The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia

The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic res...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 23; no. 1; pp. 127 - 138
Main Authors Alexander-Bloch, Aaron F., Vértes, Petra E., Stidd, Reva, Lalonde, François, Clasen, Liv, Rapoport, Judith, Giedd, Jay, Bullmore, Edward T., Gogtay, Nitin
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.
AbstractList The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.
The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.
Author Clasen, Liv
Alexander-Bloch, Aaron F.
Gogtay, Nitin
Bullmore, Edward T.
Stidd, Reva
Lalonde, François
Rapoport, Judith
Vértes, Petra E.
Giedd, Jay
AuthorAffiliation 3 David Geffen School of Medicine at University of California—Los Angeles, Los Angeles, CA 90095, USA
2 Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
1 Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
AuthorAffiliation_xml – name: 2 Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
– name: 1 Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
– name: 3 David Geffen School of Medicine at University of California—Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Aaron F.
  surname: Alexander-Bloch
  fullname: Alexander-Bloch, Aaron F.
– sequence: 2
  givenname: Petra E.
  surname: Vértes
  fullname: Vértes, Petra E.
– sequence: 3
  givenname: Reva
  surname: Stidd
  fullname: Stidd, Reva
– sequence: 4
  givenname: François
  surname: Lalonde
  fullname: Lalonde, François
– sequence: 5
  givenname: Liv
  surname: Clasen
  fullname: Clasen, Liv
– sequence: 6
  givenname: Judith
  surname: Rapoport
  fullname: Rapoport, Judith
– sequence: 7
  givenname: Jay
  surname: Giedd
  fullname: Giedd, Jay
– sequence: 8
  givenname: Edward T.
  surname: Bullmore
  fullname: Bullmore, Edward T.
– sequence: 9
  givenname: Nitin
  surname: Gogtay
  fullname: Gogtay, Nitin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22275481$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_okSvykUuoPzf2BaksLUWqAInt2Zo4s40hsRfbS1V-PSlbKkBC4uTxzONXYz2HZC-miIQ84-wlZ1aeeMw-5ZNuyNKYR-SAqwVrBLd2b66ZahspON8nh6V8Zoy3QosnZF8I0Wpl-AGZVgPS0wg1TcHDSN-EUiF6pGlNz7fR15Di3F6mGPHnpdCPGfvga6GvM4RI32O9SfkLXaVNGtP1LZ17FwhjHSjEnn7yQ_ieNkPGGOApebyGseDx_XlErs7PVsuL5vLD23fL08vGK7OojVIgtVHGIvfYSa6F98pas2YKZWeVWHRS676XXes5StuaVjIwSgPruexBHpFXu9zNtpuw9xhrhtFtcpgg37oEwf05iWFw1-mbk5pLq_Uc8OI-IKevWyzVTaF4HEeImLbFcWE0M61amP9AhVSSt4zN6PPf13rY55eOGWh2gM-plIzrB4Qzd6fb7XS7ne6Zl3_xPlS40zT_Koz_ePUDoIuyww
CitedBy_id crossref_primary_10_3389_fnhum_2014_01047
crossref_primary_10_1016_j_neuroscience_2019_02_009
crossref_primary_10_1089_brain_2017_0494
crossref_primary_10_1016_j_neuroimage_2020_116805
crossref_primary_10_1109_OJEMB_2023_3267726
crossref_primary_10_1016_j_clinph_2018_01_017
crossref_primary_10_1162_netn_a_00161
crossref_primary_10_1155_2022_6161154
crossref_primary_10_3389_fneur_2019_00599
crossref_primary_10_1016_j_mcn_2015_12_002
crossref_primary_10_1016_j_euroneuro_2014_02_011
crossref_primary_10_1016_j_nicl_2018_02_035
crossref_primary_10_3390_ijms232415547
crossref_primary_10_1093_cercor_bhae361
crossref_primary_10_1016_j_jocn_2017_06_037
crossref_primary_10_1093_cercor_bhz064
crossref_primary_10_3389_fnins_2016_00394
crossref_primary_10_1371_journal_pone_0125112
crossref_primary_10_3389_fnins_2021_726350
crossref_primary_10_1002_hbm_23479
crossref_primary_10_1371_journal_pone_0133766
crossref_primary_10_1093_cercor_bhad286
crossref_primary_10_1371_journal_pone_0097584
crossref_primary_10_1038_s41598_019_46111_0
crossref_primary_10_1111_jcpp_12307
crossref_primary_10_1016_j_neuroimage_2013_07_058
crossref_primary_10_3390_sym17030412
crossref_primary_10_1016_j_neuroimage_2015_07_068
crossref_primary_10_1109_ACCESS_2018_2884739
crossref_primary_10_1007_s11065_014_9248_7
crossref_primary_10_1038_srep37053
crossref_primary_10_1093_schbul_sbt163
crossref_primary_10_1155_2014_693743
crossref_primary_10_1016_j_nicl_2022_103140
crossref_primary_10_3389_fnins_2018_00114
crossref_primary_10_1016_j_neuroimage_2021_118013
crossref_primary_10_1007_s11682_018_9935_8
crossref_primary_10_3233_JAD_160944
crossref_primary_10_1038_s41598_021_00873_8
crossref_primary_10_1186_1741_7015_11_119
crossref_primary_10_1016_j_neurobiolaging_2014_04_007
crossref_primary_10_1016_j_neuroimage_2013_04_087
crossref_primary_10_3389_fnins_2021_690743
crossref_primary_10_1016_j_jneumeth_2020_108874
crossref_primary_10_1016_j_brain_2020_100016
crossref_primary_10_1016_j_chaos_2025_116163
crossref_primary_10_1038_nrn_2017_110
crossref_primary_10_1371_journal_pone_0228334
crossref_primary_10_1007_s13246_020_00920_0
crossref_primary_10_1038_srep43176
crossref_primary_10_1523_JNEUROSCI_2811_13_2013
crossref_primary_10_1089_brain_2014_0306
crossref_primary_10_1016_j_neubiorev_2017_10_007
crossref_primary_10_1016_j_schres_2015_03_003
crossref_primary_10_1016_j_medengphy_2013_04_014
crossref_primary_10_1016_j_expneurol_2021_113635
crossref_primary_10_1016_j_neuroimage_2022_119721
crossref_primary_10_3389_fnins_2016_00585
crossref_primary_10_1093_cercor_bht333
crossref_primary_10_1002_mp_17568
crossref_primary_10_1093_psyrad_kkab022
crossref_primary_10_1002_jnr_70028
crossref_primary_10_1016_j_pnpbp_2017_08_012
crossref_primary_10_1016_j_bpsc_2016_08_003
crossref_primary_10_1038_s41598_020_59227_5
crossref_primary_10_1016_j_pnpbp_2020_109874
crossref_primary_10_1016_j_pscychresns_2013_07_005
crossref_primary_10_1016_j_neuroimage_2017_11_015
crossref_primary_10_1016_j_pnpbp_2021_110461
crossref_primary_10_3389_fnagi_2020_592469
crossref_primary_10_3390_biophysica3010012
crossref_primary_10_1016_j_jad_2023_01_104
crossref_primary_10_1523_JNEUROSCI_3784_12_2013
crossref_primary_10_1016_j_nicl_2018_03_030
crossref_primary_10_1016_j_bandc_2014_01_011
crossref_primary_10_1002_hbm_24766
crossref_primary_10_1093_schbul_sby046
crossref_primary_10_23838_pfm_2018_00156
crossref_primary_10_1111_ejn_13717
crossref_primary_10_1109_TNSE_2021_3102667
crossref_primary_10_1186_s12938_018_0464_x
crossref_primary_10_1016_j_jneumeth_2018_04_009
crossref_primary_10_3389_fnhum_2016_00158
crossref_primary_10_1007_s00429_024_02809_0
crossref_primary_10_1098_rstb_2015_0362
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1016_j_neuroimage_2018_10_079
crossref_primary_10_1002_hbm_22938
crossref_primary_10_1016_j_biopsych_2014_02_010
crossref_primary_10_3389_fpsyt_2019_00691
crossref_primary_10_1016_j_neuroimage_2019_01_074
crossref_primary_10_1111_ejn_13392
crossref_primary_10_1016_j_nicl_2013_07_004
crossref_primary_10_1016_j_neuroimage_2012_12_007
crossref_primary_10_1002_hbm_25403
crossref_primary_10_1002_brb3_834
crossref_primary_10_3389_fnhum_2021_755017
crossref_primary_10_1002_hbm_23462
crossref_primary_10_1007_s11682_018_9843_y
crossref_primary_10_1093_scan_nst114
crossref_primary_10_1016_j_bpsc_2018_02_001
crossref_primary_10_1016_j_neuron_2014_08_016
crossref_primary_10_1016_j_neuroimage_2020_117510
crossref_primary_10_1038_s41467_022_29770_y
crossref_primary_10_3389_fphys_2020_611125
crossref_primary_10_1111_jcpp_12365
crossref_primary_10_1016_j_dcn_2013_11_004
crossref_primary_10_1093_schbul_sbae148
crossref_primary_10_1016_j_nicl_2021_102702
crossref_primary_10_1002_dad2_12040
crossref_primary_10_3389_fpsyt_2023_1126131
crossref_primary_10_1007_s11682_016_9555_0
crossref_primary_10_1089_brain_2015_0408
crossref_primary_10_1093_brain_awv330
crossref_primary_10_1038_s41598_019_50106_2
crossref_primary_10_1016_j_jad_2022_09_161
crossref_primary_10_1016_j_nicl_2020_102419
crossref_primary_10_1016_j_nicl_2015_05_009
crossref_primary_10_1111_ejn_12533
crossref_primary_10_1186_s13229_021_00439_5
crossref_primary_10_1016_j_bpsc_2019_12_015
crossref_primary_10_3389_fninf_2022_859309
crossref_primary_10_1093_schbul_sbt110
crossref_primary_10_5498_wjp_v2_i1_1
crossref_primary_10_1002_brb3_508
crossref_primary_10_1016_j_ejpsy_2021_06_004
crossref_primary_10_1038_s41380_018_0267_2
crossref_primary_10_3389_fnetp_2024_1457486
crossref_primary_10_1016_j_neuroimage_2016_06_046
crossref_primary_10_1016_j_neuroimage_2013_04_032
crossref_primary_10_1038_nrn3214
crossref_primary_10_1016_j_clinph_2022_04_010
crossref_primary_10_1523_JNEUROSCI_3554_12_2013
crossref_primary_10_1002_aur_2659
crossref_primary_10_1038_tp_2015_59
crossref_primary_10_1109_TCDS_2023_3320243
crossref_primary_10_1093_cercor_bhu246
crossref_primary_10_1016_j_neuroimage_2013_05_054
crossref_primary_10_1371_journal_pone_0235039
crossref_primary_10_4103_1673_5374_257538
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_1007_s00234_020_02369_0
crossref_primary_10_1093_cercor_bhw416
crossref_primary_10_31887_DCNS_2013_15_3_mrubinov
crossref_primary_10_1002_hbm_24518
crossref_primary_10_1371_journal_pone_0072351
crossref_primary_10_1017_S1092852915000437
crossref_primary_10_1093_cercor_bhv323
crossref_primary_10_1016_j_schres_2019_03_015
crossref_primary_10_1016_j_expneurol_2013_04_012
crossref_primary_10_3389_fnins_2019_00603
crossref_primary_10_1098_rstb_2013_0521
crossref_primary_10_17116_jnevro20151152137_41
crossref_primary_10_1093_schbul_sbx014
crossref_primary_10_1016_j_tics_2018_09_007
crossref_primary_10_1016_j_compbiolchem_2024_108048
crossref_primary_10_1007_s00406_022_01505_6
crossref_primary_10_1093_brain_awu132
crossref_primary_10_3389_fnagi_2021_605158
crossref_primary_10_1177_0706743720904815
crossref_primary_10_1016_j_biopsych_2017_12_010
crossref_primary_10_1038_mp_2016_216
crossref_primary_10_1073_pnas_1801351115
crossref_primary_10_3389_fninf_2017_00028
crossref_primary_10_1016_j_neuroimage_2014_07_039
crossref_primary_10_1016_j_nicl_2014_12_009
crossref_primary_10_1038_npjschz_2016_14
crossref_primary_10_1016_j_tics_2013_09_012
crossref_primary_10_1186_s12859_021_03973_4
crossref_primary_10_3389_fbioe_2016_00015
crossref_primary_10_1016_j_neubiorev_2013_10_004
crossref_primary_10_1089_brain_2014_0318
crossref_primary_10_1016_j_dcn_2018_12_005
crossref_primary_10_1073_pnas_1912064117
crossref_primary_10_3390_ijms19123829
crossref_primary_10_1073_pnas_1315529111
crossref_primary_10_1371_journal_pone_0184422
crossref_primary_10_1016_j_bpsgos_2021_10_002
crossref_primary_10_1016_j_neuroimage_2020_116718
crossref_primary_10_3389_fnbeh_2022_737121
crossref_primary_10_1089_brain_2018_0615
crossref_primary_10_1523_JNEUROSCI_4854_12_2013
crossref_primary_10_1093_schbul_sbv174
crossref_primary_10_1002_hbm_24369
crossref_primary_10_1016_j_nicl_2016_09_003
crossref_primary_10_1140_epjst_e2018_800037_y
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_1016_j_media_2021_101986
crossref_primary_10_1002_hbm_26587
crossref_primary_10_1016_j_neuroimage_2025_121066
crossref_primary_10_1371_journal_pone_0082845
crossref_primary_10_1162_netn_a_00103
crossref_primary_10_1162_netn_a_00220
crossref_primary_10_1016_j_nbd_2023_106220
crossref_primary_10_1093_biomet_asz045
crossref_primary_10_5765_jkacap_2015_26_2_67
crossref_primary_10_1038_nrn3465
crossref_primary_10_1093_cercor_bhx309
crossref_primary_10_1093_cercor_bhs410
crossref_primary_10_3389_fpsyt_2019_00611
crossref_primary_10_3389_fpsyt_2020_00787
crossref_primary_10_3389_fnagi_2018_00365
crossref_primary_10_1016_j_neuroimage_2019_06_012
crossref_primary_10_1007_s11682_016_9533_6
crossref_primary_10_1073_pnas_1502052112
crossref_primary_10_1007_s11682_015_9493_2
crossref_primary_10_1016_j_neuroimage_2016_03_075
crossref_primary_10_1002_hbm_25365
crossref_primary_10_1162_NETN_a_00013
crossref_primary_10_5665_sleep_5340
crossref_primary_10_1016_j_tics_2013_10_007
crossref_primary_10_1016_j_neuroimage_2015_05_046
crossref_primary_10_1371_journal_pcbi_1004225
crossref_primary_10_1016_j_schres_2017_01_025
crossref_primary_10_3389_fnhum_2022_852657
crossref_primary_10_1002_wat2_1296
crossref_primary_10_1016_j_media_2021_102162
Cites_doi 10.1523/JNEUROSCI.3539-11.2011
10.1371/journal.pbio.0060159
10.1523/JNEUROSCI.2874-10.2010
10.1016/j.bandc.2009.09.008
10.1103/PhysRevE.69.026113
10.1371/journal.pcbi.0030017
10.1523/JNEUROSCI.1929-08.2008
10.3389/fnins.2010.00200
10.1007/11533719_45
10.1073/pnas.0406074101
10.1371/journal.pcbi.1001044
10.5486/PMD.1959.6.3-4.12
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2007.08.018
10.1093/cercor/bhp071
10.1093/schbul/sbn176
10.1002/hbm.20517
10.1093/brain/122.4.593
10.1371/journal.pcbi.1000808
10.1038/30918
10.1097/WCO.0b013e32833aa567
10.1016/0022-3956(82)90038-3
10.1016/S0165-0173(02)00220-5
10.1016/j.biopsych.2005.10.005
10.1001/archpsyc.57.7.637
10.1016/j.neuroimage.2008.09.062
10.7551/mitpress/8476.001.0001
10.1006/cbmr.1996.0014
10.1038/sj.mp.4001642
10.3389/fncom.2011.00005
10.1371/journal.pbio.1000157
10.1371/journal.pcbi.1000748
10.1093/brain/awn018
10.1037/0894-4105.12.3.426
10.1073/pnas.0701519104
10.3389/fnsys.2010.00147
10.1038/385313a0
10.1523/JNEUROSCI.4858-10.2011
10.1016/0022-3956(94)90009-4
10.1523/JNEUROSCI.0333-10.2010
10.1371/journal.pcbi.1000381
10.1371/journal.pcbi.1000395
10.1016/j.biopsych.2010.08.022
10.1146/annurev-clinpsy-040510-143934
10.1016/j.neuroimage.2009.01.045
10.1073/pnas.0402680101
10.1073/pnas.0811168106
10.1523/JNEUROSCI.1443-09.2009
10.1073/pnas.0506806103
10.1016/S1053-8119(03)00038-7
10.1073/pnas.0305212101
10.1038/nature03288
10.1176/appi.ajp.162.3.459
10.1007/978-0-387-98141-3
10.1371/journal.pcbi.0020095
10.1093/cercor/bhi016
10.1016/j.neuroimage.2011.05.025
10.1016/j.schres.2008.11.021
10.1073/pnas.0903641106
10.1103/PhysRevE.69.036103
10.1103/PhysRevLett.87.198701
10.1006/nimg.2002.1174
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2005.08.044
ContentType Journal Article
Copyright The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012
Copyright_xml – notice: The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
DOI 10.1093/cercor/bhr388
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
EndPage 138
ExternalDocumentID PMC3513955
22275481
10_1093_cercor_bhr388
Genre Comparative Study
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Intramural NIH HHS
– fundername: Medical Research Council
  grantid: G1000183
– fundername: Medical Research Council
  grantid: G0001354
GroupedDBID ---
-E4
.2P
.GJ
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
MBLQV
MBTAY
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TEORI
TJX
TLC
TMA
TR2
UQL
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
ID FETCH-LOGICAL-c486t-44a358489e1ceb3152cc4998f04e3b9426b355dd3b7c1e3978730a845a0d13da3
ISSN 1047-3211
1460-2199
IngestDate Thu Aug 21 13:33:16 EDT 2025
Fri Jul 11 12:03:11 EDT 2025
Fri Jul 11 07:29:47 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Tue Jul 01 02:59:26 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-44a358489e1ceb3152cc4998f04e3b9426b355dd3b7c1e3978730a845a0d13da3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Edward T. Bullmore and Nitin Gogtay have contributed equally to this work
OpenAccessLink https://academic.oup.com/cercor/article-pdf/23/1/127/17307051/bhr388.pdf
PMID 22275481
PQID 1223431700
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3513955
proquest_miscellaneous_1285087468
proquest_miscellaneous_1223431700
pubmed_primary_22275481
crossref_primary_10_1093_cercor_bhr388
crossref_citationtrail_10_1093_cercor_bhr388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kaiser ( key 20170521021816_bib36) 2006; 2
Ramón y Cajal ( key 20170521021816_bib49) 1899
Diedrichsen ( key 20170521021816_bib16) 2009; 46
Van den Heuvel ( key 20170521021816_bib64) 2011; 31
Bassett ( key 20170521021816_bib4) 2009; 106
Bassett ( key 20170521021816_bib6) 2010; 6
Feinberg ( key 20170521021816_bib19) 1982; 18
Fornito ( key 20170521021816_bib23) 2011; 31
Rubinov ( key 20170521021816_bib51) 2009; 30
Fair ( key 20170521021816_bib17) 2009; 5
Liu ( key 20170521021816_bib43) 2008; 131
Salvador ( key 20170521021816_bib53) 2008; 39
Varier ( key 20170521021816_bib66) 2011; 7
Chen ( key 20170521021816_bib11) 2006; 103
Van Essen ( key 20170521021816_bib65) 1997; 385
Guimerà ( key 20170521021816_bib25) 2005; 433
Meunier ( key 20170521021816_bib47) 2010; 4
Van den Heuvel ( key 20170521021816_bib62) 2009; 29
Csardi ( key 20170521021816_bib15) 2006
Sporns ( key 20170521021816_bib57) 2011; 5
Sporns ( key 20170521021816_bib56) 2010
Hagmann ( key 20170521021816_bib27) 2008; 6
Stephan ( key 20170521021816_bib71) 2009; 35
Kaiser ( key 20170521021816_bib35) 2004; 69
Ellison-Wright ( key 20170521021816_bib18) 2009; 108
Supekar ( key 20170521021816_bib60) 2009; 7
Burgund ( key 20170521021816_bib10) 2002; 17
Cherniak ( key 20170521021816_bib12) 2004; 101
Kang ( key 20170521021816_bib38) 2003; 19
Bullmore ( key 20170521021816_bib8) 2009; 10
Erdős ( key 20170521021816_bib70) 1959; 6
Alexander-Bloch ( key 20170521021816_bib2) 2010; 4
Feinberg ( key 20170521021816_bib20) 1983; 17
Honey ( key 20170521021816_bib30) 2007; 104
Jenkinson ( key 20170521021816_bib32) 2001; 5
Li ( key 20170521021816_bib42) 2009; 5
Spencer ( key 20170521021816_bib55) 2004; 101
Honey ( key 20170521021816_bib31) 2009; 106
Bullmore ( key 20170521021816_bib9) 2011; 7
Stephan ( key 20170521021816_bib59) 2006; 59
Newman ( key 20170521021816_bib48) 2004; 69
Barthélemy ( key 20170521021816_bib3) 2011
Rapoport ( key 20170521021816_bib50) 2005; 10
Symond ( key 20170521021816_bib58) 2005; 162
Kaiser ( key 20170521021816_bib37) 2009; 19
Lee ( key 20170521021816_bib41) 2003; 41
Salvador ( key 20170521021816_bib54) 2005; 15
Harrison ( key 20170521021816_bib26) 1999; 122
Bellec ( key 20170521021816_bib7) 2006; 29
Sepulcre ( key 20170521021816_bib52) 2010; 6
Van den Heuvel ( key 20170521021816_bib63) 2010; 30
Viger ( key 20170521021816_bib61) 2005
Gogtay ( key 20170521021816_bib24) 2004; 101
Latora ( key 20170521021816_bib40) 2001; 87
Achard ( key 20170521021816_bib1) 2007; 3
Wickham ( key 20170521021816_bib68) 2009
Kaiser ( key 20170521021816_bib34) 2011; 57
Meunier ( key 20170521021816_bib46) 2009; 44
Chklovskii ( key 20170521021816_bib13) 2004; 43
Cox ( key 20170521021816_bib14) 1996; 29
Zalesky ( key 20170521021816_bib69) 2011; 69
Jenkinson ( key 20170521021816_bib33) 2002; 17
Lynall ( key 20170521021816_bib44) 2010; 30
Bassett ( key 20170521021816_bib5) 2009; 28
He ( key 20170521021816_bib28) 2010; 23
Watts ( key 20170521021816_bib67) 1998; 393
Keshavan ( key 20170521021816_bib39) 1994; 28
McGlashan ( key 20170521021816_bib45) 2000; 57
Heinrichs ( key 20170521021816_bib29) 1998; 12
Feinberg ( key 20170521021816_bib21) 2010; 72
Fornito ( key 20170521021816_bib22) 2010; 4
References_xml – volume: 31
  start-page: 15775
  issue: 44
  year: 2011
  ident: key 20170521021816_bib64
  article-title: Rich club organization of the human connectome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 6
  start-page: e159
  year: 2008
  ident: key 20170521021816_bib27
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060159
– volume: 30
  start-page: 15915
  year: 2010
  ident: key 20170521021816_bib63
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2874-10.2010
– volume: 72
  start-page: 56
  year: 2010
  ident: key 20170521021816_bib21
  article-title: Sleep EEG changes during adolescence: an index of a fundamental brain reorganization
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2009.09.008
– volume: 69
  start-page: 026113.
  year: 2004
  ident: key 20170521021816_bib48
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.69.026113
– volume: 3
  start-page: e17
  year: 2007
  ident: key 20170521021816_bib1
  article-title: Efficiency and cost of economical brain functional networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030017
– volume: 28
  start-page: 9239
  year: 2009
  ident: key 20170521021816_bib5
  article-title: Hierarchical organization of human cortical networks in health and schizophrenia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 4
  start-page: 200
  year: 2010
  ident: key 20170521021816_bib47
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2010.00200
– volume: 43
  start-page: 609
  year: 2004
  ident: key 20170521021816_bib13
  article-title: Synaptic connectivity and neuronal morphology: two sides of the same coin
  publication-title: Neuron
– year: 2005
  ident: key 20170521021816_bib61
  article-title: Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In: Wang L, editor. Computing and combinatorics
  publication-title: Lecture notes in computer science
  doi: 10.1007/11533719_45
– volume: 101
  start-page: 17288
  year: 2004
  ident: key 20170521021816_bib55
  article-title: Neural synchrony indexes disordered perception and cognition in schizophrenia
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406074101
– volume: 7
  start-page: e1001044
  year: 2011
  ident: key 20170521021816_bib66
  article-title: Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001044
– volume: 6
  start-page: 290
  year: 1959
  ident: key 20170521021816_bib70
  article-title: On random graphs. I
  publication-title: Publicationes Mathematicae
  doi: 10.5486/PMD.1959.6.3-4.12
– volume: 17
  start-page: 825
  year: 2002
  ident: key 20170521021816_bib33
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 39
  start-page: 279
  year: 2008
  ident: key 20170521021816_bib53
  article-title: A simple view of the brain through a frequency-specific functional connectivity measure
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.018
– volume: 19
  start-page: 3001
  year: 2009
  ident: key 20170521021816_bib37
  article-title: A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhp071
– volume: 35
  start-page: 509
  issue: 3
  year: 2009
  ident: key 20170521021816_bib71
  article-title: Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn176
– volume: 30
  start-page: 403
  year: 2009
  ident: key 20170521021816_bib51
  article-title: Small-world properties of nonlinear brain activity in schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20517
– volume: 122
  start-page: 593
  year: 1999
  ident: key 20170521021816_bib26
  article-title: The neuropathology of schizophrenia. A critical review of the data and their interpretation
  publication-title: Brain
  doi: 10.1093/brain/122.4.593
– volume: 6
  start-page: e1000808
  year: 2010
  ident: key 20170521021816_bib52
  article-title: The organization of local and distant functional connectivity in the human brain
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000808
– volume: 393
  start-page: 440
  year: 1998
  ident: key 20170521021816_bib67
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 23
  start-page: 341
  year: 2010
  ident: key 20170521021816_bib28
  article-title: Graph theoretical modeling of brain connectivity
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e32833aa567
– volume-title: Texture of the nervous system of man and vertebrates
  year: 1899
  ident: key 20170521021816_bib49
– volume: 18
  start-page: 29
  year: 1982
  ident: key 20170521021816_bib19
  article-title: Schizophrenia and late maturational brain changes in man
  publication-title: Psychopharmacol Bull
– volume: 17
  start-page: 319
  year: 1983
  ident: key 20170521021816_bib20
  article-title: Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?
  publication-title: J Psychiatr Res
  doi: 10.1016/0022-3956(82)90038-3
– volume: 41
  start-page: 57
  year: 2003
  ident: key 20170521021816_bib41
  article-title: Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia
  publication-title: Brain Res Brain Res Rev
  doi: 10.1016/S0165-0173(02)00220-5
– volume: 10
  start-page: 1
  year: 2009
  ident: key 20170521021816_bib8
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
– volume: 59
  start-page: 929
  year: 2006
  ident: key 20170521021816_bib59
  article-title: Synpatic plasticity and dysconnection in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2005.10.005
– volume: 57
  start-page: 637
  year: 2000
  ident: key 20170521021816_bib45
  article-title: Schizophrenia as a disorder of developmentally reduced synaptic connectivity
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.7.637
– volume: 44
  start-page: 715
  year: 2009
  ident: key 20170521021816_bib46
  article-title: Age-related changes in modular organization of human brain functional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.062
– volume-title: Networks of the brain
  year: 2010
  ident: key 20170521021816_bib56
  doi: 10.7551/mitpress/8476.001.0001
– volume: 29
  start-page: 162
  year: 1996
  ident: key 20170521021816_bib14
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
  doi: 10.1006/cbmr.1996.0014
– volume: 10
  start-page: 434
  year: 2005
  ident: key 20170521021816_bib50
  article-title: The neurodevelopmental model of schizophrenia: update 2005
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001642
– volume: 5
  start-page: 5
  year: 2011
  ident: key 20170521021816_bib57
  article-title: The non-random brain: efficiency, economy, and complex dynamics
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2011.00005
– volume: 7
  start-page: e1000157
  year: 2009
  ident: key 20170521021816_bib60
  article-title: Development of large-scale functional brain networks in children
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000157
– volume: 6
  start-page: e1000748
  year: 2010
  ident: key 20170521021816_bib6
  article-title: Efficient physical embedding of topologically complex information processing networks in brains and computer circuits
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000748
– volume: 131
  start-page: 945
  year: 2008
  ident: key 20170521021816_bib43
  article-title: Disrupted small-world networks in schizophrenia
  publication-title: Brain
  doi: 10.1093/brain/awn018
– volume: 12
  start-page: 426
  year: 1998
  ident: key 20170521021816_bib29
  article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.12.3.426
– volume: 104
  start-page: 10240
  year: 2007
  ident: key 20170521021816_bib30
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0701519104
– volume: 4
  start-page: 147
  year: 2010
  ident: key 20170521021816_bib2
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2010.00147
– volume: 385
  start-page: 313
  year: 1997
  ident: key 20170521021816_bib65
  article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system
  publication-title: Nature
  doi: 10.1038/385313a0
– volume: 31
  start-page: 3261
  year: 2011
  ident: key 20170521021816_bib23
  article-title: Genetic influences on cost-efficient organization of human cortical functional networks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4858-10.2011
– volume: 28
  start-page: 239
  year: 1994
  ident: key 20170521021816_bib39
  article-title: Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited
  publication-title: J Psychiatr Res
  doi: 10.1016/0022-3956(94)90009-4
– volume: 30
  start-page: 9477
  year: 2010
  ident: key 20170521021816_bib44
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0333-10.2010
– start-page: 1695
  year: 2006
  ident: key 20170521021816_bib15
  article-title: The igraph software package for complex network research
  publication-title: InterJ Complex Syst
– volume: 5
  start-page: e1000381
  year: 2009
  ident: key 20170521021816_bib17
  article-title: Functional brain networks develop from a “local to distributed” organization
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000381
– year: 2011
  ident: key 20170521021816_bib3
– volume: 5
  start-page: e1000395
  year: 2009
  ident: key 20170521021816_bib42
  article-title: Brain anatomical network and intelligence
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000395
– volume: 69
  start-page: 80
  year: 2011
  ident: key 20170521021816_bib69
  article-title: Disrupted axonal fiber connectivity in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.08.022
– volume: 7
  start-page: 113
  year: 2011
  ident: key 20170521021816_bib9
  article-title: Brain graphs: graphical models of the human brain connectome
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 46
  start-page: 39
  year: 2009
  ident: key 20170521021816_bib16
  article-title: A probabilistic MR atlas of the human cerebellum
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.045
– volume: 101
  start-page: 8174
  year: 2004
  ident: key 20170521021816_bib24
  article-title: Dynamic mapping of human cortical development during childhood through early adulthood
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0402680101
– volume: 106
  start-page: 2035
  year: 2009
  ident: key 20170521021816_bib31
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811168106
– volume: 29
  start-page: 7619
  year: 2009
  ident: key 20170521021816_bib62
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1443-09.2009
– volume: 103
  start-page: 4723
  year: 2006
  ident: key 20170521021816_bib11
  article-title: Wiring optimization can relate neuronal structure and function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506806103
– volume: 19
  start-page: 16
  year: 2003
  ident: key 20170521021816_bib38
  article-title: Comparison of functional activation foci in children and adults using a common stereotactic space
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00038-7
– volume: 101
  start-page: 1081
  year: 2004
  ident: key 20170521021816_bib12
  article-title: Global optimization of cerebral cortex layout
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0305212101
– volume: 433
  start-page: 895
  year: 2005
  ident: key 20170521021816_bib25
  article-title: Functional cartography of complex metabolic networks
  publication-title: Nature
  doi: 10.1038/nature03288
– volume: 162
  start-page: 459
  issue: 3
  year: 2005
  ident: key 20170521021816_bib58
  article-title: “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity?
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.162.3.459
– volume-title: ggplot2: elegant graphics for data analysis
  year: 2009
  ident: key 20170521021816_bib68
  doi: 10.1007/978-0-387-98141-3
– volume: 2
  start-page: e95
  year: 2006
  ident: key 20170521021816_bib36
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020095
– volume: 15
  start-page: 1332
  year: 2005
  ident: key 20170521021816_bib54
  article-title: Neurophysiological architecture of functional magnetic resonance images of human brain
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhi016
– volume: 57
  start-page: 892
  year: 2011
  ident: key 20170521021816_bib34
  article-title: A tutorial in connectome analysis: topological and spatial features of brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.05.025
– volume: 108
  start-page: 3
  year: 2009
  ident: key 20170521021816_bib18
  article-title: Meta-analysis of diffusion tensor imaging studies in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2008.11.021
– volume: 106
  start-page: 11747
  year: 2009
  ident: key 20170521021816_bib4
  article-title: Cognitive fitness of cost-efficient brain functional networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903641106
– volume: 4
  start-page: 22
  year: 2010
  ident: key 20170521021816_bib22
  article-title: Network scaling effects in graph analytic studies of human resting-state fMRI data
  publication-title: Front Syst Neurosci
– volume: 69
  start-page: 036103
  year: 2004
  ident: key 20170521021816_bib35
  article-title: Spatial growth of real-world networks
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.69.036103
– volume: 87
  start-page: 198701
  year: 2001
  ident: key 20170521021816_bib40
  article-title: Efficient behavior of small-world networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.198701
– volume: 17
  start-page: 184
  year: 2002
  ident: key 20170521021816_bib10
  article-title: The feasibility of a common stereotactic space for children and adults in fMRI studies of development
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1174
– volume: 5
  start-page: 143
  year: 2001
  ident: key 20170521021816_bib32
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 29
  start-page: 1231
  year: 2006
  ident: key 20170521021816_bib7
  article-title: Identification of large-scale networks in the brain using fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.044
SSID ssj0017252
Score 2.5286014
Snippet The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 127
SubjectTerms Adolescent
Brain - pathology
Brain - physiopathology
Brain Mapping - methods
Connectome - methods
Humans
Male
Nerve Net - pathology
Nerve Net - physiopathology
Neural Pathways - pathology
Neural Pathways - physiopathology
Prognosis
Reference Values
Reproducibility of Results
Schizophrenia - pathology
Schizophrenia - physiopathology
Sensitivity and Specificity
Statistics as Topic
Young Adult
Title The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia
URI https://www.ncbi.nlm.nih.gov/pubmed/22275481
https://www.proquest.com/docview/1223431700
https://www.proquest.com/docview/1285087468
https://pubmed.ncbi.nlm.nih.gov/PMC3513955
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvCDZg5UtGQnsZ2ZLY-ehjKavGR9EkNrS3yHZcrdKaTmnK11_Ln8LZ56QJ2xDspaoc11Z7v9797nx3JuRVIpQfD5LQyweSezxmzAOjoLxpHnKAgIikLaSdfIoPT_j70-i01_vVylpaVXJP_byyruQmUoUxkKupkv0PyTaLwgC8B_nCK0gYXv9ZxsMC3Oa5U1-G6ikbBRiDvXJhPpvLojDj7ag0BzPVEmQqZoUp9_1mezbhVQm2BtAVJtmUznZGXpvGjnRpDpxNa5Gy0t-vutJn12Q7teMMdSWN9wbspw3mDEUJ2Bvv1VO-4Kk9rLh0qcOl2D1oHn-uZjmmB-mvjTH5KM4XBbYONhzcrpAsZp1ohrlZohPNuKZKsqWgTWcJFjoFrXGMx74HmnfQ1upYxdxBL6roAHsROGsfYG-ZS4YEm2wpXSoTNRnLs5KlnZmAhIu5xZWpJga_L1hb1CbP8WgyYhFw7Ci6RW6H4MiYOzbevvvQnHMlYRTW_TLMt3JdYGH3fdx7H3c2PavdNl0Cdckr-jO5t8WWju-Te87NoUPE7APS08Um2UKs_qA71CYeW8htkjsTl9-xReaAaLpGNK0RTRdTukY0bSGa1oimFtHUIZrWiKYwhoimgD7aQfRDcjI-OB4deu5CEE_xNK48zgUDwpwOdKC0ZEA9lQKPPZ36XDM5ALIpgT7nOZOJCjQw7RTsl0h5JPw8YLlgj8hGsSj0NqE6tM6K4FwGPJDAWwPt52GeRFNwgpjuk9f1r5wp1y3fXNpynmHWBstQPhnKp092mukX2Cbmuokva5FloMjN6Zwo9GK1zAIg6obN-_7f5qTgUCU8hnUeo5ib7Wp89EnSAUAzwTSS7z4pZme2obzD6JMbf_Ipubv-Mz8jG1W50s-BrFfyhcX7byzQ7hY
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Anatomical+Distance+of+Functional+Connections+Predicts+Brain+Network+Topology+in+Health+and+Schizophrenia&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Alexander-Bloch%2C+Aaron+F.&rft.au=V%C3%A9rtes%2C+Petra+E.&rft.au=Stidd%2C+Reva&rft.au=Lalonde%2C+Fran%C3%A7ois&rft.date=2013-01-01&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=23&rft.issue=1&rft.spage=127&rft.epage=138&rft_id=info:doi/10.1093%2Fcercor%2Fbhr388&rft_id=info%3Apmid%2F22275481&rft.externalDocID=PMC3513955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon