.2018.00716 – volume: 26 start-page: 1297 year: 2022 ident: ref_3 article-title: A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images publication-title: Cluster. Comput. doi: 10.1007/s10586-022-03627-x – ident: ref_53 doi: 10.1109/CVPR42600.2020.00978 – ident: ref_15 – volume: 39 start-page: 1137 year: 2017 ident: ref_7 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_48 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_14 doi: 10.1007/978-3-319-46448-0_2 – volume: 173 start-page: 95 year: 2021 ident: ref_22 article-title: Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.008 – ident: ref_43 – ident: ref_30 doi: 10.1109/CVPR52729.2023.00995 |
SSID | ssj0023338 |
Score | 2.7368405 |
Snippet | Unmanned aerial vehicle (UAV) object detection plays a crucial role in civil, commercial, and military domains. However, the high proportion of small objects... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7190 |
SubjectTerms | Accuracy Aerial photography Algorithms BiFormer Computational linguistics Design Drone aircraft FasterNet Language processing Natural language interfaces Photography Research methodology small-object detection UAVs WIoU YOLOv8 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-0BQSlioVQGVYKL1cSP2OktfalCFYtUFpWTZXttLdKSRWzK7-9MnF3tAhIXTnnYiSbjGc-MM_6GkONpRDsqIq5rCCZV8swFVTOF4CegXLgFCrMtPlbXE_nhTt1tlPrCnLAMD5wZdwIG3wTNU50qL2NQTle1K7XwqYoyFb1rBDZvFUwNoZaAyCvjCAkI6k-WHDd8lzjxblifHqT_z6n49_TIDXtz9YQ8HhxF2mQCn5JHsd0nexvwgc_IbNJ8YV_HN-Nf5pQ29Pa7m8_Z2OPKCruIXZ9k1VKsdjanZ2CtphQu8yoCnOcHKTitFN5Dm14U6afZohtQrOktkAah9GJ5QCZXl5_Pr9lQOYEFaaqOSVN4JWVIScSpiFEkpxIepQLOQUwkPdZNN45zROgqeCgr77njtU4SXBTxnOy0iza-INTVkRcRy8IUUZah8g49kqh1hNdoI0fk_YqjNgyw4ljdYm4hvEDm2zXzR-TtuuuPjKXxt05nOCzrDgh_3d8AobCDUNh_CcWIvMNBtaikQExww14D-CSEu7INmAAEupNA_uFq3O2gvUvLjdIQJpvKjMibdTPoHf5McW1c3Oc-RgqJFJstedkifbul_TbrEbzLfoNwoV_-j499RXZhLEXOSjwkO93P-_gaPKXOH_VK8QDsoA9h priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucABUR5ioVQGIcHFkPUjdpAQSilVhYBFKovKybKzdhcpJLCbovLvmUmyUQMVp7wmzsQeZ2Yc-_sIebII6EdFwHENwaSKnrlCZUwh-Al0LlwChbMtPqZHc_nuRJ1skQ3HZl-B60tTO-STmq_K5-c_f7-GDv8KM05I2V-sOS7nBs92hVwFh6SRweGDHH4mcAFpWAcqNBYfuaIWsf_f7_LfcyUvOJ_Dm-RGHzXSvGvmHbIVqlvk-gUswdtkOc-_sK-z97Nf5iXN6fF3V5Zs5nGYhR2Epp1xVVGkPivpPriuBYXDbkgB9rsbKUSwFMqheWuX9NOybnpIa3oMqkFeXa_vkPnh289vjlhPo8AKadKGSZN4JWURowgLEYKITkXcSqWFhwRJeiRRN45zhOtKeDFNveeOZzpKiFfEXbJd1VW4R6jLAk8CcsQkQU6L1DsMT4LWAYrRRk7Is02N2qLHGEeqi9JCroGVb4fKn5DHg-iPDljjMqF9bJZBALGw2xP16tT2XctCSGgKzWMWUy9DoZxOMzeFV4tpkDFxE_IUG9WiDYEyhesXHsArIfaVzcEfIOqdBPV3N-1uN5ZouVEacmaTmgl5NFyGToh_VlwV6rNOxkghUWMzspeR6uMr1bdlC-c9bVcLJ_r-_5_-gFxDqvtu8uEu2W5WZ-EhBESN32vN_Q_sZQfN priority: 102 providerName: Scholars Portal |
Title | UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios |
URI | https://www.proquest.com/docview/2857446868 https://www.proquest.com/docview/2857843490 https://pubmed.ncbi.nlm.nih.gov/PMC10458807 https://doaj.org/article/3248c72f9f6b4ec5a769a173bf6e4f0a |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gIPE5-iMCqDkODFWhI7sbMXlMLKhGCdGEXlKbJdm04qyViz_f3cJW5oAfHSNo3jXOw730fOvyPk5dyhHuUO4xqcidQbpm2asxTBT0C4cAsUZlucZidT8WGWzkLAbRXSKtdrYrtQz2uLMfLDRKUSXBeVqTeXPxlWjcK3q6GExg7Zi0HTIIer8fve4eLgf3VoQhxc-8NVgtu-Y1x-N3RQC9X_94L8Z5LkhtYZ3yX7wVykRTe_98gtV90ndzZABB-QxbT4yr5NPk5u1BEt6PkPvVyyicH4CnvnmjbVqqJY82xJR6Cz5hQOu1gC_O4upGC6UuiHFi1D0rNF3QQsa3oOpIFDXa8ekun4-MvbExbqJzArVNYwoSKTCmG9527OneNepx6_RSq5Ac9IGKyernSSIE5XlNg4MybRSS69AEOFPyK7VV25x4Tq3CWRw-IwkROxzYxGu8RJ6aAbqcSAvF6PaGkDuDjWuFiW4GTg4Jf94A_Ii77pZYeo8a9GI5yWvgGCYLd_1FffyyBTJdiCysrE5z4zwtlUyyzXMTyaz5zwkR6QVzipJYoqEGN12HEAj4SgV2UBigDh7gSQf7Ce9zLI8Kr8zXED8rw_DdKHr1R05errro0SXCDFaotftkjfPlNdLFoc77jdJhzJJ_-_-1NyG2vcd1mHB2S3ubp2z8ASasyQ7MiZHLZMPyR7o-PTs8_DNqoAn5-E-gV92wrD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIA9ID5FYYBBIHixlthO7CAhlDGmjpUVaSsqT8ZOnRWpJGPNQPxT_I3c5aNrAfG2p37EdS--8304d78j5OnEox0VHs81BJNR7pjNooRFCH4CmwtLoDDb4iDuj-S7cTReI7-6WhhMq-x0Yq2oJ2WGZ-RbXEcKQhcd69cn3xh2jcKnq10LjUYs9v3PHxCyzV_t7QB_n3G--_boTZ-1XQVYJnVcMakDF0mZ5bnwE-G9yG2U46uMlHAQL0iHPcW15RzRqwKehbFz3PJE5RLMt4B5L5HLYHgDTCFU4_MAT0C816AXCZEEW3OOZeYhqvslm1e3BvjbAPyZlLlk5Xavk2ute0rTRp5ukDVf3CQbS6CFt8h0lH5kn4aD4Xf9kqb08KudzdjQ4XkO2_FVndpVUOyxNqPbYCMnFD42ZxfwvvkhBVeZwjw0rTcA_TAtqxY7mx4CaRDAl_PbZHQhK3uHrBdl4e8SahPPA4_NaAIvwyx2Fv0gr5SHaZSWPfKiW1GTtWDm2FNjZiCowcU3i8XvkSeLoScNgse_Bm0jWxYDEHS7_qI8PTbtHjbge-pM8TzJYyd9FlkVJzaEW8tjL_PA9shzZKpB1QDEZLatcIBbQpAtk4LhQXg9CeRvdnw3rc6Ym3MJ75HHi8uw2_ERji18edaM0VJIpFivyMsK6atXii_TGjc8rMuSA3Xv___-iFzpH70fmMHewf59chU4JpqMx02yXp2e-QfghVXuYS36lHy-6L32G1D9Qeo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBA8ID5FYYBBIHixmthO7CAhlFGqjU3rpFHUPQXHtSlSScaagfjX-Ou4y0fXAuJtT_2I6158vi_n7neEPJs6tKPC4bmGYDLyOTM2SliE4CcgXFgChdkWB_HOWL6fRJMN8qurhcG0yk4n1op6Wlo8I-9zHSkIXXSs-75NizgcDN-cfGPYQQqftHbtNJotsud-_oDwbfF6dwC8fs758N2Htzus7TDArNRxxaQO8khK671wU-Gc8Cby-CojJXKIHWSO_cW14RyRrAJuwzjPueGJ8hJMuYB5L5HLSoDZBFlSk_NgT0Ds1yAZCZEE_QXHkvMQVf-K_avbBPxtDP5M0FyxeMMb5HrrqtK02Vs3yYYrbpFrKwCGt8lsnH5kx6P90Xf9iqb06KuZz9kox7MdNnBVneZVUOy3NqfbYC-nFD425xjwvvkhBbeZwjw0rYWBHs7KqsXRpkdAGgTz5eIOGV_Iyt4lm0VZuHuEmsTxwGFjmsDJ0Ma5QZ_IKeVgGqVlj7zsVjSzLbA59teYZxDg4OJny8XvkafLoScNmse_Bm0jW5YDEIC7_qI8_Zy18pyBH6qt4j7xcS6djYyKExPCrfnYSR-YHnmBTM1QTQAx1rTVDnBLCLiVpWCEEGpPAvlbHd-zVn8ssvPd3iNPlpdB8vFxjilcedaM0VJIpFiv7Zc10tevFF9mNYZ4WJcoB-r-___9MbkCUpbt7x7sPSBXgWGiSX7cIpvV6Zl7CA5ZlT-qdz4lny5a1H4DVi9GIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV-YOLOv8%3A+A+Small-Object-Detection+Model+Based+on+Improved+YOLOv8+for+UAV+Aerial+Photography+Scenarios&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Gang&rft.au=Chen%2C+Yanfei&rft.au=An%2C+Pei&rft.au=Hanyu+Hong&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7190&rft_id=info:doi/10.3390%2Fs23167190&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |