Scene Uyghur Recognition Based on Visual Prediction Enhancement
Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for s...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 20; p. 8610 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.10.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset. |
---|---|
AbstractList | Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset. Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset.Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset. |
Audience | Academic |
Author | Kong, Fanjie Liu, Yaqi Xu, Miaomiao Silamu, Wushour Li, Yanbing |
AuthorAffiliation | 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China 1 College of Information Science and Engineering, Xinjang University, No. 777 Huarui Street, Urumqi 830017, China; 107552103674@stu.xju.edu.cn (Y.L.); 107552103730@stu.xju.edu.cn (F.K.); xmm@stu.xju.edu.cn (M.X.); wushour@126.com (W.S.) 2 Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China |
AuthorAffiliation_xml | – name: 2 Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China – name: 1 College of Information Science and Engineering, Xinjang University, No. 777 Huarui Street, Urumqi 830017, China; 107552103674@stu.xju.edu.cn (Y.L.); 107552103730@stu.xju.edu.cn (F.K.); xmm@stu.xju.edu.cn (M.X.); wushour@126.com (W.S.) – name: 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China |
Author_xml | – sequence: 1 givenname: Yaqi orcidid: 0009-0003-8180-3517 surname: Liu fullname: Liu, Yaqi – sequence: 2 givenname: Fanjie orcidid: 0009-0002-3142-5514 surname: Kong fullname: Kong, Fanjie – sequence: 3 givenname: Miaomiao surname: Xu fullname: Xu, Miaomiao – sequence: 4 givenname: Wushour surname: Silamu fullname: Silamu, Wushour – sequence: 5 givenname: Yanbing orcidid: 0000-0001-5368-6921 surname: Li fullname: Li, Yanbing |
BookMark | eNptUstu1TAQtVARfcCCP4jEBha3Hb8Se1WVqi2VKoGAsrUcZ5Lrq8QudoLUv8e3t6pohbzwaOacM89DshdiQELeUzjmXMNJZpyBqim8IgdUMLFSjMHeP_Y-Ocx5A8A45-oN2eeN0nUD7ICc_nAYsLq9H9ZLqr6ji0Pws4-h-mwzdlUxfvm82LH6lrDz7iF0EdY2OJwwzG_J696OGd89_kfk9vLi5_mX1c3Xq-vzs5uVE6qeV4LVrmZ931EN0HfcQqs7LhuqNGuZLhEtUMmWC8CGglNS94r3NYJugUrHj8j1TreLdmPukp9sujfRevPgiGkwNs3ejWgU8JYWcWS1EKKTqhYoFTaWUcVVrYvW6U7rbmkn7MoA5mTHZ6LPI8GvzRD_GAplxrKBovDxUSHF3wvm2Uw-OxxHGzAu2TClSnNaUlqgH15AN3FJocxqi2KKUa23JR3vUIMtHfjQx5LYldfh5F3Zdu-L_6xpmGRaclUIn3YEl2LOCfun8imY7VGYp6Mo2JMXWOdnu91kSeLH_zD-AvNgtd8 |
CitedBy_id | crossref_primary_10_3390_app14051707 crossref_primary_10_1007_s40747_024_01689_5 |
Cites_doi | 10.1109/CVPR.2019.00670 10.1016/j.patcog.2019.01.020 10.24963/ijcai.2023/197 10.1109/ICCV48922.2021.01393 10.3390/info13070332 10.1145/3240508.3240571 10.1109/TPAMI.2016.2646371 10.24963/ijcai.2022/124 10.1109/ICPR56361.2022.9956029 10.1109/PRML56267.2022.9882248 10.1007/s11263-015-0823-z 10.1109/CVPR.2018.00584 10.1109/TPAMI.2018.2848939 10.1016/j.patcog.2016.10.016 10.24963/ijcai.2017/458 10.1109/CVPR42600.2020.01213 10.1007/978-3-030-01234-2_1 10.1145/1143844.1143891 10.1504/IJSNET.2021.113626 10.3390/info13060293 10.1109/ICCVW54120.2021.00181 10.1109/34.24792 10.1007/s10032-019-00320-5 10.1109/ICDAR.2019.00130 10.1109/CVPR46437.2021.00702 10.1109/DAS.2016.20 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23208610 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_803b1d35e26444d5864e58e7a2183869 PMC10610570 A772529538 10_3390_s23208610 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National 973 Key R&D Program—Internet Chinese Information Processing Verification System for Public Safety and Social Management grantid: 2014CB340506 – fundername: National Natural Science Foundation of China—Key Technology Research on Uyghur Chinese Speech Translation System grantid: U1603262 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-426c62ffd1900fd3a0b9d3571892b292ff94e85b340e710c859f83f6e09b015c3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Aug 21 18:36:19 EDT 2025 Fri Jul 11 05:15:44 EDT 2025 Fri Jul 25 08:18:08 EDT 2025 Tue Jun 10 21:14:56 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 03:50:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-426c62ffd1900fd3a0b9d3571892b292ff94e85b340e710c859f83f6e09b015c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5368-6921 0009-0003-8180-3517 0009-0002-3142-5514 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23208610 |
PMID | 37896702 |
PQID | 2882821999 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_803b1d35e26444d5864e58e7a2183869 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610570 proquest_miscellaneous_2883579511 proquest_journals_2882821999 gale_infotracacademiconefile_A772529538 crossref_primary_10_3390_s23208610 crossref_citationtrail_10_3390_s23208610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-20 |
PublicationDateYYYYMMDD | 2023-10-20 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_13 ref_12 Shi (ref_3) 2016; 39 ref_11 ref_55 ref_54 ref_53 ref_52 Jiang (ref_10) 2015; 55 Ai (ref_38) 2011; 47 ref_51 ref_19 ref_18 ref_16 Liu (ref_1) 2019; 22 Hu (ref_17) 2020; 34 Tang (ref_48) 2021; 53 Jaderberg (ref_36) 2015; 28 Su (ref_15) 2017; 63 ref_25 ref_24 ref_23 ref_22 ref_29 ref_28 ref_27 ref_26 Wang (ref_30) 2020; 34 Wan (ref_21) 2020; 34 ref_34 ref_33 ref_32 ref_31 ref_39 Bookstein (ref_35) 1989; 11 Ibrayim (ref_50) 2021; 13 Jaderberg (ref_20) 2016; 116 Sun (ref_2) 2021; 35 ref_47 ref_46 ref_45 ref_44 ref_43 ref_41 ref_40 Luo (ref_37) 2019; 90 Shi (ref_4) 2018; 41 ref_49 ref_9 ref_8 ref_5 Peng (ref_42) 2015; 32 ref_7 ref_6 |
References_xml | – ident: ref_16 doi: 10.1109/CVPR.2019.00670 – ident: ref_9 – volume: 90 start-page: 109 year: 2019 ident: ref_37 article-title: Moran: A multi-object rectified attention network for scene text recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.01.020 – ident: ref_49 – ident: ref_5 – ident: ref_32 – ident: ref_26 – ident: ref_51 – volume: 13 start-page: 51 year: 2021 ident: ref_50 article-title: Unconstrained online handwritten Uyghur word recognition based on recurrent neural networks and connectionist temporal classification publication-title: Int. J. Biom. – ident: ref_34 doi: 10.24963/ijcai.2023/197 – volume: 53 start-page: 71 year: 2021 ident: ref_48 article-title: Scan-based Recognition of Uighur Text Using Deep Learning publication-title: J. Northeast. Norm. Univ. (Nat. Sci. Ed.) – ident: ref_13 doi: 10.1109/ICCV48922.2021.01393 – ident: ref_8 doi: 10.3390/info13070332 – ident: ref_39 – ident: ref_23 doi: 10.1145/3240508.3240571 – volume: 39 start-page: 2298 year: 2016 ident: ref_3 article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2646371 – ident: ref_19 doi: 10.24963/ijcai.2022/124 – ident: ref_33 doi: 10.1109/ICPR56361.2022.9956029 – ident: ref_7 doi: 10.1109/PRML56267.2022.9882248 – volume: 116 start-page: 1 year: 2016 ident: ref_20 article-title: Reading text in the wild with convolutional neural networks publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0823-z – ident: ref_24 doi: 10.1109/CVPR.2018.00584 – volume: 34 start-page: 11005 year: 2020 ident: ref_17 article-title: Gtc: Guided training of ctc towards efficient and accurate scene text recognition publication-title: AAAI Conf. Artif. Intell. – volume: 41 start-page: 2035 year: 2018 ident: ref_4 article-title: Aster: An attentional scene text recognizer with flexible rectification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2848939 – ident: ref_31 – ident: ref_27 – volume: 63 start-page: 397 year: 2017 ident: ref_15 article-title: Accurate recognition of words in scenes without character segmentation using recurrent neural network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.10.016 – ident: ref_25 doi: 10.24963/ijcai.2017/458 – volume: 28 start-page: 7 year: 2015 ident: ref_36 article-title: Spatial transformer networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_41 – ident: ref_45 – volume: 55 start-page: 873 year: 2015 ident: ref_10 article-title: Character Model Optimization for Recognition of Unsegmented Uighur Text Lines publication-title: J. Tsinghua Univ. (Sci. Technol.) – ident: ref_11 doi: 10.1109/CVPR42600.2020.01213 – ident: ref_53 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_28 – volume: 34 start-page: 12216 year: 2020 ident: ref_30 article-title: Decoupled attention network for text recognition publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_47 – ident: ref_14 doi: 10.1145/1143844.1143891 – volume: 32 start-page: 171 year: 2015 ident: ref_42 article-title: A Recognition Method for Uighur and Arabic Text Based on HMM and Statistical Language Model publication-title: Comput. Appl. Softw. – ident: ref_40 – volume: 47 start-page: 190 year: 2011 ident: ref_38 article-title: Recognition of Uighur Text in Video Images publication-title: Comput. Eng. Appl. – volume: 35 start-page: 69 year: 2021 ident: ref_2 article-title: Detection and recognition of text traffic signs above the road publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2021.113626 – ident: ref_18 – ident: ref_44 – ident: ref_52 doi: 10.3390/info13060293 – ident: ref_6 – ident: ref_55 doi: 10.1109/ICCVW54120.2021.00181 – volume: 11 start-page: 567 year: 1989 ident: ref_35 article-title: Principal warps: Thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.24792 – ident: ref_54 – ident: ref_46 – volume: 22 start-page: 143 year: 2019 ident: ref_1 article-title: Scene text detection and recognition with advances in deep learning: A survey publication-title: Int. J. Doc. Anal. Recognit. (IJDAR) doi: 10.1007/s10032-019-00320-5 – ident: ref_29 doi: 10.1109/ICDAR.2019.00130 – ident: ref_12 doi: 10.1109/CVPR46437.2021.00702 – ident: ref_22 – volume: 34 start-page: 12120 year: 2020 ident: ref_21 article-title: Textscanner: Reading characters in order for robust scene text recognition publication-title: AAAI Conf. Artif. Intell. – ident: ref_43 doi: 10.1109/DAS.2016.20 |
SSID | ssj0023338 |
Score | 2.4187024 |
Snippet | Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8610 |
SubjectTerms | Analysis correction network Datasets Deep learning Language Methods scene text recognition scene Uyghur dataset Semantics Uighurs Uyghur recognition vision model |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET6xOqSLopSxtkjY9brIxBEXEyW6hSVM3kE72cfC_971-sangxVtpXkvyXtLf7zXJL4Rcxxm31EapR402HtdCe5KnzEsTBvTeZLENcYPzw2M4HPH7sRivHfWFa8JKeeDScR1JmfZTJiwiN0-FDLkV0kYJYrsMi617gHl1MlWlWgwyr1JHiEFS31kAbwDujttk19CnEOn_-Sn-vjxyDW8Ge2S3Ioput6zgPtmy-QHZWZMPPASiDc9ad_T5NlnN3ed6KdAsd3uATakLF6_TxQre8jTH-ZiiqJ9PMND4U_CIjAb9l7uhVx2I4Bkuw6UHaGrCIMtSQHGapSyhOgbXALzEgQ5iKIm5lUIzDu73qZEiziTLQktjDbBv2DFp5bPcnhDXiIhTqRkuGuF-ECXARGzim9D6OhDaOuS2dpQylVo4HlrxriBrQJ-qxqcOuWpMP0qJjN-MeujtxgBVrYsbEGtVxVr9FWuH3GCsFI49qIxJqi0E0CRUsVJdSBVw4pJJh7TrcKpqUC5UANmEDFB3wSGXTTEMJ5wjSXI7WxU24FCgnb5D5EY32Kj6Zkk-nRTC3JheA_-lp__R2DOyjUfbI04GtE1ay_nKngMBWuqLoq9_Aa3EAho priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQH1EIRAVqFCgkuEU7sZO1TBRULQipCVRdxs-JHWCSUwD4O_Htmst50lyJuUewkzozt7xt7PANwoCrhme-5hFljE2Fyk0jheOJKjvTeVsoXdMD591VxMRCXt_ltWHAbB7fK-ZzYTtSusbRGfpwhFZQZHZr_-fiUUNYo2l0NKTQ-wFqKSEMuXbJ_3hlcHO2vWTQhjqb98RjZAzJ4Oiy7gEFtqP7_J-TXTpILqNP_DOuBLsYnM_1-gRVfb8CnhSCCm0i38VkfD57vhtNR_GfuENTU8SkilIvx4uZ-PMW3XI9oV6YtOquHpG5aGvwKg_7Z318XSUiLkFghi0mCmGqLrKocYjmrHC-ZUY7nCDIqM5nCEiW8zA0XqISUWZmrSvKq8EwZBH_Lt2C1bmq_DbHNe4JJw8l1RKRZr0Q-4svUFj41WW58BEdzQWkbYoZT6ooHjbYDyVR3Mo3gR1f1cRYo461KpyTtrgLFtm5vNKM7HYaKloybFH_IE1cTLpeF8NisXklsThYqgkPSlaYRiI2xZThIgL9Esaz0CRoMtH3JZQR7c3XqMDTH-l9HimC_K8ZBRTslZe2baVsHBYrkM41ALnWDpaYvl9T3wzY8NxnZyILZzvtf34WPlLqecDBje7A6GU39NyQ4E_O97cUv4yP7Uw priority: 102 providerName: ProQuest |
Title | Scene Uyghur Recognition Based on Visual Prediction Enhancement |
URI | https://www.proquest.com/docview/2882821999 https://www.proquest.com/docview/2883579511 https://pubmed.ncbi.nlm.nih.gov/PMC10610570 https://doaj.org/article/803b1d35e26444d5864e58e7a2183869 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3S5NIeSvpFnaaLWwrtxa0sybZ0KCUbdhsKCSF0y96EJcvZQPC23l1I_n1nvLaJ2xxyMcaSjTwa-b2xpDcAH3QpPfNZETFnXSRtYiMlCxEVuUB670rtU9rgfHqWnszkj3ky34Eux2ZrwNW9oR3lk5rV159v_tx-wwH_lSJODNm_rJAVIDOnjVZ7CEgZJTI4lf1kAheiSWhNe7oixEO2FRga3jqApUa9__9v9L_rJu8A0XQfnrYMMjzadvkz2PHVc3hyR1fwBTJwvNeHs9vLxaYOL7o1QssqHCNoFSGe_LpabfAp5zVN1DRFk2pBHkB_C1_CbDr5eXwStZkSIidVuo4QZl3Ky7JAeGdlIXJmdSESxB3NLddYoqVXiRUS-yVmTiW6VKJMPdMW-YATr2C3Wlb-NYQuySRTVtBqEhnzLEeK4vPYpT62PLE-gE-doYxrZcQpm8W1wXCCbGp6mwbwvq_6e6udcV-lMVm7r0By182FZX1p2tFjFBM2xhfyRN9kkahUemxWlhPBU6kO4CP1lSE3wca4vN1bgK9E8lbmCGMImtEUKoDDrjtN52yGY5ihOAkyBPCuL8ZxRpMneeWXm6YOGhT5aByAGrjBoOnDkupq0Sh2U9yNxJgdPMQib-Ax5bQngOTsEHbX9ca_ReaztiN4lM0zPKrp9xHsjSdn5xej5i_CqPH4vx16BEE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmJtAUCAsElqmM7WfuAUAtdtvQhhLqoNxM7TrdSlZR9CPVP8Rs7k03CLiBuva12vFl7PPb3TeyZAXilC-mZ7-URc9ZF0iY2UjIXUZ4JpPeu0D6lAOej43QwlJ9Pk9MV-NXGwtC1ynZPrDfqvHL0jnybIxVUnILm31_-iKhqFJ2utiU05mZx4K9-oss2ebf_Eef3Nef9vZMPg6ipKhA5qdJphJDkUl4UOUIhK3KRMatzkeAerbnlGiVaepVYIXEMMXMq0YUSReqZtoidTuBzb8FtKRDJKTK9_6lz8AT6e_PsRShk2xNkK-gxUHDuAubVpQH-BoA_L2UuoFx_He419DTcmdvTfVjx5QNYW0ha-BDpPf7Wh8Ors9FsHH5tLyBVZbiLiJiH-OHb-WSGT_kyplOgWrRXjsi86FXkIxjeiMIew2pZlf4JhC7pSaasoKsqMua9DPmPz2KX-tjyxPoA3raKMq7JUU6lMi4M-iqkU9PpNICXXdPLeWKOfzXaJW13DSiXdv1FNT4zzdI0igkb44A8cUOZJyqVHrvVy4g9qlQH8IbmytCKx864rAlcwCFR7iyzgw4KHZcKFcBWO52m2Qom5rfhBvCiE-MippOZrPTVrG6DCkWyGweglsxgqevLkvJ8VKcDJ6ceWTfb-P-_P4c7g5OjQ3O4f3ywCXc5mithMGdbsDodz_xTJFdT-6y26BC-3_QSugbY8TcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUgQEBgeAlqmM7qf2A0MpabQyqaqJobyZ2nHUSSkY_hPav8ddxlyalBcTb3qLYSezzne938X0AvNSF9Mz38og56yJpExspmYsozwTCe1don1KA86dRejiRH06T0x342cbCkFtluyfWG3VeOfpH3uUIBRWnoPlu0bhFjA-G7y6-R1RBik5a23IaKxY59pc_0Hybvz06wLV-xflw8Pn9YdRUGIicVOkiQvXkUl4UOapFVuQiY1bnIsH9WnPLNbZo6VVihcT5xMypRBdKFKln2qIedQLfew12e2QVdWC3PxiNT9bmnkDrb5XLSAjNunPELmg_UKjuhgasCwX8rQ7-dNHc0HnD23CrAavh_oq77sCOL-_CzY0UhvcQ7OOzPpxcnk2Xs_CkdUeqyrCP-jEP8eLL-XyJbxnP6EyobhqUU2I2-jF5HyZXQrIH0Cmr0j-E0CVIOGUFOa7ImPcyREM-i13qY8sT6wN40xLKuCZjORXO-GbQciGamjVNA3ix7nqxStPxr059ova6A2XWrm9UszPTCKpRTNgYJ-QJKco8Uan0OKxeRlhSpTqA17RWhuQfB-OyJowBp0SZtMw-mit0eCpUAHvtcppmY5ib32wcwPN1M4o0ndNkpa-WdR8kKELfOAC1xQZbQ99uKc-ndXJwMvERg7NH___6M7iO4mM-Ho2OH8MNjtxKCpmzPegsZkv_BJHWwj5tWDqEr1ctRb8Afbw8og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Uyghur+Recognition+Based+on+Visual+Prediction+Enhancement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yaqi&rft.au=Kong%2C+Fanjie&rft.au=Xu%2C+Miaomiao&rft.au=Silamu%2C+Wushour&rft.date=2023-10-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=20&rft.spage=8610&rft_id=info:doi/10.3390%2Fs23208610&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23208610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |