Machine Learning for Human Motion Intention Detection
The gait pattern of exoskeleton control conflicting with the human operator’s (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7203 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gait pattern of exoskeleton control conflicting with the human operator’s (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role in the operation. The delayed detection of the pilot’s intent can be equally undesirable to the exoskeleton operation. Instead of recognizing the motion, this study examines the possibility of identifying the transition between gaits to achieve in-time detection. This study used the data from IMU sensors for future mobile applications. Furthermore, we tested using two machine learning networks: a linearfFeedforward neural network and a long short-term memory network. The gait data are from five subjects for training and testing. The study results show that: 1. The network can successfully separate the transition period from the motion periods. 2. The detection of gait change from walking to sitting can be as fast as 0.17 s, which is adequate for future control applications. However, detecting the transition from standing to walking can take as long as 1.2 s. 3. This study also find that the network trained for one person can also detect movement changes for different persons without deteriorating the performance. |
---|---|
AbstractList | The gait pattern of exoskeleton control conflicting with the human operator's (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role in the operation. The delayed detection of the pilot's intent can be equally undesirable to the exoskeleton operation. Instead of recognizing the motion, this study examines the possibility of identifying the transition between gaits to achieve in-time detection. This study used the data from IMU sensors for future mobile applications. Furthermore, we tested using two machine learning networks: a linearfFeedforward neural network and a long short-term memory network. The gait data are from five subjects for training and testing. The study results show that: 1. The network can successfully separate the transition period from the motion periods. 2. The detection of gait change from walking to sitting can be as fast as 0.17 s, which is adequate for future control applications. However, detecting the transition from standing to walking can take as long as 1.2 s. 3. This study also find that the network trained for one person can also detect movement changes for different persons without deteriorating the performance.The gait pattern of exoskeleton control conflicting with the human operator's (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role in the operation. The delayed detection of the pilot's intent can be equally undesirable to the exoskeleton operation. Instead of recognizing the motion, this study examines the possibility of identifying the transition between gaits to achieve in-time detection. This study used the data from IMU sensors for future mobile applications. Furthermore, we tested using two machine learning networks: a linearfFeedforward neural network and a long short-term memory network. The gait data are from five subjects for training and testing. The study results show that: 1. The network can successfully separate the transition period from the motion periods. 2. The detection of gait change from walking to sitting can be as fast as 0.17 s, which is adequate for future control applications. However, detecting the transition from standing to walking can take as long as 1.2 s. 3. This study also find that the network trained for one person can also detect movement changes for different persons without deteriorating the performance. The gait pattern of exoskeleton control conflicting with the human operator’s (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role in the operation. The delayed detection of the pilot’s intent can be equally undesirable to the exoskeleton operation. Instead of recognizing the motion, this study examines the possibility of identifying the transition between gaits to achieve in-time detection. This study used the data from IMU sensors for future mobile applications. Furthermore, we tested using two machine learning networks: a linearfFeedforward neural network and a long short-term memory network. The gait data are from five subjects for training and testing. The study results show that: 1. The network can successfully separate the transition period from the motion periods. 2. The detection of gait change from walking to sitting can be as fast as 0.17 s, which is adequate for future control applications. However, detecting the transition from standing to walking can take as long as 1.2 s. 3. This study also find that the network trained for one person can also detect movement changes for different persons without deteriorating the performance. |
Audience | Academic |
Author | Hsu, Che-Kang Hsu, Wei-Li Wang, Fu-Cheng Tsao, Tsu-Chin Yen, Jia-Yush Lin, Jun-Ji |
AuthorAffiliation | 3 Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA 1 Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106319, Taiwan 4 Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 106335, Taiwan 2 School and Graduate Institute of Physical Therapy, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei City 100025, Taiwan |
AuthorAffiliation_xml | – name: 3 Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA – name: 4 Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 106335, Taiwan – name: 2 School and Graduate Institute of Physical Therapy, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei City 100025, Taiwan – name: 1 Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106319, Taiwan |
Author_xml | – sequence: 1 givenname: Jun-Ji surname: Lin fullname: Lin, Jun-Ji – sequence: 2 givenname: Che-Kang surname: Hsu fullname: Hsu, Che-Kang – sequence: 3 givenname: Wei-Li surname: Hsu fullname: Hsu, Wei-Li – sequence: 4 givenname: Tsu-Chin surname: Tsao fullname: Tsao, Tsu-Chin – sequence: 5 givenname: Fu-Cheng orcidid: 0000-0001-5011-7934 surname: Wang fullname: Wang, Fu-Cheng – sequence: 6 givenname: Jia-Yush surname: Yen fullname: Yen, Jia-Yush |
BookMark | eNptUstuFDEQtFAQecCBPxiJCxw28ftxQlFIyEobcYGz5fG0N17N2MEzE4m_x7sTRSRCPrjUrq7ucvcpOko5AUIfCT5nzOCLkTIiFcXsDTohnPKVphQf_YOP0ek47jCmjDH9Dh0zJRlRHJ8gcef8fUzQbMCVFNO2Cbk0t_PgUnOXp5hTs04TpAP6BhP4PXqP3gbXj_Dh6T5Dv26uf17drjY_vq-vLjcrz7WcVqwVzoDBslNUeqE9pW3gRAbFiHPQYkKFVspoaYBjZqQi3BPCgLVtJwWwM7RedLvsdvahxMGVPza7aA-BXLbWlSn6HqzH0gUXhOBccK24Ia1Rvg0Ea5AdqKr1ddF6mNsBOl89Fde_EH35kuK93eZHSzAXRgpWFT4_KZT8e4ZxskMcPfS9S5Dn0VItlOaMU12pn15Rd3kuqf7VgcW5wmLf0vnC2rrqIKaQa2FfTwdD9HXGIdb4pZK0WloSviwJvuRxLBCe2yfY7lfBPq9C5V684vo4uf30apHY_yfjL0YEssQ |
CitedBy_id | crossref_primary_10_1080_23311886_2025_2474863 crossref_primary_10_1038_s41598_025_90307_6 |
Cites_doi | 10.1371/journal.pone.0200193 10.1609/aaai.v32i1.12328 10.1109/ICCV.2013.441 10.1109/MCE.2016.2614423 10.1016/j.proeng.2012.07.273 10.1016/j.patrec.2018.02.010 10.3390/s21165253 10.1016/j.engappai.2022.105702 10.1109/34.910878 10.1115/1.4047729 10.1007/s10846-019-01049-3 10.3389/fbioe.2020.00664 10.1080/01691864.2018.1490200 10.1109/ICIIBMS52876.2021.9651568 10.1109/ICARM.2018.8610692 10.1007/s11263-022-01594-9 10.1115/1.4045509 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23167203 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c06afaf55445487491b97cbf108e6de7 PMC10459653 A762548057 10_3390_s23167203 |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan ROC grantid: 111-2811-E-011-014-MY3 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c486t-3b5a9e906d726c58c22bf416f731aaeb01258779869e40396714c113e3bbd65e3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:26 EDT 2025 Thu Aug 21 18:36:34 EDT 2025 Mon Jul 21 11:15:42 EDT 2025 Fri Jul 25 02:15:22 EDT 2025 Tue Jun 10 21:29:30 EDT 2025 Tue Jul 01 01:20:19 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-3b5a9e906d726c58c22bf416f731aaeb01258779869e40396714c113e3bbd65e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5011-7934 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23167203 |
PMID | 37631740 |
PQID | 2857447057 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c06afaf55445487491b97cbf108e6de7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10459653 proquest_miscellaneous_2857843428 proquest_journals_2857447057 gale_infotracacademiconefile_A762548057 crossref_primary_10_3390_s23167203 crossref_citationtrail_10_3390_s23167203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bobick (ref_9) 2001; 23 Kong (ref_14) 2022; 130 Preatoni (ref_1) 2020; 8 ref_11 ref_21 ref_20 Wang (ref_12) 2019; 119 Anam (ref_4) 2012; 41 Cangelosi (ref_2) 2017; 6 Ito (ref_10) 2018; 32 Zhang (ref_3) 2019; 2019 ref_16 Chen (ref_13) 2021; 54 Hao (ref_18) 2020; 12 ref_8 Li (ref_17) 2019; 97 Khodabandelou (ref_15) 2023; 118 ref_5 Ji (ref_19) 2020; 12 ref_7 ref_6 |
References_xml | – volume: 2019 start-page: 3679174 year: 2019 ident: ref_3 article-title: sEMG Based Human Motion Intention Recognition publication-title: J. Robot. – ident: ref_6 doi: 10.1371/journal.pone.0200193 – ident: ref_8 doi: 10.1609/aaai.v32i1.12328 – ident: ref_7 doi: 10.1109/ICCV.2013.441 – volume: 6 start-page: 24 year: 2017 ident: ref_2 article-title: Human-Robot Interaction and Neuroprosthetics: A review of new technologies publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2016.2614423 – volume: 41 start-page: 988 year: 2012 ident: ref_4 article-title: Active Exoskeleton Control Systems: State of the Art publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.07.273 – volume: 119 start-page: 3 year: 2019 ident: ref_12 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – ident: ref_11 – ident: ref_16 doi: 10.3390/s21165253 – volume: 54 start-page: 1 year: 2021 ident: ref_13 article-title: Deep Learning for Sensor-based Human Activity Recognition: Over-view, Challenges, and Opportunities publication-title: ACM Comput. Surv. CSUR – volume: 118 start-page: 105702 year: 2023 ident: ref_15 article-title: A fuzzy convolutional attention-based GRU network for human activity recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105702 – volume: 23 start-page: 257 year: 2001 ident: ref_9 article-title: The recognition of human movement using temporal templates publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.910878 – volume: 12 start-page: 061014 year: 2020 ident: ref_18 article-title: Supernumerary Robotic Limbs to Assist Human Walking with Load Carriage publication-title: J. Mech. Robot. doi: 10.1115/1.4047729 – volume: 97 start-page: 95 year: 2019 ident: ref_17 article-title: Deep-Learning-Based Human Intention Prediction Using RGB Images and Optical Flow publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01049-3 – volume: 8 start-page: 664 year: 2020 ident: ref_1 article-title: Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises within a Continuous Workout publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00664 – volume: 32 start-page: 635 year: 2018 ident: ref_10 article-title: Evaluation of active wearable assistive devices with human posture reproduction using a humanoid robot publication-title: Adv. Robot. doi: 10.1080/01691864.2018.1490200 – ident: ref_21 doi: 10.1109/ICIIBMS52876.2021.9651568 – ident: ref_20 – ident: ref_5 doi: 10.1109/ICARM.2018.8610692 – volume: 130 start-page: 1366 year: 2022 ident: ref_14 article-title: Human Action Recognition and Prediction: A Survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01594-9 – volume: 12 start-page: 031007 year: 2020 ident: ref_19 article-title: Design and Analysis of a Smart Rehabilitation Walker with Passive Pelvic Mechanism publication-title: J. Mech. Robot. doi: 10.1115/1.4045509 |
SSID | ssj0023338 |
Score | 2.4383576 |
Snippet | The gait pattern of exoskeleton control conflicting with the human operator’s (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it... The gait pattern of exoskeleton control conflicting with the human operator's (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7203 |
SubjectTerms | Calibration Data collection feedforward neural network (FNN) Gait human intention detection human–robot interaction inertial measurement unit (IMU) Kinematics long short-term memory (LSTM) Machine learning Mobile applications Neural networks Robotics Robots Sensors Technical Note Wireless telephone software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xfVBH0UrZt3kefiLCeXNhbaNKJClJF1__vJM0uuyp48VaaoSQzSWa-dPINISccnHeiaHLfSJEzJl2unPA5bdCfIG4GBuGi8PBe3I7Y3ZiP50p9hZywjh64U9zAFaL2teeBNAaDa6ZLq6WzviwUiAbiPXL0eVMwlaAWReTV8QhRBPWDjypc-K6mlbGS94kk_T-34u_pkXP-5maNrKZAMTvvOrhOlqDdICtz9IGbhA9jJiRkiST1McMINIvH8tkwVufJYoZ6fLqCScy6arfI6Ob64fI2T2UQcseUmOTU8lqDLkQjK-G4clVlPcZRXtKyrsGii-FKSq2EBlZQLWTJXBlON61tBAe6TXrtaws7JJNChiIzqmYSmPOgrCq09BK_zjxqtk_OpuoxLnGEh1IVLwaxQtCkmWmyT45nom8dMcZvQhdBxzOBwGUdX6CFTbKw-cvCfXIaLGTCisPOuDpdHMAhBe4qc477eWCt4yi5PzWiSUvxw1SKS5yDsflo1oyLKPwZqVt4_exkFKMIxfpELRh_oeuLLe3zU6TjRkDLteB09z8Gu0eWQ0H7LsVwn_Qm759wgGHPxB7GGf4FeXL_7Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9lIOqEARoQWFCqm9RE3i9wn1qarScqLS3qzYsQtSlS3d7f9nxvFuu4C4RfHIcTyelz3-BuCLCD56WfdV7JWsOFe-0l7GivVoTzBuDjzQReHJN3l1w6-nYpo33OY5rXKpE5Oi7mee9siPWy0UdoXuxdf7XxVVjaLT1VxC4wVsEXQZpXSp6VPAxTD-GtGEGIb2x_OWrn23y_pY2QYlqP6_FfKfSZLPrM7lDrzK7mJ5MvL3NWyE4Q28fAYi-BbEJOVDhjJDpd6W6IeWaXO-nKQaPWXKU09P52GRcq-GXbi5vPh-dlXlYgiV51ouKuZEZ4KpZa9a6YX2besielNRsabrgkNDI7RSRksTeM2MVA33De1xOtdLEdg72BxmQ3gPpZKKSs3ojqvAfQza6dqoqLB3Hk3jCjhaTo_1GSmcClbcWYwYaCbtaiYLOFiR3o_wGP8iOqU5XhEQonV6MXu4tVlArK9lF7soCBwIgyiO4zDKu9jUOsg-qAIOiUOW5A4H47t8fQB_iRCs7AlqdcKuE0i5v2SizQI5t0_Lp4DPq2YUJTof6YYwexxpNGcYkBWg15i_NvT1luHnjwTKjWGtMFKwD___-h5sU8H6MYVwHzYXD4_hI7o1C_cprd3fBun3Sg priority: 102 providerName: ProQuest |
Title | Machine Learning for Human Motion Intention Detection |
URI | https://www.proquest.com/docview/2857447057 https://www.proquest.com/docview/2857843428 https://pubmed.ncbi.nlm.nih.gov/PMC10459653 https://doaj.org/article/c06afaf55445487491b97cbf108e6de7 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G9gIPiE9xME4FIcFLoW0-nDwgtMGOCekmhDjp3qImTQbS1NtuNwn-e-y0V62wB16qqnGr1E5iO7F_ZuyVDD56VTR5bEDlQoDPtVcx5w3qE_SbgwiUKDw_UccL8WUplztsW2OzZ-Dlja4d1ZNarM_e_rr4_QEn_HvyONFlf3dZUTp3RZife6iQgObnXAyHCRXnqaA15XTlqA-LDmBo_OpILSX0_n_X6L_jJq8potk9dre3ILODTuT32U5oH7A713AFHzI5TyGSIevRU08zNE2ztF-fzVPZniyFrqe7T2GTwrHaR2wxO_r-8Tjv6yPkXmi1ybmTtQmmUA1Uykvtq8pFNLAi8LKug0PdIzWA0coEUXCjoBS-pG1P5xolA3_MdttVG56wDBRQ9RldCwjCx6CdLgxEwK-LaEo3YW-27LG-Bw-nGhZnFp0I4qQdODlhLwfS8w4x4yaiQ-LxQEAg1-nBan1q-zljfaHqWEdJeEHoVwnshwHvYlnooJoAE_aaJGRpcGBnfN1nFOAvEaiVPcCFnuDsJFLub4Vot0PMVloCDs7U_GJoxtlFRyZ1G1ZXHY0WHH20CdMj4Y-6Pm5pf_5ION3o6UqjJH_6Pxx5xm5TJfsutnCf7W7WV-E52jsbN2W3YAl41bPPU7Z3eHTy9ds07R1M0zj_A7PbAEo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFU81tIWAQHCJmsTvQ4UKpdrSbk-ttDeTOHZBQtnS3Qrxp_iNzDjJtguIW29RPHKc8Yxnxh5_A_BKeBeczJssNEpmnCuXaSdDxhq0Jxg3e-7povD4WI5O-aeJmKzAr-EuDKVVDmtiXKibqaM98u1SC4VdoXvx7vx7RlWj6HR1KKHRicWh__kDQ7bZzsEezu_rstz_ePJhlPVVBTLHtZxnrBaV8SaXjSqlE9qVZR3QLQmKFVXla1yxhVbKaGk8z5mRquCuoM3Cum6k8Az7vQW30fDmpFFqchXgMYz3OvQixky-PSvpmnk51OPqbV4sDfC3AfgzKfOaldu_D2u9e5rudvL0AFZ8-xDuXQMtfARiHPMvfdpDs56l6Pem8TAgHceaQGnMi49Pe34ec73ax3B6I2x6AqvttPXrkCqpqLSNrrjy3AWva50bFRT2zoMp6gTeDuyxrkcmpwIZ3yxGKMRJu-BkAi8XpOcdHMe_iN4TjxcEhKAdX0wvzmyvkNblsgpVEARGhEEbx3EY5epQ5NrLxqsE3tAMWdJzHIyr-usK-EuEmGV30YoQVp5Ays1hEm2_AMzslbgm8GLRjKpL5zFV66eXHY3mDAPABPTS5C8Nfbml_folgoBjGC2MFOzp_7_-HO6MTsZH9ujg-HAD7pYopF364iaszi8u_Ra6VPP6WZTjFD7ftOL8BvVQMpI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4ipUBAILhEm8TvA0KFZdVStuJApb2ZxLELUpUt3a0Qf41fx4yTbLuAuPUWxSPHGc94ZuzxNwDPhXfBybzJQqNkxrlymXYyZKxBe4Jxs-eeLgpPD-TuIf8wE7MN-DXchaG0ymFNjAt1M3e0Rz4qtVDYFboXo9CnRXwaT96cfM-oghSdtA7lNDoR2fc_f2D4tni9N8a5flGWk_ef3-1mfYWBzHEtlxmrRWW8yWWjSumEdmVZB3RRgmJFVfkaV2-hlTJaGs9zZqQquCto47CuGyk8w36vwFXFREE6pmbnwR7D2K9DMmLM5KNFSVfOy6E2V2__YpmAv43BnwmaFyze5Bbc7F3VdKeTrduw4ds7cOMCgOFdENOYi-nTHqb1KEUfOI0HA-k01gdKY458fBr7Zcz7au_B4aWw6T5stvPWP4BUSUVlbnTFlecueF3r3KigsHceTFEn8Gpgj3U9SjkVyzi2GK0QJ-2Kkwk8W5GedNAc_yJ6SzxeERCadnwxPz2yvXJal8sqVEEQMBEGcBzHYZSrQ5FrLxuvEnhJM2RJ53EwruqvLuAvEXqW3UGLQrh5Aim3h0m0_WKwsOeim8DTVTOqMZ3NVK2fn3U0mjMMBhPQa5O_NvT1lvbb1wgIjiG1MFKwrf9__QlcQ5WxH_cO9h_C9RJltMtk3IbN5emZf4Te1bJ-HMU4hS-XrTe_ATF7Nsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Human+Motion+Intention+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Jun-Ji&rft.au=Hsu%2C+Che-Kang&rft.au=Hsu%2C+Wei-Li&rft.au=Tsao%2C+Tsu-Chin&rft.date=2023-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7203&rft_id=info:doi/10.3390%2Fs23167203&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23167203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |