Scene Uyghur Recognition Based on Visual Prediction Enhancement

Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for s...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 20; p. 8610
Main Authors Liu, Yaqi, Kong, Fanjie, Xu, Miaomiao, Silamu, Wushour, Li, Yanbing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset.
AbstractList Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset.
Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset.Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion. Finally, a visual masking semantic awareness (VMSA) module is added to guide the vision model to consider the language information in the visual space by masking the corresponding visual features on the attention map to obtain more accurate visual prediction. This module can not only alleviate the correction load of the language model, but also distinguish similar characters using the language information. The effectiveness of the improved method is verified by ablation experiments, and the model is compared with common scene text recognition methods and scene Uyghur recognition methods on the self-built scene Uyghur dataset.
Audience Academic
Author Kong, Fanjie
Liu, Yaqi
Xu, Miaomiao
Silamu, Wushour
Li, Yanbing
AuthorAffiliation 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China
1 College of Information Science and Engineering, Xinjang University, No. 777 Huarui Street, Urumqi 830017, China; 107552103674@stu.xju.edu.cn (Y.L.); 107552103730@stu.xju.edu.cn (F.K.); xmm@stu.xju.edu.cn (M.X.); wushour@126.com (W.S.)
2 Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China
AuthorAffiliation_xml – name: 2 Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China
– name: 1 College of Information Science and Engineering, Xinjang University, No. 777 Huarui Street, Urumqi 830017, China; 107552103674@stu.xju.edu.cn (Y.L.); 107552103730@stu.xju.edu.cn (F.K.); xmm@stu.xju.edu.cn (M.X.); wushour@126.com (W.S.)
– name: 3 Xinjiang Multilingual Information Technology Research Center, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China
Author_xml – sequence: 1
  givenname: Yaqi
  orcidid: 0009-0003-8180-3517
  surname: Liu
  fullname: Liu, Yaqi
– sequence: 2
  givenname: Fanjie
  orcidid: 0009-0002-3142-5514
  surname: Kong
  fullname: Kong, Fanjie
– sequence: 3
  givenname: Miaomiao
  surname: Xu
  fullname: Xu, Miaomiao
– sequence: 4
  givenname: Wushour
  surname: Silamu
  fullname: Silamu, Wushour
– sequence: 5
  givenname: Yanbing
  orcidid: 0000-0001-5368-6921
  surname: Li
  fullname: Li, Yanbing
BookMark eNptUstu1TAQtVARfcCCP4jEBha3Hb8Se1WVqi2VKoGAsrUcZ5Lrq8QudoLUv8e3t6pohbzwaOacM89DshdiQELeUzjmXMNJZpyBqim8IgdUMLFSjMHeP_Y-Ocx5A8A45-oN2eeN0nUD7ICc_nAYsLq9H9ZLqr6ji0Pws4-h-mwzdlUxfvm82LH6lrDz7iF0EdY2OJwwzG_J696OGd89_kfk9vLi5_mX1c3Xq-vzs5uVE6qeV4LVrmZ931EN0HfcQqs7LhuqNGuZLhEtUMmWC8CGglNS94r3NYJugUrHj8j1TreLdmPukp9sujfRevPgiGkwNs3ejWgU8JYWcWS1EKKTqhYoFTaWUcVVrYvW6U7rbmkn7MoA5mTHZ6LPI8GvzRD_GAplxrKBovDxUSHF3wvm2Uw-OxxHGzAu2TClSnNaUlqgH15AN3FJocxqi2KKUa23JR3vUIMtHfjQx5LYldfh5F3Zdu-L_6xpmGRaclUIn3YEl2LOCfun8imY7VGYp6Mo2JMXWOdnu91kSeLH_zD-AvNgtd8
CitedBy_id crossref_primary_10_3390_app14051707
crossref_primary_10_1007_s40747_024_01689_5
Cites_doi 10.1109/CVPR.2019.00670
10.1016/j.patcog.2019.01.020
10.24963/ijcai.2023/197
10.1109/ICCV48922.2021.01393
10.3390/info13070332
10.1145/3240508.3240571
10.1109/TPAMI.2016.2646371
10.24963/ijcai.2022/124
10.1109/ICPR56361.2022.9956029
10.1109/PRML56267.2022.9882248
10.1007/s11263-015-0823-z
10.1109/CVPR.2018.00584
10.1109/TPAMI.2018.2848939
10.1016/j.patcog.2016.10.016
10.24963/ijcai.2017/458
10.1109/CVPR42600.2020.01213
10.1007/978-3-030-01234-2_1
10.1145/1143844.1143891
10.1504/IJSNET.2021.113626
10.3390/info13060293
10.1109/ICCVW54120.2021.00181
10.1109/34.24792
10.1007/s10032-019-00320-5
10.1109/ICDAR.2019.00130
10.1109/CVPR46437.2021.00702
10.1109/DAS.2016.20
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23208610
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_803b1d35e26444d5864e58e7a2183869
PMC10610570
A772529538
10_3390_s23208610
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National 973 Key R&D Program—Internet Chinese Information Processing Verification System for Public Safety and Social Management
  grantid: 2014CB340506
– fundername: National Natural Science Foundation of China—Key Technology Research on Uyghur Chinese Speech Translation System
  grantid: U1603262
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c486t-426c62ffd1900fd3a0b9d3571892b292ff94e85b340e710c859f83f6e09b015c3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Aug 21 18:36:19 EDT 2025
Fri Jul 11 05:15:44 EDT 2025
Fri Jul 25 08:18:08 EDT 2025
Tue Jun 10 21:14:56 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 03:50:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-426c62ffd1900fd3a0b9d3571892b292ff94e85b340e710c859f83f6e09b015c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5368-6921
0009-0003-8180-3517
0009-0002-3142-5514
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23208610
PMID 37896702
PQID 2882821999
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_803b1d35e26444d5864e58e7a2183869
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610570
proquest_miscellaneous_2883579511
proquest_journals_2882821999
gale_infotracacademiconefile_A772529538
crossref_primary_10_3390_s23208610
crossref_citationtrail_10_3390_s23208610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-20
PublicationDateYYYYMMDD 2023-10-20
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
ref_12
Shi (ref_3) 2016; 39
ref_11
ref_55
ref_54
ref_53
ref_52
Jiang (ref_10) 2015; 55
Ai (ref_38) 2011; 47
ref_51
ref_19
ref_18
ref_16
Liu (ref_1) 2019; 22
Hu (ref_17) 2020; 34
Tang (ref_48) 2021; 53
Jaderberg (ref_36) 2015; 28
Su (ref_15) 2017; 63
ref_25
ref_24
ref_23
ref_22
ref_29
ref_28
ref_27
ref_26
Wang (ref_30) 2020; 34
Wan (ref_21) 2020; 34
ref_34
ref_33
ref_32
ref_31
ref_39
Bookstein (ref_35) 1989; 11
Ibrayim (ref_50) 2021; 13
Jaderberg (ref_20) 2016; 116
Sun (ref_2) 2021; 35
ref_47
ref_46
ref_45
ref_44
ref_43
ref_41
ref_40
Luo (ref_37) 2019; 90
Shi (ref_4) 2018; 41
ref_49
ref_9
ref_8
ref_5
Peng (ref_42) 2015; 32
ref_7
ref_6
References_xml – ident: ref_16
  doi: 10.1109/CVPR.2019.00670
– ident: ref_9
– volume: 90
  start-page: 109
  year: 2019
  ident: ref_37
  article-title: Moran: A multi-object rectified attention network for scene text recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.020
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_26
– ident: ref_51
– volume: 13
  start-page: 51
  year: 2021
  ident: ref_50
  article-title: Unconstrained online handwritten Uyghur word recognition based on recurrent neural networks and connectionist temporal classification
  publication-title: Int. J. Biom.
– ident: ref_34
  doi: 10.24963/ijcai.2023/197
– volume: 53
  start-page: 71
  year: 2021
  ident: ref_48
  article-title: Scan-based Recognition of Uighur Text Using Deep Learning
  publication-title: J. Northeast. Norm. Univ. (Nat. Sci. Ed.)
– ident: ref_13
  doi: 10.1109/ICCV48922.2021.01393
– ident: ref_8
  doi: 10.3390/info13070332
– ident: ref_39
– ident: ref_23
  doi: 10.1145/3240508.3240571
– volume: 39
  start-page: 2298
  year: 2016
  ident: ref_3
  article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2646371
– ident: ref_19
  doi: 10.24963/ijcai.2022/124
– ident: ref_33
  doi: 10.1109/ICPR56361.2022.9956029
– ident: ref_7
  doi: 10.1109/PRML56267.2022.9882248
– volume: 116
  start-page: 1
  year: 2016
  ident: ref_20
  article-title: Reading text in the wild with convolutional neural networks
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0823-z
– ident: ref_24
  doi: 10.1109/CVPR.2018.00584
– volume: 34
  start-page: 11005
  year: 2020
  ident: ref_17
  article-title: Gtc: Guided training of ctc towards efficient and accurate scene text recognition
  publication-title: AAAI Conf. Artif. Intell.
– volume: 41
  start-page: 2035
  year: 2018
  ident: ref_4
  article-title: Aster: An attentional scene text recognizer with flexible rectification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2848939
– ident: ref_31
– ident: ref_27
– volume: 63
  start-page: 397
  year: 2017
  ident: ref_15
  article-title: Accurate recognition of words in scenes without character segmentation using recurrent neural network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.016
– ident: ref_25
  doi: 10.24963/ijcai.2017/458
– volume: 28
  start-page: 7
  year: 2015
  ident: ref_36
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_41
– ident: ref_45
– volume: 55
  start-page: 873
  year: 2015
  ident: ref_10
  article-title: Character Model Optimization for Recognition of Unsegmented Uighur Text Lines
  publication-title: J. Tsinghua Univ. (Sci. Technol.)
– ident: ref_11
  doi: 10.1109/CVPR42600.2020.01213
– ident: ref_53
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_28
– volume: 34
  start-page: 12216
  year: 2020
  ident: ref_30
  article-title: Decoupled attention network for text recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_47
– ident: ref_14
  doi: 10.1145/1143844.1143891
– volume: 32
  start-page: 171
  year: 2015
  ident: ref_42
  article-title: A Recognition Method for Uighur and Arabic Text Based on HMM and Statistical Language Model
  publication-title: Comput. Appl. Softw.
– ident: ref_40
– volume: 47
  start-page: 190
  year: 2011
  ident: ref_38
  article-title: Recognition of Uighur Text in Video Images
  publication-title: Comput. Eng. Appl.
– volume: 35
  start-page: 69
  year: 2021
  ident: ref_2
  article-title: Detection and recognition of text traffic signs above the road
  publication-title: Int. J. Sens. Netw.
  doi: 10.1504/IJSNET.2021.113626
– ident: ref_18
– ident: ref_44
– ident: ref_52
  doi: 10.3390/info13060293
– ident: ref_6
– ident: ref_55
  doi: 10.1109/ICCVW54120.2021.00181
– volume: 11
  start-page: 567
  year: 1989
  ident: ref_35
  article-title: Principal warps: Thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.24792
– ident: ref_54
– ident: ref_46
– volume: 22
  start-page: 143
  year: 2019
  ident: ref_1
  article-title: Scene text detection and recognition with advances in deep learning: A survey
  publication-title: Int. J. Doc. Anal. Recognit. (IJDAR)
  doi: 10.1007/s10032-019-00320-5
– ident: ref_29
  doi: 10.1109/ICDAR.2019.00130
– ident: ref_12
  doi: 10.1109/CVPR46437.2021.00702
– ident: ref_22
– volume: 34
  start-page: 12120
  year: 2020
  ident: ref_21
  article-title: Textscanner: Reading characters in order for robust scene text recognition
  publication-title: AAAI Conf. Artif. Intell.
– ident: ref_43
  doi: 10.1109/DAS.2016.20
SSID ssj0023338
Score 2.4187024
Snippet Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8610
SubjectTerms Analysis
correction network
Datasets
Deep learning
Language
Methods
scene text recognition
scene Uyghur dataset
Semantics
Uighurs
Uyghur recognition
vision model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET6xOqSLopSxtkjY9brIxBEXEyW6hSVM3kE72cfC_971-sangxVtpXkvyXtLf7zXJL4Rcxxm31EapR402HtdCe5KnzEsTBvTeZLENcYPzw2M4HPH7sRivHfWFa8JKeeDScR1JmfZTJiwiN0-FDLkV0kYJYrsMi617gHl1MlWlWgwyr1JHiEFS31kAbwDujttk19CnEOn_-Sn-vjxyDW8Ge2S3Ioput6zgPtmy-QHZWZMPPASiDc9ad_T5NlnN3ed6KdAsd3uATakLF6_TxQre8jTH-ZiiqJ9PMND4U_CIjAb9l7uhVx2I4Bkuw6UHaGrCIMtSQHGapSyhOgbXALzEgQ5iKIm5lUIzDu73qZEiziTLQktjDbBv2DFp5bPcnhDXiIhTqRkuGuF-ECXARGzim9D6OhDaOuS2dpQylVo4HlrxriBrQJ-qxqcOuWpMP0qJjN-MeujtxgBVrYsbEGtVxVr9FWuH3GCsFI49qIxJqi0E0CRUsVJdSBVw4pJJh7TrcKpqUC5UANmEDFB3wSGXTTEMJ5wjSXI7WxU24FCgnb5D5EY32Kj6Zkk-nRTC3JheA_-lp__R2DOyjUfbI04GtE1ay_nKngMBWuqLoq9_Aa3EAho
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQH1EIRAVqFCgkuEU7sZO1TBRULQipCVRdxs-JHWCSUwD4O_Htmst50lyJuUewkzozt7xt7PANwoCrhme-5hFljE2Fyk0jheOJKjvTeVsoXdMD591VxMRCXt_ltWHAbB7fK-ZzYTtSusbRGfpwhFZQZHZr_-fiUUNYo2l0NKTQ-wFqKSEMuXbJ_3hlcHO2vWTQhjqb98RjZAzJ4Oiy7gEFtqP7_J-TXTpILqNP_DOuBLsYnM_1-gRVfb8CnhSCCm0i38VkfD57vhtNR_GfuENTU8SkilIvx4uZ-PMW3XI9oV6YtOquHpG5aGvwKg_7Z318XSUiLkFghi0mCmGqLrKocYjmrHC-ZUY7nCDIqM5nCEiW8zA0XqISUWZmrSvKq8EwZBH_Lt2C1bmq_DbHNe4JJw8l1RKRZr0Q-4svUFj41WW58BEdzQWkbYoZT6ooHjbYDyVR3Mo3gR1f1cRYo461KpyTtrgLFtm5vNKM7HYaKloybFH_IE1cTLpeF8NisXklsThYqgkPSlaYRiI2xZThIgL9Esaz0CRoMtH3JZQR7c3XqMDTH-l9HimC_K8ZBRTslZe2baVsHBYrkM41ALnWDpaYvl9T3wzY8NxnZyILZzvtf34WPlLqecDBje7A6GU39NyQ4E_O97cUv4yP7Uw
  priority: 102
  providerName: ProQuest
Title Scene Uyghur Recognition Based on Visual Prediction Enhancement
URI https://www.proquest.com/docview/2882821999
https://www.proquest.com/docview/2883579511
https://pubmed.ncbi.nlm.nih.gov/PMC10610570
https://doaj.org/article/803b1d35e26444d5864e58e7a2183869
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3S5NIeSvpFnaaLWwrtxa0sybZ0KCUbdhsKCSF0y96EJcvZQPC23l1I_n1nvLaJ2xxyMcaSjTwa-b2xpDcAH3QpPfNZETFnXSRtYiMlCxEVuUB670rtU9rgfHqWnszkj3ky34Eux2ZrwNW9oR3lk5rV159v_tx-wwH_lSJODNm_rJAVIDOnjVZ7CEgZJTI4lf1kAheiSWhNe7oixEO2FRga3jqApUa9__9v9L_rJu8A0XQfnrYMMjzadvkz2PHVc3hyR1fwBTJwvNeHs9vLxaYOL7o1QssqHCNoFSGe_LpabfAp5zVN1DRFk2pBHkB_C1_CbDr5eXwStZkSIidVuo4QZl3Ky7JAeGdlIXJmdSESxB3NLddYoqVXiRUS-yVmTiW6VKJMPdMW-YATr2C3Wlb-NYQuySRTVtBqEhnzLEeK4vPYpT62PLE-gE-doYxrZcQpm8W1wXCCbGp6mwbwvq_6e6udcV-lMVm7r0By182FZX1p2tFjFBM2xhfyRN9kkahUemxWlhPBU6kO4CP1lSE3wca4vN1bgK9E8lbmCGMImtEUKoDDrjtN52yGY5ihOAkyBPCuL8ZxRpMneeWXm6YOGhT5aByAGrjBoOnDkupq0Sh2U9yNxJgdPMQib-Ax5bQngOTsEHbX9ca_ReaztiN4lM0zPKrp9xHsjSdn5xej5i_CqPH4vx16BEE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmJtAUCAsElqmM7WfuAUAtdtvQhhLqoNxM7TrdSlZR9CPVP8Rs7k03CLiBuva12vFl7PPb3TeyZAXilC-mZ7-URc9ZF0iY2UjIXUZ4JpPeu0D6lAOej43QwlJ9Pk9MV-NXGwtC1ynZPrDfqvHL0jnybIxVUnILm31_-iKhqFJ2utiU05mZx4K9-oss2ebf_Eef3Nef9vZMPg6ipKhA5qdJphJDkUl4UOUIhK3KRMatzkeAerbnlGiVaepVYIXEMMXMq0YUSReqZtoidTuBzb8FtKRDJKTK9_6lz8AT6e_PsRShk2xNkK-gxUHDuAubVpQH-BoA_L2UuoFx_He419DTcmdvTfVjx5QNYW0ha-BDpPf7Wh8Ors9FsHH5tLyBVZbiLiJiH-OHb-WSGT_kyplOgWrRXjsi86FXkIxjeiMIew2pZlf4JhC7pSaasoKsqMua9DPmPz2KX-tjyxPoA3raKMq7JUU6lMi4M-iqkU9PpNICXXdPLeWKOfzXaJW13DSiXdv1FNT4zzdI0igkb44A8cUOZJyqVHrvVy4g9qlQH8IbmytCKx864rAlcwCFR7iyzgw4KHZcKFcBWO52m2Qom5rfhBvCiE-MippOZrPTVrG6DCkWyGweglsxgqevLkvJ8VKcDJ6ceWTfb-P-_P4c7g5OjQ3O4f3ywCXc5mithMGdbsDodz_xTJFdT-6y26BC-3_QSugbY8TcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUgQEBgeAlqmM7qf2A0MpabQyqaqJobyZ2nHUSSkY_hPav8ddxlyalBcTb3qLYSezzne938X0AvNSF9Mz38og56yJpExspmYsozwTCe1don1KA86dRejiRH06T0x342cbCkFtluyfWG3VeOfpH3uUIBRWnoPlu0bhFjA-G7y6-R1RBik5a23IaKxY59pc_0Hybvz06wLV-xflw8Pn9YdRUGIicVOkiQvXkUl4UOapFVuQiY1bnIsH9WnPLNbZo6VVihcT5xMypRBdKFKln2qIedQLfew12e2QVdWC3PxiNT9bmnkDrb5XLSAjNunPELmg_UKjuhgasCwX8rQ7-dNHc0HnD23CrAavh_oq77sCOL-_CzY0UhvcQ7OOzPpxcnk2Xs_CkdUeqyrCP-jEP8eLL-XyJbxnP6EyobhqUU2I2-jF5HyZXQrIH0Cmr0j-E0CVIOGUFOa7ImPcyREM-i13qY8sT6wN40xLKuCZjORXO-GbQciGamjVNA3ix7nqxStPxr059ova6A2XWrm9UszPTCKpRTNgYJ-QJKco8Uan0OKxeRlhSpTqA17RWhuQfB-OyJowBp0SZtMw-mit0eCpUAHvtcppmY5ib32wcwPN1M4o0ndNkpa-WdR8kKELfOAC1xQZbQ99uKc-ndXJwMvERg7NH___6M7iO4mM-Ho2OH8MNjtxKCpmzPegsZkv_BJHWwj5tWDqEr1ctRb8Afbw8og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Uyghur+Recognition+Based+on+Visual+Prediction+Enhancement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yaqi&rft.au=Kong%2C+Fanjie&rft.au=Xu%2C+Miaomiao&rft.au=Silamu%2C+Wushour&rft.date=2023-10-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=20&rft.spage=8610&rft_id=info:doi/10.3390%2Fs23208610&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23208610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon